1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * XArray implementation
4  * Copyright (c) 2017-2018 Microsoft Corporation
5  * Copyright (c) 2018-2020 Oracle
6  * Author: Matthew Wilcox <willy@infradead.org>
7  */
8 
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14 
15 /*
16  * Coding conventions in this file:
17  *
18  * @xa is used to refer to the entire xarray.
19  * @xas is the 'xarray operation state'.  It may be either a pointer to
20  * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
21  * ambiguity.
22  * @index is the index of the entry being operated on
23  * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24  * @node refers to an xa_node; usually the primary one being operated on by
25  * this function.
26  * @offset is the index into the slots array inside an xa_node.
27  * @parent refers to the @xa_node closer to the head than @node.
28  * @entry refers to something stored in a slot in the xarray
29  */
30 
xa_lock_type(const struct xarray * xa)31 static inline unsigned int xa_lock_type(const struct xarray *xa)
32 {
33 	return (__force unsigned int)xa->xa_flags & 3;
34 }
35 
xas_lock_type(struct xa_state * xas,unsigned int lock_type)36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37 {
38 	if (lock_type == XA_LOCK_IRQ)
39 		xas_lock_irq(xas);
40 	else if (lock_type == XA_LOCK_BH)
41 		xas_lock_bh(xas);
42 	else
43 		xas_lock(xas);
44 }
45 
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47 {
48 	if (lock_type == XA_LOCK_IRQ)
49 		xas_unlock_irq(xas);
50 	else if (lock_type == XA_LOCK_BH)
51 		xas_unlock_bh(xas);
52 	else
53 		xas_unlock(xas);
54 }
55 
xa_track_free(const struct xarray * xa)56 static inline bool xa_track_free(const struct xarray *xa)
57 {
58 	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
59 }
60 
xa_zero_busy(const struct xarray * xa)61 static inline bool xa_zero_busy(const struct xarray *xa)
62 {
63 	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
64 }
65 
xa_mark_set(struct xarray * xa,xa_mark_t mark)66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67 {
68 	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
69 		xa->xa_flags |= XA_FLAGS_MARK(mark);
70 }
71 
xa_mark_clear(struct xarray * xa,xa_mark_t mark)72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73 {
74 	if (xa->xa_flags & XA_FLAGS_MARK(mark))
75 		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
76 }
77 
node_marks(struct xa_node * node,xa_mark_t mark)78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79 {
80 	return node->marks[(__force unsigned)mark];
81 }
82 
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)83 static inline bool node_get_mark(struct xa_node *node,
84 		unsigned int offset, xa_mark_t mark)
85 {
86 	return test_bit(offset, node_marks(node, mark));
87 }
88 
89 /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
91 				xa_mark_t mark)
92 {
93 	return __test_and_set_bit(offset, node_marks(node, mark));
94 }
95 
96 /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
98 				xa_mark_t mark)
99 {
100 	return __test_and_clear_bit(offset, node_marks(node, mark));
101 }
102 
node_any_mark(struct xa_node * node,xa_mark_t mark)103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104 {
105 	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
106 }
107 
node_mark_all(struct xa_node * node,xa_mark_t mark)108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109 {
110 	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
111 }
112 
113 #define mark_inc(mark) do { \
114 	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
115 } while (0)
116 
117 /*
118  * xas_squash_marks() - Merge all marks to the first entry
119  * @xas: Array operation state.
120  *
121  * Set a mark on the first entry if any entry has it set.  Clear marks on
122  * all sibling entries.
123  */
xas_squash_marks(const struct xa_state * xas)124 static void xas_squash_marks(const struct xa_state *xas)
125 {
126 	unsigned int mark = 0;
127 	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128 
129 	if (!xas->xa_sibs)
130 		return;
131 
132 	do {
133 		unsigned long *marks = xas->xa_node->marks[mark];
134 		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
135 			continue;
136 		__set_bit(xas->xa_offset, marks);
137 		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
138 	} while (mark++ != (__force unsigned)XA_MARK_MAX);
139 }
140 
141 /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)142 static unsigned int get_offset(unsigned long index, struct xa_node *node)
143 {
144 	return (index >> node->shift) & XA_CHUNK_MASK;
145 }
146 
xas_set_offset(struct xa_state * xas)147 static void xas_set_offset(struct xa_state *xas)
148 {
149 	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
150 }
151 
152 /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)153 static void xas_move_index(struct xa_state *xas, unsigned long offset)
154 {
155 	unsigned int shift = xas->xa_node->shift;
156 	xas->xa_index &= ~XA_CHUNK_MASK << shift;
157 	xas->xa_index += offset << shift;
158 }
159 
xas_advance(struct xa_state * xas)160 static void xas_advance(struct xa_state *xas)
161 {
162 	xas->xa_offset++;
163 	xas_move_index(xas, xas->xa_offset);
164 }
165 
set_bounds(struct xa_state * xas)166 static void *set_bounds(struct xa_state *xas)
167 {
168 	xas->xa_node = XAS_BOUNDS;
169 	return NULL;
170 }
171 
172 /*
173  * Starts a walk.  If the @xas is already valid, we assume that it's on
174  * the right path and just return where we've got to.  If we're in an
175  * error state, return NULL.  If the index is outside the current scope
176  * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
177  * set @xas->xa_node to NULL and return the current head of the array.
178  */
xas_start(struct xa_state * xas)179 static void *xas_start(struct xa_state *xas)
180 {
181 	void *entry;
182 
183 	if (xas_valid(xas))
184 		return xas_reload(xas);
185 	if (xas_error(xas))
186 		return NULL;
187 
188 	entry = xa_head(xas->xa);
189 	if (!xa_is_node(entry)) {
190 		if (xas->xa_index)
191 			return set_bounds(xas);
192 	} else {
193 		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
194 			return set_bounds(xas);
195 	}
196 
197 	xas->xa_node = NULL;
198 	return entry;
199 }
200 
xas_descend(struct xa_state * xas,struct xa_node * node)201 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202 {
203 	unsigned int offset = get_offset(xas->xa_index, node);
204 	void *entry = xa_entry(xas->xa, node, offset);
205 
206 	xas->xa_node = node;
207 	if (xa_is_sibling(entry)) {
208 		offset = xa_to_sibling(entry);
209 		entry = xa_entry(xas->xa, node, offset);
210 	}
211 
212 	xas->xa_offset = offset;
213 	return entry;
214 }
215 
216 /**
217  * xas_load() - Load an entry from the XArray (advanced).
218  * @xas: XArray operation state.
219  *
220  * Usually walks the @xas to the appropriate state to load the entry
221  * stored at xa_index.  However, it will do nothing and return %NULL if
222  * @xas is in an error state.  xas_load() will never expand the tree.
223  *
224  * If the xa_state is set up to operate on a multi-index entry, xas_load()
225  * may return %NULL or an internal entry, even if there are entries
226  * present within the range specified by @xas.
227  *
228  * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
229  * Return: Usually an entry in the XArray, but see description for exceptions.
230  */
xas_load(struct xa_state * xas)231 void *xas_load(struct xa_state *xas)
232 {
233 	void *entry = xas_start(xas);
234 
235 	while (xa_is_node(entry)) {
236 		struct xa_node *node = xa_to_node(entry);
237 
238 		if (xas->xa_shift > node->shift)
239 			break;
240 		entry = xas_descend(xas, node);
241 		if (node->shift == 0)
242 			break;
243 	}
244 	return entry;
245 }
246 EXPORT_SYMBOL_GPL(xas_load);
247 
248 /* Move the radix tree node cache here */
249 extern struct kmem_cache *radix_tree_node_cachep;
250 extern void radix_tree_node_rcu_free(struct rcu_head *head);
251 
252 #define XA_RCU_FREE	((struct xarray *)1)
253 
xa_node_free(struct xa_node * node)254 static void xa_node_free(struct xa_node *node)
255 {
256 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 	node->array = XA_RCU_FREE;
258 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259 }
260 
261 /*
262  * xas_destroy() - Free any resources allocated during the XArray operation.
263  * @xas: XArray operation state.
264  *
265  * This function is now internal-only.
266  */
xas_destroy(struct xa_state * xas)267 static void xas_destroy(struct xa_state *xas)
268 {
269 	struct xa_node *next, *node = xas->xa_alloc;
270 
271 	while (node) {
272 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 		next = rcu_dereference_raw(node->parent);
274 		radix_tree_node_rcu_free(&node->rcu_head);
275 		xas->xa_alloc = node = next;
276 	}
277 }
278 
279 /**
280  * xas_nomem() - Allocate memory if needed.
281  * @xas: XArray operation state.
282  * @gfp: Memory allocation flags.
283  *
284  * If we need to add new nodes to the XArray, we try to allocate memory
285  * with GFP_NOWAIT while holding the lock, which will usually succeed.
286  * If it fails, @xas is flagged as needing memory to continue.  The caller
287  * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
288  * the caller should retry the operation.
289  *
290  * Forward progress is guaranteed as one node is allocated here and
291  * stored in the xa_state where it will be found by xas_alloc().  More
292  * nodes will likely be found in the slab allocator, but we do not tie
293  * them up here.
294  *
295  * Return: true if memory was needed, and was successfully allocated.
296  */
xas_nomem(struct xa_state * xas,gfp_t gfp)297 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
298 {
299 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
300 		xas_destroy(xas);
301 		return false;
302 	}
303 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
304 		gfp |= __GFP_ACCOUNT;
305 	xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
306 	if (!xas->xa_alloc)
307 		return false;
308 	xas->xa_alloc->parent = NULL;
309 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
310 	xas->xa_node = XAS_RESTART;
311 	return true;
312 }
313 EXPORT_SYMBOL_GPL(xas_nomem);
314 
315 /*
316  * __xas_nomem() - Drop locks and allocate memory if needed.
317  * @xas: XArray operation state.
318  * @gfp: Memory allocation flags.
319  *
320  * Internal variant of xas_nomem().
321  *
322  * Return: true if memory was needed, and was successfully allocated.
323  */
__xas_nomem(struct xa_state * xas,gfp_t gfp)324 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
325 	__must_hold(xas->xa->xa_lock)
326 {
327 	unsigned int lock_type = xa_lock_type(xas->xa);
328 
329 	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
330 		xas_destroy(xas);
331 		return false;
332 	}
333 	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
334 		gfp |= __GFP_ACCOUNT;
335 	if (gfpflags_allow_blocking(gfp)) {
336 		xas_unlock_type(xas, lock_type);
337 		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
338 		xas_lock_type(xas, lock_type);
339 	} else {
340 		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
341 	}
342 	if (!xas->xa_alloc)
343 		return false;
344 	xas->xa_alloc->parent = NULL;
345 	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
346 	xas->xa_node = XAS_RESTART;
347 	return true;
348 }
349 
xas_update(struct xa_state * xas,struct xa_node * node)350 static void xas_update(struct xa_state *xas, struct xa_node *node)
351 {
352 	if (xas->xa_update)
353 		xas->xa_update(node);
354 	else
355 		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
356 }
357 
xas_alloc(struct xa_state * xas,unsigned int shift)358 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
359 {
360 	struct xa_node *parent = xas->xa_node;
361 	struct xa_node *node = xas->xa_alloc;
362 
363 	if (xas_invalid(xas))
364 		return NULL;
365 
366 	if (node) {
367 		xas->xa_alloc = NULL;
368 	} else {
369 		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
370 
371 		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
372 			gfp |= __GFP_ACCOUNT;
373 
374 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
375 		if (!node) {
376 			xas_set_err(xas, -ENOMEM);
377 			return NULL;
378 		}
379 	}
380 
381 	if (parent) {
382 		node->offset = xas->xa_offset;
383 		parent->count++;
384 		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
385 		xas_update(xas, parent);
386 	}
387 	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
388 	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
389 	node->shift = shift;
390 	node->count = 0;
391 	node->nr_values = 0;
392 	RCU_INIT_POINTER(node->parent, xas->xa_node);
393 	node->array = xas->xa;
394 
395 	return node;
396 }
397 
398 #ifdef CONFIG_XARRAY_MULTI
399 /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)400 static unsigned long xas_size(const struct xa_state *xas)
401 {
402 	return (xas->xa_sibs + 1UL) << xas->xa_shift;
403 }
404 #endif
405 
406 /*
407  * Use this to calculate the maximum index that will need to be created
408  * in order to add the entry described by @xas.  Because we cannot store a
409  * multi-index entry at index 0, the calculation is a little more complex
410  * than you might expect.
411  */
xas_max(struct xa_state * xas)412 static unsigned long xas_max(struct xa_state *xas)
413 {
414 	unsigned long max = xas->xa_index;
415 
416 #ifdef CONFIG_XARRAY_MULTI
417 	if (xas->xa_shift || xas->xa_sibs) {
418 		unsigned long mask = xas_size(xas) - 1;
419 		max |= mask;
420 		if (mask == max)
421 			max++;
422 	}
423 #endif
424 
425 	return max;
426 }
427 
428 /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)429 static unsigned long max_index(void *entry)
430 {
431 	if (!xa_is_node(entry))
432 		return 0;
433 	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
434 }
435 
xas_shrink(struct xa_state * xas)436 static void xas_shrink(struct xa_state *xas)
437 {
438 	struct xarray *xa = xas->xa;
439 	struct xa_node *node = xas->xa_node;
440 
441 	for (;;) {
442 		void *entry;
443 
444 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
445 		if (node->count != 1)
446 			break;
447 		entry = xa_entry_locked(xa, node, 0);
448 		if (!entry)
449 			break;
450 		if (!xa_is_node(entry) && node->shift)
451 			break;
452 		if (xa_is_zero(entry) && xa_zero_busy(xa))
453 			entry = NULL;
454 		xas->xa_node = XAS_BOUNDS;
455 
456 		RCU_INIT_POINTER(xa->xa_head, entry);
457 		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
458 			xa_mark_clear(xa, XA_FREE_MARK);
459 
460 		node->count = 0;
461 		node->nr_values = 0;
462 		if (!xa_is_node(entry))
463 			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
464 		xas_update(xas, node);
465 		xa_node_free(node);
466 		if (!xa_is_node(entry))
467 			break;
468 		node = xa_to_node(entry);
469 		node->parent = NULL;
470 	}
471 }
472 
473 /*
474  * xas_delete_node() - Attempt to delete an xa_node
475  * @xas: Array operation state.
476  *
477  * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
478  * a non-zero reference count.
479  */
xas_delete_node(struct xa_state * xas)480 static void xas_delete_node(struct xa_state *xas)
481 {
482 	struct xa_node *node = xas->xa_node;
483 
484 	for (;;) {
485 		struct xa_node *parent;
486 
487 		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
488 		if (node->count)
489 			break;
490 
491 		parent = xa_parent_locked(xas->xa, node);
492 		xas->xa_node = parent;
493 		xas->xa_offset = node->offset;
494 		xa_node_free(node);
495 
496 		if (!parent) {
497 			xas->xa->xa_head = NULL;
498 			xas->xa_node = XAS_BOUNDS;
499 			return;
500 		}
501 
502 		parent->slots[xas->xa_offset] = NULL;
503 		parent->count--;
504 		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
505 		node = parent;
506 		xas_update(xas, node);
507 	}
508 
509 	if (!node->parent)
510 		xas_shrink(xas);
511 }
512 
513 /**
514  * xas_free_nodes() - Free this node and all nodes that it references
515  * @xas: Array operation state.
516  * @top: Node to free
517  *
518  * This node has been removed from the tree.  We must now free it and all
519  * of its subnodes.  There may be RCU walkers with references into the tree,
520  * so we must replace all entries with retry markers.
521  */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)522 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
523 {
524 	unsigned int offset = 0;
525 	struct xa_node *node = top;
526 
527 	for (;;) {
528 		void *entry = xa_entry_locked(xas->xa, node, offset);
529 
530 		if (node->shift && xa_is_node(entry)) {
531 			node = xa_to_node(entry);
532 			offset = 0;
533 			continue;
534 		}
535 		if (entry)
536 			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
537 		offset++;
538 		while (offset == XA_CHUNK_SIZE) {
539 			struct xa_node *parent;
540 
541 			parent = xa_parent_locked(xas->xa, node);
542 			offset = node->offset + 1;
543 			node->count = 0;
544 			node->nr_values = 0;
545 			xas_update(xas, node);
546 			xa_node_free(node);
547 			if (node == top)
548 				return;
549 			node = parent;
550 		}
551 	}
552 }
553 
554 /*
555  * xas_expand adds nodes to the head of the tree until it has reached
556  * sufficient height to be able to contain @xas->xa_index
557  */
xas_expand(struct xa_state * xas,void * head)558 static int xas_expand(struct xa_state *xas, void *head)
559 {
560 	struct xarray *xa = xas->xa;
561 	struct xa_node *node = NULL;
562 	unsigned int shift = 0;
563 	unsigned long max = xas_max(xas);
564 
565 	if (!head) {
566 		if (max == 0)
567 			return 0;
568 		while ((max >> shift) >= XA_CHUNK_SIZE)
569 			shift += XA_CHUNK_SHIFT;
570 		return shift + XA_CHUNK_SHIFT;
571 	} else if (xa_is_node(head)) {
572 		node = xa_to_node(head);
573 		shift = node->shift + XA_CHUNK_SHIFT;
574 	}
575 	xas->xa_node = NULL;
576 
577 	while (max > max_index(head)) {
578 		xa_mark_t mark = 0;
579 
580 		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
581 		node = xas_alloc(xas, shift);
582 		if (!node)
583 			return -ENOMEM;
584 
585 		node->count = 1;
586 		if (xa_is_value(head))
587 			node->nr_values = 1;
588 		RCU_INIT_POINTER(node->slots[0], head);
589 
590 		/* Propagate the aggregated mark info to the new child */
591 		for (;;) {
592 			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
593 				node_mark_all(node, XA_FREE_MARK);
594 				if (!xa_marked(xa, XA_FREE_MARK)) {
595 					node_clear_mark(node, 0, XA_FREE_MARK);
596 					xa_mark_set(xa, XA_FREE_MARK);
597 				}
598 			} else if (xa_marked(xa, mark)) {
599 				node_set_mark(node, 0, mark);
600 			}
601 			if (mark == XA_MARK_MAX)
602 				break;
603 			mark_inc(mark);
604 		}
605 
606 		/*
607 		 * Now that the new node is fully initialised, we can add
608 		 * it to the tree
609 		 */
610 		if (xa_is_node(head)) {
611 			xa_to_node(head)->offset = 0;
612 			rcu_assign_pointer(xa_to_node(head)->parent, node);
613 		}
614 		head = xa_mk_node(node);
615 		rcu_assign_pointer(xa->xa_head, head);
616 		xas_update(xas, node);
617 
618 		shift += XA_CHUNK_SHIFT;
619 	}
620 
621 	xas->xa_node = node;
622 	return shift;
623 }
624 
625 /*
626  * xas_create() - Create a slot to store an entry in.
627  * @xas: XArray operation state.
628  * @allow_root: %true if we can store the entry in the root directly
629  *
630  * Most users will not need to call this function directly, as it is called
631  * by xas_store().  It is useful for doing conditional store operations
632  * (see the xa_cmpxchg() implementation for an example).
633  *
634  * Return: If the slot already existed, returns the contents of this slot.
635  * If the slot was newly created, returns %NULL.  If it failed to create the
636  * slot, returns %NULL and indicates the error in @xas.
637  */
xas_create(struct xa_state * xas,bool allow_root)638 static void *xas_create(struct xa_state *xas, bool allow_root)
639 {
640 	struct xarray *xa = xas->xa;
641 	void *entry;
642 	void __rcu **slot;
643 	struct xa_node *node = xas->xa_node;
644 	int shift;
645 	unsigned int order = xas->xa_shift;
646 
647 	if (xas_top(node)) {
648 		entry = xa_head_locked(xa);
649 		xas->xa_node = NULL;
650 		if (!entry && xa_zero_busy(xa))
651 			entry = XA_ZERO_ENTRY;
652 		shift = xas_expand(xas, entry);
653 		if (shift < 0)
654 			return NULL;
655 		if (!shift && !allow_root)
656 			shift = XA_CHUNK_SHIFT;
657 		entry = xa_head_locked(xa);
658 		slot = &xa->xa_head;
659 	} else if (xas_error(xas)) {
660 		return NULL;
661 	} else if (node) {
662 		unsigned int offset = xas->xa_offset;
663 
664 		shift = node->shift;
665 		entry = xa_entry_locked(xa, node, offset);
666 		slot = &node->slots[offset];
667 	} else {
668 		shift = 0;
669 		entry = xa_head_locked(xa);
670 		slot = &xa->xa_head;
671 	}
672 
673 	while (shift > order) {
674 		shift -= XA_CHUNK_SHIFT;
675 		if (!entry) {
676 			node = xas_alloc(xas, shift);
677 			if (!node)
678 				break;
679 			if (xa_track_free(xa))
680 				node_mark_all(node, XA_FREE_MARK);
681 			rcu_assign_pointer(*slot, xa_mk_node(node));
682 		} else if (xa_is_node(entry)) {
683 			node = xa_to_node(entry);
684 		} else {
685 			break;
686 		}
687 		entry = xas_descend(xas, node);
688 		slot = &node->slots[xas->xa_offset];
689 	}
690 
691 	return entry;
692 }
693 
694 /**
695  * xas_create_range() - Ensure that stores to this range will succeed
696  * @xas: XArray operation state.
697  *
698  * Creates all of the slots in the range covered by @xas.  Sets @xas to
699  * create single-index entries and positions it at the beginning of the
700  * range.  This is for the benefit of users which have not yet been
701  * converted to use multi-index entries.
702  */
xas_create_range(struct xa_state * xas)703 void xas_create_range(struct xa_state *xas)
704 {
705 	unsigned long index = xas->xa_index;
706 	unsigned char shift = xas->xa_shift;
707 	unsigned char sibs = xas->xa_sibs;
708 
709 	xas->xa_index |= ((sibs + 1UL) << shift) - 1;
710 	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
711 		xas->xa_offset |= sibs;
712 	xas->xa_shift = 0;
713 	xas->xa_sibs = 0;
714 
715 	for (;;) {
716 		xas_create(xas, true);
717 		if (xas_error(xas))
718 			goto restore;
719 		if (xas->xa_index <= (index | XA_CHUNK_MASK))
720 			goto success;
721 		xas->xa_index -= XA_CHUNK_SIZE;
722 
723 		for (;;) {
724 			struct xa_node *node = xas->xa_node;
725 			xas->xa_node = xa_parent_locked(xas->xa, node);
726 			xas->xa_offset = node->offset - 1;
727 			if (node->offset != 0)
728 				break;
729 		}
730 	}
731 
732 restore:
733 	xas->xa_shift = shift;
734 	xas->xa_sibs = sibs;
735 	xas->xa_index = index;
736 	return;
737 success:
738 	xas->xa_index = index;
739 	if (xas->xa_node)
740 		xas_set_offset(xas);
741 }
742 EXPORT_SYMBOL_GPL(xas_create_range);
743 
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)744 static void update_node(struct xa_state *xas, struct xa_node *node,
745 		int count, int values)
746 {
747 	if (!node || (!count && !values))
748 		return;
749 
750 	node->count += count;
751 	node->nr_values += values;
752 	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
753 	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
754 	xas_update(xas, node);
755 	if (count < 0)
756 		xas_delete_node(xas);
757 }
758 
759 /**
760  * xas_store() - Store this entry in the XArray.
761  * @xas: XArray operation state.
762  * @entry: New entry.
763  *
764  * If @xas is operating on a multi-index entry, the entry returned by this
765  * function is essentially meaningless (it may be an internal entry or it
766  * may be %NULL, even if there are non-NULL entries at some of the indices
767  * covered by the range).  This is not a problem for any current users,
768  * and can be changed if needed.
769  *
770  * Return: The old entry at this index.
771  */
xas_store(struct xa_state * xas,void * entry)772 void *xas_store(struct xa_state *xas, void *entry)
773 {
774 	struct xa_node *node;
775 	void __rcu **slot = &xas->xa->xa_head;
776 	unsigned int offset, max;
777 	int count = 0;
778 	int values = 0;
779 	void *first, *next;
780 	bool value = xa_is_value(entry);
781 
782 	if (entry) {
783 		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
784 		first = xas_create(xas, allow_root);
785 	} else {
786 		first = xas_load(xas);
787 	}
788 
789 	if (xas_invalid(xas))
790 		return first;
791 	node = xas->xa_node;
792 	if (node && (xas->xa_shift < node->shift))
793 		xas->xa_sibs = 0;
794 	if ((first == entry) && !xas->xa_sibs)
795 		return first;
796 
797 	next = first;
798 	offset = xas->xa_offset;
799 	max = xas->xa_offset + xas->xa_sibs;
800 	if (node) {
801 		slot = &node->slots[offset];
802 		if (xas->xa_sibs)
803 			xas_squash_marks(xas);
804 	}
805 	if (!entry)
806 		xas_init_marks(xas);
807 
808 	for (;;) {
809 		/*
810 		 * Must clear the marks before setting the entry to NULL,
811 		 * otherwise xas_for_each_marked may find a NULL entry and
812 		 * stop early.  rcu_assign_pointer contains a release barrier
813 		 * so the mark clearing will appear to happen before the
814 		 * entry is set to NULL.
815 		 */
816 		rcu_assign_pointer(*slot, entry);
817 		if (xa_is_node(next) && (!node || node->shift))
818 			xas_free_nodes(xas, xa_to_node(next));
819 		if (!node)
820 			break;
821 		count += !next - !entry;
822 		values += !xa_is_value(first) - !value;
823 		if (entry) {
824 			if (offset == max)
825 				break;
826 			if (!xa_is_sibling(entry))
827 				entry = xa_mk_sibling(xas->xa_offset);
828 		} else {
829 			if (offset == XA_CHUNK_MASK)
830 				break;
831 		}
832 		next = xa_entry_locked(xas->xa, node, ++offset);
833 		if (!xa_is_sibling(next)) {
834 			if (!entry && (offset > max))
835 				break;
836 			first = next;
837 		}
838 		slot++;
839 	}
840 
841 	update_node(xas, node, count, values);
842 	return first;
843 }
844 EXPORT_SYMBOL_GPL(xas_store);
845 
846 /**
847  * xas_get_mark() - Returns the state of this mark.
848  * @xas: XArray operation state.
849  * @mark: Mark number.
850  *
851  * Return: true if the mark is set, false if the mark is clear or @xas
852  * is in an error state.
853  */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)854 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
855 {
856 	if (xas_invalid(xas))
857 		return false;
858 	if (!xas->xa_node)
859 		return xa_marked(xas->xa, mark);
860 	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
861 }
862 EXPORT_SYMBOL_GPL(xas_get_mark);
863 
864 /**
865  * xas_set_mark() - Sets the mark on this entry and its parents.
866  * @xas: XArray operation state.
867  * @mark: Mark number.
868  *
869  * Sets the specified mark on this entry, and walks up the tree setting it
870  * on all the ancestor entries.  Does nothing if @xas has not been walked to
871  * an entry, or is in an error state.
872  */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)873 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
874 {
875 	struct xa_node *node = xas->xa_node;
876 	unsigned int offset = xas->xa_offset;
877 
878 	if (xas_invalid(xas))
879 		return;
880 
881 	while (node) {
882 		if (node_set_mark(node, offset, mark))
883 			return;
884 		offset = node->offset;
885 		node = xa_parent_locked(xas->xa, node);
886 	}
887 
888 	if (!xa_marked(xas->xa, mark))
889 		xa_mark_set(xas->xa, mark);
890 }
891 EXPORT_SYMBOL_GPL(xas_set_mark);
892 
893 /**
894  * xas_clear_mark() - Clears the mark on this entry and its parents.
895  * @xas: XArray operation state.
896  * @mark: Mark number.
897  *
898  * Clears the specified mark on this entry, and walks back to the head
899  * attempting to clear it on all the ancestor entries.  Does nothing if
900  * @xas has not been walked to an entry, or is in an error state.
901  */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)902 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
903 {
904 	struct xa_node *node = xas->xa_node;
905 	unsigned int offset = xas->xa_offset;
906 
907 	if (xas_invalid(xas))
908 		return;
909 
910 	while (node) {
911 		if (!node_clear_mark(node, offset, mark))
912 			return;
913 		if (node_any_mark(node, mark))
914 			return;
915 
916 		offset = node->offset;
917 		node = xa_parent_locked(xas->xa, node);
918 	}
919 
920 	if (xa_marked(xas->xa, mark))
921 		xa_mark_clear(xas->xa, mark);
922 }
923 EXPORT_SYMBOL_GPL(xas_clear_mark);
924 
925 /**
926  * xas_init_marks() - Initialise all marks for the entry
927  * @xas: Array operations state.
928  *
929  * Initialise all marks for the entry specified by @xas.  If we're tracking
930  * free entries with a mark, we need to set it on all entries.  All other
931  * marks are cleared.
932  *
933  * This implementation is not as efficient as it could be; we may walk
934  * up the tree multiple times.
935  */
xas_init_marks(const struct xa_state * xas)936 void xas_init_marks(const struct xa_state *xas)
937 {
938 	xa_mark_t mark = 0;
939 
940 	for (;;) {
941 		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
942 			xas_set_mark(xas, mark);
943 		else
944 			xas_clear_mark(xas, mark);
945 		if (mark == XA_MARK_MAX)
946 			break;
947 		mark_inc(mark);
948 	}
949 }
950 EXPORT_SYMBOL_GPL(xas_init_marks);
951 
952 #ifdef CONFIG_XARRAY_MULTI
node_get_marks(struct xa_node * node,unsigned int offset)953 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
954 {
955 	unsigned int marks = 0;
956 	xa_mark_t mark = XA_MARK_0;
957 
958 	for (;;) {
959 		if (node_get_mark(node, offset, mark))
960 			marks |= 1 << (__force unsigned int)mark;
961 		if (mark == XA_MARK_MAX)
962 			break;
963 		mark_inc(mark);
964 	}
965 
966 	return marks;
967 }
968 
node_set_marks(struct xa_node * node,unsigned int offset,struct xa_node * child,unsigned int marks)969 static void node_set_marks(struct xa_node *node, unsigned int offset,
970 			struct xa_node *child, unsigned int marks)
971 {
972 	xa_mark_t mark = XA_MARK_0;
973 
974 	for (;;) {
975 		if (marks & (1 << (__force unsigned int)mark)) {
976 			node_set_mark(node, offset, mark);
977 			if (child)
978 				node_mark_all(child, mark);
979 		}
980 		if (mark == XA_MARK_MAX)
981 			break;
982 		mark_inc(mark);
983 	}
984 }
985 
986 /**
987  * xas_split_alloc() - Allocate memory for splitting an entry.
988  * @xas: XArray operation state.
989  * @entry: New entry which will be stored in the array.
990  * @order: New entry order.
991  * @gfp: Memory allocation flags.
992  *
993  * This function should be called before calling xas_split().
994  * If necessary, it will allocate new nodes (and fill them with @entry)
995  * to prepare for the upcoming split of an entry of @order size into
996  * entries of the order stored in the @xas.
997  *
998  * Context: May sleep if @gfp flags permit.
999  */
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1000 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1001 		gfp_t gfp)
1002 {
1003 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1004 	unsigned int mask = xas->xa_sibs;
1005 
1006 	/* XXX: no support for splitting really large entries yet */
1007 	if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1008 		goto nomem;
1009 	if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1010 		return;
1011 
1012 	do {
1013 		unsigned int i;
1014 		void *sibling;
1015 		struct xa_node *node;
1016 
1017 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
1018 		if (!node)
1019 			goto nomem;
1020 		node->array = xas->xa;
1021 		for (i = 0; i < XA_CHUNK_SIZE; i++) {
1022 			if ((i & mask) == 0) {
1023 				RCU_INIT_POINTER(node->slots[i], entry);
1024 				sibling = xa_mk_sibling(0);
1025 			} else {
1026 				RCU_INIT_POINTER(node->slots[i], sibling);
1027 			}
1028 		}
1029 		RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1030 		xas->xa_alloc = node;
1031 	} while (sibs-- > 0);
1032 
1033 	return;
1034 nomem:
1035 	xas_destroy(xas);
1036 	xas_set_err(xas, -ENOMEM);
1037 }
1038 EXPORT_SYMBOL_GPL(xas_split_alloc);
1039 
1040 /**
1041  * xas_split() - Split a multi-index entry into smaller entries.
1042  * @xas: XArray operation state.
1043  * @entry: New entry to store in the array.
1044  * @order: New entry order.
1045  *
1046  * The value in the entry is copied to all the replacement entries.
1047  *
1048  * Context: Any context.  The caller should hold the xa_lock.
1049  */
xas_split(struct xa_state * xas,void * entry,unsigned int order)1050 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1051 {
1052 	unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1053 	unsigned int offset, marks;
1054 	struct xa_node *node;
1055 	void *curr = xas_load(xas);
1056 	int values = 0;
1057 
1058 	node = xas->xa_node;
1059 	if (xas_top(node))
1060 		return;
1061 
1062 	marks = node_get_marks(node, xas->xa_offset);
1063 
1064 	offset = xas->xa_offset + sibs;
1065 	do {
1066 		if (xas->xa_shift < node->shift) {
1067 			struct xa_node *child = xas->xa_alloc;
1068 
1069 			xas->xa_alloc = rcu_dereference_raw(child->parent);
1070 			child->shift = node->shift - XA_CHUNK_SHIFT;
1071 			child->offset = offset;
1072 			child->count = XA_CHUNK_SIZE;
1073 			child->nr_values = xa_is_value(entry) ?
1074 					XA_CHUNK_SIZE : 0;
1075 			RCU_INIT_POINTER(child->parent, node);
1076 			node_set_marks(node, offset, child, marks);
1077 			rcu_assign_pointer(node->slots[offset],
1078 					xa_mk_node(child));
1079 			if (xa_is_value(curr))
1080 				values--;
1081 		} else {
1082 			unsigned int canon = offset - xas->xa_sibs;
1083 
1084 			node_set_marks(node, canon, NULL, marks);
1085 			rcu_assign_pointer(node->slots[canon], entry);
1086 			while (offset > canon)
1087 				rcu_assign_pointer(node->slots[offset--],
1088 						xa_mk_sibling(canon));
1089 			values += (xa_is_value(entry) - xa_is_value(curr)) *
1090 					(xas->xa_sibs + 1);
1091 		}
1092 	} while (offset-- > xas->xa_offset);
1093 
1094 	node->nr_values += values;
1095 }
1096 EXPORT_SYMBOL_GPL(xas_split);
1097 #endif
1098 
1099 /**
1100  * xas_pause() - Pause a walk to drop a lock.
1101  * @xas: XArray operation state.
1102  *
1103  * Some users need to pause a walk and drop the lock they're holding in
1104  * order to yield to a higher priority thread or carry out an operation
1105  * on an entry.  Those users should call this function before they drop
1106  * the lock.  It resets the @xas to be suitable for the next iteration
1107  * of the loop after the user has reacquired the lock.  If most entries
1108  * found during a walk require you to call xas_pause(), the xa_for_each()
1109  * iterator may be more appropriate.
1110  *
1111  * Note that xas_pause() only works for forward iteration.  If a user needs
1112  * to pause a reverse iteration, we will need a xas_pause_rev().
1113  */
xas_pause(struct xa_state * xas)1114 void xas_pause(struct xa_state *xas)
1115 {
1116 	struct xa_node *node = xas->xa_node;
1117 
1118 	if (xas_invalid(xas))
1119 		return;
1120 
1121 	xas->xa_node = XAS_RESTART;
1122 	if (node) {
1123 		unsigned long offset = xas->xa_offset;
1124 		while (++offset < XA_CHUNK_SIZE) {
1125 			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1126 				break;
1127 		}
1128 		xas->xa_index += (offset - xas->xa_offset) << node->shift;
1129 		if (xas->xa_index == 0)
1130 			xas->xa_node = XAS_BOUNDS;
1131 	} else {
1132 		xas->xa_index++;
1133 	}
1134 }
1135 EXPORT_SYMBOL_GPL(xas_pause);
1136 
1137 /*
1138  * __xas_prev() - Find the previous entry in the XArray.
1139  * @xas: XArray operation state.
1140  *
1141  * Helper function for xas_prev() which handles all the complex cases
1142  * out of line.
1143  */
__xas_prev(struct xa_state * xas)1144 void *__xas_prev(struct xa_state *xas)
1145 {
1146 	void *entry;
1147 
1148 	if (!xas_frozen(xas->xa_node))
1149 		xas->xa_index--;
1150 	if (!xas->xa_node)
1151 		return set_bounds(xas);
1152 	if (xas_not_node(xas->xa_node))
1153 		return xas_load(xas);
1154 
1155 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1156 		xas->xa_offset--;
1157 
1158 	while (xas->xa_offset == 255) {
1159 		xas->xa_offset = xas->xa_node->offset - 1;
1160 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1161 		if (!xas->xa_node)
1162 			return set_bounds(xas);
1163 	}
1164 
1165 	for (;;) {
1166 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1167 		if (!xa_is_node(entry))
1168 			return entry;
1169 
1170 		xas->xa_node = xa_to_node(entry);
1171 		xas_set_offset(xas);
1172 	}
1173 }
1174 EXPORT_SYMBOL_GPL(__xas_prev);
1175 
1176 /*
1177  * __xas_next() - Find the next entry in the XArray.
1178  * @xas: XArray operation state.
1179  *
1180  * Helper function for xas_next() which handles all the complex cases
1181  * out of line.
1182  */
__xas_next(struct xa_state * xas)1183 void *__xas_next(struct xa_state *xas)
1184 {
1185 	void *entry;
1186 
1187 	if (!xas_frozen(xas->xa_node))
1188 		xas->xa_index++;
1189 	if (!xas->xa_node)
1190 		return set_bounds(xas);
1191 	if (xas_not_node(xas->xa_node))
1192 		return xas_load(xas);
1193 
1194 	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1195 		xas->xa_offset++;
1196 
1197 	while (xas->xa_offset == XA_CHUNK_SIZE) {
1198 		xas->xa_offset = xas->xa_node->offset + 1;
1199 		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1200 		if (!xas->xa_node)
1201 			return set_bounds(xas);
1202 	}
1203 
1204 	for (;;) {
1205 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1206 		if (!xa_is_node(entry))
1207 			return entry;
1208 
1209 		xas->xa_node = xa_to_node(entry);
1210 		xas_set_offset(xas);
1211 	}
1212 }
1213 EXPORT_SYMBOL_GPL(__xas_next);
1214 
1215 /**
1216  * xas_find() - Find the next present entry in the XArray.
1217  * @xas: XArray operation state.
1218  * @max: Highest index to return.
1219  *
1220  * If the @xas has not yet been walked to an entry, return the entry
1221  * which has an index >= xas.xa_index.  If it has been walked, the entry
1222  * currently being pointed at has been processed, and so we move to the
1223  * next entry.
1224  *
1225  * If no entry is found and the array is smaller than @max, the iterator
1226  * is set to the smallest index not yet in the array.  This allows @xas
1227  * to be immediately passed to xas_store().
1228  *
1229  * Return: The entry, if found, otherwise %NULL.
1230  */
xas_find(struct xa_state * xas,unsigned long max)1231 void *xas_find(struct xa_state *xas, unsigned long max)
1232 {
1233 	void *entry;
1234 
1235 	if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1236 		return NULL;
1237 	if (xas->xa_index > max)
1238 		return set_bounds(xas);
1239 
1240 	if (!xas->xa_node) {
1241 		xas->xa_index = 1;
1242 		return set_bounds(xas);
1243 	} else if (xas->xa_node == XAS_RESTART) {
1244 		entry = xas_load(xas);
1245 		if (entry || xas_not_node(xas->xa_node))
1246 			return entry;
1247 	} else if (!xas->xa_node->shift &&
1248 		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1249 		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1250 	}
1251 
1252 	xas_advance(xas);
1253 
1254 	while (xas->xa_node && (xas->xa_index <= max)) {
1255 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1256 			xas->xa_offset = xas->xa_node->offset + 1;
1257 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1258 			continue;
1259 		}
1260 
1261 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1262 		if (xa_is_node(entry)) {
1263 			xas->xa_node = xa_to_node(entry);
1264 			xas->xa_offset = 0;
1265 			continue;
1266 		}
1267 		if (entry && !xa_is_sibling(entry))
1268 			return entry;
1269 
1270 		xas_advance(xas);
1271 	}
1272 
1273 	if (!xas->xa_node)
1274 		xas->xa_node = XAS_BOUNDS;
1275 	return NULL;
1276 }
1277 EXPORT_SYMBOL_GPL(xas_find);
1278 
1279 /**
1280  * xas_find_marked() - Find the next marked entry in the XArray.
1281  * @xas: XArray operation state.
1282  * @max: Highest index to return.
1283  * @mark: Mark number to search for.
1284  *
1285  * If the @xas has not yet been walked to an entry, return the marked entry
1286  * which has an index >= xas.xa_index.  If it has been walked, the entry
1287  * currently being pointed at has been processed, and so we return the
1288  * first marked entry with an index > xas.xa_index.
1289  *
1290  * If no marked entry is found and the array is smaller than @max, @xas is
1291  * set to the bounds state and xas->xa_index is set to the smallest index
1292  * not yet in the array.  This allows @xas to be immediately passed to
1293  * xas_store().
1294  *
1295  * If no entry is found before @max is reached, @xas is set to the restart
1296  * state.
1297  *
1298  * Return: The entry, if found, otherwise %NULL.
1299  */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1300 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1301 {
1302 	bool advance = true;
1303 	unsigned int offset;
1304 	void *entry;
1305 
1306 	if (xas_error(xas))
1307 		return NULL;
1308 	if (xas->xa_index > max)
1309 		goto max;
1310 
1311 	if (!xas->xa_node) {
1312 		xas->xa_index = 1;
1313 		goto out;
1314 	} else if (xas_top(xas->xa_node)) {
1315 		advance = false;
1316 		entry = xa_head(xas->xa);
1317 		xas->xa_node = NULL;
1318 		if (xas->xa_index > max_index(entry))
1319 			goto out;
1320 		if (!xa_is_node(entry)) {
1321 			if (xa_marked(xas->xa, mark))
1322 				return entry;
1323 			xas->xa_index = 1;
1324 			goto out;
1325 		}
1326 		xas->xa_node = xa_to_node(entry);
1327 		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1328 	}
1329 
1330 	while (xas->xa_index <= max) {
1331 		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1332 			xas->xa_offset = xas->xa_node->offset + 1;
1333 			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1334 			if (!xas->xa_node)
1335 				break;
1336 			advance = false;
1337 			continue;
1338 		}
1339 
1340 		if (!advance) {
1341 			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1342 			if (xa_is_sibling(entry)) {
1343 				xas->xa_offset = xa_to_sibling(entry);
1344 				xas_move_index(xas, xas->xa_offset);
1345 			}
1346 		}
1347 
1348 		offset = xas_find_chunk(xas, advance, mark);
1349 		if (offset > xas->xa_offset) {
1350 			advance = false;
1351 			xas_move_index(xas, offset);
1352 			/* Mind the wrap */
1353 			if ((xas->xa_index - 1) >= max)
1354 				goto max;
1355 			xas->xa_offset = offset;
1356 			if (offset == XA_CHUNK_SIZE)
1357 				continue;
1358 		}
1359 
1360 		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1361 		if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1362 			continue;
1363 		if (!xa_is_node(entry))
1364 			return entry;
1365 		xas->xa_node = xa_to_node(entry);
1366 		xas_set_offset(xas);
1367 	}
1368 
1369 out:
1370 	if (xas->xa_index > max)
1371 		goto max;
1372 	return set_bounds(xas);
1373 max:
1374 	xas->xa_node = XAS_RESTART;
1375 	return NULL;
1376 }
1377 EXPORT_SYMBOL_GPL(xas_find_marked);
1378 
1379 /**
1380  * xas_find_conflict() - Find the next present entry in a range.
1381  * @xas: XArray operation state.
1382  *
1383  * The @xas describes both a range and a position within that range.
1384  *
1385  * Context: Any context.  Expects xa_lock to be held.
1386  * Return: The next entry in the range covered by @xas or %NULL.
1387  */
xas_find_conflict(struct xa_state * xas)1388 void *xas_find_conflict(struct xa_state *xas)
1389 {
1390 	void *curr;
1391 
1392 	if (xas_error(xas))
1393 		return NULL;
1394 
1395 	if (!xas->xa_node)
1396 		return NULL;
1397 
1398 	if (xas_top(xas->xa_node)) {
1399 		curr = xas_start(xas);
1400 		if (!curr)
1401 			return NULL;
1402 		while (xa_is_node(curr)) {
1403 			struct xa_node *node = xa_to_node(curr);
1404 			curr = xas_descend(xas, node);
1405 		}
1406 		if (curr)
1407 			return curr;
1408 	}
1409 
1410 	if (xas->xa_node->shift > xas->xa_shift)
1411 		return NULL;
1412 
1413 	for (;;) {
1414 		if (xas->xa_node->shift == xas->xa_shift) {
1415 			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1416 				break;
1417 		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1418 			xas->xa_offset = xas->xa_node->offset;
1419 			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1420 			if (!xas->xa_node)
1421 				break;
1422 			continue;
1423 		}
1424 		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1425 		if (xa_is_sibling(curr))
1426 			continue;
1427 		while (xa_is_node(curr)) {
1428 			xas->xa_node = xa_to_node(curr);
1429 			xas->xa_offset = 0;
1430 			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1431 		}
1432 		if (curr)
1433 			return curr;
1434 	}
1435 	xas->xa_offset -= xas->xa_sibs;
1436 	return NULL;
1437 }
1438 EXPORT_SYMBOL_GPL(xas_find_conflict);
1439 
1440 /**
1441  * xa_load() - Load an entry from an XArray.
1442  * @xa: XArray.
1443  * @index: index into array.
1444  *
1445  * Context: Any context.  Takes and releases the RCU lock.
1446  * Return: The entry at @index in @xa.
1447  */
xa_load(struct xarray * xa,unsigned long index)1448 void *xa_load(struct xarray *xa, unsigned long index)
1449 {
1450 	XA_STATE(xas, xa, index);
1451 	void *entry;
1452 
1453 	rcu_read_lock();
1454 	do {
1455 		entry = xas_load(&xas);
1456 		if (xa_is_zero(entry))
1457 			entry = NULL;
1458 	} while (xas_retry(&xas, entry));
1459 	rcu_read_unlock();
1460 
1461 	return entry;
1462 }
1463 EXPORT_SYMBOL(xa_load);
1464 
xas_result(struct xa_state * xas,void * curr)1465 static void *xas_result(struct xa_state *xas, void *curr)
1466 {
1467 	if (xa_is_zero(curr))
1468 		return NULL;
1469 	if (xas_error(xas))
1470 		curr = xas->xa_node;
1471 	return curr;
1472 }
1473 
1474 /**
1475  * __xa_erase() - Erase this entry from the XArray while locked.
1476  * @xa: XArray.
1477  * @index: Index into array.
1478  *
1479  * After this function returns, loading from @index will return %NULL.
1480  * If the index is part of a multi-index entry, all indices will be erased
1481  * and none of the entries will be part of a multi-index entry.
1482  *
1483  * Context: Any context.  Expects xa_lock to be held on entry.
1484  * Return: The entry which used to be at this index.
1485  */
__xa_erase(struct xarray * xa,unsigned long index)1486 void *__xa_erase(struct xarray *xa, unsigned long index)
1487 {
1488 	XA_STATE(xas, xa, index);
1489 	return xas_result(&xas, xas_store(&xas, NULL));
1490 }
1491 EXPORT_SYMBOL(__xa_erase);
1492 
1493 /**
1494  * xa_erase() - Erase this entry from the XArray.
1495  * @xa: XArray.
1496  * @index: Index of entry.
1497  *
1498  * After this function returns, loading from @index will return %NULL.
1499  * If the index is part of a multi-index entry, all indices will be erased
1500  * and none of the entries will be part of a multi-index entry.
1501  *
1502  * Context: Any context.  Takes and releases the xa_lock.
1503  * Return: The entry which used to be at this index.
1504  */
xa_erase(struct xarray * xa,unsigned long index)1505 void *xa_erase(struct xarray *xa, unsigned long index)
1506 {
1507 	void *entry;
1508 
1509 	xa_lock(xa);
1510 	entry = __xa_erase(xa, index);
1511 	xa_unlock(xa);
1512 
1513 	return entry;
1514 }
1515 EXPORT_SYMBOL(xa_erase);
1516 
1517 /**
1518  * __xa_store() - Store this entry in the XArray.
1519  * @xa: XArray.
1520  * @index: Index into array.
1521  * @entry: New entry.
1522  * @gfp: Memory allocation flags.
1523  *
1524  * You must already be holding the xa_lock when calling this function.
1525  * It will drop the lock if needed to allocate memory, and then reacquire
1526  * it afterwards.
1527  *
1528  * Context: Any context.  Expects xa_lock to be held on entry.  May
1529  * release and reacquire xa_lock if @gfp flags permit.
1530  * Return: The old entry at this index or xa_err() if an error happened.
1531  */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1532 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1533 {
1534 	XA_STATE(xas, xa, index);
1535 	void *curr;
1536 
1537 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1538 		return XA_ERROR(-EINVAL);
1539 	if (xa_track_free(xa) && !entry)
1540 		entry = XA_ZERO_ENTRY;
1541 
1542 	do {
1543 		curr = xas_store(&xas, entry);
1544 		if (xa_track_free(xa))
1545 			xas_clear_mark(&xas, XA_FREE_MARK);
1546 	} while (__xas_nomem(&xas, gfp));
1547 
1548 	return xas_result(&xas, curr);
1549 }
1550 EXPORT_SYMBOL(__xa_store);
1551 
1552 /**
1553  * xa_store() - Store this entry in the XArray.
1554  * @xa: XArray.
1555  * @index: Index into array.
1556  * @entry: New entry.
1557  * @gfp: Memory allocation flags.
1558  *
1559  * After this function returns, loads from this index will return @entry.
1560  * Storing into an existing multi-index entry updates the entry of every index.
1561  * The marks associated with @index are unaffected unless @entry is %NULL.
1562  *
1563  * Context: Any context.  Takes and releases the xa_lock.
1564  * May sleep if the @gfp flags permit.
1565  * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1566  * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1567  * failed.
1568  */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1569 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1570 {
1571 	void *curr;
1572 
1573 	xa_lock(xa);
1574 	curr = __xa_store(xa, index, entry, gfp);
1575 	xa_unlock(xa);
1576 
1577 	return curr;
1578 }
1579 EXPORT_SYMBOL(xa_store);
1580 
1581 /**
1582  * __xa_cmpxchg() - Store this entry in the XArray.
1583  * @xa: XArray.
1584  * @index: Index into array.
1585  * @old: Old value to test against.
1586  * @entry: New entry.
1587  * @gfp: Memory allocation flags.
1588  *
1589  * You must already be holding the xa_lock when calling this function.
1590  * It will drop the lock if needed to allocate memory, and then reacquire
1591  * it afterwards.
1592  *
1593  * Context: Any context.  Expects xa_lock to be held on entry.  May
1594  * release and reacquire xa_lock if @gfp flags permit.
1595  * Return: The old entry at this index or xa_err() if an error happened.
1596  */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1597 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1598 			void *old, void *entry, gfp_t gfp)
1599 {
1600 	XA_STATE(xas, xa, index);
1601 	void *curr;
1602 
1603 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1604 		return XA_ERROR(-EINVAL);
1605 
1606 	do {
1607 		curr = xas_load(&xas);
1608 		if (curr == old) {
1609 			xas_store(&xas, entry);
1610 			if (xa_track_free(xa) && entry && !curr)
1611 				xas_clear_mark(&xas, XA_FREE_MARK);
1612 		}
1613 	} while (__xas_nomem(&xas, gfp));
1614 
1615 	return xas_result(&xas, curr);
1616 }
1617 EXPORT_SYMBOL(__xa_cmpxchg);
1618 
1619 /**
1620  * __xa_insert() - Store this entry in the XArray if no entry is present.
1621  * @xa: XArray.
1622  * @index: Index into array.
1623  * @entry: New entry.
1624  * @gfp: Memory allocation flags.
1625  *
1626  * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1627  * if no entry is present.  Inserting will fail if a reserved entry is
1628  * present, even though loading from this index will return NULL.
1629  *
1630  * Context: Any context.  Expects xa_lock to be held on entry.  May
1631  * release and reacquire xa_lock if @gfp flags permit.
1632  * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1633  * -ENOMEM if memory could not be allocated.
1634  */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1635 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1636 {
1637 	XA_STATE(xas, xa, index);
1638 	void *curr;
1639 
1640 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1641 		return -EINVAL;
1642 	if (!entry)
1643 		entry = XA_ZERO_ENTRY;
1644 
1645 	do {
1646 		curr = xas_load(&xas);
1647 		if (!curr) {
1648 			xas_store(&xas, entry);
1649 			if (xa_track_free(xa))
1650 				xas_clear_mark(&xas, XA_FREE_MARK);
1651 		} else {
1652 			xas_set_err(&xas, -EBUSY);
1653 		}
1654 	} while (__xas_nomem(&xas, gfp));
1655 
1656 	return xas_error(&xas);
1657 }
1658 EXPORT_SYMBOL(__xa_insert);
1659 
1660 #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1661 static void xas_set_range(struct xa_state *xas, unsigned long first,
1662 		unsigned long last)
1663 {
1664 	unsigned int shift = 0;
1665 	unsigned long sibs = last - first;
1666 	unsigned int offset = XA_CHUNK_MASK;
1667 
1668 	xas_set(xas, first);
1669 
1670 	while ((first & XA_CHUNK_MASK) == 0) {
1671 		if (sibs < XA_CHUNK_MASK)
1672 			break;
1673 		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1674 			break;
1675 		shift += XA_CHUNK_SHIFT;
1676 		if (offset == XA_CHUNK_MASK)
1677 			offset = sibs & XA_CHUNK_MASK;
1678 		sibs >>= XA_CHUNK_SHIFT;
1679 		first >>= XA_CHUNK_SHIFT;
1680 	}
1681 
1682 	offset = first & XA_CHUNK_MASK;
1683 	if (offset + sibs > XA_CHUNK_MASK)
1684 		sibs = XA_CHUNK_MASK - offset;
1685 	if ((((first + sibs + 1) << shift) - 1) > last)
1686 		sibs -= 1;
1687 
1688 	xas->xa_shift = shift;
1689 	xas->xa_sibs = sibs;
1690 }
1691 
1692 /**
1693  * xa_store_range() - Store this entry at a range of indices in the XArray.
1694  * @xa: XArray.
1695  * @first: First index to affect.
1696  * @last: Last index to affect.
1697  * @entry: New entry.
1698  * @gfp: Memory allocation flags.
1699  *
1700  * After this function returns, loads from any index between @first and @last,
1701  * inclusive will return @entry.
1702  * Storing into an existing multi-index entry updates the entry of every index.
1703  * The marks associated with @index are unaffected unless @entry is %NULL.
1704  *
1705  * Context: Process context.  Takes and releases the xa_lock.  May sleep
1706  * if the @gfp flags permit.
1707  * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1708  * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1709  */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1710 void *xa_store_range(struct xarray *xa, unsigned long first,
1711 		unsigned long last, void *entry, gfp_t gfp)
1712 {
1713 	XA_STATE(xas, xa, 0);
1714 
1715 	if (WARN_ON_ONCE(xa_is_internal(entry)))
1716 		return XA_ERROR(-EINVAL);
1717 	if (last < first)
1718 		return XA_ERROR(-EINVAL);
1719 
1720 	do {
1721 		xas_lock(&xas);
1722 		if (entry) {
1723 			unsigned int order = BITS_PER_LONG;
1724 			if (last + 1)
1725 				order = __ffs(last + 1);
1726 			xas_set_order(&xas, last, order);
1727 			xas_create(&xas, true);
1728 			if (xas_error(&xas))
1729 				goto unlock;
1730 		}
1731 		do {
1732 			xas_set_range(&xas, first, last);
1733 			xas_store(&xas, entry);
1734 			if (xas_error(&xas))
1735 				goto unlock;
1736 			first += xas_size(&xas);
1737 		} while (first <= last);
1738 unlock:
1739 		xas_unlock(&xas);
1740 	} while (xas_nomem(&xas, gfp));
1741 
1742 	return xas_result(&xas, NULL);
1743 }
1744 EXPORT_SYMBOL(xa_store_range);
1745 
1746 /**
1747  * xa_get_order() - Get the order of an entry.
1748  * @xa: XArray.
1749  * @index: Index of the entry.
1750  *
1751  * Return: A number between 0 and 63 indicating the order of the entry.
1752  */
xa_get_order(struct xarray * xa,unsigned long index)1753 int xa_get_order(struct xarray *xa, unsigned long index)
1754 {
1755 	XA_STATE(xas, xa, index);
1756 	void *entry;
1757 	int order = 0;
1758 
1759 	rcu_read_lock();
1760 	entry = xas_load(&xas);
1761 
1762 	if (!entry)
1763 		goto unlock;
1764 
1765 	if (!xas.xa_node)
1766 		goto unlock;
1767 
1768 	for (;;) {
1769 		unsigned int slot = xas.xa_offset + (1 << order);
1770 
1771 		if (slot >= XA_CHUNK_SIZE)
1772 			break;
1773 		if (!xa_is_sibling(xas.xa_node->slots[slot]))
1774 			break;
1775 		order++;
1776 	}
1777 
1778 	order += xas.xa_node->shift;
1779 unlock:
1780 	rcu_read_unlock();
1781 
1782 	return order;
1783 }
1784 EXPORT_SYMBOL(xa_get_order);
1785 #endif /* CONFIG_XARRAY_MULTI */
1786 
1787 /**
1788  * __xa_alloc() - Find somewhere to store this entry in the XArray.
1789  * @xa: XArray.
1790  * @id: Pointer to ID.
1791  * @limit: Range for allocated ID.
1792  * @entry: New entry.
1793  * @gfp: Memory allocation flags.
1794  *
1795  * Finds an empty entry in @xa between @limit.min and @limit.max,
1796  * stores the index into the @id pointer, then stores the entry at
1797  * that index.  A concurrent lookup will not see an uninitialised @id.
1798  *
1799  * Context: Any context.  Expects xa_lock to be held on entry.  May
1800  * release and reacquire xa_lock if @gfp flags permit.
1801  * Return: 0 on success, -ENOMEM if memory could not be allocated or
1802  * -EBUSY if there are no free entries in @limit.
1803  */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1804 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1805 		struct xa_limit limit, gfp_t gfp)
1806 {
1807 	XA_STATE(xas, xa, 0);
1808 
1809 	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1810 		return -EINVAL;
1811 	if (WARN_ON_ONCE(!xa_track_free(xa)))
1812 		return -EINVAL;
1813 
1814 	if (!entry)
1815 		entry = XA_ZERO_ENTRY;
1816 
1817 	do {
1818 		xas.xa_index = limit.min;
1819 		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1820 		if (xas.xa_node == XAS_RESTART)
1821 			xas_set_err(&xas, -EBUSY);
1822 		else
1823 			*id = xas.xa_index;
1824 		xas_store(&xas, entry);
1825 		xas_clear_mark(&xas, XA_FREE_MARK);
1826 	} while (__xas_nomem(&xas, gfp));
1827 
1828 	return xas_error(&xas);
1829 }
1830 EXPORT_SYMBOL(__xa_alloc);
1831 
1832 /**
1833  * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1834  * @xa: XArray.
1835  * @id: Pointer to ID.
1836  * @entry: New entry.
1837  * @limit: Range of allocated ID.
1838  * @next: Pointer to next ID to allocate.
1839  * @gfp: Memory allocation flags.
1840  *
1841  * Finds an empty entry in @xa between @limit.min and @limit.max,
1842  * stores the index into the @id pointer, then stores the entry at
1843  * that index.  A concurrent lookup will not see an uninitialised @id.
1844  * The search for an empty entry will start at @next and will wrap
1845  * around if necessary.
1846  *
1847  * Context: Any context.  Expects xa_lock to be held on entry.  May
1848  * release and reacquire xa_lock if @gfp flags permit.
1849  * Return: 0 if the allocation succeeded without wrapping.  1 if the
1850  * allocation succeeded after wrapping, -ENOMEM if memory could not be
1851  * allocated or -EBUSY if there are no free entries in @limit.
1852  */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1853 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1854 		struct xa_limit limit, u32 *next, gfp_t gfp)
1855 {
1856 	u32 min = limit.min;
1857 	int ret;
1858 
1859 	limit.min = max(min, *next);
1860 	ret = __xa_alloc(xa, id, entry, limit, gfp);
1861 	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1862 		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1863 		ret = 1;
1864 	}
1865 
1866 	if (ret < 0 && limit.min > min) {
1867 		limit.min = min;
1868 		ret = __xa_alloc(xa, id, entry, limit, gfp);
1869 		if (ret == 0)
1870 			ret = 1;
1871 	}
1872 
1873 	if (ret >= 0) {
1874 		*next = *id + 1;
1875 		if (*next == 0)
1876 			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1877 	}
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL(__xa_alloc_cyclic);
1881 
1882 /**
1883  * __xa_set_mark() - Set this mark on this entry while locked.
1884  * @xa: XArray.
1885  * @index: Index of entry.
1886  * @mark: Mark number.
1887  *
1888  * Attempting to set a mark on a %NULL entry does not succeed.
1889  *
1890  * Context: Any context.  Expects xa_lock to be held on entry.
1891  */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1892 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1893 {
1894 	XA_STATE(xas, xa, index);
1895 	void *entry = xas_load(&xas);
1896 
1897 	if (entry)
1898 		xas_set_mark(&xas, mark);
1899 }
1900 EXPORT_SYMBOL(__xa_set_mark);
1901 
1902 /**
1903  * __xa_clear_mark() - Clear this mark on this entry while locked.
1904  * @xa: XArray.
1905  * @index: Index of entry.
1906  * @mark: Mark number.
1907  *
1908  * Context: Any context.  Expects xa_lock to be held on entry.
1909  */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1910 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1911 {
1912 	XA_STATE(xas, xa, index);
1913 	void *entry = xas_load(&xas);
1914 
1915 	if (entry)
1916 		xas_clear_mark(&xas, mark);
1917 }
1918 EXPORT_SYMBOL(__xa_clear_mark);
1919 
1920 /**
1921  * xa_get_mark() - Inquire whether this mark is set on this entry.
1922  * @xa: XArray.
1923  * @index: Index of entry.
1924  * @mark: Mark number.
1925  *
1926  * This function uses the RCU read lock, so the result may be out of date
1927  * by the time it returns.  If you need the result to be stable, use a lock.
1928  *
1929  * Context: Any context.  Takes and releases the RCU lock.
1930  * Return: True if the entry at @index has this mark set, false if it doesn't.
1931  */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1932 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1933 {
1934 	XA_STATE(xas, xa, index);
1935 	void *entry;
1936 
1937 	rcu_read_lock();
1938 	entry = xas_start(&xas);
1939 	while (xas_get_mark(&xas, mark)) {
1940 		if (!xa_is_node(entry))
1941 			goto found;
1942 		entry = xas_descend(&xas, xa_to_node(entry));
1943 	}
1944 	rcu_read_unlock();
1945 	return false;
1946  found:
1947 	rcu_read_unlock();
1948 	return true;
1949 }
1950 EXPORT_SYMBOL(xa_get_mark);
1951 
1952 /**
1953  * xa_set_mark() - Set this mark on this entry.
1954  * @xa: XArray.
1955  * @index: Index of entry.
1956  * @mark: Mark number.
1957  *
1958  * Attempting to set a mark on a %NULL entry does not succeed.
1959  *
1960  * Context: Process context.  Takes and releases the xa_lock.
1961  */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1962 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1963 {
1964 	xa_lock(xa);
1965 	__xa_set_mark(xa, index, mark);
1966 	xa_unlock(xa);
1967 }
1968 EXPORT_SYMBOL(xa_set_mark);
1969 
1970 /**
1971  * xa_clear_mark() - Clear this mark on this entry.
1972  * @xa: XArray.
1973  * @index: Index of entry.
1974  * @mark: Mark number.
1975  *
1976  * Clearing a mark always succeeds.
1977  *
1978  * Context: Process context.  Takes and releases the xa_lock.
1979  */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1980 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1981 {
1982 	xa_lock(xa);
1983 	__xa_clear_mark(xa, index, mark);
1984 	xa_unlock(xa);
1985 }
1986 EXPORT_SYMBOL(xa_clear_mark);
1987 
1988 /**
1989  * xa_find() - Search the XArray for an entry.
1990  * @xa: XArray.
1991  * @indexp: Pointer to an index.
1992  * @max: Maximum index to search to.
1993  * @filter: Selection criterion.
1994  *
1995  * Finds the entry in @xa which matches the @filter, and has the lowest
1996  * index that is at least @indexp and no more than @max.
1997  * If an entry is found, @indexp is updated to be the index of the entry.
1998  * This function is protected by the RCU read lock, so it may not find
1999  * entries which are being simultaneously added.  It will not return an
2000  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2001  *
2002  * Context: Any context.  Takes and releases the RCU lock.
2003  * Return: The entry, if found, otherwise %NULL.
2004  */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2005 void *xa_find(struct xarray *xa, unsigned long *indexp,
2006 			unsigned long max, xa_mark_t filter)
2007 {
2008 	XA_STATE(xas, xa, *indexp);
2009 	void *entry;
2010 
2011 	rcu_read_lock();
2012 	do {
2013 		if ((__force unsigned int)filter < XA_MAX_MARKS)
2014 			entry = xas_find_marked(&xas, max, filter);
2015 		else
2016 			entry = xas_find(&xas, max);
2017 	} while (xas_retry(&xas, entry));
2018 	rcu_read_unlock();
2019 
2020 	if (entry)
2021 		*indexp = xas.xa_index;
2022 	return entry;
2023 }
2024 EXPORT_SYMBOL(xa_find);
2025 
xas_sibling(struct xa_state * xas)2026 static bool xas_sibling(struct xa_state *xas)
2027 {
2028 	struct xa_node *node = xas->xa_node;
2029 	unsigned long mask;
2030 
2031 	if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2032 		return false;
2033 	mask = (XA_CHUNK_SIZE << node->shift) - 1;
2034 	return (xas->xa_index & mask) >
2035 		((unsigned long)xas->xa_offset << node->shift);
2036 }
2037 
2038 /**
2039  * xa_find_after() - Search the XArray for a present entry.
2040  * @xa: XArray.
2041  * @indexp: Pointer to an index.
2042  * @max: Maximum index to search to.
2043  * @filter: Selection criterion.
2044  *
2045  * Finds the entry in @xa which matches the @filter and has the lowest
2046  * index that is above @indexp and no more than @max.
2047  * If an entry is found, @indexp is updated to be the index of the entry.
2048  * This function is protected by the RCU read lock, so it may miss entries
2049  * which are being simultaneously added.  It will not return an
2050  * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2051  *
2052  * Context: Any context.  Takes and releases the RCU lock.
2053  * Return: The pointer, if found, otherwise %NULL.
2054  */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2055 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2056 			unsigned long max, xa_mark_t filter)
2057 {
2058 	XA_STATE(xas, xa, *indexp + 1);
2059 	void *entry;
2060 
2061 	if (xas.xa_index == 0)
2062 		return NULL;
2063 
2064 	rcu_read_lock();
2065 	for (;;) {
2066 		if ((__force unsigned int)filter < XA_MAX_MARKS)
2067 			entry = xas_find_marked(&xas, max, filter);
2068 		else
2069 			entry = xas_find(&xas, max);
2070 
2071 		if (xas_invalid(&xas))
2072 			break;
2073 		if (xas_sibling(&xas))
2074 			continue;
2075 		if (!xas_retry(&xas, entry))
2076 			break;
2077 	}
2078 	rcu_read_unlock();
2079 
2080 	if (entry)
2081 		*indexp = xas.xa_index;
2082 	return entry;
2083 }
2084 EXPORT_SYMBOL(xa_find_after);
2085 
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)2086 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2087 			unsigned long max, unsigned int n)
2088 {
2089 	void *entry;
2090 	unsigned int i = 0;
2091 
2092 	rcu_read_lock();
2093 	xas_for_each(xas, entry, max) {
2094 		if (xas_retry(xas, entry))
2095 			continue;
2096 		dst[i++] = entry;
2097 		if (i == n)
2098 			break;
2099 	}
2100 	rcu_read_unlock();
2101 
2102 	return i;
2103 }
2104 
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)2105 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2106 			unsigned long max, unsigned int n, xa_mark_t mark)
2107 {
2108 	void *entry;
2109 	unsigned int i = 0;
2110 
2111 	rcu_read_lock();
2112 	xas_for_each_marked(xas, entry, max, mark) {
2113 		if (xas_retry(xas, entry))
2114 			continue;
2115 		dst[i++] = entry;
2116 		if (i == n)
2117 			break;
2118 	}
2119 	rcu_read_unlock();
2120 
2121 	return i;
2122 }
2123 
2124 /**
2125  * xa_extract() - Copy selected entries from the XArray into a normal array.
2126  * @xa: The source XArray to copy from.
2127  * @dst: The buffer to copy entries into.
2128  * @start: The first index in the XArray eligible to be selected.
2129  * @max: The last index in the XArray eligible to be selected.
2130  * @n: The maximum number of entries to copy.
2131  * @filter: Selection criterion.
2132  *
2133  * Copies up to @n entries that match @filter from the XArray.  The
2134  * copied entries will have indices between @start and @max, inclusive.
2135  *
2136  * The @filter may be an XArray mark value, in which case entries which are
2137  * marked with that mark will be copied.  It may also be %XA_PRESENT, in
2138  * which case all entries which are not %NULL will be copied.
2139  *
2140  * The entries returned may not represent a snapshot of the XArray at a
2141  * moment in time.  For example, if another thread stores to index 5, then
2142  * index 10, calling xa_extract() may return the old contents of index 5
2143  * and the new contents of index 10.  Indices not modified while this
2144  * function is running will not be skipped.
2145  *
2146  * If you need stronger guarantees, holding the xa_lock across calls to this
2147  * function will prevent concurrent modification.
2148  *
2149  * Context: Any context.  Takes and releases the RCU lock.
2150  * Return: The number of entries copied.
2151  */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)2152 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2153 			unsigned long max, unsigned int n, xa_mark_t filter)
2154 {
2155 	XA_STATE(xas, xa, start);
2156 
2157 	if (!n)
2158 		return 0;
2159 
2160 	if ((__force unsigned int)filter < XA_MAX_MARKS)
2161 		return xas_extract_marked(&xas, dst, max, n, filter);
2162 	return xas_extract_present(&xas, dst, max, n);
2163 }
2164 EXPORT_SYMBOL(xa_extract);
2165 
2166 /**
2167  * xa_delete_node() - Private interface for workingset code.
2168  * @node: Node to be removed from the tree.
2169  * @update: Function to call to update ancestor nodes.
2170  *
2171  * Context: xa_lock must be held on entry and will not be released.
2172  */
xa_delete_node(struct xa_node * node,xa_update_node_t update)2173 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2174 {
2175 	struct xa_state xas = {
2176 		.xa = node->array,
2177 		.xa_index = (unsigned long)node->offset <<
2178 				(node->shift + XA_CHUNK_SHIFT),
2179 		.xa_shift = node->shift + XA_CHUNK_SHIFT,
2180 		.xa_offset = node->offset,
2181 		.xa_node = xa_parent_locked(node->array, node),
2182 		.xa_update = update,
2183 	};
2184 
2185 	xas_store(&xas, NULL);
2186 }
2187 EXPORT_SYMBOL_GPL(xa_delete_node);	/* For the benefit of the test suite */
2188 
2189 /**
2190  * xa_destroy() - Free all internal data structures.
2191  * @xa: XArray.
2192  *
2193  * After calling this function, the XArray is empty and has freed all memory
2194  * allocated for its internal data structures.  You are responsible for
2195  * freeing the objects referenced by the XArray.
2196  *
2197  * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
2198  */
xa_destroy(struct xarray * xa)2199 void xa_destroy(struct xarray *xa)
2200 {
2201 	XA_STATE(xas, xa, 0);
2202 	unsigned long flags;
2203 	void *entry;
2204 
2205 	xas.xa_node = NULL;
2206 	xas_lock_irqsave(&xas, flags);
2207 	entry = xa_head_locked(xa);
2208 	RCU_INIT_POINTER(xa->xa_head, NULL);
2209 	xas_init_marks(&xas);
2210 	if (xa_zero_busy(xa))
2211 		xa_mark_clear(xa, XA_FREE_MARK);
2212 	/* lockdep checks we're still holding the lock in xas_free_nodes() */
2213 	if (xa_is_node(entry))
2214 		xas_free_nodes(&xas, xa_to_node(entry));
2215 	xas_unlock_irqrestore(&xas, flags);
2216 }
2217 EXPORT_SYMBOL(xa_destroy);
2218 
2219 #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)2220 void xa_dump_node(const struct xa_node *node)
2221 {
2222 	unsigned i, j;
2223 
2224 	if (!node)
2225 		return;
2226 	if ((unsigned long)node & 3) {
2227 		pr_cont("node %px\n", node);
2228 		return;
2229 	}
2230 
2231 	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2232 		"array %px list %px %px marks",
2233 		node, node->parent ? "offset" : "max", node->offset,
2234 		node->parent, node->shift, node->count, node->nr_values,
2235 		node->array, node->private_list.prev, node->private_list.next);
2236 	for (i = 0; i < XA_MAX_MARKS; i++)
2237 		for (j = 0; j < XA_MARK_LONGS; j++)
2238 			pr_cont(" %lx", node->marks[i][j]);
2239 	pr_cont("\n");
2240 }
2241 
xa_dump_index(unsigned long index,unsigned int shift)2242 void xa_dump_index(unsigned long index, unsigned int shift)
2243 {
2244 	if (!shift)
2245 		pr_info("%lu: ", index);
2246 	else if (shift >= BITS_PER_LONG)
2247 		pr_info("0-%lu: ", ~0UL);
2248 	else
2249 		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2250 }
2251 
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2252 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2253 {
2254 	if (!entry)
2255 		return;
2256 
2257 	xa_dump_index(index, shift);
2258 
2259 	if (xa_is_node(entry)) {
2260 		if (shift == 0) {
2261 			pr_cont("%px\n", entry);
2262 		} else {
2263 			unsigned long i;
2264 			struct xa_node *node = xa_to_node(entry);
2265 			xa_dump_node(node);
2266 			for (i = 0; i < XA_CHUNK_SIZE; i++)
2267 				xa_dump_entry(node->slots[i],
2268 				      index + (i << node->shift), node->shift);
2269 		}
2270 	} else if (xa_is_value(entry))
2271 		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2272 						xa_to_value(entry), entry);
2273 	else if (!xa_is_internal(entry))
2274 		pr_cont("%px\n", entry);
2275 	else if (xa_is_retry(entry))
2276 		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2277 	else if (xa_is_sibling(entry))
2278 		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2279 	else if (xa_is_zero(entry))
2280 		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2281 	else
2282 		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2283 }
2284 
xa_dump(const struct xarray * xa)2285 void xa_dump(const struct xarray *xa)
2286 {
2287 	void *entry = xa->xa_head;
2288 	unsigned int shift = 0;
2289 
2290 	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2291 			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2292 			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2293 	if (xa_is_node(entry))
2294 		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2295 	xa_dump_entry(entry, 0, shift);
2296 }
2297 #endif
2298