1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SHA1 routine optimized to do word accesses rather than byte accesses,
4  * and to avoid unnecessary copies into the context array.
5  *
6  * This was based on the git SHA1 implementation.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <crypto/sha.h>
13 #include <asm/unaligned.h>
14 
15 /*
16  * If you have 32 registers or more, the compiler can (and should)
17  * try to change the array[] accesses into registers. However, on
18  * machines with less than ~25 registers, that won't really work,
19  * and at least gcc will make an unholy mess of it.
20  *
21  * So to avoid that mess which just slows things down, we force
22  * the stores to memory to actually happen (we might be better off
23  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
24  * suggested by Artur Skawina - that will also make gcc unable to
25  * try to do the silly "optimize away loads" part because it won't
26  * see what the value will be).
27  *
28  * Ben Herrenschmidt reports that on PPC, the C version comes close
29  * to the optimized asm with this (ie on PPC you don't want that
30  * 'volatile', since there are lots of registers).
31  *
32  * On ARM we get the best code generation by forcing a full memory barrier
33  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
34  * the stack frame size simply explode and performance goes down the drain.
35  */
36 
37 #ifdef CONFIG_X86
38   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
39 #elif defined(CONFIG_ARM)
40   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
41 #else
42   #define setW(x, val) (W(x) = (val))
43 #endif
44 
45 /* This "rolls" over the 512-bit array */
46 #define W(x) (array[(x)&15])
47 
48 /*
49  * Where do we get the source from? The first 16 iterations get it from
50  * the input data, the next mix it from the 512-bit array.
51  */
52 #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
53 #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
54 
55 #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
56 	__u32 TEMP = input(t); setW(t, TEMP); \
57 	E += TEMP + rol32(A,5) + (fn) + (constant); \
58 	B = ror32(B, 2); } while (0)
59 
60 #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
61 #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
62 #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
63 #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
64 #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
65 
66 /**
67  * sha1_transform - single block SHA1 transform (deprecated)
68  *
69  * @digest: 160 bit digest to update
70  * @data:   512 bits of data to hash
71  * @array:  16 words of workspace (see note)
72  *
73  * This function executes SHA-1's internal compression function.  It updates the
74  * 160-bit internal state (@digest) with a single 512-bit data block (@data).
75  *
76  * Don't use this function.  SHA-1 is no longer considered secure.  And even if
77  * you do have to use SHA-1, this isn't the correct way to hash something with
78  * SHA-1 as this doesn't handle padding and finalization.
79  *
80  * Note: If the hash is security sensitive, the caller should be sure
81  * to clear the workspace. This is left to the caller to avoid
82  * unnecessary clears between chained hashing operations.
83  */
sha1_transform(__u32 * digest,const char * data,__u32 * array)84 void sha1_transform(__u32 *digest, const char *data, __u32 *array)
85 {
86 	__u32 A, B, C, D, E;
87 
88 	A = digest[0];
89 	B = digest[1];
90 	C = digest[2];
91 	D = digest[3];
92 	E = digest[4];
93 
94 	/* Round 1 - iterations 0-16 take their input from 'data' */
95 	T_0_15( 0, A, B, C, D, E);
96 	T_0_15( 1, E, A, B, C, D);
97 	T_0_15( 2, D, E, A, B, C);
98 	T_0_15( 3, C, D, E, A, B);
99 	T_0_15( 4, B, C, D, E, A);
100 	T_0_15( 5, A, B, C, D, E);
101 	T_0_15( 6, E, A, B, C, D);
102 	T_0_15( 7, D, E, A, B, C);
103 	T_0_15( 8, C, D, E, A, B);
104 	T_0_15( 9, B, C, D, E, A);
105 	T_0_15(10, A, B, C, D, E);
106 	T_0_15(11, E, A, B, C, D);
107 	T_0_15(12, D, E, A, B, C);
108 	T_0_15(13, C, D, E, A, B);
109 	T_0_15(14, B, C, D, E, A);
110 	T_0_15(15, A, B, C, D, E);
111 
112 	/* Round 1 - tail. Input from 512-bit mixing array */
113 	T_16_19(16, E, A, B, C, D);
114 	T_16_19(17, D, E, A, B, C);
115 	T_16_19(18, C, D, E, A, B);
116 	T_16_19(19, B, C, D, E, A);
117 
118 	/* Round 2 */
119 	T_20_39(20, A, B, C, D, E);
120 	T_20_39(21, E, A, B, C, D);
121 	T_20_39(22, D, E, A, B, C);
122 	T_20_39(23, C, D, E, A, B);
123 	T_20_39(24, B, C, D, E, A);
124 	T_20_39(25, A, B, C, D, E);
125 	T_20_39(26, E, A, B, C, D);
126 	T_20_39(27, D, E, A, B, C);
127 	T_20_39(28, C, D, E, A, B);
128 	T_20_39(29, B, C, D, E, A);
129 	T_20_39(30, A, B, C, D, E);
130 	T_20_39(31, E, A, B, C, D);
131 	T_20_39(32, D, E, A, B, C);
132 	T_20_39(33, C, D, E, A, B);
133 	T_20_39(34, B, C, D, E, A);
134 	T_20_39(35, A, B, C, D, E);
135 	T_20_39(36, E, A, B, C, D);
136 	T_20_39(37, D, E, A, B, C);
137 	T_20_39(38, C, D, E, A, B);
138 	T_20_39(39, B, C, D, E, A);
139 
140 	/* Round 3 */
141 	T_40_59(40, A, B, C, D, E);
142 	T_40_59(41, E, A, B, C, D);
143 	T_40_59(42, D, E, A, B, C);
144 	T_40_59(43, C, D, E, A, B);
145 	T_40_59(44, B, C, D, E, A);
146 	T_40_59(45, A, B, C, D, E);
147 	T_40_59(46, E, A, B, C, D);
148 	T_40_59(47, D, E, A, B, C);
149 	T_40_59(48, C, D, E, A, B);
150 	T_40_59(49, B, C, D, E, A);
151 	T_40_59(50, A, B, C, D, E);
152 	T_40_59(51, E, A, B, C, D);
153 	T_40_59(52, D, E, A, B, C);
154 	T_40_59(53, C, D, E, A, B);
155 	T_40_59(54, B, C, D, E, A);
156 	T_40_59(55, A, B, C, D, E);
157 	T_40_59(56, E, A, B, C, D);
158 	T_40_59(57, D, E, A, B, C);
159 	T_40_59(58, C, D, E, A, B);
160 	T_40_59(59, B, C, D, E, A);
161 
162 	/* Round 4 */
163 	T_60_79(60, A, B, C, D, E);
164 	T_60_79(61, E, A, B, C, D);
165 	T_60_79(62, D, E, A, B, C);
166 	T_60_79(63, C, D, E, A, B);
167 	T_60_79(64, B, C, D, E, A);
168 	T_60_79(65, A, B, C, D, E);
169 	T_60_79(66, E, A, B, C, D);
170 	T_60_79(67, D, E, A, B, C);
171 	T_60_79(68, C, D, E, A, B);
172 	T_60_79(69, B, C, D, E, A);
173 	T_60_79(70, A, B, C, D, E);
174 	T_60_79(71, E, A, B, C, D);
175 	T_60_79(72, D, E, A, B, C);
176 	T_60_79(73, C, D, E, A, B);
177 	T_60_79(74, B, C, D, E, A);
178 	T_60_79(75, A, B, C, D, E);
179 	T_60_79(76, E, A, B, C, D);
180 	T_60_79(77, D, E, A, B, C);
181 	T_60_79(78, C, D, E, A, B);
182 	T_60_79(79, B, C, D, E, A);
183 
184 	digest[0] += A;
185 	digest[1] += B;
186 	digest[2] += C;
187 	digest[3] += D;
188 	digest[4] += E;
189 }
190 EXPORT_SYMBOL(sha1_transform);
191 
192 /**
193  * sha1_init - initialize the vectors for a SHA1 digest
194  * @buf: vector to initialize
195  */
sha1_init(__u32 * buf)196 void sha1_init(__u32 *buf)
197 {
198 	buf[0] = 0x67452301;
199 	buf[1] = 0xefcdab89;
200 	buf[2] = 0x98badcfe;
201 	buf[3] = 0x10325476;
202 	buf[4] = 0xc3d2e1f0;
203 }
204 EXPORT_SYMBOL(sha1_init);
205