1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/page.h>
20 
21 #include "kstrtox.h"
22 
23 /**
24  * DOC: bitmap introduction
25  *
26  * bitmaps provide an array of bits, implemented using an
27  * array of unsigned longs.  The number of valid bits in a
28  * given bitmap does _not_ need to be an exact multiple of
29  * BITS_PER_LONG.
30  *
31  * The possible unused bits in the last, partially used word
32  * of a bitmap are 'don't care'.  The implementation makes
33  * no particular effort to keep them zero.  It ensures that
34  * their value will not affect the results of any operation.
35  * The bitmap operations that return Boolean (bitmap_empty,
36  * for example) or scalar (bitmap_weight, for example) results
37  * carefully filter out these unused bits from impacting their
38  * results.
39  *
40  * The byte ordering of bitmaps is more natural on little
41  * endian architectures.  See the big-endian headers
42  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43  * for the best explanations of this ordering.
44  */
45 
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)46 int __bitmap_equal(const unsigned long *bitmap1,
47 		const unsigned long *bitmap2, unsigned int bits)
48 {
49 	unsigned int k, lim = bits/BITS_PER_LONG;
50 	for (k = 0; k < lim; ++k)
51 		if (bitmap1[k] != bitmap2[k])
52 			return 0;
53 
54 	if (bits % BITS_PER_LONG)
55 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 			return 0;
57 
58 	return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61 
__bitmap_or_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,const unsigned long * bitmap3,unsigned int bits)62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 		       const unsigned long *bitmap2,
64 		       const unsigned long *bitmap3,
65 		       unsigned int bits)
66 {
67 	unsigned int k, lim = bits / BITS_PER_LONG;
68 	unsigned long tmp;
69 
70 	for (k = 0; k < lim; ++k) {
71 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 			return false;
73 	}
74 
75 	if (!(bits % BITS_PER_LONG))
76 		return true;
77 
78 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80 }
81 
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
83 {
84 	unsigned int k, lim = BITS_TO_LONGS(bits);
85 	for (k = 0; k < lim; ++k)
86 		dst[k] = ~src[k];
87 }
88 EXPORT_SYMBOL(__bitmap_complement);
89 
90 /**
91  * __bitmap_shift_right - logical right shift of the bits in a bitmap
92  *   @dst : destination bitmap
93  *   @src : source bitmap
94  *   @shift : shift by this many bits
95  *   @nbits : bitmap size, in bits
96  *
97  * Shifting right (dividing) means moving bits in the MS -> LS bit
98  * direction.  Zeros are fed into the vacated MS positions and the
99  * LS bits shifted off the bottom are lost.
100  */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 			unsigned shift, unsigned nbits)
103 {
104 	unsigned k, lim = BITS_TO_LONGS(nbits);
105 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 	for (k = 0; off + k < lim; ++k) {
108 		unsigned long upper, lower;
109 
110 		/*
111 		 * If shift is not word aligned, take lower rem bits of
112 		 * word above and make them the top rem bits of result.
113 		 */
114 		if (!rem || off + k + 1 >= lim)
115 			upper = 0;
116 		else {
117 			upper = src[off + k + 1];
118 			if (off + k + 1 == lim - 1)
119 				upper &= mask;
120 			upper <<= (BITS_PER_LONG - rem);
121 		}
122 		lower = src[off + k];
123 		if (off + k == lim - 1)
124 			lower &= mask;
125 		lower >>= rem;
126 		dst[k] = lower | upper;
127 	}
128 	if (off)
129 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130 }
131 EXPORT_SYMBOL(__bitmap_shift_right);
132 
133 
134 /**
135  * __bitmap_shift_left - logical left shift of the bits in a bitmap
136  *   @dst : destination bitmap
137  *   @src : source bitmap
138  *   @shift : shift by this many bits
139  *   @nbits : bitmap size, in bits
140  *
141  * Shifting left (multiplying) means moving bits in the LS -> MS
142  * direction.  Zeros are fed into the vacated LS bit positions
143  * and those MS bits shifted off the top are lost.
144  */
145 
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 			unsigned int shift, unsigned int nbits)
148 {
149 	int k;
150 	unsigned int lim = BITS_TO_LONGS(nbits);
151 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 	for (k = lim - off - 1; k >= 0; --k) {
153 		unsigned long upper, lower;
154 
155 		/*
156 		 * If shift is not word aligned, take upper rem bits of
157 		 * word below and make them the bottom rem bits of result.
158 		 */
159 		if (rem && k > 0)
160 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 		else
162 			lower = 0;
163 		upper = src[k] << rem;
164 		dst[k + off] = lower | upper;
165 	}
166 	if (off)
167 		memset(dst, 0, off*sizeof(unsigned long));
168 }
169 EXPORT_SYMBOL(__bitmap_shift_left);
170 
171 /**
172  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173  * @dst: destination bitmap, might overlap with src
174  * @src: source bitmap
175  * @first: start bit of region to be removed
176  * @cut: number of bits to remove
177  * @nbits: bitmap size, in bits
178  *
179  * Set the n-th bit of @dst iff the n-th bit of @src is set and
180  * n is less than @first, or the m-th bit of @src is set for any
181  * m such that @first <= n < nbits, and m = n + @cut.
182  *
183  * In pictures, example for a big-endian 32-bit architecture:
184  *
185  * The @src bitmap is::
186  *
187  *   31                                   63
188  *   |                                    |
189  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
190  *                   |  |              |                                    |
191  *                  16  14             0                                   32
192  *
193  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
194  *
195  *   31                                   63
196  *   |                                    |
197  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
198  *                      |              |                                    |
199  *                      14 (bit 17     0                                   32
200  *                          from @src)
201  *
202  * Note that @dst and @src might overlap partially or entirely.
203  *
204  * This is implemented in the obvious way, with a shift and carry
205  * step for each moved bit. Optimisation is left as an exercise
206  * for the compiler.
207  */
bitmap_cut(unsigned long * dst,const unsigned long * src,unsigned int first,unsigned int cut,unsigned int nbits)208 void bitmap_cut(unsigned long *dst, const unsigned long *src,
209 		unsigned int first, unsigned int cut, unsigned int nbits)
210 {
211 	unsigned int len = BITS_TO_LONGS(nbits);
212 	unsigned long keep = 0, carry;
213 	int i;
214 
215 	if (first % BITS_PER_LONG) {
216 		keep = src[first / BITS_PER_LONG] &
217 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
218 	}
219 
220 	memmove(dst, src, len * sizeof(*dst));
221 
222 	while (cut--) {
223 		for (i = first / BITS_PER_LONG; i < len; i++) {
224 			if (i < len - 1)
225 				carry = dst[i + 1] & 1UL;
226 			else
227 				carry = 0;
228 
229 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
230 		}
231 	}
232 
233 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
234 	dst[first / BITS_PER_LONG] |= keep;
235 }
236 EXPORT_SYMBOL(bitmap_cut);
237 
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)238 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
239 				const unsigned long *bitmap2, unsigned int bits)
240 {
241 	unsigned int k;
242 	unsigned int lim = bits/BITS_PER_LONG;
243 	unsigned long result = 0;
244 
245 	for (k = 0; k < lim; k++)
246 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
247 	if (bits % BITS_PER_LONG)
248 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
249 			   BITMAP_LAST_WORD_MASK(bits));
250 	return result != 0;
251 }
252 EXPORT_SYMBOL(__bitmap_and);
253 
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)254 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
255 				const unsigned long *bitmap2, unsigned int bits)
256 {
257 	unsigned int k;
258 	unsigned int nr = BITS_TO_LONGS(bits);
259 
260 	for (k = 0; k < nr; k++)
261 		dst[k] = bitmap1[k] | bitmap2[k];
262 }
263 EXPORT_SYMBOL(__bitmap_or);
264 
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)265 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
266 				const unsigned long *bitmap2, unsigned int bits)
267 {
268 	unsigned int k;
269 	unsigned int nr = BITS_TO_LONGS(bits);
270 
271 	for (k = 0; k < nr; k++)
272 		dst[k] = bitmap1[k] ^ bitmap2[k];
273 }
274 EXPORT_SYMBOL(__bitmap_xor);
275 
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)276 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
277 				const unsigned long *bitmap2, unsigned int bits)
278 {
279 	unsigned int k;
280 	unsigned int lim = bits/BITS_PER_LONG;
281 	unsigned long result = 0;
282 
283 	for (k = 0; k < lim; k++)
284 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
285 	if (bits % BITS_PER_LONG)
286 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
287 			   BITMAP_LAST_WORD_MASK(bits));
288 	return result != 0;
289 }
290 EXPORT_SYMBOL(__bitmap_andnot);
291 
__bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)292 void __bitmap_replace(unsigned long *dst,
293 		      const unsigned long *old, const unsigned long *new,
294 		      const unsigned long *mask, unsigned int nbits)
295 {
296 	unsigned int k;
297 	unsigned int nr = BITS_TO_LONGS(nbits);
298 
299 	for (k = 0; k < nr; k++)
300 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
301 }
302 EXPORT_SYMBOL(__bitmap_replace);
303 
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)304 int __bitmap_intersects(const unsigned long *bitmap1,
305 			const unsigned long *bitmap2, unsigned int bits)
306 {
307 	unsigned int k, lim = bits/BITS_PER_LONG;
308 	for (k = 0; k < lim; ++k)
309 		if (bitmap1[k] & bitmap2[k])
310 			return 1;
311 
312 	if (bits % BITS_PER_LONG)
313 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
314 			return 1;
315 	return 0;
316 }
317 EXPORT_SYMBOL(__bitmap_intersects);
318 
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)319 int __bitmap_subset(const unsigned long *bitmap1,
320 		    const unsigned long *bitmap2, unsigned int bits)
321 {
322 	unsigned int k, lim = bits/BITS_PER_LONG;
323 	for (k = 0; k < lim; ++k)
324 		if (bitmap1[k] & ~bitmap2[k])
325 			return 0;
326 
327 	if (bits % BITS_PER_LONG)
328 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
329 			return 0;
330 	return 1;
331 }
332 EXPORT_SYMBOL(__bitmap_subset);
333 
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)334 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
335 {
336 	unsigned int k, lim = bits/BITS_PER_LONG;
337 	int w = 0;
338 
339 	for (k = 0; k < lim; k++)
340 		w += hweight_long(bitmap[k]);
341 
342 	if (bits % BITS_PER_LONG)
343 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
344 
345 	return w;
346 }
347 EXPORT_SYMBOL(__bitmap_weight);
348 
__bitmap_set(unsigned long * map,unsigned int start,int len)349 void __bitmap_set(unsigned long *map, unsigned int start, int len)
350 {
351 	unsigned long *p = map + BIT_WORD(start);
352 	const unsigned int size = start + len;
353 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
354 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
355 
356 	while (len - bits_to_set >= 0) {
357 		*p |= mask_to_set;
358 		len -= bits_to_set;
359 		bits_to_set = BITS_PER_LONG;
360 		mask_to_set = ~0UL;
361 		p++;
362 	}
363 	if (len) {
364 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
365 		*p |= mask_to_set;
366 	}
367 }
368 EXPORT_SYMBOL(__bitmap_set);
369 
__bitmap_clear(unsigned long * map,unsigned int start,int len)370 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
371 {
372 	unsigned long *p = map + BIT_WORD(start);
373 	const unsigned int size = start + len;
374 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
375 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
376 
377 	while (len - bits_to_clear >= 0) {
378 		*p &= ~mask_to_clear;
379 		len -= bits_to_clear;
380 		bits_to_clear = BITS_PER_LONG;
381 		mask_to_clear = ~0UL;
382 		p++;
383 	}
384 	if (len) {
385 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
386 		*p &= ~mask_to_clear;
387 	}
388 }
389 EXPORT_SYMBOL(__bitmap_clear);
390 
391 /**
392  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
393  * @map: The address to base the search on
394  * @size: The bitmap size in bits
395  * @start: The bitnumber to start searching at
396  * @nr: The number of zeroed bits we're looking for
397  * @align_mask: Alignment mask for zero area
398  * @align_offset: Alignment offset for zero area.
399  *
400  * The @align_mask should be one less than a power of 2; the effect is that
401  * the bit offset of all zero areas this function finds plus @align_offset
402  * is multiple of that power of 2.
403  */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)404 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
405 					     unsigned long size,
406 					     unsigned long start,
407 					     unsigned int nr,
408 					     unsigned long align_mask,
409 					     unsigned long align_offset)
410 {
411 	unsigned long index, end, i;
412 again:
413 	index = find_next_zero_bit(map, size, start);
414 
415 	/* Align allocation */
416 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
417 
418 	end = index + nr;
419 	if (end > size)
420 		return end;
421 	i = find_next_bit(map, end, index);
422 	if (i < end) {
423 		start = i + 1;
424 		goto again;
425 	}
426 	return index;
427 }
428 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
429 
430 /*
431  * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
432  * second version by Paul Jackson, third by Joe Korty.
433  */
434 
435 /**
436  * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
437  *
438  * @ubuf: pointer to user buffer containing string.
439  * @ulen: buffer size in bytes.  If string is smaller than this
440  *    then it must be terminated with a \0.
441  * @maskp: pointer to bitmap array that will contain result.
442  * @nmaskbits: size of bitmap, in bits.
443  */
bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)444 int bitmap_parse_user(const char __user *ubuf,
445 			unsigned int ulen, unsigned long *maskp,
446 			int nmaskbits)
447 {
448 	char *buf;
449 	int ret;
450 
451 	buf = memdup_user_nul(ubuf, ulen);
452 	if (IS_ERR(buf))
453 		return PTR_ERR(buf);
454 
455 	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
456 
457 	kfree(buf);
458 	return ret;
459 }
460 EXPORT_SYMBOL(bitmap_parse_user);
461 
462 /**
463  * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
464  * @list: indicates whether the bitmap must be list
465  * @buf: page aligned buffer into which string is placed
466  * @maskp: pointer to bitmap to convert
467  * @nmaskbits: size of bitmap, in bits
468  *
469  * Output format is a comma-separated list of decimal numbers and
470  * ranges if list is specified or hex digits grouped into comma-separated
471  * sets of 8 digits/set. Returns the number of characters written to buf.
472  *
473  * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
474  * area and that sufficient storage remains at @buf to accommodate the
475  * bitmap_print_to_pagebuf() output. Returns the number of characters
476  * actually printed to @buf, excluding terminating '\0'.
477  */
bitmap_print_to_pagebuf(bool list,char * buf,const unsigned long * maskp,int nmaskbits)478 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
479 			    int nmaskbits)
480 {
481 	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
482 
483 	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
484 		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
485 }
486 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
487 
488 /*
489  * Region 9-38:4/10 describes the following bitmap structure:
490  * 0	   9  12    18			38
491  * .........****......****......****......
492  *	    ^  ^     ^			 ^
493  *      start  off   group_len	       end
494  */
495 struct region {
496 	unsigned int start;
497 	unsigned int off;
498 	unsigned int group_len;
499 	unsigned int end;
500 };
501 
bitmap_set_region(const struct region * r,unsigned long * bitmap,int nbits)502 static int bitmap_set_region(const struct region *r,
503 				unsigned long *bitmap, int nbits)
504 {
505 	unsigned int start;
506 
507 	if (r->end >= nbits)
508 		return -ERANGE;
509 
510 	for (start = r->start; start <= r->end; start += r->group_len)
511 		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
512 
513 	return 0;
514 }
515 
bitmap_check_region(const struct region * r)516 static int bitmap_check_region(const struct region *r)
517 {
518 	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
519 		return -EINVAL;
520 
521 	return 0;
522 }
523 
bitmap_getnum(const char * str,unsigned int * num)524 static const char *bitmap_getnum(const char *str, unsigned int *num)
525 {
526 	unsigned long long n;
527 	unsigned int len;
528 
529 	len = _parse_integer(str, 10, &n);
530 	if (!len)
531 		return ERR_PTR(-EINVAL);
532 	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
533 		return ERR_PTR(-EOVERFLOW);
534 
535 	*num = n;
536 	return str + len;
537 }
538 
end_of_str(char c)539 static inline bool end_of_str(char c)
540 {
541 	return c == '\0' || c == '\n';
542 }
543 
__end_of_region(char c)544 static inline bool __end_of_region(char c)
545 {
546 	return isspace(c) || c == ',';
547 }
548 
end_of_region(char c)549 static inline bool end_of_region(char c)
550 {
551 	return __end_of_region(c) || end_of_str(c);
552 }
553 
554 /*
555  * The format allows commas and whitespaces at the beginning
556  * of the region.
557  */
bitmap_find_region(const char * str)558 static const char *bitmap_find_region(const char *str)
559 {
560 	while (__end_of_region(*str))
561 		str++;
562 
563 	return end_of_str(*str) ? NULL : str;
564 }
565 
bitmap_find_region_reverse(const char * start,const char * end)566 static const char *bitmap_find_region_reverse(const char *start, const char *end)
567 {
568 	while (start <= end && __end_of_region(*end))
569 		end--;
570 
571 	return end;
572 }
573 
bitmap_parse_region(const char * str,struct region * r)574 static const char *bitmap_parse_region(const char *str, struct region *r)
575 {
576 	str = bitmap_getnum(str, &r->start);
577 	if (IS_ERR(str))
578 		return str;
579 
580 	if (end_of_region(*str))
581 		goto no_end;
582 
583 	if (*str != '-')
584 		return ERR_PTR(-EINVAL);
585 
586 	str = bitmap_getnum(str + 1, &r->end);
587 	if (IS_ERR(str))
588 		return str;
589 
590 	if (end_of_region(*str))
591 		goto no_pattern;
592 
593 	if (*str != ':')
594 		return ERR_PTR(-EINVAL);
595 
596 	str = bitmap_getnum(str + 1, &r->off);
597 	if (IS_ERR(str))
598 		return str;
599 
600 	if (*str != '/')
601 		return ERR_PTR(-EINVAL);
602 
603 	return bitmap_getnum(str + 1, &r->group_len);
604 
605 no_end:
606 	r->end = r->start;
607 no_pattern:
608 	r->off = r->end + 1;
609 	r->group_len = r->end + 1;
610 
611 	return end_of_str(*str) ? NULL : str;
612 }
613 
614 /**
615  * bitmap_parselist - convert list format ASCII string to bitmap
616  * @buf: read user string from this buffer; must be terminated
617  *    with a \0 or \n.
618  * @maskp: write resulting mask here
619  * @nmaskbits: number of bits in mask to be written
620  *
621  * Input format is a comma-separated list of decimal numbers and
622  * ranges.  Consecutively set bits are shown as two hyphen-separated
623  * decimal numbers, the smallest and largest bit numbers set in
624  * the range.
625  * Optionally each range can be postfixed to denote that only parts of it
626  * should be set. The range will divided to groups of specific size.
627  * From each group will be used only defined amount of bits.
628  * Syntax: range:used_size/group_size
629  * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
630  *
631  * Returns: 0 on success, -errno on invalid input strings. Error values:
632  *
633  *   - ``-EINVAL``: wrong region format
634  *   - ``-EINVAL``: invalid character in string
635  *   - ``-ERANGE``: bit number specified too large for mask
636  *   - ``-EOVERFLOW``: integer overflow in the input parameters
637  */
bitmap_parselist(const char * buf,unsigned long * maskp,int nmaskbits)638 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
639 {
640 	struct region r;
641 	long ret;
642 
643 	bitmap_zero(maskp, nmaskbits);
644 
645 	while (buf) {
646 		buf = bitmap_find_region(buf);
647 		if (buf == NULL)
648 			return 0;
649 
650 		buf = bitmap_parse_region(buf, &r);
651 		if (IS_ERR(buf))
652 			return PTR_ERR(buf);
653 
654 		ret = bitmap_check_region(&r);
655 		if (ret)
656 			return ret;
657 
658 		ret = bitmap_set_region(&r, maskp, nmaskbits);
659 		if (ret)
660 			return ret;
661 	}
662 
663 	return 0;
664 }
665 EXPORT_SYMBOL(bitmap_parselist);
666 
667 
668 /**
669  * bitmap_parselist_user()
670  *
671  * @ubuf: pointer to user buffer containing string.
672  * @ulen: buffer size in bytes.  If string is smaller than this
673  *    then it must be terminated with a \0.
674  * @maskp: pointer to bitmap array that will contain result.
675  * @nmaskbits: size of bitmap, in bits.
676  *
677  * Wrapper for bitmap_parselist(), providing it with user buffer.
678  */
bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)679 int bitmap_parselist_user(const char __user *ubuf,
680 			unsigned int ulen, unsigned long *maskp,
681 			int nmaskbits)
682 {
683 	char *buf;
684 	int ret;
685 
686 	buf = memdup_user_nul(ubuf, ulen);
687 	if (IS_ERR(buf))
688 		return PTR_ERR(buf);
689 
690 	ret = bitmap_parselist(buf, maskp, nmaskbits);
691 
692 	kfree(buf);
693 	return ret;
694 }
695 EXPORT_SYMBOL(bitmap_parselist_user);
696 
bitmap_get_x32_reverse(const char * start,const char * end,u32 * num)697 static const char *bitmap_get_x32_reverse(const char *start,
698 					const char *end, u32 *num)
699 {
700 	u32 ret = 0;
701 	int c, i;
702 
703 	for (i = 0; i < 32; i += 4) {
704 		c = hex_to_bin(*end--);
705 		if (c < 0)
706 			return ERR_PTR(-EINVAL);
707 
708 		ret |= c << i;
709 
710 		if (start > end || __end_of_region(*end))
711 			goto out;
712 	}
713 
714 	if (hex_to_bin(*end--) >= 0)
715 		return ERR_PTR(-EOVERFLOW);
716 out:
717 	*num = ret;
718 	return end;
719 }
720 
721 /**
722  * bitmap_parse - convert an ASCII hex string into a bitmap.
723  * @start: pointer to buffer containing string.
724  * @buflen: buffer size in bytes.  If string is smaller than this
725  *    then it must be terminated with a \0 or \n. In that case,
726  *    UINT_MAX may be provided instead of string length.
727  * @maskp: pointer to bitmap array that will contain result.
728  * @nmaskbits: size of bitmap, in bits.
729  *
730  * Commas group hex digits into chunks.  Each chunk defines exactly 32
731  * bits of the resultant bitmask.  No chunk may specify a value larger
732  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
733  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
734  * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
735  * Leading, embedded and trailing whitespace accepted.
736  */
bitmap_parse(const char * start,unsigned int buflen,unsigned long * maskp,int nmaskbits)737 int bitmap_parse(const char *start, unsigned int buflen,
738 		unsigned long *maskp, int nmaskbits)
739 {
740 	const char *end = strnchrnul(start, buflen, '\n') - 1;
741 	int chunks = BITS_TO_U32(nmaskbits);
742 	u32 *bitmap = (u32 *)maskp;
743 	int unset_bit;
744 	int chunk;
745 
746 	for (chunk = 0; ; chunk++) {
747 		end = bitmap_find_region_reverse(start, end);
748 		if (start > end)
749 			break;
750 
751 		if (!chunks--)
752 			return -EOVERFLOW;
753 
754 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
755 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
756 #else
757 		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
758 #endif
759 		if (IS_ERR(end))
760 			return PTR_ERR(end);
761 	}
762 
763 	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
764 	if (unset_bit < nmaskbits) {
765 		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
766 		return 0;
767 	}
768 
769 	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
770 		return -EOVERFLOW;
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL(bitmap_parse);
775 
776 
777 #ifdef CONFIG_NUMA
778 /**
779  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
780  *	@buf: pointer to a bitmap
781  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
782  *	@nbits: number of valid bit positions in @buf
783  *
784  * Map the bit at position @pos in @buf (of length @nbits) to the
785  * ordinal of which set bit it is.  If it is not set or if @pos
786  * is not a valid bit position, map to -1.
787  *
788  * If for example, just bits 4 through 7 are set in @buf, then @pos
789  * values 4 through 7 will get mapped to 0 through 3, respectively,
790  * and other @pos values will get mapped to -1.  When @pos value 7
791  * gets mapped to (returns) @ord value 3 in this example, that means
792  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
793  *
794  * The bit positions 0 through @bits are valid positions in @buf.
795  */
bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)796 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
797 {
798 	if (pos >= nbits || !test_bit(pos, buf))
799 		return -1;
800 
801 	return __bitmap_weight(buf, pos);
802 }
803 
804 /**
805  * bitmap_ord_to_pos - find position of n-th set bit in bitmap
806  *	@buf: pointer to bitmap
807  *	@ord: ordinal bit position (n-th set bit, n >= 0)
808  *	@nbits: number of valid bit positions in @buf
809  *
810  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
811  * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
812  * >= weight(buf), returns @nbits.
813  *
814  * If for example, just bits 4 through 7 are set in @buf, then @ord
815  * values 0 through 3 will get mapped to 4 through 7, respectively,
816  * and all other @ord values returns @nbits.  When @ord value 3
817  * gets mapped to (returns) @pos value 7 in this example, that means
818  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
819  *
820  * The bit positions 0 through @nbits-1 are valid positions in @buf.
821  */
bitmap_ord_to_pos(const unsigned long * buf,unsigned int ord,unsigned int nbits)822 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
823 {
824 	unsigned int pos;
825 
826 	for (pos = find_first_bit(buf, nbits);
827 	     pos < nbits && ord;
828 	     pos = find_next_bit(buf, nbits, pos + 1))
829 		ord--;
830 
831 	return pos;
832 }
833 
834 /**
835  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
836  *	@dst: remapped result
837  *	@src: subset to be remapped
838  *	@old: defines domain of map
839  *	@new: defines range of map
840  *	@nbits: number of bits in each of these bitmaps
841  *
842  * Let @old and @new define a mapping of bit positions, such that
843  * whatever position is held by the n-th set bit in @old is mapped
844  * to the n-th set bit in @new.  In the more general case, allowing
845  * for the possibility that the weight 'w' of @new is less than the
846  * weight of @old, map the position of the n-th set bit in @old to
847  * the position of the m-th set bit in @new, where m == n % w.
848  *
849  * If either of the @old and @new bitmaps are empty, or if @src and
850  * @dst point to the same location, then this routine copies @src
851  * to @dst.
852  *
853  * The positions of unset bits in @old are mapped to themselves
854  * (the identify map).
855  *
856  * Apply the above specified mapping to @src, placing the result in
857  * @dst, clearing any bits previously set in @dst.
858  *
859  * For example, lets say that @old has bits 4 through 7 set, and
860  * @new has bits 12 through 15 set.  This defines the mapping of bit
861  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
862  * bit positions unchanged.  So if say @src comes into this routine
863  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
864  * 13 and 15 set.
865  */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)866 void bitmap_remap(unsigned long *dst, const unsigned long *src,
867 		const unsigned long *old, const unsigned long *new,
868 		unsigned int nbits)
869 {
870 	unsigned int oldbit, w;
871 
872 	if (dst == src)		/* following doesn't handle inplace remaps */
873 		return;
874 	bitmap_zero(dst, nbits);
875 
876 	w = bitmap_weight(new, nbits);
877 	for_each_set_bit(oldbit, src, nbits) {
878 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
879 
880 		if (n < 0 || w == 0)
881 			set_bit(oldbit, dst);	/* identity map */
882 		else
883 			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
884 	}
885 }
886 
887 /**
888  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
889  *	@oldbit: bit position to be mapped
890  *	@old: defines domain of map
891  *	@new: defines range of map
892  *	@bits: number of bits in each of these bitmaps
893  *
894  * Let @old and @new define a mapping of bit positions, such that
895  * whatever position is held by the n-th set bit in @old is mapped
896  * to the n-th set bit in @new.  In the more general case, allowing
897  * for the possibility that the weight 'w' of @new is less than the
898  * weight of @old, map the position of the n-th set bit in @old to
899  * the position of the m-th set bit in @new, where m == n % w.
900  *
901  * The positions of unset bits in @old are mapped to themselves
902  * (the identify map).
903  *
904  * Apply the above specified mapping to bit position @oldbit, returning
905  * the new bit position.
906  *
907  * For example, lets say that @old has bits 4 through 7 set, and
908  * @new has bits 12 through 15 set.  This defines the mapping of bit
909  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
910  * bit positions unchanged.  So if say @oldbit is 5, then this routine
911  * returns 13.
912  */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)913 int bitmap_bitremap(int oldbit, const unsigned long *old,
914 				const unsigned long *new, int bits)
915 {
916 	int w = bitmap_weight(new, bits);
917 	int n = bitmap_pos_to_ord(old, oldbit, bits);
918 	if (n < 0 || w == 0)
919 		return oldbit;
920 	else
921 		return bitmap_ord_to_pos(new, n % w, bits);
922 }
923 
924 /**
925  * bitmap_onto - translate one bitmap relative to another
926  *	@dst: resulting translated bitmap
927  * 	@orig: original untranslated bitmap
928  * 	@relmap: bitmap relative to which translated
929  *	@bits: number of bits in each of these bitmaps
930  *
931  * Set the n-th bit of @dst iff there exists some m such that the
932  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
933  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
934  * (If you understood the previous sentence the first time your
935  * read it, you're overqualified for your current job.)
936  *
937  * In other words, @orig is mapped onto (surjectively) @dst,
938  * using the map { <n, m> | the n-th bit of @relmap is the
939  * m-th set bit of @relmap }.
940  *
941  * Any set bits in @orig above bit number W, where W is the
942  * weight of (number of set bits in) @relmap are mapped nowhere.
943  * In particular, if for all bits m set in @orig, m >= W, then
944  * @dst will end up empty.  In situations where the possibility
945  * of such an empty result is not desired, one way to avoid it is
946  * to use the bitmap_fold() operator, below, to first fold the
947  * @orig bitmap over itself so that all its set bits x are in the
948  * range 0 <= x < W.  The bitmap_fold() operator does this by
949  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
950  *
951  * Example [1] for bitmap_onto():
952  *  Let's say @relmap has bits 30-39 set, and @orig has bits
953  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
954  *  @dst will have bits 31, 33, 35, 37 and 39 set.
955  *
956  *  When bit 0 is set in @orig, it means turn on the bit in
957  *  @dst corresponding to whatever is the first bit (if any)
958  *  that is turned on in @relmap.  Since bit 0 was off in the
959  *  above example, we leave off that bit (bit 30) in @dst.
960  *
961  *  When bit 1 is set in @orig (as in the above example), it
962  *  means turn on the bit in @dst corresponding to whatever
963  *  is the second bit that is turned on in @relmap.  The second
964  *  bit in @relmap that was turned on in the above example was
965  *  bit 31, so we turned on bit 31 in @dst.
966  *
967  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
968  *  because they were the 4th, 6th, 8th and 10th set bits
969  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
970  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
971  *
972  *  When bit 11 is set in @orig, it means turn on the bit in
973  *  @dst corresponding to whatever is the twelfth bit that is
974  *  turned on in @relmap.  In the above example, there were
975  *  only ten bits turned on in @relmap (30..39), so that bit
976  *  11 was set in @orig had no affect on @dst.
977  *
978  * Example [2] for bitmap_fold() + bitmap_onto():
979  *  Let's say @relmap has these ten bits set::
980  *
981  *		40 41 42 43 45 48 53 61 74 95
982  *
983  *  (for the curious, that's 40 plus the first ten terms of the
984  *  Fibonacci sequence.)
985  *
986  *  Further lets say we use the following code, invoking
987  *  bitmap_fold() then bitmap_onto, as suggested above to
988  *  avoid the possibility of an empty @dst result::
989  *
990  *	unsigned long *tmp;	// a temporary bitmap's bits
991  *
992  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
993  *	bitmap_onto(dst, tmp, relmap, bits);
994  *
995  *  Then this table shows what various values of @dst would be, for
996  *  various @orig's.  I list the zero-based positions of each set bit.
997  *  The tmp column shows the intermediate result, as computed by
998  *  using bitmap_fold() to fold the @orig bitmap modulo ten
999  *  (the weight of @relmap):
1000  *
1001  *      =============== ============== =================
1002  *      @orig           tmp            @dst
1003  *      0                0             40
1004  *      1                1             41
1005  *      9                9             95
1006  *      10               0             40 [#f1]_
1007  *      1 3 5 7          1 3 5 7       41 43 48 61
1008  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
1009  *      0 9 18 27        0 9 8 7       40 61 74 95
1010  *      0 10 20 30       0             40
1011  *      0 11 22 33       0 1 2 3       40 41 42 43
1012  *      0 12 24 36       0 2 4 6       40 42 45 53
1013  *      78 102 211       1 2 8         41 42 74 [#f1]_
1014  *      =============== ============== =================
1015  *
1016  * .. [#f1]
1017  *
1018  *     For these marked lines, if we hadn't first done bitmap_fold()
1019  *     into tmp, then the @dst result would have been empty.
1020  *
1021  * If either of @orig or @relmap is empty (no set bits), then @dst
1022  * will be returned empty.
1023  *
1024  * If (as explained above) the only set bits in @orig are in positions
1025  * m where m >= W, (where W is the weight of @relmap) then @dst will
1026  * once again be returned empty.
1027  *
1028  * All bits in @dst not set by the above rule are cleared.
1029  */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)1030 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1031 			const unsigned long *relmap, unsigned int bits)
1032 {
1033 	unsigned int n, m;	/* same meaning as in above comment */
1034 
1035 	if (dst == orig)	/* following doesn't handle inplace mappings */
1036 		return;
1037 	bitmap_zero(dst, bits);
1038 
1039 	/*
1040 	 * The following code is a more efficient, but less
1041 	 * obvious, equivalent to the loop:
1042 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1043 	 *		n = bitmap_ord_to_pos(orig, m, bits);
1044 	 *		if (test_bit(m, orig))
1045 	 *			set_bit(n, dst);
1046 	 *	}
1047 	 */
1048 
1049 	m = 0;
1050 	for_each_set_bit(n, relmap, bits) {
1051 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
1052 		if (test_bit(m, orig))
1053 			set_bit(n, dst);
1054 		m++;
1055 	}
1056 }
1057 
1058 /**
1059  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1060  *	@dst: resulting smaller bitmap
1061  *	@orig: original larger bitmap
1062  *	@sz: specified size
1063  *	@nbits: number of bits in each of these bitmaps
1064  *
1065  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1066  * Clear all other bits in @dst.  See further the comment and
1067  * Example [2] for bitmap_onto() for why and how to use this.
1068  */
bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)1069 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1070 			unsigned int sz, unsigned int nbits)
1071 {
1072 	unsigned int oldbit;
1073 
1074 	if (dst == orig)	/* following doesn't handle inplace mappings */
1075 		return;
1076 	bitmap_zero(dst, nbits);
1077 
1078 	for_each_set_bit(oldbit, orig, nbits)
1079 		set_bit(oldbit % sz, dst);
1080 }
1081 #endif /* CONFIG_NUMA */
1082 
1083 /*
1084  * Common code for bitmap_*_region() routines.
1085  *	bitmap: array of unsigned longs corresponding to the bitmap
1086  *	pos: the beginning of the region
1087  *	order: region size (log base 2 of number of bits)
1088  *	reg_op: operation(s) to perform on that region of bitmap
1089  *
1090  * Can set, verify and/or release a region of bits in a bitmap,
1091  * depending on which combination of REG_OP_* flag bits is set.
1092  *
1093  * A region of a bitmap is a sequence of bits in the bitmap, of
1094  * some size '1 << order' (a power of two), aligned to that same
1095  * '1 << order' power of two.
1096  *
1097  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1098  * Returns 0 in all other cases and reg_ops.
1099  */
1100 
1101 enum {
1102 	REG_OP_ISFREE,		/* true if region is all zero bits */
1103 	REG_OP_ALLOC,		/* set all bits in region */
1104 	REG_OP_RELEASE,		/* clear all bits in region */
1105 };
1106 
__reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)1107 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1108 {
1109 	int nbits_reg;		/* number of bits in region */
1110 	int index;		/* index first long of region in bitmap */
1111 	int offset;		/* bit offset region in bitmap[index] */
1112 	int nlongs_reg;		/* num longs spanned by region in bitmap */
1113 	int nbitsinlong;	/* num bits of region in each spanned long */
1114 	unsigned long mask;	/* bitmask for one long of region */
1115 	int i;			/* scans bitmap by longs */
1116 	int ret = 0;		/* return value */
1117 
1118 	/*
1119 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1120 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1121 	 */
1122 	nbits_reg = 1 << order;
1123 	index = pos / BITS_PER_LONG;
1124 	offset = pos - (index * BITS_PER_LONG);
1125 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1126 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1127 
1128 	/*
1129 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1130 	 * overflows if nbitsinlong == BITS_PER_LONG.
1131 	 */
1132 	mask = (1UL << (nbitsinlong - 1));
1133 	mask += mask - 1;
1134 	mask <<= offset;
1135 
1136 	switch (reg_op) {
1137 	case REG_OP_ISFREE:
1138 		for (i = 0; i < nlongs_reg; i++) {
1139 			if (bitmap[index + i] & mask)
1140 				goto done;
1141 		}
1142 		ret = 1;	/* all bits in region free (zero) */
1143 		break;
1144 
1145 	case REG_OP_ALLOC:
1146 		for (i = 0; i < nlongs_reg; i++)
1147 			bitmap[index + i] |= mask;
1148 		break;
1149 
1150 	case REG_OP_RELEASE:
1151 		for (i = 0; i < nlongs_reg; i++)
1152 			bitmap[index + i] &= ~mask;
1153 		break;
1154 	}
1155 done:
1156 	return ret;
1157 }
1158 
1159 /**
1160  * bitmap_find_free_region - find a contiguous aligned mem region
1161  *	@bitmap: array of unsigned longs corresponding to the bitmap
1162  *	@bits: number of bits in the bitmap
1163  *	@order: region size (log base 2 of number of bits) to find
1164  *
1165  * Find a region of free (zero) bits in a @bitmap of @bits bits and
1166  * allocate them (set them to one).  Only consider regions of length
1167  * a power (@order) of two, aligned to that power of two, which
1168  * makes the search algorithm much faster.
1169  *
1170  * Return the bit offset in bitmap of the allocated region,
1171  * or -errno on failure.
1172  */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1173 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1174 {
1175 	unsigned int pos, end;		/* scans bitmap by regions of size order */
1176 
1177 	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1178 		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1179 			continue;
1180 		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1181 		return pos;
1182 	}
1183 	return -ENOMEM;
1184 }
1185 EXPORT_SYMBOL(bitmap_find_free_region);
1186 
1187 /**
1188  * bitmap_release_region - release allocated bitmap region
1189  *	@bitmap: array of unsigned longs corresponding to the bitmap
1190  *	@pos: beginning of bit region to release
1191  *	@order: region size (log base 2 of number of bits) to release
1192  *
1193  * This is the complement to __bitmap_find_free_region() and releases
1194  * the found region (by clearing it in the bitmap).
1195  *
1196  * No return value.
1197  */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1198 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1199 {
1200 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1201 }
1202 EXPORT_SYMBOL(bitmap_release_region);
1203 
1204 /**
1205  * bitmap_allocate_region - allocate bitmap region
1206  *	@bitmap: array of unsigned longs corresponding to the bitmap
1207  *	@pos: beginning of bit region to allocate
1208  *	@order: region size (log base 2 of number of bits) to allocate
1209  *
1210  * Allocate (set bits in) a specified region of a bitmap.
1211  *
1212  * Return 0 on success, or %-EBUSY if specified region wasn't
1213  * free (not all bits were zero).
1214  */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1215 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1216 {
1217 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1218 		return -EBUSY;
1219 	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1220 }
1221 EXPORT_SYMBOL(bitmap_allocate_region);
1222 
1223 /**
1224  * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1225  * @dst:   destination buffer
1226  * @src:   bitmap to copy
1227  * @nbits: number of bits in the bitmap
1228  *
1229  * Require nbits % BITS_PER_LONG == 0.
1230  */
1231 #ifdef __BIG_ENDIAN
bitmap_copy_le(unsigned long * dst,const unsigned long * src,unsigned int nbits)1232 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1233 {
1234 	unsigned int i;
1235 
1236 	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1237 		if (BITS_PER_LONG == 64)
1238 			dst[i] = cpu_to_le64(src[i]);
1239 		else
1240 			dst[i] = cpu_to_le32(src[i]);
1241 	}
1242 }
1243 EXPORT_SYMBOL(bitmap_copy_le);
1244 #endif
1245 
bitmap_alloc(unsigned int nbits,gfp_t flags)1246 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1247 {
1248 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1249 			     flags);
1250 }
1251 EXPORT_SYMBOL(bitmap_alloc);
1252 
bitmap_zalloc(unsigned int nbits,gfp_t flags)1253 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1254 {
1255 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1256 }
1257 EXPORT_SYMBOL(bitmap_zalloc);
1258 
bitmap_free(const unsigned long * bitmap)1259 void bitmap_free(const unsigned long *bitmap)
1260 {
1261 	kfree(bitmap);
1262 }
1263 EXPORT_SYMBOL(bitmap_free);
1264 
1265 #if BITS_PER_LONG == 64
1266 /**
1267  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1268  *	@bitmap: array of unsigned longs, the destination bitmap
1269  *	@buf: array of u32 (in host byte order), the source bitmap
1270  *	@nbits: number of bits in @bitmap
1271  */
bitmap_from_arr32(unsigned long * bitmap,const u32 * buf,unsigned int nbits)1272 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1273 {
1274 	unsigned int i, halfwords;
1275 
1276 	halfwords = DIV_ROUND_UP(nbits, 32);
1277 	for (i = 0; i < halfwords; i++) {
1278 		bitmap[i/2] = (unsigned long) buf[i];
1279 		if (++i < halfwords)
1280 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1281 	}
1282 
1283 	/* Clear tail bits in last word beyond nbits. */
1284 	if (nbits % BITS_PER_LONG)
1285 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1286 }
1287 EXPORT_SYMBOL(bitmap_from_arr32);
1288 
1289 /**
1290  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1291  *	@buf: array of u32 (in host byte order), the dest bitmap
1292  *	@bitmap: array of unsigned longs, the source bitmap
1293  *	@nbits: number of bits in @bitmap
1294  */
bitmap_to_arr32(u32 * buf,const unsigned long * bitmap,unsigned int nbits)1295 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1296 {
1297 	unsigned int i, halfwords;
1298 
1299 	halfwords = DIV_ROUND_UP(nbits, 32);
1300 	for (i = 0; i < halfwords; i++) {
1301 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1302 		if (++i < halfwords)
1303 			buf[i] = (u32) (bitmap[i/2] >> 32);
1304 	}
1305 
1306 	/* Clear tail bits in last element of array beyond nbits. */
1307 	if (nbits % BITS_PER_LONG)
1308 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1309 }
1310 EXPORT_SYMBOL(bitmap_to_arr32);
1311 
1312 #endif
1313