1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32
33 #include <asm/tlb.h>
34
35 #include "internal.h"
36
37 struct madvise_walk_private {
38 struct mmu_gather *tlb;
39 bool pageout;
40 };
41
42 /*
43 * Any behaviour which results in changes to the vma->vm_flags needs to
44 * take mmap_lock for writing. Others, which simply traverse vmas, need
45 * to only take it for reading.
46 */
madvise_need_mmap_write(int behavior)47 static int madvise_need_mmap_write(int behavior)
48 {
49 switch (behavior) {
50 case MADV_REMOVE:
51 case MADV_WILLNEED:
52 case MADV_DONTNEED:
53 case MADV_COLD:
54 case MADV_PAGEOUT:
55 case MADV_FREE:
56 return 0;
57 default:
58 /* be safe, default to 1. list exceptions explicitly */
59 return 1;
60 }
61 }
62
63 /*
64 * We can potentially split a vm area into separate
65 * areas, each area with its own behavior.
66 */
madvise_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)67 static long madvise_behavior(struct vm_area_struct *vma,
68 struct vm_area_struct **prev,
69 unsigned long start, unsigned long end, int behavior)
70 {
71 struct mm_struct *mm = vma->vm_mm;
72 int error = 0;
73 pgoff_t pgoff;
74 unsigned long new_flags = vma->vm_flags;
75
76 switch (behavior) {
77 case MADV_NORMAL:
78 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 break;
80 case MADV_SEQUENTIAL:
81 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82 break;
83 case MADV_RANDOM:
84 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85 break;
86 case MADV_DONTFORK:
87 new_flags |= VM_DONTCOPY;
88 break;
89 case MADV_DOFORK:
90 if (vma->vm_flags & VM_IO) {
91 error = -EINVAL;
92 goto out;
93 }
94 new_flags &= ~VM_DONTCOPY;
95 break;
96 case MADV_WIPEONFORK:
97 /* MADV_WIPEONFORK is only supported on anonymous memory. */
98 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99 error = -EINVAL;
100 goto out;
101 }
102 new_flags |= VM_WIPEONFORK;
103 break;
104 case MADV_KEEPONFORK:
105 new_flags &= ~VM_WIPEONFORK;
106 break;
107 case MADV_DONTDUMP:
108 new_flags |= VM_DONTDUMP;
109 break;
110 case MADV_DODUMP:
111 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
112 error = -EINVAL;
113 goto out;
114 }
115 new_flags &= ~VM_DONTDUMP;
116 break;
117 case MADV_MERGEABLE:
118 case MADV_UNMERGEABLE:
119 error = ksm_madvise(vma, start, end, behavior, &new_flags);
120 if (error)
121 goto out_convert_errno;
122 break;
123 case MADV_HUGEPAGE:
124 case MADV_NOHUGEPAGE:
125 error = hugepage_madvise(vma, &new_flags, behavior);
126 if (error)
127 goto out_convert_errno;
128 break;
129 }
130
131 if (new_flags == vma->vm_flags) {
132 *prev = vma;
133 goto out;
134 }
135
136 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
138 vma->vm_file, pgoff, vma_policy(vma),
139 vma->vm_userfaultfd_ctx);
140 if (*prev) {
141 vma = *prev;
142 goto success;
143 }
144
145 *prev = vma;
146
147 if (start != vma->vm_start) {
148 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149 error = -ENOMEM;
150 goto out;
151 }
152 error = __split_vma(mm, vma, start, 1);
153 if (error)
154 goto out_convert_errno;
155 }
156
157 if (end != vma->vm_end) {
158 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159 error = -ENOMEM;
160 goto out;
161 }
162 error = __split_vma(mm, vma, end, 0);
163 if (error)
164 goto out_convert_errno;
165 }
166
167 success:
168 /*
169 * vm_flags is protected by the mmap_lock held in write mode.
170 */
171 vma->vm_flags = new_flags;
172
173 out_convert_errno:
174 /*
175 * madvise() returns EAGAIN if kernel resources, such as
176 * slab, are temporarily unavailable.
177 */
178 if (error == -ENOMEM)
179 error = -EAGAIN;
180 out:
181 return error;
182 }
183
184 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)185 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186 unsigned long end, struct mm_walk *walk)
187 {
188 pte_t *orig_pte;
189 struct vm_area_struct *vma = walk->private;
190 unsigned long index;
191
192 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 return 0;
194
195 for (index = start; index != end; index += PAGE_SIZE) {
196 pte_t pte;
197 swp_entry_t entry;
198 struct page *page;
199 spinlock_t *ptl;
200
201 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203 pte_unmap_unlock(orig_pte, ptl);
204
205 if (pte_present(pte) || pte_none(pte))
206 continue;
207 entry = pte_to_swp_entry(pte);
208 if (unlikely(non_swap_entry(entry)))
209 continue;
210
211 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
212 vma, index, false);
213 if (page)
214 put_page(page);
215 }
216
217 return 0;
218 }
219
220 static const struct mm_walk_ops swapin_walk_ops = {
221 .pmd_entry = swapin_walk_pmd_entry,
222 };
223
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)224 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225 unsigned long start, unsigned long end,
226 struct address_space *mapping)
227 {
228 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229 pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
230 struct page *page;
231
232 rcu_read_lock();
233 xas_for_each(&xas, page, end_index) {
234 swp_entry_t swap;
235
236 if (!xa_is_value(page))
237 continue;
238 xas_pause(&xas);
239 rcu_read_unlock();
240
241 swap = radix_to_swp_entry(page);
242 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
243 NULL, 0, false);
244 if (page)
245 put_page(page);
246
247 rcu_read_lock();
248 }
249 rcu_read_unlock();
250
251 lru_add_drain(); /* Push any new pages onto the LRU now */
252 }
253 #endif /* CONFIG_SWAP */
254
255 /*
256 * Schedule all required I/O operations. Do not wait for completion.
257 */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)258 static long madvise_willneed(struct vm_area_struct *vma,
259 struct vm_area_struct **prev,
260 unsigned long start, unsigned long end)
261 {
262 struct mm_struct *mm = vma->vm_mm;
263 struct file *file = vma->vm_file;
264 loff_t offset;
265
266 *prev = vma;
267 #ifdef CONFIG_SWAP
268 if (!file) {
269 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270 lru_add_drain(); /* Push any new pages onto the LRU now */
271 return 0;
272 }
273
274 if (shmem_mapping(file->f_mapping)) {
275 force_shm_swapin_readahead(vma, start, end,
276 file->f_mapping);
277 return 0;
278 }
279 #else
280 if (!file)
281 return -EBADF;
282 #endif
283
284 if (IS_DAX(file_inode(file))) {
285 /* no bad return value, but ignore advice */
286 return 0;
287 }
288
289 /*
290 * Filesystem's fadvise may need to take various locks. We need to
291 * explicitly grab a reference because the vma (and hence the
292 * vma's reference to the file) can go away as soon as we drop
293 * mmap_lock.
294 */
295 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
296 get_file(file);
297 offset = (loff_t)(start - vma->vm_start)
298 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
299 mmap_read_unlock(mm);
300 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301 fput(file);
302 mmap_read_lock(mm);
303 return 0;
304 }
305
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)306 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307 unsigned long addr, unsigned long end,
308 struct mm_walk *walk)
309 {
310 struct madvise_walk_private *private = walk->private;
311 struct mmu_gather *tlb = private->tlb;
312 bool pageout = private->pageout;
313 struct mm_struct *mm = tlb->mm;
314 struct vm_area_struct *vma = walk->vma;
315 pte_t *orig_pte, *pte, ptent;
316 spinlock_t *ptl;
317 struct page *page = NULL;
318 LIST_HEAD(page_list);
319
320 if (fatal_signal_pending(current))
321 return -EINTR;
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 if (pmd_trans_huge(*pmd)) {
325 pmd_t orig_pmd;
326 unsigned long next = pmd_addr_end(addr, end);
327
328 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329 ptl = pmd_trans_huge_lock(pmd, vma);
330 if (!ptl)
331 return 0;
332
333 orig_pmd = *pmd;
334 if (is_huge_zero_pmd(orig_pmd))
335 goto huge_unlock;
336
337 if (unlikely(!pmd_present(orig_pmd))) {
338 VM_BUG_ON(thp_migration_supported() &&
339 !is_pmd_migration_entry(orig_pmd));
340 goto huge_unlock;
341 }
342
343 page = pmd_page(orig_pmd);
344
345 /* Do not interfere with other mappings of this page */
346 if (page_mapcount(page) != 1)
347 goto huge_unlock;
348
349 if (next - addr != HPAGE_PMD_SIZE) {
350 int err;
351
352 get_page(page);
353 spin_unlock(ptl);
354 lock_page(page);
355 err = split_huge_page(page);
356 unlock_page(page);
357 put_page(page);
358 if (!err)
359 goto regular_page;
360 return 0;
361 }
362
363 if (pmd_young(orig_pmd)) {
364 pmdp_invalidate(vma, addr, pmd);
365 orig_pmd = pmd_mkold(orig_pmd);
366
367 set_pmd_at(mm, addr, pmd, orig_pmd);
368 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369 }
370
371 ClearPageReferenced(page);
372 test_and_clear_page_young(page);
373 if (pageout) {
374 if (!isolate_lru_page(page)) {
375 if (PageUnevictable(page))
376 putback_lru_page(page);
377 else
378 list_add(&page->lru, &page_list);
379 }
380 } else
381 deactivate_page(page);
382 huge_unlock:
383 spin_unlock(ptl);
384 if (pageout)
385 reclaim_pages(&page_list);
386 return 0;
387 }
388
389 regular_page:
390 if (pmd_trans_unstable(pmd))
391 return 0;
392 #endif
393 tlb_change_page_size(tlb, PAGE_SIZE);
394 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395 flush_tlb_batched_pending(mm);
396 arch_enter_lazy_mmu_mode();
397 for (; addr < end; pte++, addr += PAGE_SIZE) {
398 ptent = *pte;
399
400 if (pte_none(ptent))
401 continue;
402
403 if (!pte_present(ptent))
404 continue;
405
406 page = vm_normal_page(vma, addr, ptent);
407 if (!page)
408 continue;
409
410 /*
411 * Creating a THP page is expensive so split it only if we
412 * are sure it's worth. Split it if we are only owner.
413 */
414 if (PageTransCompound(page)) {
415 if (page_mapcount(page) != 1)
416 break;
417 get_page(page);
418 if (!trylock_page(page)) {
419 put_page(page);
420 break;
421 }
422 pte_unmap_unlock(orig_pte, ptl);
423 if (split_huge_page(page)) {
424 unlock_page(page);
425 put_page(page);
426 pte_offset_map_lock(mm, pmd, addr, &ptl);
427 break;
428 }
429 unlock_page(page);
430 put_page(page);
431 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
432 pte--;
433 addr -= PAGE_SIZE;
434 continue;
435 }
436
437 /* Do not interfere with other mappings of this page */
438 if (page_mapcount(page) != 1)
439 continue;
440
441 VM_BUG_ON_PAGE(PageTransCompound(page), page);
442
443 if (pte_young(ptent)) {
444 ptent = ptep_get_and_clear_full(mm, addr, pte,
445 tlb->fullmm);
446 ptent = pte_mkold(ptent);
447 set_pte_at(mm, addr, pte, ptent);
448 tlb_remove_tlb_entry(tlb, pte, addr);
449 }
450
451 /*
452 * We are deactivating a page for accelerating reclaiming.
453 * VM couldn't reclaim the page unless we clear PG_young.
454 * As a side effect, it makes confuse idle-page tracking
455 * because they will miss recent referenced history.
456 */
457 ClearPageReferenced(page);
458 test_and_clear_page_young(page);
459 if (pageout) {
460 if (!isolate_lru_page(page)) {
461 if (PageUnevictable(page))
462 putback_lru_page(page);
463 else
464 list_add(&page->lru, &page_list);
465 }
466 } else
467 deactivate_page(page);
468 }
469
470 arch_leave_lazy_mmu_mode();
471 pte_unmap_unlock(orig_pte, ptl);
472 if (pageout)
473 reclaim_pages(&page_list);
474 cond_resched();
475
476 return 0;
477 }
478
479 static const struct mm_walk_ops cold_walk_ops = {
480 .pmd_entry = madvise_cold_or_pageout_pte_range,
481 };
482
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)483 static void madvise_cold_page_range(struct mmu_gather *tlb,
484 struct vm_area_struct *vma,
485 unsigned long addr, unsigned long end)
486 {
487 struct madvise_walk_private walk_private = {
488 .pageout = false,
489 .tlb = tlb,
490 };
491
492 tlb_start_vma(tlb, vma);
493 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
494 tlb_end_vma(tlb, vma);
495 }
496
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)497 static long madvise_cold(struct vm_area_struct *vma,
498 struct vm_area_struct **prev,
499 unsigned long start_addr, unsigned long end_addr)
500 {
501 struct mm_struct *mm = vma->vm_mm;
502 struct mmu_gather tlb;
503
504 *prev = vma;
505 if (!can_madv_lru_vma(vma))
506 return -EINVAL;
507
508 lru_add_drain();
509 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
510 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
511 tlb_finish_mmu(&tlb, start_addr, end_addr);
512
513 return 0;
514 }
515
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)516 static void madvise_pageout_page_range(struct mmu_gather *tlb,
517 struct vm_area_struct *vma,
518 unsigned long addr, unsigned long end)
519 {
520 struct madvise_walk_private walk_private = {
521 .pageout = true,
522 .tlb = tlb,
523 };
524
525 tlb_start_vma(tlb, vma);
526 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
527 tlb_end_vma(tlb, vma);
528 }
529
can_do_pageout(struct vm_area_struct * vma)530 static inline bool can_do_pageout(struct vm_area_struct *vma)
531 {
532 if (vma_is_anonymous(vma))
533 return true;
534 if (!vma->vm_file)
535 return false;
536 /*
537 * paging out pagecache only for non-anonymous mappings that correspond
538 * to the files the calling process could (if tried) open for writing;
539 * otherwise we'd be including shared non-exclusive mappings, which
540 * opens a side channel.
541 */
542 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
543 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
544 }
545
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)546 static long madvise_pageout(struct vm_area_struct *vma,
547 struct vm_area_struct **prev,
548 unsigned long start_addr, unsigned long end_addr)
549 {
550 struct mm_struct *mm = vma->vm_mm;
551 struct mmu_gather tlb;
552
553 *prev = vma;
554 if (!can_madv_lru_vma(vma))
555 return -EINVAL;
556
557 if (!can_do_pageout(vma))
558 return 0;
559
560 lru_add_drain();
561 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
562 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
563 tlb_finish_mmu(&tlb, start_addr, end_addr);
564
565 return 0;
566 }
567
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)568 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
569 unsigned long end, struct mm_walk *walk)
570
571 {
572 struct mmu_gather *tlb = walk->private;
573 struct mm_struct *mm = tlb->mm;
574 struct vm_area_struct *vma = walk->vma;
575 spinlock_t *ptl;
576 pte_t *orig_pte, *pte, ptent;
577 struct page *page;
578 int nr_swap = 0;
579 unsigned long next;
580
581 next = pmd_addr_end(addr, end);
582 if (pmd_trans_huge(*pmd))
583 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
584 goto next;
585
586 if (pmd_trans_unstable(pmd))
587 return 0;
588
589 tlb_change_page_size(tlb, PAGE_SIZE);
590 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
591 flush_tlb_batched_pending(mm);
592 arch_enter_lazy_mmu_mode();
593 for (; addr != end; pte++, addr += PAGE_SIZE) {
594 ptent = *pte;
595
596 if (pte_none(ptent))
597 continue;
598 /*
599 * If the pte has swp_entry, just clear page table to
600 * prevent swap-in which is more expensive rather than
601 * (page allocation + zeroing).
602 */
603 if (!pte_present(ptent)) {
604 swp_entry_t entry;
605
606 entry = pte_to_swp_entry(ptent);
607 if (non_swap_entry(entry))
608 continue;
609 nr_swap--;
610 free_swap_and_cache(entry);
611 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
612 continue;
613 }
614
615 page = vm_normal_page(vma, addr, ptent);
616 if (!page)
617 continue;
618
619 /*
620 * If pmd isn't transhuge but the page is THP and
621 * is owned by only this process, split it and
622 * deactivate all pages.
623 */
624 if (PageTransCompound(page)) {
625 if (page_mapcount(page) != 1)
626 goto out;
627 get_page(page);
628 if (!trylock_page(page)) {
629 put_page(page);
630 goto out;
631 }
632 pte_unmap_unlock(orig_pte, ptl);
633 if (split_huge_page(page)) {
634 unlock_page(page);
635 put_page(page);
636 pte_offset_map_lock(mm, pmd, addr, &ptl);
637 goto out;
638 }
639 unlock_page(page);
640 put_page(page);
641 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
642 pte--;
643 addr -= PAGE_SIZE;
644 continue;
645 }
646
647 VM_BUG_ON_PAGE(PageTransCompound(page), page);
648
649 if (PageSwapCache(page) || PageDirty(page)) {
650 if (!trylock_page(page))
651 continue;
652 /*
653 * If page is shared with others, we couldn't clear
654 * PG_dirty of the page.
655 */
656 if (page_mapcount(page) != 1) {
657 unlock_page(page);
658 continue;
659 }
660
661 if (PageSwapCache(page) && !try_to_free_swap(page)) {
662 unlock_page(page);
663 continue;
664 }
665
666 ClearPageDirty(page);
667 unlock_page(page);
668 }
669
670 if (pte_young(ptent) || pte_dirty(ptent)) {
671 /*
672 * Some of architecture(ex, PPC) don't update TLB
673 * with set_pte_at and tlb_remove_tlb_entry so for
674 * the portability, remap the pte with old|clean
675 * after pte clearing.
676 */
677 ptent = ptep_get_and_clear_full(mm, addr, pte,
678 tlb->fullmm);
679
680 ptent = pte_mkold(ptent);
681 ptent = pte_mkclean(ptent);
682 set_pte_at(mm, addr, pte, ptent);
683 tlb_remove_tlb_entry(tlb, pte, addr);
684 }
685 mark_page_lazyfree(page);
686 }
687 out:
688 if (nr_swap) {
689 if (current->mm == mm)
690 sync_mm_rss(mm);
691
692 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
693 }
694 arch_leave_lazy_mmu_mode();
695 pte_unmap_unlock(orig_pte, ptl);
696 cond_resched();
697 next:
698 return 0;
699 }
700
701 static const struct mm_walk_ops madvise_free_walk_ops = {
702 .pmd_entry = madvise_free_pte_range,
703 };
704
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)705 static int madvise_free_single_vma(struct vm_area_struct *vma,
706 unsigned long start_addr, unsigned long end_addr)
707 {
708 struct mm_struct *mm = vma->vm_mm;
709 struct mmu_notifier_range range;
710 struct mmu_gather tlb;
711
712 /* MADV_FREE works for only anon vma at the moment */
713 if (!vma_is_anonymous(vma))
714 return -EINVAL;
715
716 range.start = max(vma->vm_start, start_addr);
717 if (range.start >= vma->vm_end)
718 return -EINVAL;
719 range.end = min(vma->vm_end, end_addr);
720 if (range.end <= vma->vm_start)
721 return -EINVAL;
722 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
723 range.start, range.end);
724
725 lru_add_drain();
726 tlb_gather_mmu(&tlb, mm, range.start, range.end);
727 update_hiwater_rss(mm);
728
729 mmu_notifier_invalidate_range_start(&range);
730 tlb_start_vma(&tlb, vma);
731 walk_page_range(vma->vm_mm, range.start, range.end,
732 &madvise_free_walk_ops, &tlb);
733 tlb_end_vma(&tlb, vma);
734 mmu_notifier_invalidate_range_end(&range);
735 tlb_finish_mmu(&tlb, range.start, range.end);
736
737 return 0;
738 }
739
740 /*
741 * Application no longer needs these pages. If the pages are dirty,
742 * it's OK to just throw them away. The app will be more careful about
743 * data it wants to keep. Be sure to free swap resources too. The
744 * zap_page_range call sets things up for shrink_active_list to actually free
745 * these pages later if no one else has touched them in the meantime,
746 * although we could add these pages to a global reuse list for
747 * shrink_active_list to pick up before reclaiming other pages.
748 *
749 * NB: This interface discards data rather than pushes it out to swap,
750 * as some implementations do. This has performance implications for
751 * applications like large transactional databases which want to discard
752 * pages in anonymous maps after committing to backing store the data
753 * that was kept in them. There is no reason to write this data out to
754 * the swap area if the application is discarding it.
755 *
756 * An interface that causes the system to free clean pages and flush
757 * dirty pages is already available as msync(MS_INVALIDATE).
758 */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)759 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
760 unsigned long start, unsigned long end)
761 {
762 zap_page_range(vma, start, end - start);
763 return 0;
764 }
765
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)766 static long madvise_dontneed_free(struct vm_area_struct *vma,
767 struct vm_area_struct **prev,
768 unsigned long start, unsigned long end,
769 int behavior)
770 {
771 struct mm_struct *mm = vma->vm_mm;
772
773 *prev = vma;
774 if (!can_madv_lru_vma(vma))
775 return -EINVAL;
776
777 if (!userfaultfd_remove(vma, start, end)) {
778 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
779
780 mmap_read_lock(mm);
781 vma = find_vma(mm, start);
782 if (!vma)
783 return -ENOMEM;
784 if (start < vma->vm_start) {
785 /*
786 * This "vma" under revalidation is the one
787 * with the lowest vma->vm_start where start
788 * is also < vma->vm_end. If start <
789 * vma->vm_start it means an hole materialized
790 * in the user address space within the
791 * virtual range passed to MADV_DONTNEED
792 * or MADV_FREE.
793 */
794 return -ENOMEM;
795 }
796 if (!can_madv_lru_vma(vma))
797 return -EINVAL;
798 if (end > vma->vm_end) {
799 /*
800 * Don't fail if end > vma->vm_end. If the old
801 * vma was splitted while the mmap_lock was
802 * released the effect of the concurrent
803 * operation may not cause madvise() to
804 * have an undefined result. There may be an
805 * adjacent next vma that we'll walk
806 * next. userfaultfd_remove() will generate an
807 * UFFD_EVENT_REMOVE repetition on the
808 * end-vma->vm_end range, but the manager can
809 * handle a repetition fine.
810 */
811 end = vma->vm_end;
812 }
813 VM_WARN_ON(start >= end);
814 }
815
816 if (behavior == MADV_DONTNEED)
817 return madvise_dontneed_single_vma(vma, start, end);
818 else if (behavior == MADV_FREE)
819 return madvise_free_single_vma(vma, start, end);
820 else
821 return -EINVAL;
822 }
823
824 /*
825 * Application wants to free up the pages and associated backing store.
826 * This is effectively punching a hole into the middle of a file.
827 */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)828 static long madvise_remove(struct vm_area_struct *vma,
829 struct vm_area_struct **prev,
830 unsigned long start, unsigned long end)
831 {
832 loff_t offset;
833 int error;
834 struct file *f;
835 struct mm_struct *mm = vma->vm_mm;
836
837 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
838
839 if (vma->vm_flags & VM_LOCKED)
840 return -EINVAL;
841
842 f = vma->vm_file;
843
844 if (!f || !f->f_mapping || !f->f_mapping->host) {
845 return -EINVAL;
846 }
847
848 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
849 return -EACCES;
850
851 offset = (loff_t)(start - vma->vm_start)
852 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
853
854 /*
855 * Filesystem's fallocate may need to take i_mutex. We need to
856 * explicitly grab a reference because the vma (and hence the
857 * vma's reference to the file) can go away as soon as we drop
858 * mmap_lock.
859 */
860 get_file(f);
861 if (userfaultfd_remove(vma, start, end)) {
862 /* mmap_lock was not released by userfaultfd_remove() */
863 mmap_read_unlock(mm);
864 }
865 error = vfs_fallocate(f,
866 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
867 offset, end - start);
868 fput(f);
869 mmap_read_lock(mm);
870 return error;
871 }
872
873 #ifdef CONFIG_MEMORY_FAILURE
874 /*
875 * Error injection support for memory error handling.
876 */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)877 static int madvise_inject_error(int behavior,
878 unsigned long start, unsigned long end)
879 {
880 struct zone *zone;
881 unsigned long size;
882
883 if (!capable(CAP_SYS_ADMIN))
884 return -EPERM;
885
886
887 for (; start < end; start += size) {
888 unsigned long pfn;
889 struct page *page;
890 int ret;
891
892 ret = get_user_pages_fast(start, 1, 0, &page);
893 if (ret != 1)
894 return ret;
895 pfn = page_to_pfn(page);
896
897 /*
898 * When soft offlining hugepages, after migrating the page
899 * we dissolve it, therefore in the second loop "page" will
900 * no longer be a compound page.
901 */
902 size = page_size(compound_head(page));
903
904 if (behavior == MADV_SOFT_OFFLINE) {
905 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
906 pfn, start);
907 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
908 } else {
909 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
910 pfn, start);
911 /*
912 * Drop the page reference taken by get_user_pages_fast(). In
913 * the absence of MF_COUNT_INCREASED the memory_failure()
914 * routine is responsible for pinning the page to prevent it
915 * from being released back to the page allocator.
916 */
917 put_page(page);
918 ret = memory_failure(pfn, 0);
919 }
920
921 if (ret)
922 return ret;
923 }
924
925 /* Ensure that all poisoned pages are removed from per-cpu lists */
926 for_each_populated_zone(zone)
927 drain_all_pages(zone);
928
929 return 0;
930 }
931 #endif
932
933 static long
madvise_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)934 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
935 unsigned long start, unsigned long end, int behavior)
936 {
937 switch (behavior) {
938 case MADV_REMOVE:
939 return madvise_remove(vma, prev, start, end);
940 case MADV_WILLNEED:
941 return madvise_willneed(vma, prev, start, end);
942 case MADV_COLD:
943 return madvise_cold(vma, prev, start, end);
944 case MADV_PAGEOUT:
945 return madvise_pageout(vma, prev, start, end);
946 case MADV_FREE:
947 case MADV_DONTNEED:
948 return madvise_dontneed_free(vma, prev, start, end, behavior);
949 default:
950 return madvise_behavior(vma, prev, start, end, behavior);
951 }
952 }
953
954 static bool
madvise_behavior_valid(int behavior)955 madvise_behavior_valid(int behavior)
956 {
957 switch (behavior) {
958 case MADV_DOFORK:
959 case MADV_DONTFORK:
960 case MADV_NORMAL:
961 case MADV_SEQUENTIAL:
962 case MADV_RANDOM:
963 case MADV_REMOVE:
964 case MADV_WILLNEED:
965 case MADV_DONTNEED:
966 case MADV_FREE:
967 case MADV_COLD:
968 case MADV_PAGEOUT:
969 #ifdef CONFIG_KSM
970 case MADV_MERGEABLE:
971 case MADV_UNMERGEABLE:
972 #endif
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 case MADV_HUGEPAGE:
975 case MADV_NOHUGEPAGE:
976 #endif
977 case MADV_DONTDUMP:
978 case MADV_DODUMP:
979 case MADV_WIPEONFORK:
980 case MADV_KEEPONFORK:
981 #ifdef CONFIG_MEMORY_FAILURE
982 case MADV_SOFT_OFFLINE:
983 case MADV_HWPOISON:
984 #endif
985 return true;
986
987 default:
988 return false;
989 }
990 }
991
992 static bool
process_madvise_behavior_valid(int behavior)993 process_madvise_behavior_valid(int behavior)
994 {
995 switch (behavior) {
996 case MADV_COLD:
997 case MADV_PAGEOUT:
998 return true;
999 default:
1000 return false;
1001 }
1002 }
1003
1004 /*
1005 * The madvise(2) system call.
1006 *
1007 * Applications can use madvise() to advise the kernel how it should
1008 * handle paging I/O in this VM area. The idea is to help the kernel
1009 * use appropriate read-ahead and caching techniques. The information
1010 * provided is advisory only, and can be safely disregarded by the
1011 * kernel without affecting the correct operation of the application.
1012 *
1013 * behavior values:
1014 * MADV_NORMAL - the default behavior is to read clusters. This
1015 * results in some read-ahead and read-behind.
1016 * MADV_RANDOM - the system should read the minimum amount of data
1017 * on any access, since it is unlikely that the appli-
1018 * cation will need more than what it asks for.
1019 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1020 * once, so they can be aggressively read ahead, and
1021 * can be freed soon after they are accessed.
1022 * MADV_WILLNEED - the application is notifying the system to read
1023 * some pages ahead.
1024 * MADV_DONTNEED - the application is finished with the given range,
1025 * so the kernel can free resources associated with it.
1026 * MADV_FREE - the application marks pages in the given range as lazy free,
1027 * where actual purges are postponed until memory pressure happens.
1028 * MADV_REMOVE - the application wants to free up the given range of
1029 * pages and associated backing store.
1030 * MADV_DONTFORK - omit this area from child's address space when forking:
1031 * typically, to avoid COWing pages pinned by get_user_pages().
1032 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1033 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1034 * range after a fork.
1035 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1036 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1037 * were corrupted by unrecoverable hardware memory failure.
1038 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1039 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1040 * this area with pages of identical content from other such areas.
1041 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1042 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1043 * huge pages in the future. Existing pages might be coalesced and
1044 * new pages might be allocated as THP.
1045 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1046 * transparent huge pages so the existing pages will not be
1047 * coalesced into THP and new pages will not be allocated as THP.
1048 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1049 * from being included in its core dump.
1050 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1051 * MADV_COLD - the application is not expected to use this memory soon,
1052 * deactivate pages in this range so that they can be reclaimed
1053 * easily if memory pressure hanppens.
1054 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1055 * page out the pages in this range immediately.
1056 *
1057 * return values:
1058 * zero - success
1059 * -EINVAL - start + len < 0, start is not page-aligned,
1060 * "behavior" is not a valid value, or application
1061 * is attempting to release locked or shared pages,
1062 * or the specified address range includes file, Huge TLB,
1063 * MAP_SHARED or VMPFNMAP range.
1064 * -ENOMEM - addresses in the specified range are not currently
1065 * mapped, or are outside the AS of the process.
1066 * -EIO - an I/O error occurred while paging in data.
1067 * -EBADF - map exists, but area maps something that isn't a file.
1068 * -EAGAIN - a kernel resource was temporarily unavailable.
1069 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1070 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1071 {
1072 unsigned long end, tmp;
1073 struct vm_area_struct *vma, *prev;
1074 int unmapped_error = 0;
1075 int error = -EINVAL;
1076 int write;
1077 size_t len;
1078 struct blk_plug plug;
1079
1080 start = untagged_addr(start);
1081
1082 if (!madvise_behavior_valid(behavior))
1083 return error;
1084
1085 if (!PAGE_ALIGNED(start))
1086 return error;
1087 len = PAGE_ALIGN(len_in);
1088
1089 /* Check to see whether len was rounded up from small -ve to zero */
1090 if (len_in && !len)
1091 return error;
1092
1093 end = start + len;
1094 if (end < start)
1095 return error;
1096
1097 error = 0;
1098 if (end == start)
1099 return error;
1100
1101 #ifdef CONFIG_MEMORY_FAILURE
1102 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1103 return madvise_inject_error(behavior, start, start + len_in);
1104 #endif
1105
1106 write = madvise_need_mmap_write(behavior);
1107 if (write) {
1108 if (mmap_write_lock_killable(mm))
1109 return -EINTR;
1110 } else {
1111 mmap_read_lock(mm);
1112 }
1113
1114 /*
1115 * If the interval [start,end) covers some unmapped address
1116 * ranges, just ignore them, but return -ENOMEM at the end.
1117 * - different from the way of handling in mlock etc.
1118 */
1119 vma = find_vma_prev(mm, start, &prev);
1120 if (vma && start > vma->vm_start)
1121 prev = vma;
1122
1123 blk_start_plug(&plug);
1124 for (;;) {
1125 /* Still start < end. */
1126 error = -ENOMEM;
1127 if (!vma)
1128 goto out;
1129
1130 /* Here start < (end|vma->vm_end). */
1131 if (start < vma->vm_start) {
1132 unmapped_error = -ENOMEM;
1133 start = vma->vm_start;
1134 if (start >= end)
1135 goto out;
1136 }
1137
1138 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1139 tmp = vma->vm_end;
1140 if (end < tmp)
1141 tmp = end;
1142
1143 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1144 error = madvise_vma(vma, &prev, start, tmp, behavior);
1145 if (error)
1146 goto out;
1147 start = tmp;
1148 if (prev && start < prev->vm_end)
1149 start = prev->vm_end;
1150 error = unmapped_error;
1151 if (start >= end)
1152 goto out;
1153 if (prev)
1154 vma = prev->vm_next;
1155 else /* madvise_remove dropped mmap_lock */
1156 vma = find_vma(mm, start);
1157 }
1158 out:
1159 blk_finish_plug(&plug);
1160 if (write)
1161 mmap_write_unlock(mm);
1162 else
1163 mmap_read_unlock(mm);
1164
1165 return error;
1166 }
1167
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1168 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1169 {
1170 return do_madvise(current->mm, start, len_in, behavior);
1171 }
1172
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1173 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1174 size_t, vlen, int, behavior, unsigned int, flags)
1175 {
1176 ssize_t ret;
1177 struct iovec iovstack[UIO_FASTIOV], iovec;
1178 struct iovec *iov = iovstack;
1179 struct iov_iter iter;
1180 struct pid *pid;
1181 struct task_struct *task;
1182 struct mm_struct *mm;
1183 size_t total_len;
1184 unsigned int f_flags;
1185
1186 if (flags != 0) {
1187 ret = -EINVAL;
1188 goto out;
1189 }
1190
1191 ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1192 if (ret < 0)
1193 goto out;
1194
1195 pid = pidfd_get_pid(pidfd, &f_flags);
1196 if (IS_ERR(pid)) {
1197 ret = PTR_ERR(pid);
1198 goto free_iov;
1199 }
1200
1201 task = get_pid_task(pid, PIDTYPE_PID);
1202 if (!task) {
1203 ret = -ESRCH;
1204 goto put_pid;
1205 }
1206
1207 if (!process_madvise_behavior_valid(behavior)) {
1208 ret = -EINVAL;
1209 goto release_task;
1210 }
1211
1212 mm = mm_access(task, PTRACE_MODE_ATTACH_FSCREDS);
1213 if (IS_ERR_OR_NULL(mm)) {
1214 ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1215 goto release_task;
1216 }
1217
1218 total_len = iov_iter_count(&iter);
1219
1220 while (iov_iter_count(&iter)) {
1221 iovec = iov_iter_iovec(&iter);
1222 ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1223 iovec.iov_len, behavior);
1224 if (ret < 0)
1225 break;
1226 iov_iter_advance(&iter, iovec.iov_len);
1227 }
1228
1229 if (ret == 0)
1230 ret = total_len - iov_iter_count(&iter);
1231
1232 mmput(mm);
1233 release_task:
1234 put_task_struct(task);
1235 put_pid:
1236 put_pid(pid);
1237 free_iov:
1238 kfree(iov);
1239 out:
1240 return ret;
1241 }
1242