1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/uio.h>
22 #include <linux/ksm.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/pagewalk.h>
28 #include <linux/swap.h>
29 #include <linux/swapops.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/mmu_notifier.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "internal.h"
36 
37 struct madvise_walk_private {
38 	struct mmu_gather *tlb;
39 	bool pageout;
40 };
41 
42 /*
43  * Any behaviour which results in changes to the vma->vm_flags needs to
44  * take mmap_lock for writing. Others, which simply traverse vmas, need
45  * to only take it for reading.
46  */
madvise_need_mmap_write(int behavior)47 static int madvise_need_mmap_write(int behavior)
48 {
49 	switch (behavior) {
50 	case MADV_REMOVE:
51 	case MADV_WILLNEED:
52 	case MADV_DONTNEED:
53 	case MADV_COLD:
54 	case MADV_PAGEOUT:
55 	case MADV_FREE:
56 		return 0;
57 	default:
58 		/* be safe, default to 1. list exceptions explicitly */
59 		return 1;
60 	}
61 }
62 
63 /*
64  * We can potentially split a vm area into separate
65  * areas, each area with its own behavior.
66  */
madvise_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)67 static long madvise_behavior(struct vm_area_struct *vma,
68 		     struct vm_area_struct **prev,
69 		     unsigned long start, unsigned long end, int behavior)
70 {
71 	struct mm_struct *mm = vma->vm_mm;
72 	int error = 0;
73 	pgoff_t pgoff;
74 	unsigned long new_flags = vma->vm_flags;
75 
76 	switch (behavior) {
77 	case MADV_NORMAL:
78 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 		break;
80 	case MADV_SEQUENTIAL:
81 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82 		break;
83 	case MADV_RANDOM:
84 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85 		break;
86 	case MADV_DONTFORK:
87 		new_flags |= VM_DONTCOPY;
88 		break;
89 	case MADV_DOFORK:
90 		if (vma->vm_flags & VM_IO) {
91 			error = -EINVAL;
92 			goto out;
93 		}
94 		new_flags &= ~VM_DONTCOPY;
95 		break;
96 	case MADV_WIPEONFORK:
97 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
98 		if (vma->vm_file || vma->vm_flags & VM_SHARED) {
99 			error = -EINVAL;
100 			goto out;
101 		}
102 		new_flags |= VM_WIPEONFORK;
103 		break;
104 	case MADV_KEEPONFORK:
105 		new_flags &= ~VM_WIPEONFORK;
106 		break;
107 	case MADV_DONTDUMP:
108 		new_flags |= VM_DONTDUMP;
109 		break;
110 	case MADV_DODUMP:
111 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
112 			error = -EINVAL;
113 			goto out;
114 		}
115 		new_flags &= ~VM_DONTDUMP;
116 		break;
117 	case MADV_MERGEABLE:
118 	case MADV_UNMERGEABLE:
119 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
120 		if (error)
121 			goto out_convert_errno;
122 		break;
123 	case MADV_HUGEPAGE:
124 	case MADV_NOHUGEPAGE:
125 		error = hugepage_madvise(vma, &new_flags, behavior);
126 		if (error)
127 			goto out_convert_errno;
128 		break;
129 	}
130 
131 	if (new_flags == vma->vm_flags) {
132 		*prev = vma;
133 		goto out;
134 	}
135 
136 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
137 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
138 			  vma->vm_file, pgoff, vma_policy(vma),
139 			  vma->vm_userfaultfd_ctx);
140 	if (*prev) {
141 		vma = *prev;
142 		goto success;
143 	}
144 
145 	*prev = vma;
146 
147 	if (start != vma->vm_start) {
148 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
149 			error = -ENOMEM;
150 			goto out;
151 		}
152 		error = __split_vma(mm, vma, start, 1);
153 		if (error)
154 			goto out_convert_errno;
155 	}
156 
157 	if (end != vma->vm_end) {
158 		if (unlikely(mm->map_count >= sysctl_max_map_count)) {
159 			error = -ENOMEM;
160 			goto out;
161 		}
162 		error = __split_vma(mm, vma, end, 0);
163 		if (error)
164 			goto out_convert_errno;
165 	}
166 
167 success:
168 	/*
169 	 * vm_flags is protected by the mmap_lock held in write mode.
170 	 */
171 	vma->vm_flags = new_flags;
172 
173 out_convert_errno:
174 	/*
175 	 * madvise() returns EAGAIN if kernel resources, such as
176 	 * slab, are temporarily unavailable.
177 	 */
178 	if (error == -ENOMEM)
179 		error = -EAGAIN;
180 out:
181 	return error;
182 }
183 
184 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)185 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
186 	unsigned long end, struct mm_walk *walk)
187 {
188 	pte_t *orig_pte;
189 	struct vm_area_struct *vma = walk->private;
190 	unsigned long index;
191 
192 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 		return 0;
194 
195 	for (index = start; index != end; index += PAGE_SIZE) {
196 		pte_t pte;
197 		swp_entry_t entry;
198 		struct page *page;
199 		spinlock_t *ptl;
200 
201 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
202 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
203 		pte_unmap_unlock(orig_pte, ptl);
204 
205 		if (pte_present(pte) || pte_none(pte))
206 			continue;
207 		entry = pte_to_swp_entry(pte);
208 		if (unlikely(non_swap_entry(entry)))
209 			continue;
210 
211 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
212 							vma, index, false);
213 		if (page)
214 			put_page(page);
215 	}
216 
217 	return 0;
218 }
219 
220 static const struct mm_walk_ops swapin_walk_ops = {
221 	.pmd_entry		= swapin_walk_pmd_entry,
222 };
223 
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)224 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
225 		unsigned long start, unsigned long end,
226 		struct address_space *mapping)
227 {
228 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
229 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
230 	struct page *page;
231 
232 	rcu_read_lock();
233 	xas_for_each(&xas, page, end_index) {
234 		swp_entry_t swap;
235 
236 		if (!xa_is_value(page))
237 			continue;
238 		xas_pause(&xas);
239 		rcu_read_unlock();
240 
241 		swap = radix_to_swp_entry(page);
242 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
243 							NULL, 0, false);
244 		if (page)
245 			put_page(page);
246 
247 		rcu_read_lock();
248 	}
249 	rcu_read_unlock();
250 
251 	lru_add_drain();	/* Push any new pages onto the LRU now */
252 }
253 #endif		/* CONFIG_SWAP */
254 
255 /*
256  * Schedule all required I/O operations.  Do not wait for completion.
257  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)258 static long madvise_willneed(struct vm_area_struct *vma,
259 			     struct vm_area_struct **prev,
260 			     unsigned long start, unsigned long end)
261 {
262 	struct mm_struct *mm = vma->vm_mm;
263 	struct file *file = vma->vm_file;
264 	loff_t offset;
265 
266 	*prev = vma;
267 #ifdef CONFIG_SWAP
268 	if (!file) {
269 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
270 		lru_add_drain(); /* Push any new pages onto the LRU now */
271 		return 0;
272 	}
273 
274 	if (shmem_mapping(file->f_mapping)) {
275 		force_shm_swapin_readahead(vma, start, end,
276 					file->f_mapping);
277 		return 0;
278 	}
279 #else
280 	if (!file)
281 		return -EBADF;
282 #endif
283 
284 	if (IS_DAX(file_inode(file))) {
285 		/* no bad return value, but ignore advice */
286 		return 0;
287 	}
288 
289 	/*
290 	 * Filesystem's fadvise may need to take various locks.  We need to
291 	 * explicitly grab a reference because the vma (and hence the
292 	 * vma's reference to the file) can go away as soon as we drop
293 	 * mmap_lock.
294 	 */
295 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
296 	get_file(file);
297 	offset = (loff_t)(start - vma->vm_start)
298 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
299 	mmap_read_unlock(mm);
300 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
301 	fput(file);
302 	mmap_read_lock(mm);
303 	return 0;
304 }
305 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)306 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
307 				unsigned long addr, unsigned long end,
308 				struct mm_walk *walk)
309 {
310 	struct madvise_walk_private *private = walk->private;
311 	struct mmu_gather *tlb = private->tlb;
312 	bool pageout = private->pageout;
313 	struct mm_struct *mm = tlb->mm;
314 	struct vm_area_struct *vma = walk->vma;
315 	pte_t *orig_pte, *pte, ptent;
316 	spinlock_t *ptl;
317 	struct page *page = NULL;
318 	LIST_HEAD(page_list);
319 
320 	if (fatal_signal_pending(current))
321 		return -EINTR;
322 
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 	if (pmd_trans_huge(*pmd)) {
325 		pmd_t orig_pmd;
326 		unsigned long next = pmd_addr_end(addr, end);
327 
328 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
329 		ptl = pmd_trans_huge_lock(pmd, vma);
330 		if (!ptl)
331 			return 0;
332 
333 		orig_pmd = *pmd;
334 		if (is_huge_zero_pmd(orig_pmd))
335 			goto huge_unlock;
336 
337 		if (unlikely(!pmd_present(orig_pmd))) {
338 			VM_BUG_ON(thp_migration_supported() &&
339 					!is_pmd_migration_entry(orig_pmd));
340 			goto huge_unlock;
341 		}
342 
343 		page = pmd_page(orig_pmd);
344 
345 		/* Do not interfere with other mappings of this page */
346 		if (page_mapcount(page) != 1)
347 			goto huge_unlock;
348 
349 		if (next - addr != HPAGE_PMD_SIZE) {
350 			int err;
351 
352 			get_page(page);
353 			spin_unlock(ptl);
354 			lock_page(page);
355 			err = split_huge_page(page);
356 			unlock_page(page);
357 			put_page(page);
358 			if (!err)
359 				goto regular_page;
360 			return 0;
361 		}
362 
363 		if (pmd_young(orig_pmd)) {
364 			pmdp_invalidate(vma, addr, pmd);
365 			orig_pmd = pmd_mkold(orig_pmd);
366 
367 			set_pmd_at(mm, addr, pmd, orig_pmd);
368 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
369 		}
370 
371 		ClearPageReferenced(page);
372 		test_and_clear_page_young(page);
373 		if (pageout) {
374 			if (!isolate_lru_page(page)) {
375 				if (PageUnevictable(page))
376 					putback_lru_page(page);
377 				else
378 					list_add(&page->lru, &page_list);
379 			}
380 		} else
381 			deactivate_page(page);
382 huge_unlock:
383 		spin_unlock(ptl);
384 		if (pageout)
385 			reclaim_pages(&page_list);
386 		return 0;
387 	}
388 
389 regular_page:
390 	if (pmd_trans_unstable(pmd))
391 		return 0;
392 #endif
393 	tlb_change_page_size(tlb, PAGE_SIZE);
394 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
395 	flush_tlb_batched_pending(mm);
396 	arch_enter_lazy_mmu_mode();
397 	for (; addr < end; pte++, addr += PAGE_SIZE) {
398 		ptent = *pte;
399 
400 		if (pte_none(ptent))
401 			continue;
402 
403 		if (!pte_present(ptent))
404 			continue;
405 
406 		page = vm_normal_page(vma, addr, ptent);
407 		if (!page)
408 			continue;
409 
410 		/*
411 		 * Creating a THP page is expensive so split it only if we
412 		 * are sure it's worth. Split it if we are only owner.
413 		 */
414 		if (PageTransCompound(page)) {
415 			if (page_mapcount(page) != 1)
416 				break;
417 			get_page(page);
418 			if (!trylock_page(page)) {
419 				put_page(page);
420 				break;
421 			}
422 			pte_unmap_unlock(orig_pte, ptl);
423 			if (split_huge_page(page)) {
424 				unlock_page(page);
425 				put_page(page);
426 				pte_offset_map_lock(mm, pmd, addr, &ptl);
427 				break;
428 			}
429 			unlock_page(page);
430 			put_page(page);
431 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
432 			pte--;
433 			addr -= PAGE_SIZE;
434 			continue;
435 		}
436 
437 		/* Do not interfere with other mappings of this page */
438 		if (page_mapcount(page) != 1)
439 			continue;
440 
441 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
442 
443 		if (pte_young(ptent)) {
444 			ptent = ptep_get_and_clear_full(mm, addr, pte,
445 							tlb->fullmm);
446 			ptent = pte_mkold(ptent);
447 			set_pte_at(mm, addr, pte, ptent);
448 			tlb_remove_tlb_entry(tlb, pte, addr);
449 		}
450 
451 		/*
452 		 * We are deactivating a page for accelerating reclaiming.
453 		 * VM couldn't reclaim the page unless we clear PG_young.
454 		 * As a side effect, it makes confuse idle-page tracking
455 		 * because they will miss recent referenced history.
456 		 */
457 		ClearPageReferenced(page);
458 		test_and_clear_page_young(page);
459 		if (pageout) {
460 			if (!isolate_lru_page(page)) {
461 				if (PageUnevictable(page))
462 					putback_lru_page(page);
463 				else
464 					list_add(&page->lru, &page_list);
465 			}
466 		} else
467 			deactivate_page(page);
468 	}
469 
470 	arch_leave_lazy_mmu_mode();
471 	pte_unmap_unlock(orig_pte, ptl);
472 	if (pageout)
473 		reclaim_pages(&page_list);
474 	cond_resched();
475 
476 	return 0;
477 }
478 
479 static const struct mm_walk_ops cold_walk_ops = {
480 	.pmd_entry = madvise_cold_or_pageout_pte_range,
481 };
482 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)483 static void madvise_cold_page_range(struct mmu_gather *tlb,
484 			     struct vm_area_struct *vma,
485 			     unsigned long addr, unsigned long end)
486 {
487 	struct madvise_walk_private walk_private = {
488 		.pageout = false,
489 		.tlb = tlb,
490 	};
491 
492 	tlb_start_vma(tlb, vma);
493 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
494 	tlb_end_vma(tlb, vma);
495 }
496 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)497 static long madvise_cold(struct vm_area_struct *vma,
498 			struct vm_area_struct **prev,
499 			unsigned long start_addr, unsigned long end_addr)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	struct mmu_gather tlb;
503 
504 	*prev = vma;
505 	if (!can_madv_lru_vma(vma))
506 		return -EINVAL;
507 
508 	lru_add_drain();
509 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
510 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
511 	tlb_finish_mmu(&tlb, start_addr, end_addr);
512 
513 	return 0;
514 }
515 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)516 static void madvise_pageout_page_range(struct mmu_gather *tlb,
517 			     struct vm_area_struct *vma,
518 			     unsigned long addr, unsigned long end)
519 {
520 	struct madvise_walk_private walk_private = {
521 		.pageout = true,
522 		.tlb = tlb,
523 	};
524 
525 	tlb_start_vma(tlb, vma);
526 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
527 	tlb_end_vma(tlb, vma);
528 }
529 
can_do_pageout(struct vm_area_struct * vma)530 static inline bool can_do_pageout(struct vm_area_struct *vma)
531 {
532 	if (vma_is_anonymous(vma))
533 		return true;
534 	if (!vma->vm_file)
535 		return false;
536 	/*
537 	 * paging out pagecache only for non-anonymous mappings that correspond
538 	 * to the files the calling process could (if tried) open for writing;
539 	 * otherwise we'd be including shared non-exclusive mappings, which
540 	 * opens a side channel.
541 	 */
542 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
543 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
544 }
545 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)546 static long madvise_pageout(struct vm_area_struct *vma,
547 			struct vm_area_struct **prev,
548 			unsigned long start_addr, unsigned long end_addr)
549 {
550 	struct mm_struct *mm = vma->vm_mm;
551 	struct mmu_gather tlb;
552 
553 	*prev = vma;
554 	if (!can_madv_lru_vma(vma))
555 		return -EINVAL;
556 
557 	if (!can_do_pageout(vma))
558 		return 0;
559 
560 	lru_add_drain();
561 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
562 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
563 	tlb_finish_mmu(&tlb, start_addr, end_addr);
564 
565 	return 0;
566 }
567 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)568 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
569 				unsigned long end, struct mm_walk *walk)
570 
571 {
572 	struct mmu_gather *tlb = walk->private;
573 	struct mm_struct *mm = tlb->mm;
574 	struct vm_area_struct *vma = walk->vma;
575 	spinlock_t *ptl;
576 	pte_t *orig_pte, *pte, ptent;
577 	struct page *page;
578 	int nr_swap = 0;
579 	unsigned long next;
580 
581 	next = pmd_addr_end(addr, end);
582 	if (pmd_trans_huge(*pmd))
583 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
584 			goto next;
585 
586 	if (pmd_trans_unstable(pmd))
587 		return 0;
588 
589 	tlb_change_page_size(tlb, PAGE_SIZE);
590 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
591 	flush_tlb_batched_pending(mm);
592 	arch_enter_lazy_mmu_mode();
593 	for (; addr != end; pte++, addr += PAGE_SIZE) {
594 		ptent = *pte;
595 
596 		if (pte_none(ptent))
597 			continue;
598 		/*
599 		 * If the pte has swp_entry, just clear page table to
600 		 * prevent swap-in which is more expensive rather than
601 		 * (page allocation + zeroing).
602 		 */
603 		if (!pte_present(ptent)) {
604 			swp_entry_t entry;
605 
606 			entry = pte_to_swp_entry(ptent);
607 			if (non_swap_entry(entry))
608 				continue;
609 			nr_swap--;
610 			free_swap_and_cache(entry);
611 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
612 			continue;
613 		}
614 
615 		page = vm_normal_page(vma, addr, ptent);
616 		if (!page)
617 			continue;
618 
619 		/*
620 		 * If pmd isn't transhuge but the page is THP and
621 		 * is owned by only this process, split it and
622 		 * deactivate all pages.
623 		 */
624 		if (PageTransCompound(page)) {
625 			if (page_mapcount(page) != 1)
626 				goto out;
627 			get_page(page);
628 			if (!trylock_page(page)) {
629 				put_page(page);
630 				goto out;
631 			}
632 			pte_unmap_unlock(orig_pte, ptl);
633 			if (split_huge_page(page)) {
634 				unlock_page(page);
635 				put_page(page);
636 				pte_offset_map_lock(mm, pmd, addr, &ptl);
637 				goto out;
638 			}
639 			unlock_page(page);
640 			put_page(page);
641 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
642 			pte--;
643 			addr -= PAGE_SIZE;
644 			continue;
645 		}
646 
647 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
648 
649 		if (PageSwapCache(page) || PageDirty(page)) {
650 			if (!trylock_page(page))
651 				continue;
652 			/*
653 			 * If page is shared with others, we couldn't clear
654 			 * PG_dirty of the page.
655 			 */
656 			if (page_mapcount(page) != 1) {
657 				unlock_page(page);
658 				continue;
659 			}
660 
661 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
662 				unlock_page(page);
663 				continue;
664 			}
665 
666 			ClearPageDirty(page);
667 			unlock_page(page);
668 		}
669 
670 		if (pte_young(ptent) || pte_dirty(ptent)) {
671 			/*
672 			 * Some of architecture(ex, PPC) don't update TLB
673 			 * with set_pte_at and tlb_remove_tlb_entry so for
674 			 * the portability, remap the pte with old|clean
675 			 * after pte clearing.
676 			 */
677 			ptent = ptep_get_and_clear_full(mm, addr, pte,
678 							tlb->fullmm);
679 
680 			ptent = pte_mkold(ptent);
681 			ptent = pte_mkclean(ptent);
682 			set_pte_at(mm, addr, pte, ptent);
683 			tlb_remove_tlb_entry(tlb, pte, addr);
684 		}
685 		mark_page_lazyfree(page);
686 	}
687 out:
688 	if (nr_swap) {
689 		if (current->mm == mm)
690 			sync_mm_rss(mm);
691 
692 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
693 	}
694 	arch_leave_lazy_mmu_mode();
695 	pte_unmap_unlock(orig_pte, ptl);
696 	cond_resched();
697 next:
698 	return 0;
699 }
700 
701 static const struct mm_walk_ops madvise_free_walk_ops = {
702 	.pmd_entry		= madvise_free_pte_range,
703 };
704 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)705 static int madvise_free_single_vma(struct vm_area_struct *vma,
706 			unsigned long start_addr, unsigned long end_addr)
707 {
708 	struct mm_struct *mm = vma->vm_mm;
709 	struct mmu_notifier_range range;
710 	struct mmu_gather tlb;
711 
712 	/* MADV_FREE works for only anon vma at the moment */
713 	if (!vma_is_anonymous(vma))
714 		return -EINVAL;
715 
716 	range.start = max(vma->vm_start, start_addr);
717 	if (range.start >= vma->vm_end)
718 		return -EINVAL;
719 	range.end = min(vma->vm_end, end_addr);
720 	if (range.end <= vma->vm_start)
721 		return -EINVAL;
722 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
723 				range.start, range.end);
724 
725 	lru_add_drain();
726 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
727 	update_hiwater_rss(mm);
728 
729 	mmu_notifier_invalidate_range_start(&range);
730 	tlb_start_vma(&tlb, vma);
731 	walk_page_range(vma->vm_mm, range.start, range.end,
732 			&madvise_free_walk_ops, &tlb);
733 	tlb_end_vma(&tlb, vma);
734 	mmu_notifier_invalidate_range_end(&range);
735 	tlb_finish_mmu(&tlb, range.start, range.end);
736 
737 	return 0;
738 }
739 
740 /*
741  * Application no longer needs these pages.  If the pages are dirty,
742  * it's OK to just throw them away.  The app will be more careful about
743  * data it wants to keep.  Be sure to free swap resources too.  The
744  * zap_page_range call sets things up for shrink_active_list to actually free
745  * these pages later if no one else has touched them in the meantime,
746  * although we could add these pages to a global reuse list for
747  * shrink_active_list to pick up before reclaiming other pages.
748  *
749  * NB: This interface discards data rather than pushes it out to swap,
750  * as some implementations do.  This has performance implications for
751  * applications like large transactional databases which want to discard
752  * pages in anonymous maps after committing to backing store the data
753  * that was kept in them.  There is no reason to write this data out to
754  * the swap area if the application is discarding it.
755  *
756  * An interface that causes the system to free clean pages and flush
757  * dirty pages is already available as msync(MS_INVALIDATE).
758  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)759 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
760 					unsigned long start, unsigned long end)
761 {
762 	zap_page_range(vma, start, end - start);
763 	return 0;
764 }
765 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)766 static long madvise_dontneed_free(struct vm_area_struct *vma,
767 				  struct vm_area_struct **prev,
768 				  unsigned long start, unsigned long end,
769 				  int behavior)
770 {
771 	struct mm_struct *mm = vma->vm_mm;
772 
773 	*prev = vma;
774 	if (!can_madv_lru_vma(vma))
775 		return -EINVAL;
776 
777 	if (!userfaultfd_remove(vma, start, end)) {
778 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
779 
780 		mmap_read_lock(mm);
781 		vma = find_vma(mm, start);
782 		if (!vma)
783 			return -ENOMEM;
784 		if (start < vma->vm_start) {
785 			/*
786 			 * This "vma" under revalidation is the one
787 			 * with the lowest vma->vm_start where start
788 			 * is also < vma->vm_end. If start <
789 			 * vma->vm_start it means an hole materialized
790 			 * in the user address space within the
791 			 * virtual range passed to MADV_DONTNEED
792 			 * or MADV_FREE.
793 			 */
794 			return -ENOMEM;
795 		}
796 		if (!can_madv_lru_vma(vma))
797 			return -EINVAL;
798 		if (end > vma->vm_end) {
799 			/*
800 			 * Don't fail if end > vma->vm_end. If the old
801 			 * vma was splitted while the mmap_lock was
802 			 * released the effect of the concurrent
803 			 * operation may not cause madvise() to
804 			 * have an undefined result. There may be an
805 			 * adjacent next vma that we'll walk
806 			 * next. userfaultfd_remove() will generate an
807 			 * UFFD_EVENT_REMOVE repetition on the
808 			 * end-vma->vm_end range, but the manager can
809 			 * handle a repetition fine.
810 			 */
811 			end = vma->vm_end;
812 		}
813 		VM_WARN_ON(start >= end);
814 	}
815 
816 	if (behavior == MADV_DONTNEED)
817 		return madvise_dontneed_single_vma(vma, start, end);
818 	else if (behavior == MADV_FREE)
819 		return madvise_free_single_vma(vma, start, end);
820 	else
821 		return -EINVAL;
822 }
823 
824 /*
825  * Application wants to free up the pages and associated backing store.
826  * This is effectively punching a hole into the middle of a file.
827  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)828 static long madvise_remove(struct vm_area_struct *vma,
829 				struct vm_area_struct **prev,
830 				unsigned long start, unsigned long end)
831 {
832 	loff_t offset;
833 	int error;
834 	struct file *f;
835 	struct mm_struct *mm = vma->vm_mm;
836 
837 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
838 
839 	if (vma->vm_flags & VM_LOCKED)
840 		return -EINVAL;
841 
842 	f = vma->vm_file;
843 
844 	if (!f || !f->f_mapping || !f->f_mapping->host) {
845 			return -EINVAL;
846 	}
847 
848 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
849 		return -EACCES;
850 
851 	offset = (loff_t)(start - vma->vm_start)
852 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
853 
854 	/*
855 	 * Filesystem's fallocate may need to take i_mutex.  We need to
856 	 * explicitly grab a reference because the vma (and hence the
857 	 * vma's reference to the file) can go away as soon as we drop
858 	 * mmap_lock.
859 	 */
860 	get_file(f);
861 	if (userfaultfd_remove(vma, start, end)) {
862 		/* mmap_lock was not released by userfaultfd_remove() */
863 		mmap_read_unlock(mm);
864 	}
865 	error = vfs_fallocate(f,
866 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
867 				offset, end - start);
868 	fput(f);
869 	mmap_read_lock(mm);
870 	return error;
871 }
872 
873 #ifdef CONFIG_MEMORY_FAILURE
874 /*
875  * Error injection support for memory error handling.
876  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)877 static int madvise_inject_error(int behavior,
878 		unsigned long start, unsigned long end)
879 {
880 	struct zone *zone;
881 	unsigned long size;
882 
883 	if (!capable(CAP_SYS_ADMIN))
884 		return -EPERM;
885 
886 
887 	for (; start < end; start += size) {
888 		unsigned long pfn;
889 		struct page *page;
890 		int ret;
891 
892 		ret = get_user_pages_fast(start, 1, 0, &page);
893 		if (ret != 1)
894 			return ret;
895 		pfn = page_to_pfn(page);
896 
897 		/*
898 		 * When soft offlining hugepages, after migrating the page
899 		 * we dissolve it, therefore in the second loop "page" will
900 		 * no longer be a compound page.
901 		 */
902 		size = page_size(compound_head(page));
903 
904 		if (behavior == MADV_SOFT_OFFLINE) {
905 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
906 				 pfn, start);
907 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
908 		} else {
909 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
910 				 pfn, start);
911 			/*
912 			 * Drop the page reference taken by get_user_pages_fast(). In
913 			 * the absence of MF_COUNT_INCREASED the memory_failure()
914 			 * routine is responsible for pinning the page to prevent it
915 			 * from being released back to the page allocator.
916 			 */
917 			put_page(page);
918 			ret = memory_failure(pfn, 0);
919 		}
920 
921 		if (ret)
922 			return ret;
923 	}
924 
925 	/* Ensure that all poisoned pages are removed from per-cpu lists */
926 	for_each_populated_zone(zone)
927 		drain_all_pages(zone);
928 
929 	return 0;
930 }
931 #endif
932 
933 static long
madvise_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)934 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
935 		unsigned long start, unsigned long end, int behavior)
936 {
937 	switch (behavior) {
938 	case MADV_REMOVE:
939 		return madvise_remove(vma, prev, start, end);
940 	case MADV_WILLNEED:
941 		return madvise_willneed(vma, prev, start, end);
942 	case MADV_COLD:
943 		return madvise_cold(vma, prev, start, end);
944 	case MADV_PAGEOUT:
945 		return madvise_pageout(vma, prev, start, end);
946 	case MADV_FREE:
947 	case MADV_DONTNEED:
948 		return madvise_dontneed_free(vma, prev, start, end, behavior);
949 	default:
950 		return madvise_behavior(vma, prev, start, end, behavior);
951 	}
952 }
953 
954 static bool
madvise_behavior_valid(int behavior)955 madvise_behavior_valid(int behavior)
956 {
957 	switch (behavior) {
958 	case MADV_DOFORK:
959 	case MADV_DONTFORK:
960 	case MADV_NORMAL:
961 	case MADV_SEQUENTIAL:
962 	case MADV_RANDOM:
963 	case MADV_REMOVE:
964 	case MADV_WILLNEED:
965 	case MADV_DONTNEED:
966 	case MADV_FREE:
967 	case MADV_COLD:
968 	case MADV_PAGEOUT:
969 #ifdef CONFIG_KSM
970 	case MADV_MERGEABLE:
971 	case MADV_UNMERGEABLE:
972 #endif
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
974 	case MADV_HUGEPAGE:
975 	case MADV_NOHUGEPAGE:
976 #endif
977 	case MADV_DONTDUMP:
978 	case MADV_DODUMP:
979 	case MADV_WIPEONFORK:
980 	case MADV_KEEPONFORK:
981 #ifdef CONFIG_MEMORY_FAILURE
982 	case MADV_SOFT_OFFLINE:
983 	case MADV_HWPOISON:
984 #endif
985 		return true;
986 
987 	default:
988 		return false;
989 	}
990 }
991 
992 static bool
process_madvise_behavior_valid(int behavior)993 process_madvise_behavior_valid(int behavior)
994 {
995 	switch (behavior) {
996 	case MADV_COLD:
997 	case MADV_PAGEOUT:
998 		return true;
999 	default:
1000 		return false;
1001 	}
1002 }
1003 
1004 /*
1005  * The madvise(2) system call.
1006  *
1007  * Applications can use madvise() to advise the kernel how it should
1008  * handle paging I/O in this VM area.  The idea is to help the kernel
1009  * use appropriate read-ahead and caching techniques.  The information
1010  * provided is advisory only, and can be safely disregarded by the
1011  * kernel without affecting the correct operation of the application.
1012  *
1013  * behavior values:
1014  *  MADV_NORMAL - the default behavior is to read clusters.  This
1015  *		results in some read-ahead and read-behind.
1016  *  MADV_RANDOM - the system should read the minimum amount of data
1017  *		on any access, since it is unlikely that the appli-
1018  *		cation will need more than what it asks for.
1019  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1020  *		once, so they can be aggressively read ahead, and
1021  *		can be freed soon after they are accessed.
1022  *  MADV_WILLNEED - the application is notifying the system to read
1023  *		some pages ahead.
1024  *  MADV_DONTNEED - the application is finished with the given range,
1025  *		so the kernel can free resources associated with it.
1026  *  MADV_FREE - the application marks pages in the given range as lazy free,
1027  *		where actual purges are postponed until memory pressure happens.
1028  *  MADV_REMOVE - the application wants to free up the given range of
1029  *		pages and associated backing store.
1030  *  MADV_DONTFORK - omit this area from child's address space when forking:
1031  *		typically, to avoid COWing pages pinned by get_user_pages().
1032  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1033  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1034  *              range after a fork.
1035  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1036  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1037  *		were corrupted by unrecoverable hardware memory failure.
1038  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1039  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1040  *		this area with pages of identical content from other such areas.
1041  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1042  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1043  *		huge pages in the future. Existing pages might be coalesced and
1044  *		new pages might be allocated as THP.
1045  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1046  *		transparent huge pages so the existing pages will not be
1047  *		coalesced into THP and new pages will not be allocated as THP.
1048  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1049  *		from being included in its core dump.
1050  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1051  *  MADV_COLD - the application is not expected to use this memory soon,
1052  *		deactivate pages in this range so that they can be reclaimed
1053  *		easily if memory pressure hanppens.
1054  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1055  *		page out the pages in this range immediately.
1056  *
1057  * return values:
1058  *  zero    - success
1059  *  -EINVAL - start + len < 0, start is not page-aligned,
1060  *		"behavior" is not a valid value, or application
1061  *		is attempting to release locked or shared pages,
1062  *		or the specified address range includes file, Huge TLB,
1063  *		MAP_SHARED or VMPFNMAP range.
1064  *  -ENOMEM - addresses in the specified range are not currently
1065  *		mapped, or are outside the AS of the process.
1066  *  -EIO    - an I/O error occurred while paging in data.
1067  *  -EBADF  - map exists, but area maps something that isn't a file.
1068  *  -EAGAIN - a kernel resource was temporarily unavailable.
1069  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1070 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1071 {
1072 	unsigned long end, tmp;
1073 	struct vm_area_struct *vma, *prev;
1074 	int unmapped_error = 0;
1075 	int error = -EINVAL;
1076 	int write;
1077 	size_t len;
1078 	struct blk_plug plug;
1079 
1080 	start = untagged_addr(start);
1081 
1082 	if (!madvise_behavior_valid(behavior))
1083 		return error;
1084 
1085 	if (!PAGE_ALIGNED(start))
1086 		return error;
1087 	len = PAGE_ALIGN(len_in);
1088 
1089 	/* Check to see whether len was rounded up from small -ve to zero */
1090 	if (len_in && !len)
1091 		return error;
1092 
1093 	end = start + len;
1094 	if (end < start)
1095 		return error;
1096 
1097 	error = 0;
1098 	if (end == start)
1099 		return error;
1100 
1101 #ifdef CONFIG_MEMORY_FAILURE
1102 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1103 		return madvise_inject_error(behavior, start, start + len_in);
1104 #endif
1105 
1106 	write = madvise_need_mmap_write(behavior);
1107 	if (write) {
1108 		if (mmap_write_lock_killable(mm))
1109 			return -EINTR;
1110 	} else {
1111 		mmap_read_lock(mm);
1112 	}
1113 
1114 	/*
1115 	 * If the interval [start,end) covers some unmapped address
1116 	 * ranges, just ignore them, but return -ENOMEM at the end.
1117 	 * - different from the way of handling in mlock etc.
1118 	 */
1119 	vma = find_vma_prev(mm, start, &prev);
1120 	if (vma && start > vma->vm_start)
1121 		prev = vma;
1122 
1123 	blk_start_plug(&plug);
1124 	for (;;) {
1125 		/* Still start < end. */
1126 		error = -ENOMEM;
1127 		if (!vma)
1128 			goto out;
1129 
1130 		/* Here start < (end|vma->vm_end). */
1131 		if (start < vma->vm_start) {
1132 			unmapped_error = -ENOMEM;
1133 			start = vma->vm_start;
1134 			if (start >= end)
1135 				goto out;
1136 		}
1137 
1138 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1139 		tmp = vma->vm_end;
1140 		if (end < tmp)
1141 			tmp = end;
1142 
1143 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1144 		error = madvise_vma(vma, &prev, start, tmp, behavior);
1145 		if (error)
1146 			goto out;
1147 		start = tmp;
1148 		if (prev && start < prev->vm_end)
1149 			start = prev->vm_end;
1150 		error = unmapped_error;
1151 		if (start >= end)
1152 			goto out;
1153 		if (prev)
1154 			vma = prev->vm_next;
1155 		else	/* madvise_remove dropped mmap_lock */
1156 			vma = find_vma(mm, start);
1157 	}
1158 out:
1159 	blk_finish_plug(&plug);
1160 	if (write)
1161 		mmap_write_unlock(mm);
1162 	else
1163 		mmap_read_unlock(mm);
1164 
1165 	return error;
1166 }
1167 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1168 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1169 {
1170 	return do_madvise(current->mm, start, len_in, behavior);
1171 }
1172 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1173 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1174 		size_t, vlen, int, behavior, unsigned int, flags)
1175 {
1176 	ssize_t ret;
1177 	struct iovec iovstack[UIO_FASTIOV], iovec;
1178 	struct iovec *iov = iovstack;
1179 	struct iov_iter iter;
1180 	struct pid *pid;
1181 	struct task_struct *task;
1182 	struct mm_struct *mm;
1183 	size_t total_len;
1184 	unsigned int f_flags;
1185 
1186 	if (flags != 0) {
1187 		ret = -EINVAL;
1188 		goto out;
1189 	}
1190 
1191 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1192 	if (ret < 0)
1193 		goto out;
1194 
1195 	pid = pidfd_get_pid(pidfd, &f_flags);
1196 	if (IS_ERR(pid)) {
1197 		ret = PTR_ERR(pid);
1198 		goto free_iov;
1199 	}
1200 
1201 	task = get_pid_task(pid, PIDTYPE_PID);
1202 	if (!task) {
1203 		ret = -ESRCH;
1204 		goto put_pid;
1205 	}
1206 
1207 	if (!process_madvise_behavior_valid(behavior)) {
1208 		ret = -EINVAL;
1209 		goto release_task;
1210 	}
1211 
1212 	mm = mm_access(task, PTRACE_MODE_ATTACH_FSCREDS);
1213 	if (IS_ERR_OR_NULL(mm)) {
1214 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1215 		goto release_task;
1216 	}
1217 
1218 	total_len = iov_iter_count(&iter);
1219 
1220 	while (iov_iter_count(&iter)) {
1221 		iovec = iov_iter_iovec(&iter);
1222 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1223 					iovec.iov_len, behavior);
1224 		if (ret < 0)
1225 			break;
1226 		iov_iter_advance(&iter, iovec.iov_len);
1227 	}
1228 
1229 	if (ret == 0)
1230 		ret = total_len - iov_iter_count(&iter);
1231 
1232 	mmput(mm);
1233 release_task:
1234 	put_task_struct(task);
1235 put_pid:
1236 	put_pid(pid);
1237 free_iov:
1238 	kfree(iov);
1239 out:
1240 	return ret;
1241 }
1242