1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/splice.h>
11 #include <linux/compat.h>
12 #include <net/checksum.h>
13 #include <linux/scatterlist.h>
14 #include <linux/instrumented.h>
15
16 #define PIPE_PARANOIA /* for now */
17
18 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \
19 size_t left; \
20 size_t wanted = n; \
21 __p = i->iov; \
22 __v.iov_len = min(n, __p->iov_len - skip); \
23 if (likely(__v.iov_len)) { \
24 __v.iov_base = __p->iov_base + skip; \
25 left = (STEP); \
26 __v.iov_len -= left; \
27 skip += __v.iov_len; \
28 n -= __v.iov_len; \
29 } else { \
30 left = 0; \
31 } \
32 while (unlikely(!left && n)) { \
33 __p++; \
34 __v.iov_len = min(n, __p->iov_len); \
35 if (unlikely(!__v.iov_len)) \
36 continue; \
37 __v.iov_base = __p->iov_base; \
38 left = (STEP); \
39 __v.iov_len -= left; \
40 skip = __v.iov_len; \
41 n -= __v.iov_len; \
42 } \
43 n = wanted - n; \
44 }
45
46 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \
47 size_t wanted = n; \
48 __p = i->kvec; \
49 __v.iov_len = min(n, __p->iov_len - skip); \
50 if (likely(__v.iov_len)) { \
51 __v.iov_base = __p->iov_base + skip; \
52 (void)(STEP); \
53 skip += __v.iov_len; \
54 n -= __v.iov_len; \
55 } \
56 while (unlikely(n)) { \
57 __p++; \
58 __v.iov_len = min(n, __p->iov_len); \
59 if (unlikely(!__v.iov_len)) \
60 continue; \
61 __v.iov_base = __p->iov_base; \
62 (void)(STEP); \
63 skip = __v.iov_len; \
64 n -= __v.iov_len; \
65 } \
66 n = wanted; \
67 }
68
69 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
70 struct bvec_iter __start; \
71 __start.bi_size = n; \
72 __start.bi_bvec_done = skip; \
73 __start.bi_idx = 0; \
74 for_each_bvec(__v, i->bvec, __bi, __start) { \
75 if (!__v.bv_len) \
76 continue; \
77 (void)(STEP); \
78 } \
79 }
80
81 #define iterate_all_kinds(i, n, v, I, B, K) { \
82 if (likely(n)) { \
83 size_t skip = i->iov_offset; \
84 if (unlikely(i->type & ITER_BVEC)) { \
85 struct bio_vec v; \
86 struct bvec_iter __bi; \
87 iterate_bvec(i, n, v, __bi, skip, (B)) \
88 } else if (unlikely(i->type & ITER_KVEC)) { \
89 const struct kvec *kvec; \
90 struct kvec v; \
91 iterate_kvec(i, n, v, kvec, skip, (K)) \
92 } else if (unlikely(i->type & ITER_DISCARD)) { \
93 } else { \
94 const struct iovec *iov; \
95 struct iovec v; \
96 iterate_iovec(i, n, v, iov, skip, (I)) \
97 } \
98 } \
99 }
100
101 #define iterate_and_advance(i, n, v, I, B, K) { \
102 if (unlikely(i->count < n)) \
103 n = i->count; \
104 if (i->count) { \
105 size_t skip = i->iov_offset; \
106 if (unlikely(i->type & ITER_BVEC)) { \
107 const struct bio_vec *bvec = i->bvec; \
108 struct bio_vec v; \
109 struct bvec_iter __bi; \
110 iterate_bvec(i, n, v, __bi, skip, (B)) \
111 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
112 i->nr_segs -= i->bvec - bvec; \
113 skip = __bi.bi_bvec_done; \
114 } else if (unlikely(i->type & ITER_KVEC)) { \
115 const struct kvec *kvec; \
116 struct kvec v; \
117 iterate_kvec(i, n, v, kvec, skip, (K)) \
118 if (skip == kvec->iov_len) { \
119 kvec++; \
120 skip = 0; \
121 } \
122 i->nr_segs -= kvec - i->kvec; \
123 i->kvec = kvec; \
124 } else if (unlikely(i->type & ITER_DISCARD)) { \
125 skip += n; \
126 } else { \
127 const struct iovec *iov; \
128 struct iovec v; \
129 iterate_iovec(i, n, v, iov, skip, (I)) \
130 if (skip == iov->iov_len) { \
131 iov++; \
132 skip = 0; \
133 } \
134 i->nr_segs -= iov - i->iov; \
135 i->iov = iov; \
136 } \
137 i->count -= n; \
138 i->iov_offset = skip; \
139 } \
140 }
141
copyout(void __user * to,const void * from,size_t n)142 static int copyout(void __user *to, const void *from, size_t n)
143 {
144 if (should_fail_usercopy())
145 return n;
146 if (access_ok(to, n)) {
147 instrument_copy_to_user(to, from, n);
148 n = raw_copy_to_user(to, from, n);
149 }
150 return n;
151 }
152
copyin(void * to,const void __user * from,size_t n)153 static int copyin(void *to, const void __user *from, size_t n)
154 {
155 if (should_fail_usercopy())
156 return n;
157 if (access_ok(from, n)) {
158 instrument_copy_from_user(to, from, n);
159 n = raw_copy_from_user(to, from, n);
160 }
161 return n;
162 }
163
copy_page_to_iter_iovec(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)164 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
165 struct iov_iter *i)
166 {
167 size_t skip, copy, left, wanted;
168 const struct iovec *iov;
169 char __user *buf;
170 void *kaddr, *from;
171
172 if (unlikely(bytes > i->count))
173 bytes = i->count;
174
175 if (unlikely(!bytes))
176 return 0;
177
178 might_fault();
179 wanted = bytes;
180 iov = i->iov;
181 skip = i->iov_offset;
182 buf = iov->iov_base + skip;
183 copy = min(bytes, iov->iov_len - skip);
184
185 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
186 kaddr = kmap_atomic(page);
187 from = kaddr + offset;
188
189 /* first chunk, usually the only one */
190 left = copyout(buf, from, copy);
191 copy -= left;
192 skip += copy;
193 from += copy;
194 bytes -= copy;
195
196 while (unlikely(!left && bytes)) {
197 iov++;
198 buf = iov->iov_base;
199 copy = min(bytes, iov->iov_len);
200 left = copyout(buf, from, copy);
201 copy -= left;
202 skip = copy;
203 from += copy;
204 bytes -= copy;
205 }
206 if (likely(!bytes)) {
207 kunmap_atomic(kaddr);
208 goto done;
209 }
210 offset = from - kaddr;
211 buf += copy;
212 kunmap_atomic(kaddr);
213 copy = min(bytes, iov->iov_len - skip);
214 }
215 /* Too bad - revert to non-atomic kmap */
216
217 kaddr = kmap(page);
218 from = kaddr + offset;
219 left = copyout(buf, from, copy);
220 copy -= left;
221 skip += copy;
222 from += copy;
223 bytes -= copy;
224 while (unlikely(!left && bytes)) {
225 iov++;
226 buf = iov->iov_base;
227 copy = min(bytes, iov->iov_len);
228 left = copyout(buf, from, copy);
229 copy -= left;
230 skip = copy;
231 from += copy;
232 bytes -= copy;
233 }
234 kunmap(page);
235
236 done:
237 if (skip == iov->iov_len) {
238 iov++;
239 skip = 0;
240 }
241 i->count -= wanted - bytes;
242 i->nr_segs -= iov - i->iov;
243 i->iov = iov;
244 i->iov_offset = skip;
245 return wanted - bytes;
246 }
247
copy_page_from_iter_iovec(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)248 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
249 struct iov_iter *i)
250 {
251 size_t skip, copy, left, wanted;
252 const struct iovec *iov;
253 char __user *buf;
254 void *kaddr, *to;
255
256 if (unlikely(bytes > i->count))
257 bytes = i->count;
258
259 if (unlikely(!bytes))
260 return 0;
261
262 might_fault();
263 wanted = bytes;
264 iov = i->iov;
265 skip = i->iov_offset;
266 buf = iov->iov_base + skip;
267 copy = min(bytes, iov->iov_len - skip);
268
269 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
270 kaddr = kmap_atomic(page);
271 to = kaddr + offset;
272
273 /* first chunk, usually the only one */
274 left = copyin(to, buf, copy);
275 copy -= left;
276 skip += copy;
277 to += copy;
278 bytes -= copy;
279
280 while (unlikely(!left && bytes)) {
281 iov++;
282 buf = iov->iov_base;
283 copy = min(bytes, iov->iov_len);
284 left = copyin(to, buf, copy);
285 copy -= left;
286 skip = copy;
287 to += copy;
288 bytes -= copy;
289 }
290 if (likely(!bytes)) {
291 kunmap_atomic(kaddr);
292 goto done;
293 }
294 offset = to - kaddr;
295 buf += copy;
296 kunmap_atomic(kaddr);
297 copy = min(bytes, iov->iov_len - skip);
298 }
299 /* Too bad - revert to non-atomic kmap */
300
301 kaddr = kmap(page);
302 to = kaddr + offset;
303 left = copyin(to, buf, copy);
304 copy -= left;
305 skip += copy;
306 to += copy;
307 bytes -= copy;
308 while (unlikely(!left && bytes)) {
309 iov++;
310 buf = iov->iov_base;
311 copy = min(bytes, iov->iov_len);
312 left = copyin(to, buf, copy);
313 copy -= left;
314 skip = copy;
315 to += copy;
316 bytes -= copy;
317 }
318 kunmap(page);
319
320 done:
321 if (skip == iov->iov_len) {
322 iov++;
323 skip = 0;
324 }
325 i->count -= wanted - bytes;
326 i->nr_segs -= iov - i->iov;
327 i->iov = iov;
328 i->iov_offset = skip;
329 return wanted - bytes;
330 }
331
332 #ifdef PIPE_PARANOIA
sanity(const struct iov_iter * i)333 static bool sanity(const struct iov_iter *i)
334 {
335 struct pipe_inode_info *pipe = i->pipe;
336 unsigned int p_head = pipe->head;
337 unsigned int p_tail = pipe->tail;
338 unsigned int p_mask = pipe->ring_size - 1;
339 unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
340 unsigned int i_head = i->head;
341 unsigned int idx;
342
343 if (i->iov_offset) {
344 struct pipe_buffer *p;
345 if (unlikely(p_occupancy == 0))
346 goto Bad; // pipe must be non-empty
347 if (unlikely(i_head != p_head - 1))
348 goto Bad; // must be at the last buffer...
349
350 p = &pipe->bufs[i_head & p_mask];
351 if (unlikely(p->offset + p->len != i->iov_offset))
352 goto Bad; // ... at the end of segment
353 } else {
354 if (i_head != p_head)
355 goto Bad; // must be right after the last buffer
356 }
357 return true;
358 Bad:
359 printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
360 printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
361 p_head, p_tail, pipe->ring_size);
362 for (idx = 0; idx < pipe->ring_size; idx++)
363 printk(KERN_ERR "[%p %p %d %d]\n",
364 pipe->bufs[idx].ops,
365 pipe->bufs[idx].page,
366 pipe->bufs[idx].offset,
367 pipe->bufs[idx].len);
368 WARN_ON(1);
369 return false;
370 }
371 #else
372 #define sanity(i) true
373 #endif
374
copy_page_to_iter_pipe(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)375 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
376 struct iov_iter *i)
377 {
378 struct pipe_inode_info *pipe = i->pipe;
379 struct pipe_buffer *buf;
380 unsigned int p_tail = pipe->tail;
381 unsigned int p_mask = pipe->ring_size - 1;
382 unsigned int i_head = i->head;
383 size_t off;
384
385 if (unlikely(bytes > i->count))
386 bytes = i->count;
387
388 if (unlikely(!bytes))
389 return 0;
390
391 if (!sanity(i))
392 return 0;
393
394 off = i->iov_offset;
395 buf = &pipe->bufs[i_head & p_mask];
396 if (off) {
397 if (offset == off && buf->page == page) {
398 /* merge with the last one */
399 buf->len += bytes;
400 i->iov_offset += bytes;
401 goto out;
402 }
403 i_head++;
404 buf = &pipe->bufs[i_head & p_mask];
405 }
406 if (pipe_full(i_head, p_tail, pipe->max_usage))
407 return 0;
408
409 buf->ops = &page_cache_pipe_buf_ops;
410 get_page(page);
411 buf->page = page;
412 buf->offset = offset;
413 buf->len = bytes;
414
415 pipe->head = i_head + 1;
416 i->iov_offset = offset + bytes;
417 i->head = i_head;
418 out:
419 i->count -= bytes;
420 return bytes;
421 }
422
423 /*
424 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
425 * bytes. For each iovec, fault in each page that constitutes the iovec.
426 *
427 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
428 * because it is an invalid address).
429 */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)430 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
431 {
432 size_t skip = i->iov_offset;
433 const struct iovec *iov;
434 int err;
435 struct iovec v;
436
437 if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
438 iterate_iovec(i, bytes, v, iov, skip, ({
439 err = fault_in_pages_readable(v.iov_base, v.iov_len);
440 if (unlikely(err))
441 return err;
442 0;}))
443 }
444 return 0;
445 }
446 EXPORT_SYMBOL(iov_iter_fault_in_readable);
447
iov_iter_init(struct iov_iter * i,unsigned int direction,const struct iovec * iov,unsigned long nr_segs,size_t count)448 void iov_iter_init(struct iov_iter *i, unsigned int direction,
449 const struct iovec *iov, unsigned long nr_segs,
450 size_t count)
451 {
452 WARN_ON(direction & ~(READ | WRITE));
453 direction &= READ | WRITE;
454
455 /* It will get better. Eventually... */
456 if (uaccess_kernel()) {
457 i->type = ITER_KVEC | direction;
458 i->kvec = (struct kvec *)iov;
459 } else {
460 i->type = ITER_IOVEC | direction;
461 i->iov = iov;
462 }
463 i->nr_segs = nr_segs;
464 i->iov_offset = 0;
465 i->count = count;
466 }
467 EXPORT_SYMBOL(iov_iter_init);
468
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)469 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
470 {
471 char *from = kmap_atomic(page);
472 memcpy(to, from + offset, len);
473 kunmap_atomic(from);
474 }
475
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)476 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
477 {
478 char *to = kmap_atomic(page);
479 memcpy(to + offset, from, len);
480 kunmap_atomic(to);
481 }
482
memzero_page(struct page * page,size_t offset,size_t len)483 static void memzero_page(struct page *page, size_t offset, size_t len)
484 {
485 char *addr = kmap_atomic(page);
486 memset(addr + offset, 0, len);
487 kunmap_atomic(addr);
488 }
489
allocated(struct pipe_buffer * buf)490 static inline bool allocated(struct pipe_buffer *buf)
491 {
492 return buf->ops == &default_pipe_buf_ops;
493 }
494
data_start(const struct iov_iter * i,unsigned int * iter_headp,size_t * offp)495 static inline void data_start(const struct iov_iter *i,
496 unsigned int *iter_headp, size_t *offp)
497 {
498 unsigned int p_mask = i->pipe->ring_size - 1;
499 unsigned int iter_head = i->head;
500 size_t off = i->iov_offset;
501
502 if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
503 off == PAGE_SIZE)) {
504 iter_head++;
505 off = 0;
506 }
507 *iter_headp = iter_head;
508 *offp = off;
509 }
510
push_pipe(struct iov_iter * i,size_t size,int * iter_headp,size_t * offp)511 static size_t push_pipe(struct iov_iter *i, size_t size,
512 int *iter_headp, size_t *offp)
513 {
514 struct pipe_inode_info *pipe = i->pipe;
515 unsigned int p_tail = pipe->tail;
516 unsigned int p_mask = pipe->ring_size - 1;
517 unsigned int iter_head;
518 size_t off;
519 ssize_t left;
520
521 if (unlikely(size > i->count))
522 size = i->count;
523 if (unlikely(!size))
524 return 0;
525
526 left = size;
527 data_start(i, &iter_head, &off);
528 *iter_headp = iter_head;
529 *offp = off;
530 if (off) {
531 left -= PAGE_SIZE - off;
532 if (left <= 0) {
533 pipe->bufs[iter_head & p_mask].len += size;
534 return size;
535 }
536 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
537 iter_head++;
538 }
539 while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
540 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
541 struct page *page = alloc_page(GFP_USER);
542 if (!page)
543 break;
544
545 buf->ops = &default_pipe_buf_ops;
546 buf->page = page;
547 buf->offset = 0;
548 buf->len = min_t(ssize_t, left, PAGE_SIZE);
549 left -= buf->len;
550 iter_head++;
551 pipe->head = iter_head;
552
553 if (left == 0)
554 return size;
555 }
556 return size - left;
557 }
558
copy_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)559 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
560 struct iov_iter *i)
561 {
562 struct pipe_inode_info *pipe = i->pipe;
563 unsigned int p_mask = pipe->ring_size - 1;
564 unsigned int i_head;
565 size_t n, off;
566
567 if (!sanity(i))
568 return 0;
569
570 bytes = n = push_pipe(i, bytes, &i_head, &off);
571 if (unlikely(!n))
572 return 0;
573 do {
574 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
575 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
576 i->head = i_head;
577 i->iov_offset = off + chunk;
578 n -= chunk;
579 addr += chunk;
580 off = 0;
581 i_head++;
582 } while (n);
583 i->count -= bytes;
584 return bytes;
585 }
586
csum_and_memcpy(void * to,const void * from,size_t len,__wsum sum,size_t off)587 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
588 __wsum sum, size_t off)
589 {
590 __wsum next = csum_partial_copy_nocheck(from, to, len);
591 return csum_block_add(sum, next, off);
592 }
593
csum_and_copy_to_pipe_iter(const void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)594 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
595 __wsum *csum, struct iov_iter *i)
596 {
597 struct pipe_inode_info *pipe = i->pipe;
598 unsigned int p_mask = pipe->ring_size - 1;
599 unsigned int i_head;
600 size_t n, r;
601 size_t off = 0;
602 __wsum sum = *csum;
603
604 if (!sanity(i))
605 return 0;
606
607 bytes = n = push_pipe(i, bytes, &i_head, &r);
608 if (unlikely(!n))
609 return 0;
610 do {
611 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
612 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
613 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
614 kunmap_atomic(p);
615 i->head = i_head;
616 i->iov_offset = r + chunk;
617 n -= chunk;
618 off += chunk;
619 addr += chunk;
620 r = 0;
621 i_head++;
622 } while (n);
623 i->count -= bytes;
624 *csum = sum;
625 return bytes;
626 }
627
_copy_to_iter(const void * addr,size_t bytes,struct iov_iter * i)628 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
629 {
630 const char *from = addr;
631 if (unlikely(iov_iter_is_pipe(i)))
632 return copy_pipe_to_iter(addr, bytes, i);
633 if (iter_is_iovec(i))
634 might_fault();
635 iterate_and_advance(i, bytes, v,
636 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
637 memcpy_to_page(v.bv_page, v.bv_offset,
638 (from += v.bv_len) - v.bv_len, v.bv_len),
639 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
640 )
641
642 return bytes;
643 }
644 EXPORT_SYMBOL(_copy_to_iter);
645
646 #ifdef CONFIG_ARCH_HAS_COPY_MC
copyout_mc(void __user * to,const void * from,size_t n)647 static int copyout_mc(void __user *to, const void *from, size_t n)
648 {
649 if (access_ok(to, n)) {
650 instrument_copy_to_user(to, from, n);
651 n = copy_mc_to_user((__force void *) to, from, n);
652 }
653 return n;
654 }
655
copy_mc_to_page(struct page * page,size_t offset,const char * from,size_t len)656 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
657 const char *from, size_t len)
658 {
659 unsigned long ret;
660 char *to;
661
662 to = kmap_atomic(page);
663 ret = copy_mc_to_kernel(to + offset, from, len);
664 kunmap_atomic(to);
665
666 return ret;
667 }
668
copy_mc_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)669 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
670 struct iov_iter *i)
671 {
672 struct pipe_inode_info *pipe = i->pipe;
673 unsigned int p_mask = pipe->ring_size - 1;
674 unsigned int i_head;
675 size_t n, off, xfer = 0;
676
677 if (!sanity(i))
678 return 0;
679
680 bytes = n = push_pipe(i, bytes, &i_head, &off);
681 if (unlikely(!n))
682 return 0;
683 do {
684 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
685 unsigned long rem;
686
687 rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
688 off, addr, chunk);
689 i->head = i_head;
690 i->iov_offset = off + chunk - rem;
691 xfer += chunk - rem;
692 if (rem)
693 break;
694 n -= chunk;
695 addr += chunk;
696 off = 0;
697 i_head++;
698 } while (n);
699 i->count -= xfer;
700 return xfer;
701 }
702
703 /**
704 * _copy_mc_to_iter - copy to iter with source memory error exception handling
705 * @addr: source kernel address
706 * @bytes: total transfer length
707 * @iter: destination iterator
708 *
709 * The pmem driver deploys this for the dax operation
710 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
711 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
712 * successfully copied.
713 *
714 * The main differences between this and typical _copy_to_iter().
715 *
716 * * Typical tail/residue handling after a fault retries the copy
717 * byte-by-byte until the fault happens again. Re-triggering machine
718 * checks is potentially fatal so the implementation uses source
719 * alignment and poison alignment assumptions to avoid re-triggering
720 * hardware exceptions.
721 *
722 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
723 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
724 * a short copy.
725 */
_copy_mc_to_iter(const void * addr,size_t bytes,struct iov_iter * i)726 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
727 {
728 const char *from = addr;
729 unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
730
731 if (unlikely(iov_iter_is_pipe(i)))
732 return copy_mc_pipe_to_iter(addr, bytes, i);
733 if (iter_is_iovec(i))
734 might_fault();
735 iterate_and_advance(i, bytes, v,
736 copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
737 v.iov_len),
738 ({
739 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
740 (from += v.bv_len) - v.bv_len, v.bv_len);
741 if (rem) {
742 curr_addr = (unsigned long) from;
743 bytes = curr_addr - s_addr - rem;
744 return bytes;
745 }
746 }),
747 ({
748 rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
749 - v.iov_len, v.iov_len);
750 if (rem) {
751 curr_addr = (unsigned long) from;
752 bytes = curr_addr - s_addr - rem;
753 return bytes;
754 }
755 })
756 )
757
758 return bytes;
759 }
760 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
761 #endif /* CONFIG_ARCH_HAS_COPY_MC */
762
_copy_from_iter(void * addr,size_t bytes,struct iov_iter * i)763 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
764 {
765 char *to = addr;
766 if (unlikely(iov_iter_is_pipe(i))) {
767 WARN_ON(1);
768 return 0;
769 }
770 if (iter_is_iovec(i))
771 might_fault();
772 iterate_and_advance(i, bytes, v,
773 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
774 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
775 v.bv_offset, v.bv_len),
776 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
777 )
778
779 return bytes;
780 }
781 EXPORT_SYMBOL(_copy_from_iter);
782
_copy_from_iter_full(void * addr,size_t bytes,struct iov_iter * i)783 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
784 {
785 char *to = addr;
786 if (unlikely(iov_iter_is_pipe(i))) {
787 WARN_ON(1);
788 return false;
789 }
790 if (unlikely(i->count < bytes))
791 return false;
792
793 if (iter_is_iovec(i))
794 might_fault();
795 iterate_all_kinds(i, bytes, v, ({
796 if (copyin((to += v.iov_len) - v.iov_len,
797 v.iov_base, v.iov_len))
798 return false;
799 0;}),
800 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
801 v.bv_offset, v.bv_len),
802 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
803 )
804
805 iov_iter_advance(i, bytes);
806 return true;
807 }
808 EXPORT_SYMBOL(_copy_from_iter_full);
809
_copy_from_iter_nocache(void * addr,size_t bytes,struct iov_iter * i)810 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
811 {
812 char *to = addr;
813 if (unlikely(iov_iter_is_pipe(i))) {
814 WARN_ON(1);
815 return 0;
816 }
817 iterate_and_advance(i, bytes, v,
818 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
819 v.iov_base, v.iov_len),
820 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
821 v.bv_offset, v.bv_len),
822 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
823 )
824
825 return bytes;
826 }
827 EXPORT_SYMBOL(_copy_from_iter_nocache);
828
829 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
830 /**
831 * _copy_from_iter_flushcache - write destination through cpu cache
832 * @addr: destination kernel address
833 * @bytes: total transfer length
834 * @iter: source iterator
835 *
836 * The pmem driver arranges for filesystem-dax to use this facility via
837 * dax_copy_from_iter() for ensuring that writes to persistent memory
838 * are flushed through the CPU cache. It is differentiated from
839 * _copy_from_iter_nocache() in that guarantees all data is flushed for
840 * all iterator types. The _copy_from_iter_nocache() only attempts to
841 * bypass the cache for the ITER_IOVEC case, and on some archs may use
842 * instructions that strand dirty-data in the cache.
843 */
_copy_from_iter_flushcache(void * addr,size_t bytes,struct iov_iter * i)844 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
845 {
846 char *to = addr;
847 if (unlikely(iov_iter_is_pipe(i))) {
848 WARN_ON(1);
849 return 0;
850 }
851 iterate_and_advance(i, bytes, v,
852 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
853 v.iov_base, v.iov_len),
854 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
855 v.bv_offset, v.bv_len),
856 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
857 v.iov_len)
858 )
859
860 return bytes;
861 }
862 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
863 #endif
864
_copy_from_iter_full_nocache(void * addr,size_t bytes,struct iov_iter * i)865 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
866 {
867 char *to = addr;
868 if (unlikely(iov_iter_is_pipe(i))) {
869 WARN_ON(1);
870 return false;
871 }
872 if (unlikely(i->count < bytes))
873 return false;
874 iterate_all_kinds(i, bytes, v, ({
875 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
876 v.iov_base, v.iov_len))
877 return false;
878 0;}),
879 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
880 v.bv_offset, v.bv_len),
881 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
882 )
883
884 iov_iter_advance(i, bytes);
885 return true;
886 }
887 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
888
page_copy_sane(struct page * page,size_t offset,size_t n)889 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
890 {
891 struct page *head;
892 size_t v = n + offset;
893
894 /*
895 * The general case needs to access the page order in order
896 * to compute the page size.
897 * However, we mostly deal with order-0 pages and thus can
898 * avoid a possible cache line miss for requests that fit all
899 * page orders.
900 */
901 if (n <= v && v <= PAGE_SIZE)
902 return true;
903
904 head = compound_head(page);
905 v += (page - head) << PAGE_SHIFT;
906
907 if (likely(n <= v && v <= (page_size(head))))
908 return true;
909 WARN_ON(1);
910 return false;
911 }
912
copy_page_to_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)913 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
914 struct iov_iter *i)
915 {
916 if (unlikely(!page_copy_sane(page, offset, bytes)))
917 return 0;
918 if (i->type & (ITER_BVEC|ITER_KVEC)) {
919 void *kaddr = kmap_atomic(page);
920 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
921 kunmap_atomic(kaddr);
922 return wanted;
923 } else if (unlikely(iov_iter_is_discard(i)))
924 return bytes;
925 else if (likely(!iov_iter_is_pipe(i)))
926 return copy_page_to_iter_iovec(page, offset, bytes, i);
927 else
928 return copy_page_to_iter_pipe(page, offset, bytes, i);
929 }
930 EXPORT_SYMBOL(copy_page_to_iter);
931
copy_page_from_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)932 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
933 struct iov_iter *i)
934 {
935 if (unlikely(!page_copy_sane(page, offset, bytes)))
936 return 0;
937 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
938 WARN_ON(1);
939 return 0;
940 }
941 if (i->type & (ITER_BVEC|ITER_KVEC)) {
942 void *kaddr = kmap_atomic(page);
943 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
944 kunmap_atomic(kaddr);
945 return wanted;
946 } else
947 return copy_page_from_iter_iovec(page, offset, bytes, i);
948 }
949 EXPORT_SYMBOL(copy_page_from_iter);
950
pipe_zero(size_t bytes,struct iov_iter * i)951 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
952 {
953 struct pipe_inode_info *pipe = i->pipe;
954 unsigned int p_mask = pipe->ring_size - 1;
955 unsigned int i_head;
956 size_t n, off;
957
958 if (!sanity(i))
959 return 0;
960
961 bytes = n = push_pipe(i, bytes, &i_head, &off);
962 if (unlikely(!n))
963 return 0;
964
965 do {
966 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
967 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
968 i->head = i_head;
969 i->iov_offset = off + chunk;
970 n -= chunk;
971 off = 0;
972 i_head++;
973 } while (n);
974 i->count -= bytes;
975 return bytes;
976 }
977
iov_iter_zero(size_t bytes,struct iov_iter * i)978 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
979 {
980 if (unlikely(iov_iter_is_pipe(i)))
981 return pipe_zero(bytes, i);
982 iterate_and_advance(i, bytes, v,
983 clear_user(v.iov_base, v.iov_len),
984 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
985 memset(v.iov_base, 0, v.iov_len)
986 )
987
988 return bytes;
989 }
990 EXPORT_SYMBOL(iov_iter_zero);
991
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)992 size_t iov_iter_copy_from_user_atomic(struct page *page,
993 struct iov_iter *i, unsigned long offset, size_t bytes)
994 {
995 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
996 if (unlikely(!page_copy_sane(page, offset, bytes))) {
997 kunmap_atomic(kaddr);
998 return 0;
999 }
1000 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1001 kunmap_atomic(kaddr);
1002 WARN_ON(1);
1003 return 0;
1004 }
1005 iterate_all_kinds(i, bytes, v,
1006 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1007 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1008 v.bv_offset, v.bv_len),
1009 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
1010 )
1011 kunmap_atomic(kaddr);
1012 return bytes;
1013 }
1014 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1015
pipe_truncate(struct iov_iter * i)1016 static inline void pipe_truncate(struct iov_iter *i)
1017 {
1018 struct pipe_inode_info *pipe = i->pipe;
1019 unsigned int p_tail = pipe->tail;
1020 unsigned int p_head = pipe->head;
1021 unsigned int p_mask = pipe->ring_size - 1;
1022
1023 if (!pipe_empty(p_head, p_tail)) {
1024 struct pipe_buffer *buf;
1025 unsigned int i_head = i->head;
1026 size_t off = i->iov_offset;
1027
1028 if (off) {
1029 buf = &pipe->bufs[i_head & p_mask];
1030 buf->len = off - buf->offset;
1031 i_head++;
1032 }
1033 while (p_head != i_head) {
1034 p_head--;
1035 pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1036 }
1037
1038 pipe->head = p_head;
1039 }
1040 }
1041
pipe_advance(struct iov_iter * i,size_t size)1042 static void pipe_advance(struct iov_iter *i, size_t size)
1043 {
1044 struct pipe_inode_info *pipe = i->pipe;
1045 if (unlikely(i->count < size))
1046 size = i->count;
1047 if (size) {
1048 struct pipe_buffer *buf;
1049 unsigned int p_mask = pipe->ring_size - 1;
1050 unsigned int i_head = i->head;
1051 size_t off = i->iov_offset, left = size;
1052
1053 if (off) /* make it relative to the beginning of buffer */
1054 left += off - pipe->bufs[i_head & p_mask].offset;
1055 while (1) {
1056 buf = &pipe->bufs[i_head & p_mask];
1057 if (left <= buf->len)
1058 break;
1059 left -= buf->len;
1060 i_head++;
1061 }
1062 i->head = i_head;
1063 i->iov_offset = buf->offset + left;
1064 }
1065 i->count -= size;
1066 /* ... and discard everything past that point */
1067 pipe_truncate(i);
1068 }
1069
iov_iter_advance(struct iov_iter * i,size_t size)1070 void iov_iter_advance(struct iov_iter *i, size_t size)
1071 {
1072 if (unlikely(iov_iter_is_pipe(i))) {
1073 pipe_advance(i, size);
1074 return;
1075 }
1076 if (unlikely(iov_iter_is_discard(i))) {
1077 i->count -= size;
1078 return;
1079 }
1080 iterate_and_advance(i, size, v, 0, 0, 0)
1081 }
1082 EXPORT_SYMBOL(iov_iter_advance);
1083
iov_iter_revert(struct iov_iter * i,size_t unroll)1084 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1085 {
1086 if (!unroll)
1087 return;
1088 if (WARN_ON(unroll > MAX_RW_COUNT))
1089 return;
1090 i->count += unroll;
1091 if (unlikely(iov_iter_is_pipe(i))) {
1092 struct pipe_inode_info *pipe = i->pipe;
1093 unsigned int p_mask = pipe->ring_size - 1;
1094 unsigned int i_head = i->head;
1095 size_t off = i->iov_offset;
1096 while (1) {
1097 struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1098 size_t n = off - b->offset;
1099 if (unroll < n) {
1100 off -= unroll;
1101 break;
1102 }
1103 unroll -= n;
1104 if (!unroll && i_head == i->start_head) {
1105 off = 0;
1106 break;
1107 }
1108 i_head--;
1109 b = &pipe->bufs[i_head & p_mask];
1110 off = b->offset + b->len;
1111 }
1112 i->iov_offset = off;
1113 i->head = i_head;
1114 pipe_truncate(i);
1115 return;
1116 }
1117 if (unlikely(iov_iter_is_discard(i)))
1118 return;
1119 if (unroll <= i->iov_offset) {
1120 i->iov_offset -= unroll;
1121 return;
1122 }
1123 unroll -= i->iov_offset;
1124 if (iov_iter_is_bvec(i)) {
1125 const struct bio_vec *bvec = i->bvec;
1126 while (1) {
1127 size_t n = (--bvec)->bv_len;
1128 i->nr_segs++;
1129 if (unroll <= n) {
1130 i->bvec = bvec;
1131 i->iov_offset = n - unroll;
1132 return;
1133 }
1134 unroll -= n;
1135 }
1136 } else { /* same logics for iovec and kvec */
1137 const struct iovec *iov = i->iov;
1138 while (1) {
1139 size_t n = (--iov)->iov_len;
1140 i->nr_segs++;
1141 if (unroll <= n) {
1142 i->iov = iov;
1143 i->iov_offset = n - unroll;
1144 return;
1145 }
1146 unroll -= n;
1147 }
1148 }
1149 }
1150 EXPORT_SYMBOL(iov_iter_revert);
1151
1152 /*
1153 * Return the count of just the current iov_iter segment.
1154 */
iov_iter_single_seg_count(const struct iov_iter * i)1155 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1156 {
1157 if (unlikely(iov_iter_is_pipe(i)))
1158 return i->count; // it is a silly place, anyway
1159 if (i->nr_segs == 1)
1160 return i->count;
1161 if (unlikely(iov_iter_is_discard(i)))
1162 return i->count;
1163 else if (iov_iter_is_bvec(i))
1164 return min(i->count, i->bvec->bv_len - i->iov_offset);
1165 else
1166 return min(i->count, i->iov->iov_len - i->iov_offset);
1167 }
1168 EXPORT_SYMBOL(iov_iter_single_seg_count);
1169
iov_iter_kvec(struct iov_iter * i,unsigned int direction,const struct kvec * kvec,unsigned long nr_segs,size_t count)1170 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1171 const struct kvec *kvec, unsigned long nr_segs,
1172 size_t count)
1173 {
1174 WARN_ON(direction & ~(READ | WRITE));
1175 i->type = ITER_KVEC | (direction & (READ | WRITE));
1176 i->kvec = kvec;
1177 i->nr_segs = nr_segs;
1178 i->iov_offset = 0;
1179 i->count = count;
1180 }
1181 EXPORT_SYMBOL(iov_iter_kvec);
1182
iov_iter_bvec(struct iov_iter * i,unsigned int direction,const struct bio_vec * bvec,unsigned long nr_segs,size_t count)1183 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1184 const struct bio_vec *bvec, unsigned long nr_segs,
1185 size_t count)
1186 {
1187 WARN_ON(direction & ~(READ | WRITE));
1188 i->type = ITER_BVEC | (direction & (READ | WRITE));
1189 i->bvec = bvec;
1190 i->nr_segs = nr_segs;
1191 i->iov_offset = 0;
1192 i->count = count;
1193 }
1194 EXPORT_SYMBOL(iov_iter_bvec);
1195
iov_iter_pipe(struct iov_iter * i,unsigned int direction,struct pipe_inode_info * pipe,size_t count)1196 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1197 struct pipe_inode_info *pipe,
1198 size_t count)
1199 {
1200 BUG_ON(direction != READ);
1201 WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1202 i->type = ITER_PIPE | READ;
1203 i->pipe = pipe;
1204 i->head = pipe->head;
1205 i->iov_offset = 0;
1206 i->count = count;
1207 i->start_head = i->head;
1208 }
1209 EXPORT_SYMBOL(iov_iter_pipe);
1210
1211 /**
1212 * iov_iter_discard - Initialise an I/O iterator that discards data
1213 * @i: The iterator to initialise.
1214 * @direction: The direction of the transfer.
1215 * @count: The size of the I/O buffer in bytes.
1216 *
1217 * Set up an I/O iterator that just discards everything that's written to it.
1218 * It's only available as a READ iterator.
1219 */
iov_iter_discard(struct iov_iter * i,unsigned int direction,size_t count)1220 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1221 {
1222 BUG_ON(direction != READ);
1223 i->type = ITER_DISCARD | READ;
1224 i->count = count;
1225 i->iov_offset = 0;
1226 }
1227 EXPORT_SYMBOL(iov_iter_discard);
1228
iov_iter_alignment(const struct iov_iter * i)1229 unsigned long iov_iter_alignment(const struct iov_iter *i)
1230 {
1231 unsigned long res = 0;
1232 size_t size = i->count;
1233
1234 if (unlikely(iov_iter_is_pipe(i))) {
1235 unsigned int p_mask = i->pipe->ring_size - 1;
1236
1237 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1238 return size | i->iov_offset;
1239 return size;
1240 }
1241 iterate_all_kinds(i, size, v,
1242 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1243 res |= v.bv_offset | v.bv_len,
1244 res |= (unsigned long)v.iov_base | v.iov_len
1245 )
1246 return res;
1247 }
1248 EXPORT_SYMBOL(iov_iter_alignment);
1249
iov_iter_gap_alignment(const struct iov_iter * i)1250 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1251 {
1252 unsigned long res = 0;
1253 size_t size = i->count;
1254
1255 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1256 WARN_ON(1);
1257 return ~0U;
1258 }
1259
1260 iterate_all_kinds(i, size, v,
1261 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1262 (size != v.iov_len ? size : 0), 0),
1263 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1264 (size != v.bv_len ? size : 0)),
1265 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1266 (size != v.iov_len ? size : 0))
1267 );
1268 return res;
1269 }
1270 EXPORT_SYMBOL(iov_iter_gap_alignment);
1271
__pipe_get_pages(struct iov_iter * i,size_t maxsize,struct page ** pages,int iter_head,size_t * start)1272 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1273 size_t maxsize,
1274 struct page **pages,
1275 int iter_head,
1276 size_t *start)
1277 {
1278 struct pipe_inode_info *pipe = i->pipe;
1279 unsigned int p_mask = pipe->ring_size - 1;
1280 ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1281 if (!n)
1282 return -EFAULT;
1283
1284 maxsize = n;
1285 n += *start;
1286 while (n > 0) {
1287 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1288 iter_head++;
1289 n -= PAGE_SIZE;
1290 }
1291
1292 return maxsize;
1293 }
1294
pipe_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1295 static ssize_t pipe_get_pages(struct iov_iter *i,
1296 struct page **pages, size_t maxsize, unsigned maxpages,
1297 size_t *start)
1298 {
1299 unsigned int iter_head, npages;
1300 size_t capacity;
1301
1302 if (!maxsize)
1303 return 0;
1304
1305 if (!sanity(i))
1306 return -EFAULT;
1307
1308 data_start(i, &iter_head, start);
1309 /* Amount of free space: some of this one + all after this one */
1310 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1311 capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1312
1313 return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1314 }
1315
iov_iter_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1316 ssize_t iov_iter_get_pages(struct iov_iter *i,
1317 struct page **pages, size_t maxsize, unsigned maxpages,
1318 size_t *start)
1319 {
1320 if (maxsize > i->count)
1321 maxsize = i->count;
1322
1323 if (unlikely(iov_iter_is_pipe(i)))
1324 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1325 if (unlikely(iov_iter_is_discard(i)))
1326 return -EFAULT;
1327
1328 iterate_all_kinds(i, maxsize, v, ({
1329 unsigned long addr = (unsigned long)v.iov_base;
1330 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1331 int n;
1332 int res;
1333
1334 if (len > maxpages * PAGE_SIZE)
1335 len = maxpages * PAGE_SIZE;
1336 addr &= ~(PAGE_SIZE - 1);
1337 n = DIV_ROUND_UP(len, PAGE_SIZE);
1338 res = get_user_pages_fast(addr, n,
1339 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0,
1340 pages);
1341 if (unlikely(res < 0))
1342 return res;
1343 return (res == n ? len : res * PAGE_SIZE) - *start;
1344 0;}),({
1345 /* can't be more than PAGE_SIZE */
1346 *start = v.bv_offset;
1347 get_page(*pages = v.bv_page);
1348 return v.bv_len;
1349 }),({
1350 return -EFAULT;
1351 })
1352 )
1353 return 0;
1354 }
1355 EXPORT_SYMBOL(iov_iter_get_pages);
1356
get_pages_array(size_t n)1357 static struct page **get_pages_array(size_t n)
1358 {
1359 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1360 }
1361
pipe_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1362 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1363 struct page ***pages, size_t maxsize,
1364 size_t *start)
1365 {
1366 struct page **p;
1367 unsigned int iter_head, npages;
1368 ssize_t n;
1369
1370 if (!maxsize)
1371 return 0;
1372
1373 if (!sanity(i))
1374 return -EFAULT;
1375
1376 data_start(i, &iter_head, start);
1377 /* Amount of free space: some of this one + all after this one */
1378 npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1379 n = npages * PAGE_SIZE - *start;
1380 if (maxsize > n)
1381 maxsize = n;
1382 else
1383 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1384 p = get_pages_array(npages);
1385 if (!p)
1386 return -ENOMEM;
1387 n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1388 if (n > 0)
1389 *pages = p;
1390 else
1391 kvfree(p);
1392 return n;
1393 }
1394
iov_iter_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1395 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1396 struct page ***pages, size_t maxsize,
1397 size_t *start)
1398 {
1399 struct page **p;
1400
1401 if (maxsize > i->count)
1402 maxsize = i->count;
1403
1404 if (unlikely(iov_iter_is_pipe(i)))
1405 return pipe_get_pages_alloc(i, pages, maxsize, start);
1406 if (unlikely(iov_iter_is_discard(i)))
1407 return -EFAULT;
1408
1409 iterate_all_kinds(i, maxsize, v, ({
1410 unsigned long addr = (unsigned long)v.iov_base;
1411 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1412 int n;
1413 int res;
1414
1415 addr &= ~(PAGE_SIZE - 1);
1416 n = DIV_ROUND_UP(len, PAGE_SIZE);
1417 p = get_pages_array(n);
1418 if (!p)
1419 return -ENOMEM;
1420 res = get_user_pages_fast(addr, n,
1421 iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p);
1422 if (unlikely(res < 0)) {
1423 kvfree(p);
1424 return res;
1425 }
1426 *pages = p;
1427 return (res == n ? len : res * PAGE_SIZE) - *start;
1428 0;}),({
1429 /* can't be more than PAGE_SIZE */
1430 *start = v.bv_offset;
1431 *pages = p = get_pages_array(1);
1432 if (!p)
1433 return -ENOMEM;
1434 get_page(*p = v.bv_page);
1435 return v.bv_len;
1436 }),({
1437 return -EFAULT;
1438 })
1439 )
1440 return 0;
1441 }
1442 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1443
csum_and_copy_from_iter(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1444 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1445 struct iov_iter *i)
1446 {
1447 char *to = addr;
1448 __wsum sum, next;
1449 size_t off = 0;
1450 sum = *csum;
1451 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1452 WARN_ON(1);
1453 return 0;
1454 }
1455 iterate_and_advance(i, bytes, v, ({
1456 next = csum_and_copy_from_user(v.iov_base,
1457 (to += v.iov_len) - v.iov_len,
1458 v.iov_len);
1459 if (next) {
1460 sum = csum_block_add(sum, next, off);
1461 off += v.iov_len;
1462 }
1463 next ? 0 : v.iov_len;
1464 }), ({
1465 char *p = kmap_atomic(v.bv_page);
1466 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1467 p + v.bv_offset, v.bv_len,
1468 sum, off);
1469 kunmap_atomic(p);
1470 off += v.bv_len;
1471 }),({
1472 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1473 v.iov_base, v.iov_len,
1474 sum, off);
1475 off += v.iov_len;
1476 })
1477 )
1478 *csum = sum;
1479 return bytes;
1480 }
1481 EXPORT_SYMBOL(csum_and_copy_from_iter);
1482
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1483 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1484 struct iov_iter *i)
1485 {
1486 char *to = addr;
1487 __wsum sum, next;
1488 size_t off = 0;
1489 sum = *csum;
1490 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1491 WARN_ON(1);
1492 return false;
1493 }
1494 if (unlikely(i->count < bytes))
1495 return false;
1496 iterate_all_kinds(i, bytes, v, ({
1497 next = csum_and_copy_from_user(v.iov_base,
1498 (to += v.iov_len) - v.iov_len,
1499 v.iov_len);
1500 if (!next)
1501 return false;
1502 sum = csum_block_add(sum, next, off);
1503 off += v.iov_len;
1504 0;
1505 }), ({
1506 char *p = kmap_atomic(v.bv_page);
1507 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1508 p + v.bv_offset, v.bv_len,
1509 sum, off);
1510 kunmap_atomic(p);
1511 off += v.bv_len;
1512 }),({
1513 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1514 v.iov_base, v.iov_len,
1515 sum, off);
1516 off += v.iov_len;
1517 })
1518 )
1519 *csum = sum;
1520 iov_iter_advance(i, bytes);
1521 return true;
1522 }
1523 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1524
csum_and_copy_to_iter(const void * addr,size_t bytes,void * csump,struct iov_iter * i)1525 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1526 struct iov_iter *i)
1527 {
1528 const char *from = addr;
1529 __wsum *csum = csump;
1530 __wsum sum, next;
1531 size_t off = 0;
1532
1533 if (unlikely(iov_iter_is_pipe(i)))
1534 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1535
1536 sum = *csum;
1537 if (unlikely(iov_iter_is_discard(i))) {
1538 WARN_ON(1); /* for now */
1539 return 0;
1540 }
1541 iterate_and_advance(i, bytes, v, ({
1542 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1543 v.iov_base,
1544 v.iov_len);
1545 if (next) {
1546 sum = csum_block_add(sum, next, off);
1547 off += v.iov_len;
1548 }
1549 next ? 0 : v.iov_len;
1550 }), ({
1551 char *p = kmap_atomic(v.bv_page);
1552 sum = csum_and_memcpy(p + v.bv_offset,
1553 (from += v.bv_len) - v.bv_len,
1554 v.bv_len, sum, off);
1555 kunmap_atomic(p);
1556 off += v.bv_len;
1557 }),({
1558 sum = csum_and_memcpy(v.iov_base,
1559 (from += v.iov_len) - v.iov_len,
1560 v.iov_len, sum, off);
1561 off += v.iov_len;
1562 })
1563 )
1564 *csum = sum;
1565 return bytes;
1566 }
1567 EXPORT_SYMBOL(csum_and_copy_to_iter);
1568
hash_and_copy_to_iter(const void * addr,size_t bytes,void * hashp,struct iov_iter * i)1569 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1570 struct iov_iter *i)
1571 {
1572 #ifdef CONFIG_CRYPTO_HASH
1573 struct ahash_request *hash = hashp;
1574 struct scatterlist sg;
1575 size_t copied;
1576
1577 copied = copy_to_iter(addr, bytes, i);
1578 sg_init_one(&sg, addr, copied);
1579 ahash_request_set_crypt(hash, &sg, NULL, copied);
1580 crypto_ahash_update(hash);
1581 return copied;
1582 #else
1583 return 0;
1584 #endif
1585 }
1586 EXPORT_SYMBOL(hash_and_copy_to_iter);
1587
iov_iter_npages(const struct iov_iter * i,int maxpages)1588 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1589 {
1590 size_t size = i->count;
1591 int npages = 0;
1592
1593 if (!size)
1594 return 0;
1595 if (unlikely(iov_iter_is_discard(i)))
1596 return 0;
1597
1598 if (unlikely(iov_iter_is_pipe(i))) {
1599 struct pipe_inode_info *pipe = i->pipe;
1600 unsigned int iter_head;
1601 size_t off;
1602
1603 if (!sanity(i))
1604 return 0;
1605
1606 data_start(i, &iter_head, &off);
1607 /* some of this one + all after this one */
1608 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1609 if (npages >= maxpages)
1610 return maxpages;
1611 } else iterate_all_kinds(i, size, v, ({
1612 unsigned long p = (unsigned long)v.iov_base;
1613 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1614 - p / PAGE_SIZE;
1615 if (npages >= maxpages)
1616 return maxpages;
1617 0;}),({
1618 npages++;
1619 if (npages >= maxpages)
1620 return maxpages;
1621 }),({
1622 unsigned long p = (unsigned long)v.iov_base;
1623 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1624 - p / PAGE_SIZE;
1625 if (npages >= maxpages)
1626 return maxpages;
1627 })
1628 )
1629 return npages;
1630 }
1631 EXPORT_SYMBOL(iov_iter_npages);
1632
dup_iter(struct iov_iter * new,struct iov_iter * old,gfp_t flags)1633 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1634 {
1635 *new = *old;
1636 if (unlikely(iov_iter_is_pipe(new))) {
1637 WARN_ON(1);
1638 return NULL;
1639 }
1640 if (unlikely(iov_iter_is_discard(new)))
1641 return NULL;
1642 if (iov_iter_is_bvec(new))
1643 return new->bvec = kmemdup(new->bvec,
1644 new->nr_segs * sizeof(struct bio_vec),
1645 flags);
1646 else
1647 /* iovec and kvec have identical layout */
1648 return new->iov = kmemdup(new->iov,
1649 new->nr_segs * sizeof(struct iovec),
1650 flags);
1651 }
1652 EXPORT_SYMBOL(dup_iter);
1653
copy_compat_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,unsigned long nr_segs)1654 static int copy_compat_iovec_from_user(struct iovec *iov,
1655 const struct iovec __user *uvec, unsigned long nr_segs)
1656 {
1657 const struct compat_iovec __user *uiov =
1658 (const struct compat_iovec __user *)uvec;
1659 int ret = -EFAULT, i;
1660
1661 if (!user_access_begin(uvec, nr_segs * sizeof(*uvec)))
1662 return -EFAULT;
1663
1664 for (i = 0; i < nr_segs; i++) {
1665 compat_uptr_t buf;
1666 compat_ssize_t len;
1667
1668 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1669 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1670
1671 /* check for compat_size_t not fitting in compat_ssize_t .. */
1672 if (len < 0) {
1673 ret = -EINVAL;
1674 goto uaccess_end;
1675 }
1676 iov[i].iov_base = compat_ptr(buf);
1677 iov[i].iov_len = len;
1678 }
1679
1680 ret = 0;
1681 uaccess_end:
1682 user_access_end();
1683 return ret;
1684 }
1685
copy_iovec_from_user(struct iovec * iov,const struct iovec __user * uvec,unsigned long nr_segs)1686 static int copy_iovec_from_user(struct iovec *iov,
1687 const struct iovec __user *uvec, unsigned long nr_segs)
1688 {
1689 unsigned long seg;
1690
1691 if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1692 return -EFAULT;
1693 for (seg = 0; seg < nr_segs; seg++) {
1694 if ((ssize_t)iov[seg].iov_len < 0)
1695 return -EINVAL;
1696 }
1697
1698 return 0;
1699 }
1700
iovec_from_user(const struct iovec __user * uvec,unsigned long nr_segs,unsigned long fast_segs,struct iovec * fast_iov,bool compat)1701 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1702 unsigned long nr_segs, unsigned long fast_segs,
1703 struct iovec *fast_iov, bool compat)
1704 {
1705 struct iovec *iov = fast_iov;
1706 int ret;
1707
1708 /*
1709 * SuS says "The readv() function *may* fail if the iovcnt argument was
1710 * less than or equal to 0, or greater than {IOV_MAX}. Linux has
1711 * traditionally returned zero for zero segments, so...
1712 */
1713 if (nr_segs == 0)
1714 return iov;
1715 if (nr_segs > UIO_MAXIOV)
1716 return ERR_PTR(-EINVAL);
1717 if (nr_segs > fast_segs) {
1718 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1719 if (!iov)
1720 return ERR_PTR(-ENOMEM);
1721 }
1722
1723 if (compat)
1724 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1725 else
1726 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1727 if (ret) {
1728 if (iov != fast_iov)
1729 kfree(iov);
1730 return ERR_PTR(ret);
1731 }
1732
1733 return iov;
1734 }
1735
__import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i,bool compat)1736 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1737 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1738 struct iov_iter *i, bool compat)
1739 {
1740 ssize_t total_len = 0;
1741 unsigned long seg;
1742 struct iovec *iov;
1743
1744 iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1745 if (IS_ERR(iov)) {
1746 *iovp = NULL;
1747 return PTR_ERR(iov);
1748 }
1749
1750 /*
1751 * According to the Single Unix Specification we should return EINVAL if
1752 * an element length is < 0 when cast to ssize_t or if the total length
1753 * would overflow the ssize_t return value of the system call.
1754 *
1755 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1756 * overflow case.
1757 */
1758 for (seg = 0; seg < nr_segs; seg++) {
1759 ssize_t len = (ssize_t)iov[seg].iov_len;
1760
1761 if (!access_ok(iov[seg].iov_base, len)) {
1762 if (iov != *iovp)
1763 kfree(iov);
1764 *iovp = NULL;
1765 return -EFAULT;
1766 }
1767
1768 if (len > MAX_RW_COUNT - total_len) {
1769 len = MAX_RW_COUNT - total_len;
1770 iov[seg].iov_len = len;
1771 }
1772 total_len += len;
1773 }
1774
1775 iov_iter_init(i, type, iov, nr_segs, total_len);
1776 if (iov == *iovp)
1777 *iovp = NULL;
1778 else
1779 *iovp = iov;
1780 return total_len;
1781 }
1782
1783 /**
1784 * import_iovec() - Copy an array of &struct iovec from userspace
1785 * into the kernel, check that it is valid, and initialize a new
1786 * &struct iov_iter iterator to access it.
1787 *
1788 * @type: One of %READ or %WRITE.
1789 * @uvec: Pointer to the userspace array.
1790 * @nr_segs: Number of elements in userspace array.
1791 * @fast_segs: Number of elements in @iov.
1792 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1793 * on-stack) kernel array.
1794 * @i: Pointer to iterator that will be initialized on success.
1795 *
1796 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1797 * then this function places %NULL in *@iov on return. Otherwise, a new
1798 * array will be allocated and the result placed in *@iov. This means that
1799 * the caller may call kfree() on *@iov regardless of whether the small
1800 * on-stack array was used or not (and regardless of whether this function
1801 * returns an error or not).
1802 *
1803 * Return: Negative error code on error, bytes imported on success
1804 */
import_iovec(int type,const struct iovec __user * uvec,unsigned nr_segs,unsigned fast_segs,struct iovec ** iovp,struct iov_iter * i)1805 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1806 unsigned nr_segs, unsigned fast_segs,
1807 struct iovec **iovp, struct iov_iter *i)
1808 {
1809 return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1810 in_compat_syscall());
1811 }
1812 EXPORT_SYMBOL(import_iovec);
1813
import_single_range(int rw,void __user * buf,size_t len,struct iovec * iov,struct iov_iter * i)1814 int import_single_range(int rw, void __user *buf, size_t len,
1815 struct iovec *iov, struct iov_iter *i)
1816 {
1817 if (len > MAX_RW_COUNT)
1818 len = MAX_RW_COUNT;
1819 if (unlikely(!access_ok(buf, len)))
1820 return -EFAULT;
1821
1822 iov->iov_base = buf;
1823 iov->iov_len = len;
1824 iov_iter_init(i, rw, iov, 1, len);
1825 return 0;
1826 }
1827 EXPORT_SYMBOL(import_single_range);
1828
iov_iter_for_each_range(struct iov_iter * i,size_t bytes,int (* f)(struct kvec * vec,void * context),void * context)1829 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1830 int (*f)(struct kvec *vec, void *context),
1831 void *context)
1832 {
1833 struct kvec w;
1834 int err = -EINVAL;
1835 if (!bytes)
1836 return 0;
1837
1838 iterate_all_kinds(i, bytes, v, -EINVAL, ({
1839 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1840 w.iov_len = v.bv_len;
1841 err = f(&w, context);
1842 kunmap(v.bv_page);
1843 err;}), ({
1844 w = v;
1845 err = f(&w, context);})
1846 )
1847 return err;
1848 }
1849 EXPORT_SYMBOL(iov_iter_for_each_range);
1850