1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53
54 #include "workqueue_internal.h"
55
56 enum {
57 /*
58 * worker_pool flags
59 *
60 * A bound pool is either associated or disassociated with its CPU.
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 * be executing on any CPU. The pool behaves as an unbound one.
68 *
69 * Note that DISASSOCIATED should be flipped only while holding
70 * wq_pool_attach_mutex to avoid changing binding state while
71 * worker_attach_to_pool() is in progress.
72 */
73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
75
76 /* worker flags */
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
79 WORKER_PREP = 1 << 3, /* preparing to run works */
80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
83
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
86
87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
88
89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
91
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
103 * all cpus. Give MIN_NICE.
104 */
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
107
108 WQ_NAME_LEN = 24,
109 };
110
111 /*
112 * Structure fields follow one of the following exclusion rules.
113 *
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
116 *
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
120 * L: pool->lock protected. Access with pool->lock held.
121 *
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
126 *
127 * A: wq_pool_attach_mutex protected.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
132 *
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * RCU for reads.
137 *
138 * WQ: wq->mutex protected.
139 *
140 * WR: wq->mutex protected for writes. RCU protected for reads.
141 *
142 * MD: wq_mayday_lock protected.
143 */
144
145 /* struct worker is defined in workqueue_internal.h */
146
147 struct worker_pool {
148 raw_spinlock_t lock; /* the pool lock */
149 int cpu; /* I: the associated cpu */
150 int node; /* I: the associated node ID */
151 int id; /* I: pool ID */
152 unsigned int flags; /* X: flags */
153
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
156 struct list_head worklist; /* L: list of pending works */
157
158 int nr_workers; /* L: total number of workers */
159 int nr_idle; /* L: currently idle workers */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 struct worker *manager; /* L: purely informational */
170 struct list_head workers; /* A: attached workers */
171 struct completion *detach_completion; /* all workers detached */
172
173 struct ida worker_ida; /* worker IDs for task name */
174
175 struct workqueue_attrs *attrs; /* I: worker attributes */
176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
177 int refcnt; /* PL: refcnt for unbound pools */
178
179 /*
180 * The current concurrency level. As it's likely to be accessed
181 * from other CPUs during try_to_wake_up(), put it in a separate
182 * cacheline.
183 */
184 atomic_t nr_running ____cacheline_aligned_in_smp;
185
186 /*
187 * Destruction of pool is RCU protected to allow dereferences
188 * from get_work_pool().
189 */
190 struct rcu_head rcu;
191 } ____cacheline_aligned_in_smp;
192
193 /*
194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
195 * of work_struct->data are used for flags and the remaining high bits
196 * point to the pwq; thus, pwqs need to be aligned at two's power of the
197 * number of flag bits.
198 */
199 struct pool_workqueue {
200 struct worker_pool *pool; /* I: the associated pool */
201 struct workqueue_struct *wq; /* I: the owning workqueue */
202 int work_color; /* L: current color */
203 int flush_color; /* L: flushing color */
204 int refcnt; /* L: reference count */
205 int nr_in_flight[WORK_NR_COLORS];
206 /* L: nr of in_flight works */
207 int nr_active; /* L: nr of active works */
208 int max_active; /* L: max active works */
209 struct list_head delayed_works; /* L: delayed works */
210 struct list_head pwqs_node; /* WR: node on wq->pwqs */
211 struct list_head mayday_node; /* MD: node on wq->maydays */
212
213 /*
214 * Release of unbound pwq is punted to system_wq. See put_pwq()
215 * and pwq_unbound_release_workfn() for details. pool_workqueue
216 * itself is also RCU protected so that the first pwq can be
217 * determined without grabbing wq->mutex.
218 */
219 struct work_struct unbound_release_work;
220 struct rcu_head rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222
223 /*
224 * Structure used to wait for workqueue flush.
225 */
226 struct wq_flusher {
227 struct list_head list; /* WQ: list of flushers */
228 int flush_color; /* WQ: flush color waiting for */
229 struct completion done; /* flush completion */
230 };
231
232 struct wq_device;
233
234 /*
235 * The externally visible workqueue. It relays the issued work items to
236 * the appropriate worker_pool through its pool_workqueues.
237 */
238 struct workqueue_struct {
239 struct list_head pwqs; /* WR: all pwqs of this wq */
240 struct list_head list; /* PR: list of all workqueues */
241
242 struct mutex mutex; /* protects this wq */
243 int work_color; /* WQ: current work color */
244 int flush_color; /* WQ: current flush color */
245 atomic_t nr_pwqs_to_flush; /* flush in progress */
246 struct wq_flusher *first_flusher; /* WQ: first flusher */
247 struct list_head flusher_queue; /* WQ: flush waiters */
248 struct list_head flusher_overflow; /* WQ: flush overflow list */
249
250 struct list_head maydays; /* MD: pwqs requesting rescue */
251 struct worker *rescuer; /* MD: rescue worker */
252
253 int nr_drainers; /* WQ: drain in progress */
254 int saved_max_active; /* WQ: saved pwq max_active */
255
256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
258
259 #ifdef CONFIG_SYSFS
260 struct wq_device *wq_dev; /* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 char *lock_name;
264 struct lock_class_key key;
265 struct lockdep_map lockdep_map;
266 #endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is RCU protected to allow walking
271 * the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281
282 static struct kmem_cache *pwq_cache;
283
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294 static bool wq_online; /* can kworkers be created yet? */
295
296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
304 /* wait for manager to go away */
305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
306
307 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
308 static bool workqueue_freezing; /* PL: have wqs started freezing? */
309
310 /* PL: allowable cpus for unbound wqs and work items */
311 static cpumask_var_t wq_unbound_cpumask;
312
313 /* CPU where unbound work was last round robin scheduled from this CPU */
314 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
315
316 /*
317 * Local execution of unbound work items is no longer guaranteed. The
318 * following always forces round-robin CPU selection on unbound work items
319 * to uncover usages which depend on it.
320 */
321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
322 static bool wq_debug_force_rr_cpu = true;
323 #else
324 static bool wq_debug_force_rr_cpu = false;
325 #endif
326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
327
328 /* the per-cpu worker pools */
329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
330
331 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
332
333 /* PL: hash of all unbound pools keyed by pool->attrs */
334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
335
336 /* I: attributes used when instantiating standard unbound pools on demand */
337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
338
339 /* I: attributes used when instantiating ordered pools on demand */
340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
341
342 struct workqueue_struct *system_wq __read_mostly;
343 EXPORT_SYMBOL(system_wq);
344 struct workqueue_struct *system_highpri_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_highpri_wq);
346 struct workqueue_struct *system_long_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_long_wq);
348 struct workqueue_struct *system_unbound_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_unbound_wq);
350 struct workqueue_struct *system_freezable_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_wq);
352 struct workqueue_struct *system_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
356
357 static int worker_thread(void *__worker);
358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
359 static void show_pwq(struct pool_workqueue *pwq);
360
361 #define CREATE_TRACE_POINTS
362 #include <trace/events/workqueue.h>
363
364 #define assert_rcu_or_pool_mutex() \
365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
366 !lockdep_is_held(&wq_pool_mutex), \
367 "RCU or wq_pool_mutex should be held")
368
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "RCU, wq->mutex or wq_pool_mutex should be held")
374
375 #define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 (pool)++)
379
380 /**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
383 * @pi: integer used for iteration
384 *
385 * This must be called either with wq_pool_mutex held or RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
391 */
392 #define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
395 else
396
397 /**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
400 * @pool: worker_pool to iterate workers of
401 *
402 * This must be called with wq_pool_attach_mutex.
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
407 #define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
410 else
411
412 /**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
416 *
417 * This must be called either with wq->mutex held or RCU read locked.
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
423 */
424 #define for_each_pwq(pwq, wq) \
425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
426 lockdep_is_held(&(wq->mutex)))
427
428 #ifdef CONFIG_DEBUG_OBJECTS_WORK
429
430 static const struct debug_obj_descr work_debug_descr;
431
work_debug_hint(void * addr)432 static void *work_debug_hint(void *addr)
433 {
434 return ((struct work_struct *) addr)->func;
435 }
436
work_is_static_object(void * addr)437 static bool work_is_static_object(void *addr)
438 {
439 struct work_struct *work = addr;
440
441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
442 }
443
444 /*
445 * fixup_init is called when:
446 * - an active object is initialized
447 */
work_fixup_init(void * addr,enum debug_obj_state state)448 static bool work_fixup_init(void *addr, enum debug_obj_state state)
449 {
450 struct work_struct *work = addr;
451
452 switch (state) {
453 case ODEBUG_STATE_ACTIVE:
454 cancel_work_sync(work);
455 debug_object_init(work, &work_debug_descr);
456 return true;
457 default:
458 return false;
459 }
460 }
461
462 /*
463 * fixup_free is called when:
464 * - an active object is freed
465 */
work_fixup_free(void * addr,enum debug_obj_state state)466 static bool work_fixup_free(void *addr, enum debug_obj_state state)
467 {
468 struct work_struct *work = addr;
469
470 switch (state) {
471 case ODEBUG_STATE_ACTIVE:
472 cancel_work_sync(work);
473 debug_object_free(work, &work_debug_descr);
474 return true;
475 default:
476 return false;
477 }
478 }
479
480 static const struct debug_obj_descr work_debug_descr = {
481 .name = "work_struct",
482 .debug_hint = work_debug_hint,
483 .is_static_object = work_is_static_object,
484 .fixup_init = work_fixup_init,
485 .fixup_free = work_fixup_free,
486 };
487
debug_work_activate(struct work_struct * work)488 static inline void debug_work_activate(struct work_struct *work)
489 {
490 debug_object_activate(work, &work_debug_descr);
491 }
492
debug_work_deactivate(struct work_struct * work)493 static inline void debug_work_deactivate(struct work_struct *work)
494 {
495 debug_object_deactivate(work, &work_debug_descr);
496 }
497
__init_work(struct work_struct * work,int onstack)498 void __init_work(struct work_struct *work, int onstack)
499 {
500 if (onstack)
501 debug_object_init_on_stack(work, &work_debug_descr);
502 else
503 debug_object_init(work, &work_debug_descr);
504 }
505 EXPORT_SYMBOL_GPL(__init_work);
506
destroy_work_on_stack(struct work_struct * work)507 void destroy_work_on_stack(struct work_struct *work)
508 {
509 debug_object_free(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
512
destroy_delayed_work_on_stack(struct delayed_work * work)513 void destroy_delayed_work_on_stack(struct delayed_work *work)
514 {
515 destroy_timer_on_stack(&work->timer);
516 debug_object_free(&work->work, &work_debug_descr);
517 }
518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
519
520 #else
debug_work_activate(struct work_struct * work)521 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)522 static inline void debug_work_deactivate(struct work_struct *work) { }
523 #endif
524
525 /**
526 * worker_pool_assign_id - allocate ID and assing it to @pool
527 * @pool: the pool pointer of interest
528 *
529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
530 * successfully, -errno on failure.
531 */
worker_pool_assign_id(struct worker_pool * pool)532 static int worker_pool_assign_id(struct worker_pool *pool)
533 {
534 int ret;
535
536 lockdep_assert_held(&wq_pool_mutex);
537
538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
539 GFP_KERNEL);
540 if (ret >= 0) {
541 pool->id = ret;
542 return 0;
543 }
544 return ret;
545 }
546
547 /**
548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
549 * @wq: the target workqueue
550 * @node: the node ID
551 *
552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
553 * read locked.
554 * If the pwq needs to be used beyond the locking in effect, the caller is
555 * responsible for guaranteeing that the pwq stays online.
556 *
557 * Return: The unbound pool_workqueue for @node.
558 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
560 int node)
561 {
562 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
563
564 /*
565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
566 * delayed item is pending. The plan is to keep CPU -> NODE
567 * mapping valid and stable across CPU on/offlines. Once that
568 * happens, this workaround can be removed.
569 */
570 if (unlikely(node == NUMA_NO_NODE))
571 return wq->dfl_pwq;
572
573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
574 }
575
work_color_to_flags(int color)576 static unsigned int work_color_to_flags(int color)
577 {
578 return color << WORK_STRUCT_COLOR_SHIFT;
579 }
580
get_work_color(struct work_struct * work)581 static int get_work_color(struct work_struct *work)
582 {
583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
584 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
585 }
586
work_next_color(int color)587 static int work_next_color(int color)
588 {
589 return (color + 1) % WORK_NR_COLORS;
590 }
591
592 /*
593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
594 * contain the pointer to the queued pwq. Once execution starts, the flag
595 * is cleared and the high bits contain OFFQ flags and pool ID.
596 *
597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
598 * and clear_work_data() can be used to set the pwq, pool or clear
599 * work->data. These functions should only be called while the work is
600 * owned - ie. while the PENDING bit is set.
601 *
602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
603 * corresponding to a work. Pool is available once the work has been
604 * queued anywhere after initialization until it is sync canceled. pwq is
605 * available only while the work item is queued.
606 *
607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
608 * canceled. While being canceled, a work item may have its PENDING set
609 * but stay off timer and worklist for arbitrarily long and nobody should
610 * try to steal the PENDING bit.
611 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)612 static inline void set_work_data(struct work_struct *work, unsigned long data,
613 unsigned long flags)
614 {
615 WARN_ON_ONCE(!work_pending(work));
616 atomic_long_set(&work->data, data | flags | work_static(work));
617 }
618
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
620 unsigned long extra_flags)
621 {
622 set_work_data(work, (unsigned long)pwq,
623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
624 }
625
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)626 static void set_work_pool_and_keep_pending(struct work_struct *work,
627 int pool_id)
628 {
629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
630 WORK_STRUCT_PENDING);
631 }
632
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)633 static void set_work_pool_and_clear_pending(struct work_struct *work,
634 int pool_id)
635 {
636 /*
637 * The following wmb is paired with the implied mb in
638 * test_and_set_bit(PENDING) and ensures all updates to @work made
639 * here are visible to and precede any updates by the next PENDING
640 * owner.
641 */
642 smp_wmb();
643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
644 /*
645 * The following mb guarantees that previous clear of a PENDING bit
646 * will not be reordered with any speculative LOADS or STORES from
647 * work->current_func, which is executed afterwards. This possible
648 * reordering can lead to a missed execution on attempt to queue
649 * the same @work. E.g. consider this case:
650 *
651 * CPU#0 CPU#1
652 * ---------------------------- --------------------------------
653 *
654 * 1 STORE event_indicated
655 * 2 queue_work_on() {
656 * 3 test_and_set_bit(PENDING)
657 * 4 } set_..._and_clear_pending() {
658 * 5 set_work_data() # clear bit
659 * 6 smp_mb()
660 * 7 work->current_func() {
661 * 8 LOAD event_indicated
662 * }
663 *
664 * Without an explicit full barrier speculative LOAD on line 8 can
665 * be executed before CPU#0 does STORE on line 1. If that happens,
666 * CPU#0 observes the PENDING bit is still set and new execution of
667 * a @work is not queued in a hope, that CPU#1 will eventually
668 * finish the queued @work. Meanwhile CPU#1 does not see
669 * event_indicated is set, because speculative LOAD was executed
670 * before actual STORE.
671 */
672 smp_mb();
673 }
674
clear_work_data(struct work_struct * work)675 static void clear_work_data(struct work_struct *work)
676 {
677 smp_wmb(); /* see set_work_pool_and_clear_pending() */
678 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
679 }
680
get_work_pwq(struct work_struct * work)681 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
682 {
683 unsigned long data = atomic_long_read(&work->data);
684
685 if (data & WORK_STRUCT_PWQ)
686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
687 else
688 return NULL;
689 }
690
691 /**
692 * get_work_pool - return the worker_pool a given work was associated with
693 * @work: the work item of interest
694 *
695 * Pools are created and destroyed under wq_pool_mutex, and allows read
696 * access under RCU read lock. As such, this function should be
697 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
698 *
699 * All fields of the returned pool are accessible as long as the above
700 * mentioned locking is in effect. If the returned pool needs to be used
701 * beyond the critical section, the caller is responsible for ensuring the
702 * returned pool is and stays online.
703 *
704 * Return: The worker_pool @work was last associated with. %NULL if none.
705 */
get_work_pool(struct work_struct * work)706 static struct worker_pool *get_work_pool(struct work_struct *work)
707 {
708 unsigned long data = atomic_long_read(&work->data);
709 int pool_id;
710
711 assert_rcu_or_pool_mutex();
712
713 if (data & WORK_STRUCT_PWQ)
714 return ((struct pool_workqueue *)
715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
716
717 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
718 if (pool_id == WORK_OFFQ_POOL_NONE)
719 return NULL;
720
721 return idr_find(&worker_pool_idr, pool_id);
722 }
723
724 /**
725 * get_work_pool_id - return the worker pool ID a given work is associated with
726 * @work: the work item of interest
727 *
728 * Return: The worker_pool ID @work was last associated with.
729 * %WORK_OFFQ_POOL_NONE if none.
730 */
get_work_pool_id(struct work_struct * work)731 static int get_work_pool_id(struct work_struct *work)
732 {
733 unsigned long data = atomic_long_read(&work->data);
734
735 if (data & WORK_STRUCT_PWQ)
736 return ((struct pool_workqueue *)
737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
738
739 return data >> WORK_OFFQ_POOL_SHIFT;
740 }
741
mark_work_canceling(struct work_struct * work)742 static void mark_work_canceling(struct work_struct *work)
743 {
744 unsigned long pool_id = get_work_pool_id(work);
745
746 pool_id <<= WORK_OFFQ_POOL_SHIFT;
747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
748 }
749
work_is_canceling(struct work_struct * work)750 static bool work_is_canceling(struct work_struct *work)
751 {
752 unsigned long data = atomic_long_read(&work->data);
753
754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
755 }
756
757 /*
758 * Policy functions. These define the policies on how the global worker
759 * pools are managed. Unless noted otherwise, these functions assume that
760 * they're being called with pool->lock held.
761 */
762
__need_more_worker(struct worker_pool * pool)763 static bool __need_more_worker(struct worker_pool *pool)
764 {
765 return !atomic_read(&pool->nr_running);
766 }
767
768 /*
769 * Need to wake up a worker? Called from anything but currently
770 * running workers.
771 *
772 * Note that, because unbound workers never contribute to nr_running, this
773 * function will always return %true for unbound pools as long as the
774 * worklist isn't empty.
775 */
need_more_worker(struct worker_pool * pool)776 static bool need_more_worker(struct worker_pool *pool)
777 {
778 return !list_empty(&pool->worklist) && __need_more_worker(pool);
779 }
780
781 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)782 static bool may_start_working(struct worker_pool *pool)
783 {
784 return pool->nr_idle;
785 }
786
787 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)788 static bool keep_working(struct worker_pool *pool)
789 {
790 return !list_empty(&pool->worklist) &&
791 atomic_read(&pool->nr_running) <= 1;
792 }
793
794 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)795 static bool need_to_create_worker(struct worker_pool *pool)
796 {
797 return need_more_worker(pool) && !may_start_working(pool);
798 }
799
800 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)801 static bool too_many_workers(struct worker_pool *pool)
802 {
803 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
805 int nr_busy = pool->nr_workers - nr_idle;
806
807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
808 }
809
810 /*
811 * Wake up functions.
812 */
813
814 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)815 static struct worker *first_idle_worker(struct worker_pool *pool)
816 {
817 if (unlikely(list_empty(&pool->idle_list)))
818 return NULL;
819
820 return list_first_entry(&pool->idle_list, struct worker, entry);
821 }
822
823 /**
824 * wake_up_worker - wake up an idle worker
825 * @pool: worker pool to wake worker from
826 *
827 * Wake up the first idle worker of @pool.
828 *
829 * CONTEXT:
830 * raw_spin_lock_irq(pool->lock).
831 */
wake_up_worker(struct worker_pool * pool)832 static void wake_up_worker(struct worker_pool *pool)
833 {
834 struct worker *worker = first_idle_worker(pool);
835
836 if (likely(worker))
837 wake_up_process(worker->task);
838 }
839
840 /**
841 * wq_worker_running - a worker is running again
842 * @task: task waking up
843 *
844 * This function is called when a worker returns from schedule()
845 */
wq_worker_running(struct task_struct * task)846 void wq_worker_running(struct task_struct *task)
847 {
848 struct worker *worker = kthread_data(task);
849
850 if (!worker->sleeping)
851 return;
852 if (!(worker->flags & WORKER_NOT_RUNNING))
853 atomic_inc(&worker->pool->nr_running);
854 worker->sleeping = 0;
855 }
856
857 /**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
860 *
861 * This function is called from schedule() when a busy worker is
862 * going to sleep. Preemption needs to be disabled to protect ->sleeping
863 * assignment.
864 */
wq_worker_sleeping(struct task_struct * task)865 void wq_worker_sleeping(struct task_struct *task)
866 {
867 struct worker *next, *worker = kthread_data(task);
868 struct worker_pool *pool;
869
870 /*
871 * Rescuers, which may not have all the fields set up like normal
872 * workers, also reach here, let's not access anything before
873 * checking NOT_RUNNING.
874 */
875 if (worker->flags & WORKER_NOT_RUNNING)
876 return;
877
878 pool = worker->pool;
879
880 /* Return if preempted before wq_worker_running() was reached */
881 if (worker->sleeping)
882 return;
883
884 worker->sleeping = 1;
885 raw_spin_lock_irq(&pool->lock);
886
887 /*
888 * The counterpart of the following dec_and_test, implied mb,
889 * worklist not empty test sequence is in insert_work().
890 * Please read comment there.
891 *
892 * NOT_RUNNING is clear. This means that we're bound to and
893 * running on the local cpu w/ rq lock held and preemption
894 * disabled, which in turn means that none else could be
895 * manipulating idle_list, so dereferencing idle_list without pool
896 * lock is safe.
897 */
898 if (atomic_dec_and_test(&pool->nr_running) &&
899 !list_empty(&pool->worklist)) {
900 next = first_idle_worker(pool);
901 if (next)
902 wake_up_process(next->task);
903 }
904 raw_spin_unlock_irq(&pool->lock);
905 }
906
907 /**
908 * wq_worker_last_func - retrieve worker's last work function
909 * @task: Task to retrieve last work function of.
910 *
911 * Determine the last function a worker executed. This is called from
912 * the scheduler to get a worker's last known identity.
913 *
914 * CONTEXT:
915 * raw_spin_lock_irq(rq->lock)
916 *
917 * This function is called during schedule() when a kworker is going
918 * to sleep. It's used by psi to identify aggregation workers during
919 * dequeuing, to allow periodic aggregation to shut-off when that
920 * worker is the last task in the system or cgroup to go to sleep.
921 *
922 * As this function doesn't involve any workqueue-related locking, it
923 * only returns stable values when called from inside the scheduler's
924 * queuing and dequeuing paths, when @task, which must be a kworker,
925 * is guaranteed to not be processing any works.
926 *
927 * Return:
928 * The last work function %current executed as a worker, NULL if it
929 * hasn't executed any work yet.
930 */
wq_worker_last_func(struct task_struct * task)931 work_func_t wq_worker_last_func(struct task_struct *task)
932 {
933 struct worker *worker = kthread_data(task);
934
935 return worker->last_func;
936 }
937
938 /**
939 * worker_set_flags - set worker flags and adjust nr_running accordingly
940 * @worker: self
941 * @flags: flags to set
942 *
943 * Set @flags in @worker->flags and adjust nr_running accordingly.
944 *
945 * CONTEXT:
946 * raw_spin_lock_irq(pool->lock)
947 */
worker_set_flags(struct worker * worker,unsigned int flags)948 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
949 {
950 struct worker_pool *pool = worker->pool;
951
952 WARN_ON_ONCE(worker->task != current);
953
954 /* If transitioning into NOT_RUNNING, adjust nr_running. */
955 if ((flags & WORKER_NOT_RUNNING) &&
956 !(worker->flags & WORKER_NOT_RUNNING)) {
957 atomic_dec(&pool->nr_running);
958 }
959
960 worker->flags |= flags;
961 }
962
963 /**
964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
965 * @worker: self
966 * @flags: flags to clear
967 *
968 * Clear @flags in @worker->flags and adjust nr_running accordingly.
969 *
970 * CONTEXT:
971 * raw_spin_lock_irq(pool->lock)
972 */
worker_clr_flags(struct worker * worker,unsigned int flags)973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
974 {
975 struct worker_pool *pool = worker->pool;
976 unsigned int oflags = worker->flags;
977
978 WARN_ON_ONCE(worker->task != current);
979
980 worker->flags &= ~flags;
981
982 /*
983 * If transitioning out of NOT_RUNNING, increment nr_running. Note
984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
985 * of multiple flags, not a single flag.
986 */
987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
988 if (!(worker->flags & WORKER_NOT_RUNNING))
989 atomic_inc(&pool->nr_running);
990 }
991
992 /**
993 * find_worker_executing_work - find worker which is executing a work
994 * @pool: pool of interest
995 * @work: work to find worker for
996 *
997 * Find a worker which is executing @work on @pool by searching
998 * @pool->busy_hash which is keyed by the address of @work. For a worker
999 * to match, its current execution should match the address of @work and
1000 * its work function. This is to avoid unwanted dependency between
1001 * unrelated work executions through a work item being recycled while still
1002 * being executed.
1003 *
1004 * This is a bit tricky. A work item may be freed once its execution
1005 * starts and nothing prevents the freed area from being recycled for
1006 * another work item. If the same work item address ends up being reused
1007 * before the original execution finishes, workqueue will identify the
1008 * recycled work item as currently executing and make it wait until the
1009 * current execution finishes, introducing an unwanted dependency.
1010 *
1011 * This function checks the work item address and work function to avoid
1012 * false positives. Note that this isn't complete as one may construct a
1013 * work function which can introduce dependency onto itself through a
1014 * recycled work item. Well, if somebody wants to shoot oneself in the
1015 * foot that badly, there's only so much we can do, and if such deadlock
1016 * actually occurs, it should be easy to locate the culprit work function.
1017 *
1018 * CONTEXT:
1019 * raw_spin_lock_irq(pool->lock).
1020 *
1021 * Return:
1022 * Pointer to worker which is executing @work if found, %NULL
1023 * otherwise.
1024 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1025 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1026 struct work_struct *work)
1027 {
1028 struct worker *worker;
1029
1030 hash_for_each_possible(pool->busy_hash, worker, hentry,
1031 (unsigned long)work)
1032 if (worker->current_work == work &&
1033 worker->current_func == work->func)
1034 return worker;
1035
1036 return NULL;
1037 }
1038
1039 /**
1040 * move_linked_works - move linked works to a list
1041 * @work: start of series of works to be scheduled
1042 * @head: target list to append @work to
1043 * @nextp: out parameter for nested worklist walking
1044 *
1045 * Schedule linked works starting from @work to @head. Work series to
1046 * be scheduled starts at @work and includes any consecutive work with
1047 * WORK_STRUCT_LINKED set in its predecessor.
1048 *
1049 * If @nextp is not NULL, it's updated to point to the next work of
1050 * the last scheduled work. This allows move_linked_works() to be
1051 * nested inside outer list_for_each_entry_safe().
1052 *
1053 * CONTEXT:
1054 * raw_spin_lock_irq(pool->lock).
1055 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1056 static void move_linked_works(struct work_struct *work, struct list_head *head,
1057 struct work_struct **nextp)
1058 {
1059 struct work_struct *n;
1060
1061 /*
1062 * Linked worklist will always end before the end of the list,
1063 * use NULL for list head.
1064 */
1065 list_for_each_entry_safe_from(work, n, NULL, entry) {
1066 list_move_tail(&work->entry, head);
1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1068 break;
1069 }
1070
1071 /*
1072 * If we're already inside safe list traversal and have moved
1073 * multiple works to the scheduled queue, the next position
1074 * needs to be updated.
1075 */
1076 if (nextp)
1077 *nextp = n;
1078 }
1079
1080 /**
1081 * get_pwq - get an extra reference on the specified pool_workqueue
1082 * @pwq: pool_workqueue to get
1083 *
1084 * Obtain an extra reference on @pwq. The caller should guarantee that
1085 * @pwq has positive refcnt and be holding the matching pool->lock.
1086 */
get_pwq(struct pool_workqueue * pwq)1087 static void get_pwq(struct pool_workqueue *pwq)
1088 {
1089 lockdep_assert_held(&pwq->pool->lock);
1090 WARN_ON_ONCE(pwq->refcnt <= 0);
1091 pwq->refcnt++;
1092 }
1093
1094 /**
1095 * put_pwq - put a pool_workqueue reference
1096 * @pwq: pool_workqueue to put
1097 *
1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1099 * destruction. The caller should be holding the matching pool->lock.
1100 */
put_pwq(struct pool_workqueue * pwq)1101 static void put_pwq(struct pool_workqueue *pwq)
1102 {
1103 lockdep_assert_held(&pwq->pool->lock);
1104 if (likely(--pwq->refcnt))
1105 return;
1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1107 return;
1108 /*
1109 * @pwq can't be released under pool->lock, bounce to
1110 * pwq_unbound_release_workfn(). This never recurses on the same
1111 * pool->lock as this path is taken only for unbound workqueues and
1112 * the release work item is scheduled on a per-cpu workqueue. To
1113 * avoid lockdep warning, unbound pool->locks are given lockdep
1114 * subclass of 1 in get_unbound_pool().
1115 */
1116 schedule_work(&pwq->unbound_release_work);
1117 }
1118
1119 /**
1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1121 * @pwq: pool_workqueue to put (can be %NULL)
1122 *
1123 * put_pwq() with locking. This function also allows %NULL @pwq.
1124 */
put_pwq_unlocked(struct pool_workqueue * pwq)1125 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1126 {
1127 if (pwq) {
1128 /*
1129 * As both pwqs and pools are RCU protected, the
1130 * following lock operations are safe.
1131 */
1132 raw_spin_lock_irq(&pwq->pool->lock);
1133 put_pwq(pwq);
1134 raw_spin_unlock_irq(&pwq->pool->lock);
1135 }
1136 }
1137
pwq_activate_delayed_work(struct work_struct * work)1138 static void pwq_activate_delayed_work(struct work_struct *work)
1139 {
1140 struct pool_workqueue *pwq = get_work_pwq(work);
1141
1142 trace_workqueue_activate_work(work);
1143 if (list_empty(&pwq->pool->worklist))
1144 pwq->pool->watchdog_ts = jiffies;
1145 move_linked_works(work, &pwq->pool->worklist, NULL);
1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1147 pwq->nr_active++;
1148 }
1149
pwq_activate_first_delayed(struct pool_workqueue * pwq)1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1151 {
1152 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1153 struct work_struct, entry);
1154
1155 pwq_activate_delayed_work(work);
1156 }
1157
1158 /**
1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1160 * @pwq: pwq of interest
1161 * @color: color of work which left the queue
1162 *
1163 * A work either has completed or is removed from pending queue,
1164 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1165 *
1166 * CONTEXT:
1167 * raw_spin_lock_irq(pool->lock).
1168 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1170 {
1171 /* uncolored work items don't participate in flushing or nr_active */
1172 if (color == WORK_NO_COLOR)
1173 goto out_put;
1174
1175 pwq->nr_in_flight[color]--;
1176
1177 pwq->nr_active--;
1178 if (!list_empty(&pwq->delayed_works)) {
1179 /* one down, submit a delayed one */
1180 if (pwq->nr_active < pwq->max_active)
1181 pwq_activate_first_delayed(pwq);
1182 }
1183
1184 /* is flush in progress and are we at the flushing tip? */
1185 if (likely(pwq->flush_color != color))
1186 goto out_put;
1187
1188 /* are there still in-flight works? */
1189 if (pwq->nr_in_flight[color])
1190 goto out_put;
1191
1192 /* this pwq is done, clear flush_color */
1193 pwq->flush_color = -1;
1194
1195 /*
1196 * If this was the last pwq, wake up the first flusher. It
1197 * will handle the rest.
1198 */
1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1200 complete(&pwq->wq->first_flusher->done);
1201 out_put:
1202 put_pwq(pwq);
1203 }
1204
1205 /**
1206 * try_to_grab_pending - steal work item from worklist and disable irq
1207 * @work: work item to steal
1208 * @is_dwork: @work is a delayed_work
1209 * @flags: place to store irq state
1210 *
1211 * Try to grab PENDING bit of @work. This function can handle @work in any
1212 * stable state - idle, on timer or on worklist.
1213 *
1214 * Return:
1215 *
1216 * ======== ================================================================
1217 * 1 if @work was pending and we successfully stole PENDING
1218 * 0 if @work was idle and we claimed PENDING
1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220 * -ENOENT if someone else is canceling @work, this state may persist
1221 * for arbitrarily long
1222 * ======== ================================================================
1223 *
1224 * Note:
1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1226 * interrupted while holding PENDING and @work off queue, irq must be
1227 * disabled on entry. This, combined with delayed_work->timer being
1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1229 *
1230 * On successful return, >= 0, irq is disabled and the caller is
1231 * responsible for releasing it using local_irq_restore(*@flags).
1232 *
1233 * This function is safe to call from any context including IRQ handler.
1234 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1235 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1236 unsigned long *flags)
1237 {
1238 struct worker_pool *pool;
1239 struct pool_workqueue *pwq;
1240
1241 local_irq_save(*flags);
1242
1243 /* try to steal the timer if it exists */
1244 if (is_dwork) {
1245 struct delayed_work *dwork = to_delayed_work(work);
1246
1247 /*
1248 * dwork->timer is irqsafe. If del_timer() fails, it's
1249 * guaranteed that the timer is not queued anywhere and not
1250 * running on the local CPU.
1251 */
1252 if (likely(del_timer(&dwork->timer)))
1253 return 1;
1254 }
1255
1256 /* try to claim PENDING the normal way */
1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1258 return 0;
1259
1260 rcu_read_lock();
1261 /*
1262 * The queueing is in progress, or it is already queued. Try to
1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1264 */
1265 pool = get_work_pool(work);
1266 if (!pool)
1267 goto fail;
1268
1269 raw_spin_lock(&pool->lock);
1270 /*
1271 * work->data is guaranteed to point to pwq only while the work
1272 * item is queued on pwq->wq, and both updating work->data to point
1273 * to pwq on queueing and to pool on dequeueing are done under
1274 * pwq->pool->lock. This in turn guarantees that, if work->data
1275 * points to pwq which is associated with a locked pool, the work
1276 * item is currently queued on that pool.
1277 */
1278 pwq = get_work_pwq(work);
1279 if (pwq && pwq->pool == pool) {
1280 debug_work_deactivate(work);
1281
1282 /*
1283 * A delayed work item cannot be grabbed directly because
1284 * it might have linked NO_COLOR work items which, if left
1285 * on the delayed_list, will confuse pwq->nr_active
1286 * management later on and cause stall. Make sure the work
1287 * item is activated before grabbing.
1288 */
1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1290 pwq_activate_delayed_work(work);
1291
1292 list_del_init(&work->entry);
1293 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1294
1295 /* work->data points to pwq iff queued, point to pool */
1296 set_work_pool_and_keep_pending(work, pool->id);
1297
1298 raw_spin_unlock(&pool->lock);
1299 rcu_read_unlock();
1300 return 1;
1301 }
1302 raw_spin_unlock(&pool->lock);
1303 fail:
1304 rcu_read_unlock();
1305 local_irq_restore(*flags);
1306 if (work_is_canceling(work))
1307 return -ENOENT;
1308 cpu_relax();
1309 return -EAGAIN;
1310 }
1311
1312 /**
1313 * insert_work - insert a work into a pool
1314 * @pwq: pwq @work belongs to
1315 * @work: work to insert
1316 * @head: insertion point
1317 * @extra_flags: extra WORK_STRUCT_* flags to set
1318 *
1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1320 * work_struct flags.
1321 *
1322 * CONTEXT:
1323 * raw_spin_lock_irq(pool->lock).
1324 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 struct list_head *head, unsigned int extra_flags)
1327 {
1328 struct worker_pool *pool = pwq->pool;
1329
1330 /* we own @work, set data and link */
1331 set_work_pwq(work, pwq, extra_flags);
1332 list_add_tail(&work->entry, head);
1333 get_pwq(pwq);
1334
1335 /*
1336 * Ensure either wq_worker_sleeping() sees the above
1337 * list_add_tail() or we see zero nr_running to avoid workers lying
1338 * around lazily while there are works to be processed.
1339 */
1340 smp_mb();
1341
1342 if (__need_more_worker(pool))
1343 wake_up_worker(pool);
1344 }
1345
1346 /*
1347 * Test whether @work is being queued from another work executing on the
1348 * same workqueue.
1349 */
is_chained_work(struct workqueue_struct * wq)1350 static bool is_chained_work(struct workqueue_struct *wq)
1351 {
1352 struct worker *worker;
1353
1354 worker = current_wq_worker();
1355 /*
1356 * Return %true iff I'm a worker executing a work item on @wq. If
1357 * I'm @worker, it's safe to dereference it without locking.
1358 */
1359 return worker && worker->current_pwq->wq == wq;
1360 }
1361
1362 /*
1363 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1364 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1365 * avoid perturbing sensitive tasks.
1366 */
wq_select_unbound_cpu(int cpu)1367 static int wq_select_unbound_cpu(int cpu)
1368 {
1369 static bool printed_dbg_warning;
1370 int new_cpu;
1371
1372 if (likely(!wq_debug_force_rr_cpu)) {
1373 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1374 return cpu;
1375 } else if (!printed_dbg_warning) {
1376 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1377 printed_dbg_warning = true;
1378 }
1379
1380 if (cpumask_empty(wq_unbound_cpumask))
1381 return cpu;
1382
1383 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1384 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1385 if (unlikely(new_cpu >= nr_cpu_ids)) {
1386 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1387 if (unlikely(new_cpu >= nr_cpu_ids))
1388 return cpu;
1389 }
1390 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1391
1392 return new_cpu;
1393 }
1394
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1395 static void __queue_work(int cpu, struct workqueue_struct *wq,
1396 struct work_struct *work)
1397 {
1398 struct pool_workqueue *pwq;
1399 struct worker_pool *last_pool;
1400 struct list_head *worklist;
1401 unsigned int work_flags;
1402 unsigned int req_cpu = cpu;
1403
1404 /*
1405 * While a work item is PENDING && off queue, a task trying to
1406 * steal the PENDING will busy-loop waiting for it to either get
1407 * queued or lose PENDING. Grabbing PENDING and queueing should
1408 * happen with IRQ disabled.
1409 */
1410 lockdep_assert_irqs_disabled();
1411
1412 debug_work_activate(work);
1413
1414 /* if draining, only works from the same workqueue are allowed */
1415 if (unlikely(wq->flags & __WQ_DRAINING) &&
1416 WARN_ON_ONCE(!is_chained_work(wq)))
1417 return;
1418 rcu_read_lock();
1419 retry:
1420 /* pwq which will be used unless @work is executing elsewhere */
1421 if (wq->flags & WQ_UNBOUND) {
1422 if (req_cpu == WORK_CPU_UNBOUND)
1423 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1424 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1425 } else {
1426 if (req_cpu == WORK_CPU_UNBOUND)
1427 cpu = raw_smp_processor_id();
1428 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1429 }
1430
1431 /*
1432 * If @work was previously on a different pool, it might still be
1433 * running there, in which case the work needs to be queued on that
1434 * pool to guarantee non-reentrancy.
1435 */
1436 last_pool = get_work_pool(work);
1437 if (last_pool && last_pool != pwq->pool) {
1438 struct worker *worker;
1439
1440 raw_spin_lock(&last_pool->lock);
1441
1442 worker = find_worker_executing_work(last_pool, work);
1443
1444 if (worker && worker->current_pwq->wq == wq) {
1445 pwq = worker->current_pwq;
1446 } else {
1447 /* meh... not running there, queue here */
1448 raw_spin_unlock(&last_pool->lock);
1449 raw_spin_lock(&pwq->pool->lock);
1450 }
1451 } else {
1452 raw_spin_lock(&pwq->pool->lock);
1453 }
1454
1455 /*
1456 * pwq is determined and locked. For unbound pools, we could have
1457 * raced with pwq release and it could already be dead. If its
1458 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1459 * without another pwq replacing it in the numa_pwq_tbl or while
1460 * work items are executing on it, so the retrying is guaranteed to
1461 * make forward-progress.
1462 */
1463 if (unlikely(!pwq->refcnt)) {
1464 if (wq->flags & WQ_UNBOUND) {
1465 raw_spin_unlock(&pwq->pool->lock);
1466 cpu_relax();
1467 goto retry;
1468 }
1469 /* oops */
1470 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1471 wq->name, cpu);
1472 }
1473
1474 /* pwq determined, queue */
1475 trace_workqueue_queue_work(req_cpu, pwq, work);
1476
1477 if (WARN_ON(!list_empty(&work->entry)))
1478 goto out;
1479
1480 pwq->nr_in_flight[pwq->work_color]++;
1481 work_flags = work_color_to_flags(pwq->work_color);
1482
1483 if (likely(pwq->nr_active < pwq->max_active)) {
1484 trace_workqueue_activate_work(work);
1485 pwq->nr_active++;
1486 worklist = &pwq->pool->worklist;
1487 if (list_empty(worklist))
1488 pwq->pool->watchdog_ts = jiffies;
1489 } else {
1490 work_flags |= WORK_STRUCT_DELAYED;
1491 worklist = &pwq->delayed_works;
1492 }
1493
1494 insert_work(pwq, work, worklist, work_flags);
1495
1496 out:
1497 raw_spin_unlock(&pwq->pool->lock);
1498 rcu_read_unlock();
1499 }
1500
1501 /**
1502 * queue_work_on - queue work on specific cpu
1503 * @cpu: CPU number to execute work on
1504 * @wq: workqueue to use
1505 * @work: work to queue
1506 *
1507 * We queue the work to a specific CPU, the caller must ensure it
1508 * can't go away.
1509 *
1510 * Return: %false if @work was already on a queue, %true otherwise.
1511 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1512 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1513 struct work_struct *work)
1514 {
1515 bool ret = false;
1516 unsigned long flags;
1517
1518 local_irq_save(flags);
1519
1520 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1521 __queue_work(cpu, wq, work);
1522 ret = true;
1523 }
1524
1525 local_irq_restore(flags);
1526 return ret;
1527 }
1528 EXPORT_SYMBOL(queue_work_on);
1529
1530 /**
1531 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1532 * @node: NUMA node ID that we want to select a CPU from
1533 *
1534 * This function will attempt to find a "random" cpu available on a given
1535 * node. If there are no CPUs available on the given node it will return
1536 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1537 * available CPU if we need to schedule this work.
1538 */
workqueue_select_cpu_near(int node)1539 static int workqueue_select_cpu_near(int node)
1540 {
1541 int cpu;
1542
1543 /* No point in doing this if NUMA isn't enabled for workqueues */
1544 if (!wq_numa_enabled)
1545 return WORK_CPU_UNBOUND;
1546
1547 /* Delay binding to CPU if node is not valid or online */
1548 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1549 return WORK_CPU_UNBOUND;
1550
1551 /* Use local node/cpu if we are already there */
1552 cpu = raw_smp_processor_id();
1553 if (node == cpu_to_node(cpu))
1554 return cpu;
1555
1556 /* Use "random" otherwise know as "first" online CPU of node */
1557 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1558
1559 /* If CPU is valid return that, otherwise just defer */
1560 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1561 }
1562
1563 /**
1564 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1565 * @node: NUMA node that we are targeting the work for
1566 * @wq: workqueue to use
1567 * @work: work to queue
1568 *
1569 * We queue the work to a "random" CPU within a given NUMA node. The basic
1570 * idea here is to provide a way to somehow associate work with a given
1571 * NUMA node.
1572 *
1573 * This function will only make a best effort attempt at getting this onto
1574 * the right NUMA node. If no node is requested or the requested node is
1575 * offline then we just fall back to standard queue_work behavior.
1576 *
1577 * Currently the "random" CPU ends up being the first available CPU in the
1578 * intersection of cpu_online_mask and the cpumask of the node, unless we
1579 * are running on the node. In that case we just use the current CPU.
1580 *
1581 * Return: %false if @work was already on a queue, %true otherwise.
1582 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1583 bool queue_work_node(int node, struct workqueue_struct *wq,
1584 struct work_struct *work)
1585 {
1586 unsigned long flags;
1587 bool ret = false;
1588
1589 /*
1590 * This current implementation is specific to unbound workqueues.
1591 * Specifically we only return the first available CPU for a given
1592 * node instead of cycling through individual CPUs within the node.
1593 *
1594 * If this is used with a per-cpu workqueue then the logic in
1595 * workqueue_select_cpu_near would need to be updated to allow for
1596 * some round robin type logic.
1597 */
1598 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1599
1600 local_irq_save(flags);
1601
1602 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1603 int cpu = workqueue_select_cpu_near(node);
1604
1605 __queue_work(cpu, wq, work);
1606 ret = true;
1607 }
1608
1609 local_irq_restore(flags);
1610 return ret;
1611 }
1612 EXPORT_SYMBOL_GPL(queue_work_node);
1613
delayed_work_timer_fn(struct timer_list * t)1614 void delayed_work_timer_fn(struct timer_list *t)
1615 {
1616 struct delayed_work *dwork = from_timer(dwork, t, timer);
1617
1618 /* should have been called from irqsafe timer with irq already off */
1619 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1620 }
1621 EXPORT_SYMBOL(delayed_work_timer_fn);
1622
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1623 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1624 struct delayed_work *dwork, unsigned long delay)
1625 {
1626 struct timer_list *timer = &dwork->timer;
1627 struct work_struct *work = &dwork->work;
1628
1629 WARN_ON_ONCE(!wq);
1630 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1631 WARN_ON_ONCE(timer_pending(timer));
1632 WARN_ON_ONCE(!list_empty(&work->entry));
1633
1634 /*
1635 * If @delay is 0, queue @dwork->work immediately. This is for
1636 * both optimization and correctness. The earliest @timer can
1637 * expire is on the closest next tick and delayed_work users depend
1638 * on that there's no such delay when @delay is 0.
1639 */
1640 if (!delay) {
1641 __queue_work(cpu, wq, &dwork->work);
1642 return;
1643 }
1644
1645 dwork->wq = wq;
1646 dwork->cpu = cpu;
1647 timer->expires = jiffies + delay;
1648
1649 if (unlikely(cpu != WORK_CPU_UNBOUND))
1650 add_timer_on(timer, cpu);
1651 else
1652 add_timer(timer);
1653 }
1654
1655 /**
1656 * queue_delayed_work_on - queue work on specific CPU after delay
1657 * @cpu: CPU number to execute work on
1658 * @wq: workqueue to use
1659 * @dwork: work to queue
1660 * @delay: number of jiffies to wait before queueing
1661 *
1662 * Return: %false if @work was already on a queue, %true otherwise. If
1663 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1664 * execution.
1665 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1666 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1667 struct delayed_work *dwork, unsigned long delay)
1668 {
1669 struct work_struct *work = &dwork->work;
1670 bool ret = false;
1671 unsigned long flags;
1672
1673 /* read the comment in __queue_work() */
1674 local_irq_save(flags);
1675
1676 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1677 __queue_delayed_work(cpu, wq, dwork, delay);
1678 ret = true;
1679 }
1680
1681 local_irq_restore(flags);
1682 return ret;
1683 }
1684 EXPORT_SYMBOL(queue_delayed_work_on);
1685
1686 /**
1687 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1688 * @cpu: CPU number to execute work on
1689 * @wq: workqueue to use
1690 * @dwork: work to queue
1691 * @delay: number of jiffies to wait before queueing
1692 *
1693 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1694 * modify @dwork's timer so that it expires after @delay. If @delay is
1695 * zero, @work is guaranteed to be scheduled immediately regardless of its
1696 * current state.
1697 *
1698 * Return: %false if @dwork was idle and queued, %true if @dwork was
1699 * pending and its timer was modified.
1700 *
1701 * This function is safe to call from any context including IRQ handler.
1702 * See try_to_grab_pending() for details.
1703 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1704 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1705 struct delayed_work *dwork, unsigned long delay)
1706 {
1707 unsigned long flags;
1708 int ret;
1709
1710 do {
1711 ret = try_to_grab_pending(&dwork->work, true, &flags);
1712 } while (unlikely(ret == -EAGAIN));
1713
1714 if (likely(ret >= 0)) {
1715 __queue_delayed_work(cpu, wq, dwork, delay);
1716 local_irq_restore(flags);
1717 }
1718
1719 /* -ENOENT from try_to_grab_pending() becomes %true */
1720 return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1723
rcu_work_rcufn(struct rcu_head * rcu)1724 static void rcu_work_rcufn(struct rcu_head *rcu)
1725 {
1726 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1727
1728 /* read the comment in __queue_work() */
1729 local_irq_disable();
1730 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1731 local_irq_enable();
1732 }
1733
1734 /**
1735 * queue_rcu_work - queue work after a RCU grace period
1736 * @wq: workqueue to use
1737 * @rwork: work to queue
1738 *
1739 * Return: %false if @rwork was already pending, %true otherwise. Note
1740 * that a full RCU grace period is guaranteed only after a %true return.
1741 * While @rwork is guaranteed to be executed after a %false return, the
1742 * execution may happen before a full RCU grace period has passed.
1743 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1744 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1745 {
1746 struct work_struct *work = &rwork->work;
1747
1748 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1749 rwork->wq = wq;
1750 call_rcu(&rwork->rcu, rcu_work_rcufn);
1751 return true;
1752 }
1753
1754 return false;
1755 }
1756 EXPORT_SYMBOL(queue_rcu_work);
1757
1758 /**
1759 * worker_enter_idle - enter idle state
1760 * @worker: worker which is entering idle state
1761 *
1762 * @worker is entering idle state. Update stats and idle timer if
1763 * necessary.
1764 *
1765 * LOCKING:
1766 * raw_spin_lock_irq(pool->lock).
1767 */
worker_enter_idle(struct worker * worker)1768 static void worker_enter_idle(struct worker *worker)
1769 {
1770 struct worker_pool *pool = worker->pool;
1771
1772 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1773 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1774 (worker->hentry.next || worker->hentry.pprev)))
1775 return;
1776
1777 /* can't use worker_set_flags(), also called from create_worker() */
1778 worker->flags |= WORKER_IDLE;
1779 pool->nr_idle++;
1780 worker->last_active = jiffies;
1781
1782 /* idle_list is LIFO */
1783 list_add(&worker->entry, &pool->idle_list);
1784
1785 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1786 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1787
1788 /*
1789 * Sanity check nr_running. Because unbind_workers() releases
1790 * pool->lock between setting %WORKER_UNBOUND and zapping
1791 * nr_running, the warning may trigger spuriously. Check iff
1792 * unbind is not in progress.
1793 */
1794 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1795 pool->nr_workers == pool->nr_idle &&
1796 atomic_read(&pool->nr_running));
1797 }
1798
1799 /**
1800 * worker_leave_idle - leave idle state
1801 * @worker: worker which is leaving idle state
1802 *
1803 * @worker is leaving idle state. Update stats.
1804 *
1805 * LOCKING:
1806 * raw_spin_lock_irq(pool->lock).
1807 */
worker_leave_idle(struct worker * worker)1808 static void worker_leave_idle(struct worker *worker)
1809 {
1810 struct worker_pool *pool = worker->pool;
1811
1812 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1813 return;
1814 worker_clr_flags(worker, WORKER_IDLE);
1815 pool->nr_idle--;
1816 list_del_init(&worker->entry);
1817 }
1818
alloc_worker(int node)1819 static struct worker *alloc_worker(int node)
1820 {
1821 struct worker *worker;
1822
1823 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1824 if (worker) {
1825 INIT_LIST_HEAD(&worker->entry);
1826 INIT_LIST_HEAD(&worker->scheduled);
1827 INIT_LIST_HEAD(&worker->node);
1828 /* on creation a worker is in !idle && prep state */
1829 worker->flags = WORKER_PREP;
1830 }
1831 return worker;
1832 }
1833
1834 /**
1835 * worker_attach_to_pool() - attach a worker to a pool
1836 * @worker: worker to be attached
1837 * @pool: the target pool
1838 *
1839 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1840 * cpu-binding of @worker are kept coordinated with the pool across
1841 * cpu-[un]hotplugs.
1842 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1843 static void worker_attach_to_pool(struct worker *worker,
1844 struct worker_pool *pool)
1845 {
1846 mutex_lock(&wq_pool_attach_mutex);
1847
1848 /*
1849 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1850 * online CPUs. It'll be re-applied when any of the CPUs come up.
1851 */
1852 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1853
1854 /*
1855 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1856 * stable across this function. See the comments above the flag
1857 * definition for details.
1858 */
1859 if (pool->flags & POOL_DISASSOCIATED)
1860 worker->flags |= WORKER_UNBOUND;
1861
1862 list_add_tail(&worker->node, &pool->workers);
1863 worker->pool = pool;
1864
1865 mutex_unlock(&wq_pool_attach_mutex);
1866 }
1867
1868 /**
1869 * worker_detach_from_pool() - detach a worker from its pool
1870 * @worker: worker which is attached to its pool
1871 *
1872 * Undo the attaching which had been done in worker_attach_to_pool(). The
1873 * caller worker shouldn't access to the pool after detached except it has
1874 * other reference to the pool.
1875 */
worker_detach_from_pool(struct worker * worker)1876 static void worker_detach_from_pool(struct worker *worker)
1877 {
1878 struct worker_pool *pool = worker->pool;
1879 struct completion *detach_completion = NULL;
1880
1881 mutex_lock(&wq_pool_attach_mutex);
1882
1883 list_del(&worker->node);
1884 worker->pool = NULL;
1885
1886 if (list_empty(&pool->workers))
1887 detach_completion = pool->detach_completion;
1888 mutex_unlock(&wq_pool_attach_mutex);
1889
1890 /* clear leftover flags without pool->lock after it is detached */
1891 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1892
1893 if (detach_completion)
1894 complete(detach_completion);
1895 }
1896
1897 /**
1898 * create_worker - create a new workqueue worker
1899 * @pool: pool the new worker will belong to
1900 *
1901 * Create and start a new worker which is attached to @pool.
1902 *
1903 * CONTEXT:
1904 * Might sleep. Does GFP_KERNEL allocations.
1905 *
1906 * Return:
1907 * Pointer to the newly created worker.
1908 */
create_worker(struct worker_pool * pool)1909 static struct worker *create_worker(struct worker_pool *pool)
1910 {
1911 struct worker *worker = NULL;
1912 int id = -1;
1913 char id_buf[16];
1914
1915 /* ID is needed to determine kthread name */
1916 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1917 if (id < 0)
1918 goto fail;
1919
1920 worker = alloc_worker(pool->node);
1921 if (!worker)
1922 goto fail;
1923
1924 worker->id = id;
1925
1926 if (pool->cpu >= 0)
1927 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1928 pool->attrs->nice < 0 ? "H" : "");
1929 else
1930 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1931
1932 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1933 "kworker/%s", id_buf);
1934 if (IS_ERR(worker->task))
1935 goto fail;
1936
1937 set_user_nice(worker->task, pool->attrs->nice);
1938 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1939
1940 /* successful, attach the worker to the pool */
1941 worker_attach_to_pool(worker, pool);
1942
1943 /* start the newly created worker */
1944 raw_spin_lock_irq(&pool->lock);
1945 worker->pool->nr_workers++;
1946 worker_enter_idle(worker);
1947 wake_up_process(worker->task);
1948 raw_spin_unlock_irq(&pool->lock);
1949
1950 return worker;
1951
1952 fail:
1953 if (id >= 0)
1954 ida_simple_remove(&pool->worker_ida, id);
1955 kfree(worker);
1956 return NULL;
1957 }
1958
1959 /**
1960 * destroy_worker - destroy a workqueue worker
1961 * @worker: worker to be destroyed
1962 *
1963 * Destroy @worker and adjust @pool stats accordingly. The worker should
1964 * be idle.
1965 *
1966 * CONTEXT:
1967 * raw_spin_lock_irq(pool->lock).
1968 */
destroy_worker(struct worker * worker)1969 static void destroy_worker(struct worker *worker)
1970 {
1971 struct worker_pool *pool = worker->pool;
1972
1973 lockdep_assert_held(&pool->lock);
1974
1975 /* sanity check frenzy */
1976 if (WARN_ON(worker->current_work) ||
1977 WARN_ON(!list_empty(&worker->scheduled)) ||
1978 WARN_ON(!(worker->flags & WORKER_IDLE)))
1979 return;
1980
1981 pool->nr_workers--;
1982 pool->nr_idle--;
1983
1984 list_del_init(&worker->entry);
1985 worker->flags |= WORKER_DIE;
1986 wake_up_process(worker->task);
1987 }
1988
idle_worker_timeout(struct timer_list * t)1989 static void idle_worker_timeout(struct timer_list *t)
1990 {
1991 struct worker_pool *pool = from_timer(pool, t, idle_timer);
1992
1993 raw_spin_lock_irq(&pool->lock);
1994
1995 while (too_many_workers(pool)) {
1996 struct worker *worker;
1997 unsigned long expires;
1998
1999 /* idle_list is kept in LIFO order, check the last one */
2000 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2001 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2002
2003 if (time_before(jiffies, expires)) {
2004 mod_timer(&pool->idle_timer, expires);
2005 break;
2006 }
2007
2008 destroy_worker(worker);
2009 }
2010
2011 raw_spin_unlock_irq(&pool->lock);
2012 }
2013
send_mayday(struct work_struct * work)2014 static void send_mayday(struct work_struct *work)
2015 {
2016 struct pool_workqueue *pwq = get_work_pwq(work);
2017 struct workqueue_struct *wq = pwq->wq;
2018
2019 lockdep_assert_held(&wq_mayday_lock);
2020
2021 if (!wq->rescuer)
2022 return;
2023
2024 /* mayday mayday mayday */
2025 if (list_empty(&pwq->mayday_node)) {
2026 /*
2027 * If @pwq is for an unbound wq, its base ref may be put at
2028 * any time due to an attribute change. Pin @pwq until the
2029 * rescuer is done with it.
2030 */
2031 get_pwq(pwq);
2032 list_add_tail(&pwq->mayday_node, &wq->maydays);
2033 wake_up_process(wq->rescuer->task);
2034 }
2035 }
2036
pool_mayday_timeout(struct timer_list * t)2037 static void pool_mayday_timeout(struct timer_list *t)
2038 {
2039 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2040 struct work_struct *work;
2041
2042 raw_spin_lock_irq(&pool->lock);
2043 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2044
2045 if (need_to_create_worker(pool)) {
2046 /*
2047 * We've been trying to create a new worker but
2048 * haven't been successful. We might be hitting an
2049 * allocation deadlock. Send distress signals to
2050 * rescuers.
2051 */
2052 list_for_each_entry(work, &pool->worklist, entry)
2053 send_mayday(work);
2054 }
2055
2056 raw_spin_unlock(&wq_mayday_lock);
2057 raw_spin_unlock_irq(&pool->lock);
2058
2059 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2060 }
2061
2062 /**
2063 * maybe_create_worker - create a new worker if necessary
2064 * @pool: pool to create a new worker for
2065 *
2066 * Create a new worker for @pool if necessary. @pool is guaranteed to
2067 * have at least one idle worker on return from this function. If
2068 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2069 * sent to all rescuers with works scheduled on @pool to resolve
2070 * possible allocation deadlock.
2071 *
2072 * On return, need_to_create_worker() is guaranteed to be %false and
2073 * may_start_working() %true.
2074 *
2075 * LOCKING:
2076 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2077 * multiple times. Does GFP_KERNEL allocations. Called only from
2078 * manager.
2079 */
maybe_create_worker(struct worker_pool * pool)2080 static void maybe_create_worker(struct worker_pool *pool)
2081 __releases(&pool->lock)
2082 __acquires(&pool->lock)
2083 {
2084 restart:
2085 raw_spin_unlock_irq(&pool->lock);
2086
2087 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2088 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2089
2090 while (true) {
2091 if (create_worker(pool) || !need_to_create_worker(pool))
2092 break;
2093
2094 schedule_timeout_interruptible(CREATE_COOLDOWN);
2095
2096 if (!need_to_create_worker(pool))
2097 break;
2098 }
2099
2100 del_timer_sync(&pool->mayday_timer);
2101 raw_spin_lock_irq(&pool->lock);
2102 /*
2103 * This is necessary even after a new worker was just successfully
2104 * created as @pool->lock was dropped and the new worker might have
2105 * already become busy.
2106 */
2107 if (need_to_create_worker(pool))
2108 goto restart;
2109 }
2110
2111 /**
2112 * manage_workers - manage worker pool
2113 * @worker: self
2114 *
2115 * Assume the manager role and manage the worker pool @worker belongs
2116 * to. At any given time, there can be only zero or one manager per
2117 * pool. The exclusion is handled automatically by this function.
2118 *
2119 * The caller can safely start processing works on false return. On
2120 * true return, it's guaranteed that need_to_create_worker() is false
2121 * and may_start_working() is true.
2122 *
2123 * CONTEXT:
2124 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2125 * multiple times. Does GFP_KERNEL allocations.
2126 *
2127 * Return:
2128 * %false if the pool doesn't need management and the caller can safely
2129 * start processing works, %true if management function was performed and
2130 * the conditions that the caller verified before calling the function may
2131 * no longer be true.
2132 */
manage_workers(struct worker * worker)2133 static bool manage_workers(struct worker *worker)
2134 {
2135 struct worker_pool *pool = worker->pool;
2136
2137 if (pool->flags & POOL_MANAGER_ACTIVE)
2138 return false;
2139
2140 pool->flags |= POOL_MANAGER_ACTIVE;
2141 pool->manager = worker;
2142
2143 maybe_create_worker(pool);
2144
2145 pool->manager = NULL;
2146 pool->flags &= ~POOL_MANAGER_ACTIVE;
2147 rcuwait_wake_up(&manager_wait);
2148 return true;
2149 }
2150
2151 /**
2152 * process_one_work - process single work
2153 * @worker: self
2154 * @work: work to process
2155 *
2156 * Process @work. This function contains all the logics necessary to
2157 * process a single work including synchronization against and
2158 * interaction with other workers on the same cpu, queueing and
2159 * flushing. As long as context requirement is met, any worker can
2160 * call this function to process a work.
2161 *
2162 * CONTEXT:
2163 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2164 */
process_one_work(struct worker * worker,struct work_struct * work)2165 static void process_one_work(struct worker *worker, struct work_struct *work)
2166 __releases(&pool->lock)
2167 __acquires(&pool->lock)
2168 {
2169 struct pool_workqueue *pwq = get_work_pwq(work);
2170 struct worker_pool *pool = worker->pool;
2171 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2172 int work_color;
2173 struct worker *collision;
2174 #ifdef CONFIG_LOCKDEP
2175 /*
2176 * It is permissible to free the struct work_struct from
2177 * inside the function that is called from it, this we need to
2178 * take into account for lockdep too. To avoid bogus "held
2179 * lock freed" warnings as well as problems when looking into
2180 * work->lockdep_map, make a copy and use that here.
2181 */
2182 struct lockdep_map lockdep_map;
2183
2184 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2185 #endif
2186 /* ensure we're on the correct CPU */
2187 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2188 raw_smp_processor_id() != pool->cpu);
2189
2190 /*
2191 * A single work shouldn't be executed concurrently by
2192 * multiple workers on a single cpu. Check whether anyone is
2193 * already processing the work. If so, defer the work to the
2194 * currently executing one.
2195 */
2196 collision = find_worker_executing_work(pool, work);
2197 if (unlikely(collision)) {
2198 move_linked_works(work, &collision->scheduled, NULL);
2199 return;
2200 }
2201
2202 /* claim and dequeue */
2203 debug_work_deactivate(work);
2204 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2205 worker->current_work = work;
2206 worker->current_func = work->func;
2207 worker->current_pwq = pwq;
2208 work_color = get_work_color(work);
2209
2210 /*
2211 * Record wq name for cmdline and debug reporting, may get
2212 * overridden through set_worker_desc().
2213 */
2214 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2215
2216 list_del_init(&work->entry);
2217
2218 /*
2219 * CPU intensive works don't participate in concurrency management.
2220 * They're the scheduler's responsibility. This takes @worker out
2221 * of concurrency management and the next code block will chain
2222 * execution of the pending work items.
2223 */
2224 if (unlikely(cpu_intensive))
2225 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2226
2227 /*
2228 * Wake up another worker if necessary. The condition is always
2229 * false for normal per-cpu workers since nr_running would always
2230 * be >= 1 at this point. This is used to chain execution of the
2231 * pending work items for WORKER_NOT_RUNNING workers such as the
2232 * UNBOUND and CPU_INTENSIVE ones.
2233 */
2234 if (need_more_worker(pool))
2235 wake_up_worker(pool);
2236
2237 /*
2238 * Record the last pool and clear PENDING which should be the last
2239 * update to @work. Also, do this inside @pool->lock so that
2240 * PENDING and queued state changes happen together while IRQ is
2241 * disabled.
2242 */
2243 set_work_pool_and_clear_pending(work, pool->id);
2244
2245 raw_spin_unlock_irq(&pool->lock);
2246
2247 lock_map_acquire(&pwq->wq->lockdep_map);
2248 lock_map_acquire(&lockdep_map);
2249 /*
2250 * Strictly speaking we should mark the invariant state without holding
2251 * any locks, that is, before these two lock_map_acquire()'s.
2252 *
2253 * However, that would result in:
2254 *
2255 * A(W1)
2256 * WFC(C)
2257 * A(W1)
2258 * C(C)
2259 *
2260 * Which would create W1->C->W1 dependencies, even though there is no
2261 * actual deadlock possible. There are two solutions, using a
2262 * read-recursive acquire on the work(queue) 'locks', but this will then
2263 * hit the lockdep limitation on recursive locks, or simply discard
2264 * these locks.
2265 *
2266 * AFAICT there is no possible deadlock scenario between the
2267 * flush_work() and complete() primitives (except for single-threaded
2268 * workqueues), so hiding them isn't a problem.
2269 */
2270 lockdep_invariant_state(true);
2271 trace_workqueue_execute_start(work);
2272 worker->current_func(work);
2273 /*
2274 * While we must be careful to not use "work" after this, the trace
2275 * point will only record its address.
2276 */
2277 trace_workqueue_execute_end(work, worker->current_func);
2278 lock_map_release(&lockdep_map);
2279 lock_map_release(&pwq->wq->lockdep_map);
2280
2281 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2282 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2283 " last function: %ps\n",
2284 current->comm, preempt_count(), task_pid_nr(current),
2285 worker->current_func);
2286 debug_show_held_locks(current);
2287 dump_stack();
2288 }
2289
2290 /*
2291 * The following prevents a kworker from hogging CPU on !PREEMPTION
2292 * kernels, where a requeueing work item waiting for something to
2293 * happen could deadlock with stop_machine as such work item could
2294 * indefinitely requeue itself while all other CPUs are trapped in
2295 * stop_machine. At the same time, report a quiescent RCU state so
2296 * the same condition doesn't freeze RCU.
2297 */
2298 cond_resched();
2299
2300 raw_spin_lock_irq(&pool->lock);
2301
2302 /* clear cpu intensive status */
2303 if (unlikely(cpu_intensive))
2304 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2305
2306 /* tag the worker for identification in schedule() */
2307 worker->last_func = worker->current_func;
2308
2309 /* we're done with it, release */
2310 hash_del(&worker->hentry);
2311 worker->current_work = NULL;
2312 worker->current_func = NULL;
2313 worker->current_pwq = NULL;
2314 pwq_dec_nr_in_flight(pwq, work_color);
2315 }
2316
2317 /**
2318 * process_scheduled_works - process scheduled works
2319 * @worker: self
2320 *
2321 * Process all scheduled works. Please note that the scheduled list
2322 * may change while processing a work, so this function repeatedly
2323 * fetches a work from the top and executes it.
2324 *
2325 * CONTEXT:
2326 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2327 * multiple times.
2328 */
process_scheduled_works(struct worker * worker)2329 static void process_scheduled_works(struct worker *worker)
2330 {
2331 while (!list_empty(&worker->scheduled)) {
2332 struct work_struct *work = list_first_entry(&worker->scheduled,
2333 struct work_struct, entry);
2334 process_one_work(worker, work);
2335 }
2336 }
2337
set_pf_worker(bool val)2338 static void set_pf_worker(bool val)
2339 {
2340 mutex_lock(&wq_pool_attach_mutex);
2341 if (val)
2342 current->flags |= PF_WQ_WORKER;
2343 else
2344 current->flags &= ~PF_WQ_WORKER;
2345 mutex_unlock(&wq_pool_attach_mutex);
2346 }
2347
2348 /**
2349 * worker_thread - the worker thread function
2350 * @__worker: self
2351 *
2352 * The worker thread function. All workers belong to a worker_pool -
2353 * either a per-cpu one or dynamic unbound one. These workers process all
2354 * work items regardless of their specific target workqueue. The only
2355 * exception is work items which belong to workqueues with a rescuer which
2356 * will be explained in rescuer_thread().
2357 *
2358 * Return: 0
2359 */
worker_thread(void * __worker)2360 static int worker_thread(void *__worker)
2361 {
2362 struct worker *worker = __worker;
2363 struct worker_pool *pool = worker->pool;
2364
2365 /* tell the scheduler that this is a workqueue worker */
2366 set_pf_worker(true);
2367 woke_up:
2368 raw_spin_lock_irq(&pool->lock);
2369
2370 /* am I supposed to die? */
2371 if (unlikely(worker->flags & WORKER_DIE)) {
2372 raw_spin_unlock_irq(&pool->lock);
2373 WARN_ON_ONCE(!list_empty(&worker->entry));
2374 set_pf_worker(false);
2375
2376 set_task_comm(worker->task, "kworker/dying");
2377 ida_simple_remove(&pool->worker_ida, worker->id);
2378 worker_detach_from_pool(worker);
2379 kfree(worker);
2380 return 0;
2381 }
2382
2383 worker_leave_idle(worker);
2384 recheck:
2385 /* no more worker necessary? */
2386 if (!need_more_worker(pool))
2387 goto sleep;
2388
2389 /* do we need to manage? */
2390 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2391 goto recheck;
2392
2393 /*
2394 * ->scheduled list can only be filled while a worker is
2395 * preparing to process a work or actually processing it.
2396 * Make sure nobody diddled with it while I was sleeping.
2397 */
2398 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2399
2400 /*
2401 * Finish PREP stage. We're guaranteed to have at least one idle
2402 * worker or that someone else has already assumed the manager
2403 * role. This is where @worker starts participating in concurrency
2404 * management if applicable and concurrency management is restored
2405 * after being rebound. See rebind_workers() for details.
2406 */
2407 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2408
2409 do {
2410 struct work_struct *work =
2411 list_first_entry(&pool->worklist,
2412 struct work_struct, entry);
2413
2414 pool->watchdog_ts = jiffies;
2415
2416 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2417 /* optimization path, not strictly necessary */
2418 process_one_work(worker, work);
2419 if (unlikely(!list_empty(&worker->scheduled)))
2420 process_scheduled_works(worker);
2421 } else {
2422 move_linked_works(work, &worker->scheduled, NULL);
2423 process_scheduled_works(worker);
2424 }
2425 } while (keep_working(pool));
2426
2427 worker_set_flags(worker, WORKER_PREP);
2428 sleep:
2429 /*
2430 * pool->lock is held and there's no work to process and no need to
2431 * manage, sleep. Workers are woken up only while holding
2432 * pool->lock or from local cpu, so setting the current state
2433 * before releasing pool->lock is enough to prevent losing any
2434 * event.
2435 */
2436 worker_enter_idle(worker);
2437 __set_current_state(TASK_IDLE);
2438 raw_spin_unlock_irq(&pool->lock);
2439 schedule();
2440 goto woke_up;
2441 }
2442
2443 /**
2444 * rescuer_thread - the rescuer thread function
2445 * @__rescuer: self
2446 *
2447 * Workqueue rescuer thread function. There's one rescuer for each
2448 * workqueue which has WQ_MEM_RECLAIM set.
2449 *
2450 * Regular work processing on a pool may block trying to create a new
2451 * worker which uses GFP_KERNEL allocation which has slight chance of
2452 * developing into deadlock if some works currently on the same queue
2453 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2454 * the problem rescuer solves.
2455 *
2456 * When such condition is possible, the pool summons rescuers of all
2457 * workqueues which have works queued on the pool and let them process
2458 * those works so that forward progress can be guaranteed.
2459 *
2460 * This should happen rarely.
2461 *
2462 * Return: 0
2463 */
rescuer_thread(void * __rescuer)2464 static int rescuer_thread(void *__rescuer)
2465 {
2466 struct worker *rescuer = __rescuer;
2467 struct workqueue_struct *wq = rescuer->rescue_wq;
2468 struct list_head *scheduled = &rescuer->scheduled;
2469 bool should_stop;
2470
2471 set_user_nice(current, RESCUER_NICE_LEVEL);
2472
2473 /*
2474 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2475 * doesn't participate in concurrency management.
2476 */
2477 set_pf_worker(true);
2478 repeat:
2479 set_current_state(TASK_IDLE);
2480
2481 /*
2482 * By the time the rescuer is requested to stop, the workqueue
2483 * shouldn't have any work pending, but @wq->maydays may still have
2484 * pwq(s) queued. This can happen by non-rescuer workers consuming
2485 * all the work items before the rescuer got to them. Go through
2486 * @wq->maydays processing before acting on should_stop so that the
2487 * list is always empty on exit.
2488 */
2489 should_stop = kthread_should_stop();
2490
2491 /* see whether any pwq is asking for help */
2492 raw_spin_lock_irq(&wq_mayday_lock);
2493
2494 while (!list_empty(&wq->maydays)) {
2495 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2496 struct pool_workqueue, mayday_node);
2497 struct worker_pool *pool = pwq->pool;
2498 struct work_struct *work, *n;
2499 bool first = true;
2500
2501 __set_current_state(TASK_RUNNING);
2502 list_del_init(&pwq->mayday_node);
2503
2504 raw_spin_unlock_irq(&wq_mayday_lock);
2505
2506 worker_attach_to_pool(rescuer, pool);
2507
2508 raw_spin_lock_irq(&pool->lock);
2509
2510 /*
2511 * Slurp in all works issued via this workqueue and
2512 * process'em.
2513 */
2514 WARN_ON_ONCE(!list_empty(scheduled));
2515 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2516 if (get_work_pwq(work) == pwq) {
2517 if (first)
2518 pool->watchdog_ts = jiffies;
2519 move_linked_works(work, scheduled, &n);
2520 }
2521 first = false;
2522 }
2523
2524 if (!list_empty(scheduled)) {
2525 process_scheduled_works(rescuer);
2526
2527 /*
2528 * The above execution of rescued work items could
2529 * have created more to rescue through
2530 * pwq_activate_first_delayed() or chained
2531 * queueing. Let's put @pwq back on mayday list so
2532 * that such back-to-back work items, which may be
2533 * being used to relieve memory pressure, don't
2534 * incur MAYDAY_INTERVAL delay inbetween.
2535 */
2536 if (pwq->nr_active && need_to_create_worker(pool)) {
2537 raw_spin_lock(&wq_mayday_lock);
2538 /*
2539 * Queue iff we aren't racing destruction
2540 * and somebody else hasn't queued it already.
2541 */
2542 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2543 get_pwq(pwq);
2544 list_add_tail(&pwq->mayday_node, &wq->maydays);
2545 }
2546 raw_spin_unlock(&wq_mayday_lock);
2547 }
2548 }
2549
2550 /*
2551 * Put the reference grabbed by send_mayday(). @pool won't
2552 * go away while we're still attached to it.
2553 */
2554 put_pwq(pwq);
2555
2556 /*
2557 * Leave this pool. If need_more_worker() is %true, notify a
2558 * regular worker; otherwise, we end up with 0 concurrency
2559 * and stalling the execution.
2560 */
2561 if (need_more_worker(pool))
2562 wake_up_worker(pool);
2563
2564 raw_spin_unlock_irq(&pool->lock);
2565
2566 worker_detach_from_pool(rescuer);
2567
2568 raw_spin_lock_irq(&wq_mayday_lock);
2569 }
2570
2571 raw_spin_unlock_irq(&wq_mayday_lock);
2572
2573 if (should_stop) {
2574 __set_current_state(TASK_RUNNING);
2575 set_pf_worker(false);
2576 return 0;
2577 }
2578
2579 /* rescuers should never participate in concurrency management */
2580 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2581 schedule();
2582 goto repeat;
2583 }
2584
2585 /**
2586 * check_flush_dependency - check for flush dependency sanity
2587 * @target_wq: workqueue being flushed
2588 * @target_work: work item being flushed (NULL for workqueue flushes)
2589 *
2590 * %current is trying to flush the whole @target_wq or @target_work on it.
2591 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2592 * reclaiming memory or running on a workqueue which doesn't have
2593 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2594 * a deadlock.
2595 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2596 static void check_flush_dependency(struct workqueue_struct *target_wq,
2597 struct work_struct *target_work)
2598 {
2599 work_func_t target_func = target_work ? target_work->func : NULL;
2600 struct worker *worker;
2601
2602 if (target_wq->flags & WQ_MEM_RECLAIM)
2603 return;
2604
2605 worker = current_wq_worker();
2606
2607 WARN_ONCE(current->flags & PF_MEMALLOC,
2608 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2609 current->pid, current->comm, target_wq->name, target_func);
2610 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2611 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2612 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2613 worker->current_pwq->wq->name, worker->current_func,
2614 target_wq->name, target_func);
2615 }
2616
2617 struct wq_barrier {
2618 struct work_struct work;
2619 struct completion done;
2620 struct task_struct *task; /* purely informational */
2621 };
2622
wq_barrier_func(struct work_struct * work)2623 static void wq_barrier_func(struct work_struct *work)
2624 {
2625 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2626 complete(&barr->done);
2627 }
2628
2629 /**
2630 * insert_wq_barrier - insert a barrier work
2631 * @pwq: pwq to insert barrier into
2632 * @barr: wq_barrier to insert
2633 * @target: target work to attach @barr to
2634 * @worker: worker currently executing @target, NULL if @target is not executing
2635 *
2636 * @barr is linked to @target such that @barr is completed only after
2637 * @target finishes execution. Please note that the ordering
2638 * guarantee is observed only with respect to @target and on the local
2639 * cpu.
2640 *
2641 * Currently, a queued barrier can't be canceled. This is because
2642 * try_to_grab_pending() can't determine whether the work to be
2643 * grabbed is at the head of the queue and thus can't clear LINKED
2644 * flag of the previous work while there must be a valid next work
2645 * after a work with LINKED flag set.
2646 *
2647 * Note that when @worker is non-NULL, @target may be modified
2648 * underneath us, so we can't reliably determine pwq from @target.
2649 *
2650 * CONTEXT:
2651 * raw_spin_lock_irq(pool->lock).
2652 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2653 static void insert_wq_barrier(struct pool_workqueue *pwq,
2654 struct wq_barrier *barr,
2655 struct work_struct *target, struct worker *worker)
2656 {
2657 struct list_head *head;
2658 unsigned int linked = 0;
2659
2660 /*
2661 * debugobject calls are safe here even with pool->lock locked
2662 * as we know for sure that this will not trigger any of the
2663 * checks and call back into the fixup functions where we
2664 * might deadlock.
2665 */
2666 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2667 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2668
2669 init_completion_map(&barr->done, &target->lockdep_map);
2670
2671 barr->task = current;
2672
2673 /*
2674 * If @target is currently being executed, schedule the
2675 * barrier to the worker; otherwise, put it after @target.
2676 */
2677 if (worker)
2678 head = worker->scheduled.next;
2679 else {
2680 unsigned long *bits = work_data_bits(target);
2681
2682 head = target->entry.next;
2683 /* there can already be other linked works, inherit and set */
2684 linked = *bits & WORK_STRUCT_LINKED;
2685 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2686 }
2687
2688 debug_work_activate(&barr->work);
2689 insert_work(pwq, &barr->work, head,
2690 work_color_to_flags(WORK_NO_COLOR) | linked);
2691 }
2692
2693 /**
2694 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2695 * @wq: workqueue being flushed
2696 * @flush_color: new flush color, < 0 for no-op
2697 * @work_color: new work color, < 0 for no-op
2698 *
2699 * Prepare pwqs for workqueue flushing.
2700 *
2701 * If @flush_color is non-negative, flush_color on all pwqs should be
2702 * -1. If no pwq has in-flight commands at the specified color, all
2703 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2704 * has in flight commands, its pwq->flush_color is set to
2705 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2706 * wakeup logic is armed and %true is returned.
2707 *
2708 * The caller should have initialized @wq->first_flusher prior to
2709 * calling this function with non-negative @flush_color. If
2710 * @flush_color is negative, no flush color update is done and %false
2711 * is returned.
2712 *
2713 * If @work_color is non-negative, all pwqs should have the same
2714 * work_color which is previous to @work_color and all will be
2715 * advanced to @work_color.
2716 *
2717 * CONTEXT:
2718 * mutex_lock(wq->mutex).
2719 *
2720 * Return:
2721 * %true if @flush_color >= 0 and there's something to flush. %false
2722 * otherwise.
2723 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2724 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2725 int flush_color, int work_color)
2726 {
2727 bool wait = false;
2728 struct pool_workqueue *pwq;
2729
2730 if (flush_color >= 0) {
2731 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2732 atomic_set(&wq->nr_pwqs_to_flush, 1);
2733 }
2734
2735 for_each_pwq(pwq, wq) {
2736 struct worker_pool *pool = pwq->pool;
2737
2738 raw_spin_lock_irq(&pool->lock);
2739
2740 if (flush_color >= 0) {
2741 WARN_ON_ONCE(pwq->flush_color != -1);
2742
2743 if (pwq->nr_in_flight[flush_color]) {
2744 pwq->flush_color = flush_color;
2745 atomic_inc(&wq->nr_pwqs_to_flush);
2746 wait = true;
2747 }
2748 }
2749
2750 if (work_color >= 0) {
2751 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2752 pwq->work_color = work_color;
2753 }
2754
2755 raw_spin_unlock_irq(&pool->lock);
2756 }
2757
2758 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2759 complete(&wq->first_flusher->done);
2760
2761 return wait;
2762 }
2763
2764 /**
2765 * flush_workqueue - ensure that any scheduled work has run to completion.
2766 * @wq: workqueue to flush
2767 *
2768 * This function sleeps until all work items which were queued on entry
2769 * have finished execution, but it is not livelocked by new incoming ones.
2770 */
flush_workqueue(struct workqueue_struct * wq)2771 void flush_workqueue(struct workqueue_struct *wq)
2772 {
2773 struct wq_flusher this_flusher = {
2774 .list = LIST_HEAD_INIT(this_flusher.list),
2775 .flush_color = -1,
2776 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2777 };
2778 int next_color;
2779
2780 if (WARN_ON(!wq_online))
2781 return;
2782
2783 lock_map_acquire(&wq->lockdep_map);
2784 lock_map_release(&wq->lockdep_map);
2785
2786 mutex_lock(&wq->mutex);
2787
2788 /*
2789 * Start-to-wait phase
2790 */
2791 next_color = work_next_color(wq->work_color);
2792
2793 if (next_color != wq->flush_color) {
2794 /*
2795 * Color space is not full. The current work_color
2796 * becomes our flush_color and work_color is advanced
2797 * by one.
2798 */
2799 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2800 this_flusher.flush_color = wq->work_color;
2801 wq->work_color = next_color;
2802
2803 if (!wq->first_flusher) {
2804 /* no flush in progress, become the first flusher */
2805 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2806
2807 wq->first_flusher = &this_flusher;
2808
2809 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2810 wq->work_color)) {
2811 /* nothing to flush, done */
2812 wq->flush_color = next_color;
2813 wq->first_flusher = NULL;
2814 goto out_unlock;
2815 }
2816 } else {
2817 /* wait in queue */
2818 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2819 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2820 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2821 }
2822 } else {
2823 /*
2824 * Oops, color space is full, wait on overflow queue.
2825 * The next flush completion will assign us
2826 * flush_color and transfer to flusher_queue.
2827 */
2828 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2829 }
2830
2831 check_flush_dependency(wq, NULL);
2832
2833 mutex_unlock(&wq->mutex);
2834
2835 wait_for_completion(&this_flusher.done);
2836
2837 /*
2838 * Wake-up-and-cascade phase
2839 *
2840 * First flushers are responsible for cascading flushes and
2841 * handling overflow. Non-first flushers can simply return.
2842 */
2843 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2844 return;
2845
2846 mutex_lock(&wq->mutex);
2847
2848 /* we might have raced, check again with mutex held */
2849 if (wq->first_flusher != &this_flusher)
2850 goto out_unlock;
2851
2852 WRITE_ONCE(wq->first_flusher, NULL);
2853
2854 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2855 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2856
2857 while (true) {
2858 struct wq_flusher *next, *tmp;
2859
2860 /* complete all the flushers sharing the current flush color */
2861 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2862 if (next->flush_color != wq->flush_color)
2863 break;
2864 list_del_init(&next->list);
2865 complete(&next->done);
2866 }
2867
2868 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2869 wq->flush_color != work_next_color(wq->work_color));
2870
2871 /* this flush_color is finished, advance by one */
2872 wq->flush_color = work_next_color(wq->flush_color);
2873
2874 /* one color has been freed, handle overflow queue */
2875 if (!list_empty(&wq->flusher_overflow)) {
2876 /*
2877 * Assign the same color to all overflowed
2878 * flushers, advance work_color and append to
2879 * flusher_queue. This is the start-to-wait
2880 * phase for these overflowed flushers.
2881 */
2882 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2883 tmp->flush_color = wq->work_color;
2884
2885 wq->work_color = work_next_color(wq->work_color);
2886
2887 list_splice_tail_init(&wq->flusher_overflow,
2888 &wq->flusher_queue);
2889 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2890 }
2891
2892 if (list_empty(&wq->flusher_queue)) {
2893 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2894 break;
2895 }
2896
2897 /*
2898 * Need to flush more colors. Make the next flusher
2899 * the new first flusher and arm pwqs.
2900 */
2901 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2902 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2903
2904 list_del_init(&next->list);
2905 wq->first_flusher = next;
2906
2907 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2908 break;
2909
2910 /*
2911 * Meh... this color is already done, clear first
2912 * flusher and repeat cascading.
2913 */
2914 wq->first_flusher = NULL;
2915 }
2916
2917 out_unlock:
2918 mutex_unlock(&wq->mutex);
2919 }
2920 EXPORT_SYMBOL(flush_workqueue);
2921
2922 /**
2923 * drain_workqueue - drain a workqueue
2924 * @wq: workqueue to drain
2925 *
2926 * Wait until the workqueue becomes empty. While draining is in progress,
2927 * only chain queueing is allowed. IOW, only currently pending or running
2928 * work items on @wq can queue further work items on it. @wq is flushed
2929 * repeatedly until it becomes empty. The number of flushing is determined
2930 * by the depth of chaining and should be relatively short. Whine if it
2931 * takes too long.
2932 */
drain_workqueue(struct workqueue_struct * wq)2933 void drain_workqueue(struct workqueue_struct *wq)
2934 {
2935 unsigned int flush_cnt = 0;
2936 struct pool_workqueue *pwq;
2937
2938 /*
2939 * __queue_work() needs to test whether there are drainers, is much
2940 * hotter than drain_workqueue() and already looks at @wq->flags.
2941 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2942 */
2943 mutex_lock(&wq->mutex);
2944 if (!wq->nr_drainers++)
2945 wq->flags |= __WQ_DRAINING;
2946 mutex_unlock(&wq->mutex);
2947 reflush:
2948 flush_workqueue(wq);
2949
2950 mutex_lock(&wq->mutex);
2951
2952 for_each_pwq(pwq, wq) {
2953 bool drained;
2954
2955 raw_spin_lock_irq(&pwq->pool->lock);
2956 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2957 raw_spin_unlock_irq(&pwq->pool->lock);
2958
2959 if (drained)
2960 continue;
2961
2962 if (++flush_cnt == 10 ||
2963 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2964 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2965 wq->name, flush_cnt);
2966
2967 mutex_unlock(&wq->mutex);
2968 goto reflush;
2969 }
2970
2971 if (!--wq->nr_drainers)
2972 wq->flags &= ~__WQ_DRAINING;
2973 mutex_unlock(&wq->mutex);
2974 }
2975 EXPORT_SYMBOL_GPL(drain_workqueue);
2976
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2977 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2978 bool from_cancel)
2979 {
2980 struct worker *worker = NULL;
2981 struct worker_pool *pool;
2982 struct pool_workqueue *pwq;
2983
2984 might_sleep();
2985
2986 rcu_read_lock();
2987 pool = get_work_pool(work);
2988 if (!pool) {
2989 rcu_read_unlock();
2990 return false;
2991 }
2992
2993 raw_spin_lock_irq(&pool->lock);
2994 /* see the comment in try_to_grab_pending() with the same code */
2995 pwq = get_work_pwq(work);
2996 if (pwq) {
2997 if (unlikely(pwq->pool != pool))
2998 goto already_gone;
2999 } else {
3000 worker = find_worker_executing_work(pool, work);
3001 if (!worker)
3002 goto already_gone;
3003 pwq = worker->current_pwq;
3004 }
3005
3006 check_flush_dependency(pwq->wq, work);
3007
3008 insert_wq_barrier(pwq, barr, work, worker);
3009 raw_spin_unlock_irq(&pool->lock);
3010
3011 /*
3012 * Force a lock recursion deadlock when using flush_work() inside a
3013 * single-threaded or rescuer equipped workqueue.
3014 *
3015 * For single threaded workqueues the deadlock happens when the work
3016 * is after the work issuing the flush_work(). For rescuer equipped
3017 * workqueues the deadlock happens when the rescuer stalls, blocking
3018 * forward progress.
3019 */
3020 if (!from_cancel &&
3021 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3022 lock_map_acquire(&pwq->wq->lockdep_map);
3023 lock_map_release(&pwq->wq->lockdep_map);
3024 }
3025 rcu_read_unlock();
3026 return true;
3027 already_gone:
3028 raw_spin_unlock_irq(&pool->lock);
3029 rcu_read_unlock();
3030 return false;
3031 }
3032
__flush_work(struct work_struct * work,bool from_cancel)3033 static bool __flush_work(struct work_struct *work, bool from_cancel)
3034 {
3035 struct wq_barrier barr;
3036
3037 if (WARN_ON(!wq_online))
3038 return false;
3039
3040 if (WARN_ON(!work->func))
3041 return false;
3042
3043 if (!from_cancel) {
3044 lock_map_acquire(&work->lockdep_map);
3045 lock_map_release(&work->lockdep_map);
3046 }
3047
3048 if (start_flush_work(work, &barr, from_cancel)) {
3049 wait_for_completion(&barr.done);
3050 destroy_work_on_stack(&barr.work);
3051 return true;
3052 } else {
3053 return false;
3054 }
3055 }
3056
3057 /**
3058 * flush_work - wait for a work to finish executing the last queueing instance
3059 * @work: the work to flush
3060 *
3061 * Wait until @work has finished execution. @work is guaranteed to be idle
3062 * on return if it hasn't been requeued since flush started.
3063 *
3064 * Return:
3065 * %true if flush_work() waited for the work to finish execution,
3066 * %false if it was already idle.
3067 */
flush_work(struct work_struct * work)3068 bool flush_work(struct work_struct *work)
3069 {
3070 return __flush_work(work, false);
3071 }
3072 EXPORT_SYMBOL_GPL(flush_work);
3073
3074 struct cwt_wait {
3075 wait_queue_entry_t wait;
3076 struct work_struct *work;
3077 };
3078
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3079 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3080 {
3081 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3082
3083 if (cwait->work != key)
3084 return 0;
3085 return autoremove_wake_function(wait, mode, sync, key);
3086 }
3087
__cancel_work_timer(struct work_struct * work,bool is_dwork)3088 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3089 {
3090 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3091 unsigned long flags;
3092 int ret;
3093
3094 do {
3095 ret = try_to_grab_pending(work, is_dwork, &flags);
3096 /*
3097 * If someone else is already canceling, wait for it to
3098 * finish. flush_work() doesn't work for PREEMPT_NONE
3099 * because we may get scheduled between @work's completion
3100 * and the other canceling task resuming and clearing
3101 * CANCELING - flush_work() will return false immediately
3102 * as @work is no longer busy, try_to_grab_pending() will
3103 * return -ENOENT as @work is still being canceled and the
3104 * other canceling task won't be able to clear CANCELING as
3105 * we're hogging the CPU.
3106 *
3107 * Let's wait for completion using a waitqueue. As this
3108 * may lead to the thundering herd problem, use a custom
3109 * wake function which matches @work along with exclusive
3110 * wait and wakeup.
3111 */
3112 if (unlikely(ret == -ENOENT)) {
3113 struct cwt_wait cwait;
3114
3115 init_wait(&cwait.wait);
3116 cwait.wait.func = cwt_wakefn;
3117 cwait.work = work;
3118
3119 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3120 TASK_UNINTERRUPTIBLE);
3121 if (work_is_canceling(work))
3122 schedule();
3123 finish_wait(&cancel_waitq, &cwait.wait);
3124 }
3125 } while (unlikely(ret < 0));
3126
3127 /* tell other tasks trying to grab @work to back off */
3128 mark_work_canceling(work);
3129 local_irq_restore(flags);
3130
3131 /*
3132 * This allows canceling during early boot. We know that @work
3133 * isn't executing.
3134 */
3135 if (wq_online)
3136 __flush_work(work, true);
3137
3138 clear_work_data(work);
3139
3140 /*
3141 * Paired with prepare_to_wait() above so that either
3142 * waitqueue_active() is visible here or !work_is_canceling() is
3143 * visible there.
3144 */
3145 smp_mb();
3146 if (waitqueue_active(&cancel_waitq))
3147 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3148
3149 return ret;
3150 }
3151
3152 /**
3153 * cancel_work_sync - cancel a work and wait for it to finish
3154 * @work: the work to cancel
3155 *
3156 * Cancel @work and wait for its execution to finish. This function
3157 * can be used even if the work re-queues itself or migrates to
3158 * another workqueue. On return from this function, @work is
3159 * guaranteed to be not pending or executing on any CPU.
3160 *
3161 * cancel_work_sync(&delayed_work->work) must not be used for
3162 * delayed_work's. Use cancel_delayed_work_sync() instead.
3163 *
3164 * The caller must ensure that the workqueue on which @work was last
3165 * queued can't be destroyed before this function returns.
3166 *
3167 * Return:
3168 * %true if @work was pending, %false otherwise.
3169 */
cancel_work_sync(struct work_struct * work)3170 bool cancel_work_sync(struct work_struct *work)
3171 {
3172 return __cancel_work_timer(work, false);
3173 }
3174 EXPORT_SYMBOL_GPL(cancel_work_sync);
3175
3176 /**
3177 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3178 * @dwork: the delayed work to flush
3179 *
3180 * Delayed timer is cancelled and the pending work is queued for
3181 * immediate execution. Like flush_work(), this function only
3182 * considers the last queueing instance of @dwork.
3183 *
3184 * Return:
3185 * %true if flush_work() waited for the work to finish execution,
3186 * %false if it was already idle.
3187 */
flush_delayed_work(struct delayed_work * dwork)3188 bool flush_delayed_work(struct delayed_work *dwork)
3189 {
3190 local_irq_disable();
3191 if (del_timer_sync(&dwork->timer))
3192 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3193 local_irq_enable();
3194 return flush_work(&dwork->work);
3195 }
3196 EXPORT_SYMBOL(flush_delayed_work);
3197
3198 /**
3199 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3200 * @rwork: the rcu work to flush
3201 *
3202 * Return:
3203 * %true if flush_rcu_work() waited for the work to finish execution,
3204 * %false if it was already idle.
3205 */
flush_rcu_work(struct rcu_work * rwork)3206 bool flush_rcu_work(struct rcu_work *rwork)
3207 {
3208 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3209 rcu_barrier();
3210 flush_work(&rwork->work);
3211 return true;
3212 } else {
3213 return flush_work(&rwork->work);
3214 }
3215 }
3216 EXPORT_SYMBOL(flush_rcu_work);
3217
__cancel_work(struct work_struct * work,bool is_dwork)3218 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3219 {
3220 unsigned long flags;
3221 int ret;
3222
3223 do {
3224 ret = try_to_grab_pending(work, is_dwork, &flags);
3225 } while (unlikely(ret == -EAGAIN));
3226
3227 if (unlikely(ret < 0))
3228 return false;
3229
3230 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3231 local_irq_restore(flags);
3232 return ret;
3233 }
3234
3235 /**
3236 * cancel_delayed_work - cancel a delayed work
3237 * @dwork: delayed_work to cancel
3238 *
3239 * Kill off a pending delayed_work.
3240 *
3241 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3242 * pending.
3243 *
3244 * Note:
3245 * The work callback function may still be running on return, unless
3246 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3247 * use cancel_delayed_work_sync() to wait on it.
3248 *
3249 * This function is safe to call from any context including IRQ handler.
3250 */
cancel_delayed_work(struct delayed_work * dwork)3251 bool cancel_delayed_work(struct delayed_work *dwork)
3252 {
3253 return __cancel_work(&dwork->work, true);
3254 }
3255 EXPORT_SYMBOL(cancel_delayed_work);
3256
3257 /**
3258 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3259 * @dwork: the delayed work cancel
3260 *
3261 * This is cancel_work_sync() for delayed works.
3262 *
3263 * Return:
3264 * %true if @dwork was pending, %false otherwise.
3265 */
cancel_delayed_work_sync(struct delayed_work * dwork)3266 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3267 {
3268 return __cancel_work_timer(&dwork->work, true);
3269 }
3270 EXPORT_SYMBOL(cancel_delayed_work_sync);
3271
3272 /**
3273 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3274 * @func: the function to call
3275 *
3276 * schedule_on_each_cpu() executes @func on each online CPU using the
3277 * system workqueue and blocks until all CPUs have completed.
3278 * schedule_on_each_cpu() is very slow.
3279 *
3280 * Return:
3281 * 0 on success, -errno on failure.
3282 */
schedule_on_each_cpu(work_func_t func)3283 int schedule_on_each_cpu(work_func_t func)
3284 {
3285 int cpu;
3286 struct work_struct __percpu *works;
3287
3288 works = alloc_percpu(struct work_struct);
3289 if (!works)
3290 return -ENOMEM;
3291
3292 get_online_cpus();
3293
3294 for_each_online_cpu(cpu) {
3295 struct work_struct *work = per_cpu_ptr(works, cpu);
3296
3297 INIT_WORK(work, func);
3298 schedule_work_on(cpu, work);
3299 }
3300
3301 for_each_online_cpu(cpu)
3302 flush_work(per_cpu_ptr(works, cpu));
3303
3304 put_online_cpus();
3305 free_percpu(works);
3306 return 0;
3307 }
3308
3309 /**
3310 * execute_in_process_context - reliably execute the routine with user context
3311 * @fn: the function to execute
3312 * @ew: guaranteed storage for the execute work structure (must
3313 * be available when the work executes)
3314 *
3315 * Executes the function immediately if process context is available,
3316 * otherwise schedules the function for delayed execution.
3317 *
3318 * Return: 0 - function was executed
3319 * 1 - function was scheduled for execution
3320 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3321 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3322 {
3323 if (!in_interrupt()) {
3324 fn(&ew->work);
3325 return 0;
3326 }
3327
3328 INIT_WORK(&ew->work, fn);
3329 schedule_work(&ew->work);
3330
3331 return 1;
3332 }
3333 EXPORT_SYMBOL_GPL(execute_in_process_context);
3334
3335 /**
3336 * free_workqueue_attrs - free a workqueue_attrs
3337 * @attrs: workqueue_attrs to free
3338 *
3339 * Undo alloc_workqueue_attrs().
3340 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3341 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3342 {
3343 if (attrs) {
3344 free_cpumask_var(attrs->cpumask);
3345 kfree(attrs);
3346 }
3347 }
3348
3349 /**
3350 * alloc_workqueue_attrs - allocate a workqueue_attrs
3351 *
3352 * Allocate a new workqueue_attrs, initialize with default settings and
3353 * return it.
3354 *
3355 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3356 */
alloc_workqueue_attrs(void)3357 struct workqueue_attrs *alloc_workqueue_attrs(void)
3358 {
3359 struct workqueue_attrs *attrs;
3360
3361 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3362 if (!attrs)
3363 goto fail;
3364 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3365 goto fail;
3366
3367 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3368 return attrs;
3369 fail:
3370 free_workqueue_attrs(attrs);
3371 return NULL;
3372 }
3373
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3374 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3375 const struct workqueue_attrs *from)
3376 {
3377 to->nice = from->nice;
3378 cpumask_copy(to->cpumask, from->cpumask);
3379 /*
3380 * Unlike hash and equality test, this function doesn't ignore
3381 * ->no_numa as it is used for both pool and wq attrs. Instead,
3382 * get_unbound_pool() explicitly clears ->no_numa after copying.
3383 */
3384 to->no_numa = from->no_numa;
3385 }
3386
3387 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3388 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3389 {
3390 u32 hash = 0;
3391
3392 hash = jhash_1word(attrs->nice, hash);
3393 hash = jhash(cpumask_bits(attrs->cpumask),
3394 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3395 return hash;
3396 }
3397
3398 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3399 static bool wqattrs_equal(const struct workqueue_attrs *a,
3400 const struct workqueue_attrs *b)
3401 {
3402 if (a->nice != b->nice)
3403 return false;
3404 if (!cpumask_equal(a->cpumask, b->cpumask))
3405 return false;
3406 return true;
3407 }
3408
3409 /**
3410 * init_worker_pool - initialize a newly zalloc'd worker_pool
3411 * @pool: worker_pool to initialize
3412 *
3413 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3414 *
3415 * Return: 0 on success, -errno on failure. Even on failure, all fields
3416 * inside @pool proper are initialized and put_unbound_pool() can be called
3417 * on @pool safely to release it.
3418 */
init_worker_pool(struct worker_pool * pool)3419 static int init_worker_pool(struct worker_pool *pool)
3420 {
3421 raw_spin_lock_init(&pool->lock);
3422 pool->id = -1;
3423 pool->cpu = -1;
3424 pool->node = NUMA_NO_NODE;
3425 pool->flags |= POOL_DISASSOCIATED;
3426 pool->watchdog_ts = jiffies;
3427 INIT_LIST_HEAD(&pool->worklist);
3428 INIT_LIST_HEAD(&pool->idle_list);
3429 hash_init(pool->busy_hash);
3430
3431 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3432
3433 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3434
3435 INIT_LIST_HEAD(&pool->workers);
3436
3437 ida_init(&pool->worker_ida);
3438 INIT_HLIST_NODE(&pool->hash_node);
3439 pool->refcnt = 1;
3440
3441 /* shouldn't fail above this point */
3442 pool->attrs = alloc_workqueue_attrs();
3443 if (!pool->attrs)
3444 return -ENOMEM;
3445 return 0;
3446 }
3447
3448 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3449 static void wq_init_lockdep(struct workqueue_struct *wq)
3450 {
3451 char *lock_name;
3452
3453 lockdep_register_key(&wq->key);
3454 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3455 if (!lock_name)
3456 lock_name = wq->name;
3457
3458 wq->lock_name = lock_name;
3459 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3460 }
3461
wq_unregister_lockdep(struct workqueue_struct * wq)3462 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3463 {
3464 lockdep_unregister_key(&wq->key);
3465 }
3466
wq_free_lockdep(struct workqueue_struct * wq)3467 static void wq_free_lockdep(struct workqueue_struct *wq)
3468 {
3469 if (wq->lock_name != wq->name)
3470 kfree(wq->lock_name);
3471 }
3472 #else
wq_init_lockdep(struct workqueue_struct * wq)3473 static void wq_init_lockdep(struct workqueue_struct *wq)
3474 {
3475 }
3476
wq_unregister_lockdep(struct workqueue_struct * wq)3477 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3478 {
3479 }
3480
wq_free_lockdep(struct workqueue_struct * wq)3481 static void wq_free_lockdep(struct workqueue_struct *wq)
3482 {
3483 }
3484 #endif
3485
rcu_free_wq(struct rcu_head * rcu)3486 static void rcu_free_wq(struct rcu_head *rcu)
3487 {
3488 struct workqueue_struct *wq =
3489 container_of(rcu, struct workqueue_struct, rcu);
3490
3491 wq_free_lockdep(wq);
3492
3493 if (!(wq->flags & WQ_UNBOUND))
3494 free_percpu(wq->cpu_pwqs);
3495 else
3496 free_workqueue_attrs(wq->unbound_attrs);
3497
3498 kfree(wq);
3499 }
3500
rcu_free_pool(struct rcu_head * rcu)3501 static void rcu_free_pool(struct rcu_head *rcu)
3502 {
3503 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3504
3505 ida_destroy(&pool->worker_ida);
3506 free_workqueue_attrs(pool->attrs);
3507 kfree(pool);
3508 }
3509
3510 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3511 static bool wq_manager_inactive(struct worker_pool *pool)
3512 {
3513 raw_spin_lock_irq(&pool->lock);
3514
3515 if (pool->flags & POOL_MANAGER_ACTIVE) {
3516 raw_spin_unlock_irq(&pool->lock);
3517 return false;
3518 }
3519 return true;
3520 }
3521
3522 /**
3523 * put_unbound_pool - put a worker_pool
3524 * @pool: worker_pool to put
3525 *
3526 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3527 * safe manner. get_unbound_pool() calls this function on its failure path
3528 * and this function should be able to release pools which went through,
3529 * successfully or not, init_worker_pool().
3530 *
3531 * Should be called with wq_pool_mutex held.
3532 */
put_unbound_pool(struct worker_pool * pool)3533 static void put_unbound_pool(struct worker_pool *pool)
3534 {
3535 DECLARE_COMPLETION_ONSTACK(detach_completion);
3536 struct worker *worker;
3537
3538 lockdep_assert_held(&wq_pool_mutex);
3539
3540 if (--pool->refcnt)
3541 return;
3542
3543 /* sanity checks */
3544 if (WARN_ON(!(pool->cpu < 0)) ||
3545 WARN_ON(!list_empty(&pool->worklist)))
3546 return;
3547
3548 /* release id and unhash */
3549 if (pool->id >= 0)
3550 idr_remove(&worker_pool_idr, pool->id);
3551 hash_del(&pool->hash_node);
3552
3553 /*
3554 * Become the manager and destroy all workers. This prevents
3555 * @pool's workers from blocking on attach_mutex. We're the last
3556 * manager and @pool gets freed with the flag set.
3557 * Because of how wq_manager_inactive() works, we will hold the
3558 * spinlock after a successful wait.
3559 */
3560 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3561 TASK_UNINTERRUPTIBLE);
3562 pool->flags |= POOL_MANAGER_ACTIVE;
3563
3564 while ((worker = first_idle_worker(pool)))
3565 destroy_worker(worker);
3566 WARN_ON(pool->nr_workers || pool->nr_idle);
3567 raw_spin_unlock_irq(&pool->lock);
3568
3569 mutex_lock(&wq_pool_attach_mutex);
3570 if (!list_empty(&pool->workers))
3571 pool->detach_completion = &detach_completion;
3572 mutex_unlock(&wq_pool_attach_mutex);
3573
3574 if (pool->detach_completion)
3575 wait_for_completion(pool->detach_completion);
3576
3577 /* shut down the timers */
3578 del_timer_sync(&pool->idle_timer);
3579 del_timer_sync(&pool->mayday_timer);
3580
3581 /* RCU protected to allow dereferences from get_work_pool() */
3582 call_rcu(&pool->rcu, rcu_free_pool);
3583 }
3584
3585 /**
3586 * get_unbound_pool - get a worker_pool with the specified attributes
3587 * @attrs: the attributes of the worker_pool to get
3588 *
3589 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3590 * reference count and return it. If there already is a matching
3591 * worker_pool, it will be used; otherwise, this function attempts to
3592 * create a new one.
3593 *
3594 * Should be called with wq_pool_mutex held.
3595 *
3596 * Return: On success, a worker_pool with the same attributes as @attrs.
3597 * On failure, %NULL.
3598 */
get_unbound_pool(const struct workqueue_attrs * attrs)3599 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3600 {
3601 u32 hash = wqattrs_hash(attrs);
3602 struct worker_pool *pool;
3603 int node;
3604 int target_node = NUMA_NO_NODE;
3605
3606 lockdep_assert_held(&wq_pool_mutex);
3607
3608 /* do we already have a matching pool? */
3609 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3610 if (wqattrs_equal(pool->attrs, attrs)) {
3611 pool->refcnt++;
3612 return pool;
3613 }
3614 }
3615
3616 /* if cpumask is contained inside a NUMA node, we belong to that node */
3617 if (wq_numa_enabled) {
3618 for_each_node(node) {
3619 if (cpumask_subset(attrs->cpumask,
3620 wq_numa_possible_cpumask[node])) {
3621 target_node = node;
3622 break;
3623 }
3624 }
3625 }
3626
3627 /* nope, create a new one */
3628 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3629 if (!pool || init_worker_pool(pool) < 0)
3630 goto fail;
3631
3632 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3633 copy_workqueue_attrs(pool->attrs, attrs);
3634 pool->node = target_node;
3635
3636 /*
3637 * no_numa isn't a worker_pool attribute, always clear it. See
3638 * 'struct workqueue_attrs' comments for detail.
3639 */
3640 pool->attrs->no_numa = false;
3641
3642 if (worker_pool_assign_id(pool) < 0)
3643 goto fail;
3644
3645 /* create and start the initial worker */
3646 if (wq_online && !create_worker(pool))
3647 goto fail;
3648
3649 /* install */
3650 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3651
3652 return pool;
3653 fail:
3654 if (pool)
3655 put_unbound_pool(pool);
3656 return NULL;
3657 }
3658
rcu_free_pwq(struct rcu_head * rcu)3659 static void rcu_free_pwq(struct rcu_head *rcu)
3660 {
3661 kmem_cache_free(pwq_cache,
3662 container_of(rcu, struct pool_workqueue, rcu));
3663 }
3664
3665 /*
3666 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3667 * and needs to be destroyed.
3668 */
pwq_unbound_release_workfn(struct work_struct * work)3669 static void pwq_unbound_release_workfn(struct work_struct *work)
3670 {
3671 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3672 unbound_release_work);
3673 struct workqueue_struct *wq = pwq->wq;
3674 struct worker_pool *pool = pwq->pool;
3675 bool is_last;
3676
3677 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3678 return;
3679
3680 mutex_lock(&wq->mutex);
3681 list_del_rcu(&pwq->pwqs_node);
3682 is_last = list_empty(&wq->pwqs);
3683 mutex_unlock(&wq->mutex);
3684
3685 mutex_lock(&wq_pool_mutex);
3686 put_unbound_pool(pool);
3687 mutex_unlock(&wq_pool_mutex);
3688
3689 call_rcu(&pwq->rcu, rcu_free_pwq);
3690
3691 /*
3692 * If we're the last pwq going away, @wq is already dead and no one
3693 * is gonna access it anymore. Schedule RCU free.
3694 */
3695 if (is_last) {
3696 wq_unregister_lockdep(wq);
3697 call_rcu(&wq->rcu, rcu_free_wq);
3698 }
3699 }
3700
3701 /**
3702 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3703 * @pwq: target pool_workqueue
3704 *
3705 * If @pwq isn't freezing, set @pwq->max_active to the associated
3706 * workqueue's saved_max_active and activate delayed work items
3707 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3708 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3709 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3710 {
3711 struct workqueue_struct *wq = pwq->wq;
3712 bool freezable = wq->flags & WQ_FREEZABLE;
3713 unsigned long flags;
3714
3715 /* for @wq->saved_max_active */
3716 lockdep_assert_held(&wq->mutex);
3717
3718 /* fast exit for non-freezable wqs */
3719 if (!freezable && pwq->max_active == wq->saved_max_active)
3720 return;
3721
3722 /* this function can be called during early boot w/ irq disabled */
3723 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3724
3725 /*
3726 * During [un]freezing, the caller is responsible for ensuring that
3727 * this function is called at least once after @workqueue_freezing
3728 * is updated and visible.
3729 */
3730 if (!freezable || !workqueue_freezing) {
3731 pwq->max_active = wq->saved_max_active;
3732
3733 while (!list_empty(&pwq->delayed_works) &&
3734 pwq->nr_active < pwq->max_active)
3735 pwq_activate_first_delayed(pwq);
3736
3737 /*
3738 * Need to kick a worker after thawed or an unbound wq's
3739 * max_active is bumped. It's a slow path. Do it always.
3740 */
3741 wake_up_worker(pwq->pool);
3742 } else {
3743 pwq->max_active = 0;
3744 }
3745
3746 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3747 }
3748
3749 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3750 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3751 struct worker_pool *pool)
3752 {
3753 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3754
3755 memset(pwq, 0, sizeof(*pwq));
3756
3757 pwq->pool = pool;
3758 pwq->wq = wq;
3759 pwq->flush_color = -1;
3760 pwq->refcnt = 1;
3761 INIT_LIST_HEAD(&pwq->delayed_works);
3762 INIT_LIST_HEAD(&pwq->pwqs_node);
3763 INIT_LIST_HEAD(&pwq->mayday_node);
3764 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3765 }
3766
3767 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3768 static void link_pwq(struct pool_workqueue *pwq)
3769 {
3770 struct workqueue_struct *wq = pwq->wq;
3771
3772 lockdep_assert_held(&wq->mutex);
3773
3774 /* may be called multiple times, ignore if already linked */
3775 if (!list_empty(&pwq->pwqs_node))
3776 return;
3777
3778 /* set the matching work_color */
3779 pwq->work_color = wq->work_color;
3780
3781 /* sync max_active to the current setting */
3782 pwq_adjust_max_active(pwq);
3783
3784 /* link in @pwq */
3785 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3786 }
3787
3788 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3789 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3790 const struct workqueue_attrs *attrs)
3791 {
3792 struct worker_pool *pool;
3793 struct pool_workqueue *pwq;
3794
3795 lockdep_assert_held(&wq_pool_mutex);
3796
3797 pool = get_unbound_pool(attrs);
3798 if (!pool)
3799 return NULL;
3800
3801 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3802 if (!pwq) {
3803 put_unbound_pool(pool);
3804 return NULL;
3805 }
3806
3807 init_pwq(pwq, wq, pool);
3808 return pwq;
3809 }
3810
3811 /**
3812 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3813 * @attrs: the wq_attrs of the default pwq of the target workqueue
3814 * @node: the target NUMA node
3815 * @cpu_going_down: if >= 0, the CPU to consider as offline
3816 * @cpumask: outarg, the resulting cpumask
3817 *
3818 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3819 * @cpu_going_down is >= 0, that cpu is considered offline during
3820 * calculation. The result is stored in @cpumask.
3821 *
3822 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3823 * enabled and @node has online CPUs requested by @attrs, the returned
3824 * cpumask is the intersection of the possible CPUs of @node and
3825 * @attrs->cpumask.
3826 *
3827 * The caller is responsible for ensuring that the cpumask of @node stays
3828 * stable.
3829 *
3830 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3831 * %false if equal.
3832 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3833 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3834 int cpu_going_down, cpumask_t *cpumask)
3835 {
3836 if (!wq_numa_enabled || attrs->no_numa)
3837 goto use_dfl;
3838
3839 /* does @node have any online CPUs @attrs wants? */
3840 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3841 if (cpu_going_down >= 0)
3842 cpumask_clear_cpu(cpu_going_down, cpumask);
3843
3844 if (cpumask_empty(cpumask))
3845 goto use_dfl;
3846
3847 /* yeap, return possible CPUs in @node that @attrs wants */
3848 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3849
3850 if (cpumask_empty(cpumask)) {
3851 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3852 "possible intersect\n");
3853 return false;
3854 }
3855
3856 return !cpumask_equal(cpumask, attrs->cpumask);
3857
3858 use_dfl:
3859 cpumask_copy(cpumask, attrs->cpumask);
3860 return false;
3861 }
3862
3863 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3864 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3865 int node,
3866 struct pool_workqueue *pwq)
3867 {
3868 struct pool_workqueue *old_pwq;
3869
3870 lockdep_assert_held(&wq_pool_mutex);
3871 lockdep_assert_held(&wq->mutex);
3872
3873 /* link_pwq() can handle duplicate calls */
3874 link_pwq(pwq);
3875
3876 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3877 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3878 return old_pwq;
3879 }
3880
3881 /* context to store the prepared attrs & pwqs before applying */
3882 struct apply_wqattrs_ctx {
3883 struct workqueue_struct *wq; /* target workqueue */
3884 struct workqueue_attrs *attrs; /* attrs to apply */
3885 struct list_head list; /* queued for batching commit */
3886 struct pool_workqueue *dfl_pwq;
3887 struct pool_workqueue *pwq_tbl[];
3888 };
3889
3890 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3891 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3892 {
3893 if (ctx) {
3894 int node;
3895
3896 for_each_node(node)
3897 put_pwq_unlocked(ctx->pwq_tbl[node]);
3898 put_pwq_unlocked(ctx->dfl_pwq);
3899
3900 free_workqueue_attrs(ctx->attrs);
3901
3902 kfree(ctx);
3903 }
3904 }
3905
3906 /* allocate the attrs and pwqs for later installation */
3907 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3908 apply_wqattrs_prepare(struct workqueue_struct *wq,
3909 const struct workqueue_attrs *attrs)
3910 {
3911 struct apply_wqattrs_ctx *ctx;
3912 struct workqueue_attrs *new_attrs, *tmp_attrs;
3913 int node;
3914
3915 lockdep_assert_held(&wq_pool_mutex);
3916
3917 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3918
3919 new_attrs = alloc_workqueue_attrs();
3920 tmp_attrs = alloc_workqueue_attrs();
3921 if (!ctx || !new_attrs || !tmp_attrs)
3922 goto out_free;
3923
3924 /*
3925 * Calculate the attrs of the default pwq.
3926 * If the user configured cpumask doesn't overlap with the
3927 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3928 */
3929 copy_workqueue_attrs(new_attrs, attrs);
3930 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3931 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3932 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3933
3934 /*
3935 * We may create multiple pwqs with differing cpumasks. Make a
3936 * copy of @new_attrs which will be modified and used to obtain
3937 * pools.
3938 */
3939 copy_workqueue_attrs(tmp_attrs, new_attrs);
3940
3941 /*
3942 * If something goes wrong during CPU up/down, we'll fall back to
3943 * the default pwq covering whole @attrs->cpumask. Always create
3944 * it even if we don't use it immediately.
3945 */
3946 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3947 if (!ctx->dfl_pwq)
3948 goto out_free;
3949
3950 for_each_node(node) {
3951 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3952 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3953 if (!ctx->pwq_tbl[node])
3954 goto out_free;
3955 } else {
3956 ctx->dfl_pwq->refcnt++;
3957 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3958 }
3959 }
3960
3961 /* save the user configured attrs and sanitize it. */
3962 copy_workqueue_attrs(new_attrs, attrs);
3963 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3964 ctx->attrs = new_attrs;
3965
3966 ctx->wq = wq;
3967 free_workqueue_attrs(tmp_attrs);
3968 return ctx;
3969
3970 out_free:
3971 free_workqueue_attrs(tmp_attrs);
3972 free_workqueue_attrs(new_attrs);
3973 apply_wqattrs_cleanup(ctx);
3974 return NULL;
3975 }
3976
3977 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3978 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3979 {
3980 int node;
3981
3982 /* all pwqs have been created successfully, let's install'em */
3983 mutex_lock(&ctx->wq->mutex);
3984
3985 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3986
3987 /* save the previous pwq and install the new one */
3988 for_each_node(node)
3989 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3990 ctx->pwq_tbl[node]);
3991
3992 /* @dfl_pwq might not have been used, ensure it's linked */
3993 link_pwq(ctx->dfl_pwq);
3994 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3995
3996 mutex_unlock(&ctx->wq->mutex);
3997 }
3998
apply_wqattrs_lock(void)3999 static void apply_wqattrs_lock(void)
4000 {
4001 /* CPUs should stay stable across pwq creations and installations */
4002 get_online_cpus();
4003 mutex_lock(&wq_pool_mutex);
4004 }
4005
apply_wqattrs_unlock(void)4006 static void apply_wqattrs_unlock(void)
4007 {
4008 mutex_unlock(&wq_pool_mutex);
4009 put_online_cpus();
4010 }
4011
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4012 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4013 const struct workqueue_attrs *attrs)
4014 {
4015 struct apply_wqattrs_ctx *ctx;
4016
4017 /* only unbound workqueues can change attributes */
4018 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4019 return -EINVAL;
4020
4021 /* creating multiple pwqs breaks ordering guarantee */
4022 if (!list_empty(&wq->pwqs)) {
4023 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4024 return -EINVAL;
4025
4026 wq->flags &= ~__WQ_ORDERED;
4027 }
4028
4029 ctx = apply_wqattrs_prepare(wq, attrs);
4030 if (!ctx)
4031 return -ENOMEM;
4032
4033 /* the ctx has been prepared successfully, let's commit it */
4034 apply_wqattrs_commit(ctx);
4035 apply_wqattrs_cleanup(ctx);
4036
4037 return 0;
4038 }
4039
4040 /**
4041 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4042 * @wq: the target workqueue
4043 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4044 *
4045 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4046 * machines, this function maps a separate pwq to each NUMA node with
4047 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4048 * NUMA node it was issued on. Older pwqs are released as in-flight work
4049 * items finish. Note that a work item which repeatedly requeues itself
4050 * back-to-back will stay on its current pwq.
4051 *
4052 * Performs GFP_KERNEL allocations.
4053 *
4054 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4055 *
4056 * Return: 0 on success and -errno on failure.
4057 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4058 int apply_workqueue_attrs(struct workqueue_struct *wq,
4059 const struct workqueue_attrs *attrs)
4060 {
4061 int ret;
4062
4063 lockdep_assert_cpus_held();
4064
4065 mutex_lock(&wq_pool_mutex);
4066 ret = apply_workqueue_attrs_locked(wq, attrs);
4067 mutex_unlock(&wq_pool_mutex);
4068
4069 return ret;
4070 }
4071
4072 /**
4073 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4074 * @wq: the target workqueue
4075 * @cpu: the CPU coming up or going down
4076 * @online: whether @cpu is coming up or going down
4077 *
4078 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4079 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4080 * @wq accordingly.
4081 *
4082 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4083 * falls back to @wq->dfl_pwq which may not be optimal but is always
4084 * correct.
4085 *
4086 * Note that when the last allowed CPU of a NUMA node goes offline for a
4087 * workqueue with a cpumask spanning multiple nodes, the workers which were
4088 * already executing the work items for the workqueue will lose their CPU
4089 * affinity and may execute on any CPU. This is similar to how per-cpu
4090 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4091 * affinity, it's the user's responsibility to flush the work item from
4092 * CPU_DOWN_PREPARE.
4093 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4094 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4095 bool online)
4096 {
4097 int node = cpu_to_node(cpu);
4098 int cpu_off = online ? -1 : cpu;
4099 struct pool_workqueue *old_pwq = NULL, *pwq;
4100 struct workqueue_attrs *target_attrs;
4101 cpumask_t *cpumask;
4102
4103 lockdep_assert_held(&wq_pool_mutex);
4104
4105 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4106 wq->unbound_attrs->no_numa)
4107 return;
4108
4109 /*
4110 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4111 * Let's use a preallocated one. The following buf is protected by
4112 * CPU hotplug exclusion.
4113 */
4114 target_attrs = wq_update_unbound_numa_attrs_buf;
4115 cpumask = target_attrs->cpumask;
4116
4117 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4118 pwq = unbound_pwq_by_node(wq, node);
4119
4120 /*
4121 * Let's determine what needs to be done. If the target cpumask is
4122 * different from the default pwq's, we need to compare it to @pwq's
4123 * and create a new one if they don't match. If the target cpumask
4124 * equals the default pwq's, the default pwq should be used.
4125 */
4126 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4127 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4128 return;
4129 } else {
4130 goto use_dfl_pwq;
4131 }
4132
4133 /* create a new pwq */
4134 pwq = alloc_unbound_pwq(wq, target_attrs);
4135 if (!pwq) {
4136 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4137 wq->name);
4138 goto use_dfl_pwq;
4139 }
4140
4141 /* Install the new pwq. */
4142 mutex_lock(&wq->mutex);
4143 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4144 goto out_unlock;
4145
4146 use_dfl_pwq:
4147 mutex_lock(&wq->mutex);
4148 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4149 get_pwq(wq->dfl_pwq);
4150 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4151 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4152 out_unlock:
4153 mutex_unlock(&wq->mutex);
4154 put_pwq_unlocked(old_pwq);
4155 }
4156
alloc_and_link_pwqs(struct workqueue_struct * wq)4157 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4158 {
4159 bool highpri = wq->flags & WQ_HIGHPRI;
4160 int cpu, ret;
4161
4162 if (!(wq->flags & WQ_UNBOUND)) {
4163 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4164 if (!wq->cpu_pwqs)
4165 return -ENOMEM;
4166
4167 for_each_possible_cpu(cpu) {
4168 struct pool_workqueue *pwq =
4169 per_cpu_ptr(wq->cpu_pwqs, cpu);
4170 struct worker_pool *cpu_pools =
4171 per_cpu(cpu_worker_pools, cpu);
4172
4173 init_pwq(pwq, wq, &cpu_pools[highpri]);
4174
4175 mutex_lock(&wq->mutex);
4176 link_pwq(pwq);
4177 mutex_unlock(&wq->mutex);
4178 }
4179 return 0;
4180 }
4181
4182 get_online_cpus();
4183 if (wq->flags & __WQ_ORDERED) {
4184 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4185 /* there should only be single pwq for ordering guarantee */
4186 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4187 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4188 "ordering guarantee broken for workqueue %s\n", wq->name);
4189 } else {
4190 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4191 }
4192 put_online_cpus();
4193
4194 return ret;
4195 }
4196
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4197 static int wq_clamp_max_active(int max_active, unsigned int flags,
4198 const char *name)
4199 {
4200 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4201
4202 if (max_active < 1 || max_active > lim)
4203 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4204 max_active, name, 1, lim);
4205
4206 return clamp_val(max_active, 1, lim);
4207 }
4208
4209 /*
4210 * Workqueues which may be used during memory reclaim should have a rescuer
4211 * to guarantee forward progress.
4212 */
init_rescuer(struct workqueue_struct * wq)4213 static int init_rescuer(struct workqueue_struct *wq)
4214 {
4215 struct worker *rescuer;
4216 int ret;
4217
4218 if (!(wq->flags & WQ_MEM_RECLAIM))
4219 return 0;
4220
4221 rescuer = alloc_worker(NUMA_NO_NODE);
4222 if (!rescuer)
4223 return -ENOMEM;
4224
4225 rescuer->rescue_wq = wq;
4226 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4227 if (IS_ERR(rescuer->task)) {
4228 ret = PTR_ERR(rescuer->task);
4229 kfree(rescuer);
4230 return ret;
4231 }
4232
4233 wq->rescuer = rescuer;
4234 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4235 wake_up_process(rescuer->task);
4236
4237 return 0;
4238 }
4239
4240 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4241 struct workqueue_struct *alloc_workqueue(const char *fmt,
4242 unsigned int flags,
4243 int max_active, ...)
4244 {
4245 size_t tbl_size = 0;
4246 va_list args;
4247 struct workqueue_struct *wq;
4248 struct pool_workqueue *pwq;
4249
4250 /*
4251 * Unbound && max_active == 1 used to imply ordered, which is no
4252 * longer the case on NUMA machines due to per-node pools. While
4253 * alloc_ordered_workqueue() is the right way to create an ordered
4254 * workqueue, keep the previous behavior to avoid subtle breakages
4255 * on NUMA.
4256 */
4257 if ((flags & WQ_UNBOUND) && max_active == 1)
4258 flags |= __WQ_ORDERED;
4259
4260 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4261 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4262 flags |= WQ_UNBOUND;
4263
4264 /* allocate wq and format name */
4265 if (flags & WQ_UNBOUND)
4266 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4267
4268 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4269 if (!wq)
4270 return NULL;
4271
4272 if (flags & WQ_UNBOUND) {
4273 wq->unbound_attrs = alloc_workqueue_attrs();
4274 if (!wq->unbound_attrs)
4275 goto err_free_wq;
4276 }
4277
4278 va_start(args, max_active);
4279 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4280 va_end(args);
4281
4282 max_active = max_active ?: WQ_DFL_ACTIVE;
4283 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4284
4285 /* init wq */
4286 wq->flags = flags;
4287 wq->saved_max_active = max_active;
4288 mutex_init(&wq->mutex);
4289 atomic_set(&wq->nr_pwqs_to_flush, 0);
4290 INIT_LIST_HEAD(&wq->pwqs);
4291 INIT_LIST_HEAD(&wq->flusher_queue);
4292 INIT_LIST_HEAD(&wq->flusher_overflow);
4293 INIT_LIST_HEAD(&wq->maydays);
4294
4295 wq_init_lockdep(wq);
4296 INIT_LIST_HEAD(&wq->list);
4297
4298 if (alloc_and_link_pwqs(wq) < 0)
4299 goto err_unreg_lockdep;
4300
4301 if (wq_online && init_rescuer(wq) < 0)
4302 goto err_destroy;
4303
4304 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4305 goto err_destroy;
4306
4307 /*
4308 * wq_pool_mutex protects global freeze state and workqueues list.
4309 * Grab it, adjust max_active and add the new @wq to workqueues
4310 * list.
4311 */
4312 mutex_lock(&wq_pool_mutex);
4313
4314 mutex_lock(&wq->mutex);
4315 for_each_pwq(pwq, wq)
4316 pwq_adjust_max_active(pwq);
4317 mutex_unlock(&wq->mutex);
4318
4319 list_add_tail_rcu(&wq->list, &workqueues);
4320
4321 mutex_unlock(&wq_pool_mutex);
4322
4323 return wq;
4324
4325 err_unreg_lockdep:
4326 wq_unregister_lockdep(wq);
4327 wq_free_lockdep(wq);
4328 err_free_wq:
4329 free_workqueue_attrs(wq->unbound_attrs);
4330 kfree(wq);
4331 return NULL;
4332 err_destroy:
4333 destroy_workqueue(wq);
4334 return NULL;
4335 }
4336 EXPORT_SYMBOL_GPL(alloc_workqueue);
4337
pwq_busy(struct pool_workqueue * pwq)4338 static bool pwq_busy(struct pool_workqueue *pwq)
4339 {
4340 int i;
4341
4342 for (i = 0; i < WORK_NR_COLORS; i++)
4343 if (pwq->nr_in_flight[i])
4344 return true;
4345
4346 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4347 return true;
4348 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4349 return true;
4350
4351 return false;
4352 }
4353
4354 /**
4355 * destroy_workqueue - safely terminate a workqueue
4356 * @wq: target workqueue
4357 *
4358 * Safely destroy a workqueue. All work currently pending will be done first.
4359 */
destroy_workqueue(struct workqueue_struct * wq)4360 void destroy_workqueue(struct workqueue_struct *wq)
4361 {
4362 struct pool_workqueue *pwq;
4363 int node;
4364
4365 /*
4366 * Remove it from sysfs first so that sanity check failure doesn't
4367 * lead to sysfs name conflicts.
4368 */
4369 workqueue_sysfs_unregister(wq);
4370
4371 /* drain it before proceeding with destruction */
4372 drain_workqueue(wq);
4373
4374 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4375 if (wq->rescuer) {
4376 struct worker *rescuer = wq->rescuer;
4377
4378 /* this prevents new queueing */
4379 raw_spin_lock_irq(&wq_mayday_lock);
4380 wq->rescuer = NULL;
4381 raw_spin_unlock_irq(&wq_mayday_lock);
4382
4383 /* rescuer will empty maydays list before exiting */
4384 kthread_stop(rescuer->task);
4385 kfree(rescuer);
4386 }
4387
4388 /*
4389 * Sanity checks - grab all the locks so that we wait for all
4390 * in-flight operations which may do put_pwq().
4391 */
4392 mutex_lock(&wq_pool_mutex);
4393 mutex_lock(&wq->mutex);
4394 for_each_pwq(pwq, wq) {
4395 raw_spin_lock_irq(&pwq->pool->lock);
4396 if (WARN_ON(pwq_busy(pwq))) {
4397 pr_warn("%s: %s has the following busy pwq\n",
4398 __func__, wq->name);
4399 show_pwq(pwq);
4400 raw_spin_unlock_irq(&pwq->pool->lock);
4401 mutex_unlock(&wq->mutex);
4402 mutex_unlock(&wq_pool_mutex);
4403 show_workqueue_state();
4404 return;
4405 }
4406 raw_spin_unlock_irq(&pwq->pool->lock);
4407 }
4408 mutex_unlock(&wq->mutex);
4409
4410 /*
4411 * wq list is used to freeze wq, remove from list after
4412 * flushing is complete in case freeze races us.
4413 */
4414 list_del_rcu(&wq->list);
4415 mutex_unlock(&wq_pool_mutex);
4416
4417 if (!(wq->flags & WQ_UNBOUND)) {
4418 wq_unregister_lockdep(wq);
4419 /*
4420 * The base ref is never dropped on per-cpu pwqs. Directly
4421 * schedule RCU free.
4422 */
4423 call_rcu(&wq->rcu, rcu_free_wq);
4424 } else {
4425 /*
4426 * We're the sole accessor of @wq at this point. Directly
4427 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4428 * @wq will be freed when the last pwq is released.
4429 */
4430 for_each_node(node) {
4431 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4432 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4433 put_pwq_unlocked(pwq);
4434 }
4435
4436 /*
4437 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4438 * put. Don't access it afterwards.
4439 */
4440 pwq = wq->dfl_pwq;
4441 wq->dfl_pwq = NULL;
4442 put_pwq_unlocked(pwq);
4443 }
4444 }
4445 EXPORT_SYMBOL_GPL(destroy_workqueue);
4446
4447 /**
4448 * workqueue_set_max_active - adjust max_active of a workqueue
4449 * @wq: target workqueue
4450 * @max_active: new max_active value.
4451 *
4452 * Set max_active of @wq to @max_active.
4453 *
4454 * CONTEXT:
4455 * Don't call from IRQ context.
4456 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4457 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4458 {
4459 struct pool_workqueue *pwq;
4460
4461 /* disallow meddling with max_active for ordered workqueues */
4462 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4463 return;
4464
4465 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4466
4467 mutex_lock(&wq->mutex);
4468
4469 wq->flags &= ~__WQ_ORDERED;
4470 wq->saved_max_active = max_active;
4471
4472 for_each_pwq(pwq, wq)
4473 pwq_adjust_max_active(pwq);
4474
4475 mutex_unlock(&wq->mutex);
4476 }
4477 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4478
4479 /**
4480 * current_work - retrieve %current task's work struct
4481 *
4482 * Determine if %current task is a workqueue worker and what it's working on.
4483 * Useful to find out the context that the %current task is running in.
4484 *
4485 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4486 */
current_work(void)4487 struct work_struct *current_work(void)
4488 {
4489 struct worker *worker = current_wq_worker();
4490
4491 return worker ? worker->current_work : NULL;
4492 }
4493 EXPORT_SYMBOL(current_work);
4494
4495 /**
4496 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4497 *
4498 * Determine whether %current is a workqueue rescuer. Can be used from
4499 * work functions to determine whether it's being run off the rescuer task.
4500 *
4501 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4502 */
current_is_workqueue_rescuer(void)4503 bool current_is_workqueue_rescuer(void)
4504 {
4505 struct worker *worker = current_wq_worker();
4506
4507 return worker && worker->rescue_wq;
4508 }
4509
4510 /**
4511 * workqueue_congested - test whether a workqueue is congested
4512 * @cpu: CPU in question
4513 * @wq: target workqueue
4514 *
4515 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4516 * no synchronization around this function and the test result is
4517 * unreliable and only useful as advisory hints or for debugging.
4518 *
4519 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4520 * Note that both per-cpu and unbound workqueues may be associated with
4521 * multiple pool_workqueues which have separate congested states. A
4522 * workqueue being congested on one CPU doesn't mean the workqueue is also
4523 * contested on other CPUs / NUMA nodes.
4524 *
4525 * Return:
4526 * %true if congested, %false otherwise.
4527 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4528 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4529 {
4530 struct pool_workqueue *pwq;
4531 bool ret;
4532
4533 rcu_read_lock();
4534 preempt_disable();
4535
4536 if (cpu == WORK_CPU_UNBOUND)
4537 cpu = smp_processor_id();
4538
4539 if (!(wq->flags & WQ_UNBOUND))
4540 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4541 else
4542 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4543
4544 ret = !list_empty(&pwq->delayed_works);
4545 preempt_enable();
4546 rcu_read_unlock();
4547
4548 return ret;
4549 }
4550 EXPORT_SYMBOL_GPL(workqueue_congested);
4551
4552 /**
4553 * work_busy - test whether a work is currently pending or running
4554 * @work: the work to be tested
4555 *
4556 * Test whether @work is currently pending or running. There is no
4557 * synchronization around this function and the test result is
4558 * unreliable and only useful as advisory hints or for debugging.
4559 *
4560 * Return:
4561 * OR'd bitmask of WORK_BUSY_* bits.
4562 */
work_busy(struct work_struct * work)4563 unsigned int work_busy(struct work_struct *work)
4564 {
4565 struct worker_pool *pool;
4566 unsigned long flags;
4567 unsigned int ret = 0;
4568
4569 if (work_pending(work))
4570 ret |= WORK_BUSY_PENDING;
4571
4572 rcu_read_lock();
4573 pool = get_work_pool(work);
4574 if (pool) {
4575 raw_spin_lock_irqsave(&pool->lock, flags);
4576 if (find_worker_executing_work(pool, work))
4577 ret |= WORK_BUSY_RUNNING;
4578 raw_spin_unlock_irqrestore(&pool->lock, flags);
4579 }
4580 rcu_read_unlock();
4581
4582 return ret;
4583 }
4584 EXPORT_SYMBOL_GPL(work_busy);
4585
4586 /**
4587 * set_worker_desc - set description for the current work item
4588 * @fmt: printf-style format string
4589 * @...: arguments for the format string
4590 *
4591 * This function can be called by a running work function to describe what
4592 * the work item is about. If the worker task gets dumped, this
4593 * information will be printed out together to help debugging. The
4594 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4595 */
set_worker_desc(const char * fmt,...)4596 void set_worker_desc(const char *fmt, ...)
4597 {
4598 struct worker *worker = current_wq_worker();
4599 va_list args;
4600
4601 if (worker) {
4602 va_start(args, fmt);
4603 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4604 va_end(args);
4605 }
4606 }
4607 EXPORT_SYMBOL_GPL(set_worker_desc);
4608
4609 /**
4610 * print_worker_info - print out worker information and description
4611 * @log_lvl: the log level to use when printing
4612 * @task: target task
4613 *
4614 * If @task is a worker and currently executing a work item, print out the
4615 * name of the workqueue being serviced and worker description set with
4616 * set_worker_desc() by the currently executing work item.
4617 *
4618 * This function can be safely called on any task as long as the
4619 * task_struct itself is accessible. While safe, this function isn't
4620 * synchronized and may print out mixups or garbages of limited length.
4621 */
print_worker_info(const char * log_lvl,struct task_struct * task)4622 void print_worker_info(const char *log_lvl, struct task_struct *task)
4623 {
4624 work_func_t *fn = NULL;
4625 char name[WQ_NAME_LEN] = { };
4626 char desc[WORKER_DESC_LEN] = { };
4627 struct pool_workqueue *pwq = NULL;
4628 struct workqueue_struct *wq = NULL;
4629 struct worker *worker;
4630
4631 if (!(task->flags & PF_WQ_WORKER))
4632 return;
4633
4634 /*
4635 * This function is called without any synchronization and @task
4636 * could be in any state. Be careful with dereferences.
4637 */
4638 worker = kthread_probe_data(task);
4639
4640 /*
4641 * Carefully copy the associated workqueue's workfn, name and desc.
4642 * Keep the original last '\0' in case the original is garbage.
4643 */
4644 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4645 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4646 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4647 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4648 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4649
4650 if (fn || name[0] || desc[0]) {
4651 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4652 if (strcmp(name, desc))
4653 pr_cont(" (%s)", desc);
4654 pr_cont("\n");
4655 }
4656 }
4657
pr_cont_pool_info(struct worker_pool * pool)4658 static void pr_cont_pool_info(struct worker_pool *pool)
4659 {
4660 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4661 if (pool->node != NUMA_NO_NODE)
4662 pr_cont(" node=%d", pool->node);
4663 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4664 }
4665
pr_cont_work(bool comma,struct work_struct * work)4666 static void pr_cont_work(bool comma, struct work_struct *work)
4667 {
4668 if (work->func == wq_barrier_func) {
4669 struct wq_barrier *barr;
4670
4671 barr = container_of(work, struct wq_barrier, work);
4672
4673 pr_cont("%s BAR(%d)", comma ? "," : "",
4674 task_pid_nr(barr->task));
4675 } else {
4676 pr_cont("%s %ps", comma ? "," : "", work->func);
4677 }
4678 }
4679
show_pwq(struct pool_workqueue * pwq)4680 static void show_pwq(struct pool_workqueue *pwq)
4681 {
4682 struct worker_pool *pool = pwq->pool;
4683 struct work_struct *work;
4684 struct worker *worker;
4685 bool has_in_flight = false, has_pending = false;
4686 int bkt;
4687
4688 pr_info(" pwq %d:", pool->id);
4689 pr_cont_pool_info(pool);
4690
4691 pr_cont(" active=%d/%d refcnt=%d%s\n",
4692 pwq->nr_active, pwq->max_active, pwq->refcnt,
4693 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4694
4695 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4696 if (worker->current_pwq == pwq) {
4697 has_in_flight = true;
4698 break;
4699 }
4700 }
4701 if (has_in_flight) {
4702 bool comma = false;
4703
4704 pr_info(" in-flight:");
4705 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4706 if (worker->current_pwq != pwq)
4707 continue;
4708
4709 pr_cont("%s %d%s:%ps", comma ? "," : "",
4710 task_pid_nr(worker->task),
4711 worker->rescue_wq ? "(RESCUER)" : "",
4712 worker->current_func);
4713 list_for_each_entry(work, &worker->scheduled, entry)
4714 pr_cont_work(false, work);
4715 comma = true;
4716 }
4717 pr_cont("\n");
4718 }
4719
4720 list_for_each_entry(work, &pool->worklist, entry) {
4721 if (get_work_pwq(work) == pwq) {
4722 has_pending = true;
4723 break;
4724 }
4725 }
4726 if (has_pending) {
4727 bool comma = false;
4728
4729 pr_info(" pending:");
4730 list_for_each_entry(work, &pool->worklist, entry) {
4731 if (get_work_pwq(work) != pwq)
4732 continue;
4733
4734 pr_cont_work(comma, work);
4735 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4736 }
4737 pr_cont("\n");
4738 }
4739
4740 if (!list_empty(&pwq->delayed_works)) {
4741 bool comma = false;
4742
4743 pr_info(" delayed:");
4744 list_for_each_entry(work, &pwq->delayed_works, entry) {
4745 pr_cont_work(comma, work);
4746 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4747 }
4748 pr_cont("\n");
4749 }
4750 }
4751
4752 /**
4753 * show_workqueue_state - dump workqueue state
4754 *
4755 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4756 * all busy workqueues and pools.
4757 */
show_workqueue_state(void)4758 void show_workqueue_state(void)
4759 {
4760 struct workqueue_struct *wq;
4761 struct worker_pool *pool;
4762 unsigned long flags;
4763 int pi;
4764
4765 rcu_read_lock();
4766
4767 pr_info("Showing busy workqueues and worker pools:\n");
4768
4769 list_for_each_entry_rcu(wq, &workqueues, list) {
4770 struct pool_workqueue *pwq;
4771 bool idle = true;
4772
4773 for_each_pwq(pwq, wq) {
4774 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4775 idle = false;
4776 break;
4777 }
4778 }
4779 if (idle)
4780 continue;
4781
4782 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4783
4784 for_each_pwq(pwq, wq) {
4785 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4786 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4787 show_pwq(pwq);
4788 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4789 /*
4790 * We could be printing a lot from atomic context, e.g.
4791 * sysrq-t -> show_workqueue_state(). Avoid triggering
4792 * hard lockup.
4793 */
4794 touch_nmi_watchdog();
4795 }
4796 }
4797
4798 for_each_pool(pool, pi) {
4799 struct worker *worker;
4800 bool first = true;
4801
4802 raw_spin_lock_irqsave(&pool->lock, flags);
4803 if (pool->nr_workers == pool->nr_idle)
4804 goto next_pool;
4805
4806 pr_info("pool %d:", pool->id);
4807 pr_cont_pool_info(pool);
4808 pr_cont(" hung=%us workers=%d",
4809 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4810 pool->nr_workers);
4811 if (pool->manager)
4812 pr_cont(" manager: %d",
4813 task_pid_nr(pool->manager->task));
4814 list_for_each_entry(worker, &pool->idle_list, entry) {
4815 pr_cont(" %s%d", first ? "idle: " : "",
4816 task_pid_nr(worker->task));
4817 first = false;
4818 }
4819 pr_cont("\n");
4820 next_pool:
4821 raw_spin_unlock_irqrestore(&pool->lock, flags);
4822 /*
4823 * We could be printing a lot from atomic context, e.g.
4824 * sysrq-t -> show_workqueue_state(). Avoid triggering
4825 * hard lockup.
4826 */
4827 touch_nmi_watchdog();
4828 }
4829
4830 rcu_read_unlock();
4831 }
4832
4833 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4834 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4835 {
4836 int off;
4837
4838 /* always show the actual comm */
4839 off = strscpy(buf, task->comm, size);
4840 if (off < 0)
4841 return;
4842
4843 /* stabilize PF_WQ_WORKER and worker pool association */
4844 mutex_lock(&wq_pool_attach_mutex);
4845
4846 if (task->flags & PF_WQ_WORKER) {
4847 struct worker *worker = kthread_data(task);
4848 struct worker_pool *pool = worker->pool;
4849
4850 if (pool) {
4851 raw_spin_lock_irq(&pool->lock);
4852 /*
4853 * ->desc tracks information (wq name or
4854 * set_worker_desc()) for the latest execution. If
4855 * current, prepend '+', otherwise '-'.
4856 */
4857 if (worker->desc[0] != '\0') {
4858 if (worker->current_work)
4859 scnprintf(buf + off, size - off, "+%s",
4860 worker->desc);
4861 else
4862 scnprintf(buf + off, size - off, "-%s",
4863 worker->desc);
4864 }
4865 raw_spin_unlock_irq(&pool->lock);
4866 }
4867 }
4868
4869 mutex_unlock(&wq_pool_attach_mutex);
4870 }
4871
4872 #ifdef CONFIG_SMP
4873
4874 /*
4875 * CPU hotplug.
4876 *
4877 * There are two challenges in supporting CPU hotplug. Firstly, there
4878 * are a lot of assumptions on strong associations among work, pwq and
4879 * pool which make migrating pending and scheduled works very
4880 * difficult to implement without impacting hot paths. Secondly,
4881 * worker pools serve mix of short, long and very long running works making
4882 * blocked draining impractical.
4883 *
4884 * This is solved by allowing the pools to be disassociated from the CPU
4885 * running as an unbound one and allowing it to be reattached later if the
4886 * cpu comes back online.
4887 */
4888
unbind_workers(int cpu)4889 static void unbind_workers(int cpu)
4890 {
4891 struct worker_pool *pool;
4892 struct worker *worker;
4893
4894 for_each_cpu_worker_pool(pool, cpu) {
4895 mutex_lock(&wq_pool_attach_mutex);
4896 raw_spin_lock_irq(&pool->lock);
4897
4898 /*
4899 * We've blocked all attach/detach operations. Make all workers
4900 * unbound and set DISASSOCIATED. Before this, all workers
4901 * except for the ones which are still executing works from
4902 * before the last CPU down must be on the cpu. After
4903 * this, they may become diasporas.
4904 */
4905 for_each_pool_worker(worker, pool)
4906 worker->flags |= WORKER_UNBOUND;
4907
4908 pool->flags |= POOL_DISASSOCIATED;
4909
4910 raw_spin_unlock_irq(&pool->lock);
4911 mutex_unlock(&wq_pool_attach_mutex);
4912
4913 /*
4914 * Call schedule() so that we cross rq->lock and thus can
4915 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4916 * This is necessary as scheduler callbacks may be invoked
4917 * from other cpus.
4918 */
4919 schedule();
4920
4921 /*
4922 * Sched callbacks are disabled now. Zap nr_running.
4923 * After this, nr_running stays zero and need_more_worker()
4924 * and keep_working() are always true as long as the
4925 * worklist is not empty. This pool now behaves as an
4926 * unbound (in terms of concurrency management) pool which
4927 * are served by workers tied to the pool.
4928 */
4929 atomic_set(&pool->nr_running, 0);
4930
4931 /*
4932 * With concurrency management just turned off, a busy
4933 * worker blocking could lead to lengthy stalls. Kick off
4934 * unbound chain execution of currently pending work items.
4935 */
4936 raw_spin_lock_irq(&pool->lock);
4937 wake_up_worker(pool);
4938 raw_spin_unlock_irq(&pool->lock);
4939 }
4940 }
4941
4942 /**
4943 * rebind_workers - rebind all workers of a pool to the associated CPU
4944 * @pool: pool of interest
4945 *
4946 * @pool->cpu is coming online. Rebind all workers to the CPU.
4947 */
rebind_workers(struct worker_pool * pool)4948 static void rebind_workers(struct worker_pool *pool)
4949 {
4950 struct worker *worker;
4951
4952 lockdep_assert_held(&wq_pool_attach_mutex);
4953
4954 /*
4955 * Restore CPU affinity of all workers. As all idle workers should
4956 * be on the run-queue of the associated CPU before any local
4957 * wake-ups for concurrency management happen, restore CPU affinity
4958 * of all workers first and then clear UNBOUND. As we're called
4959 * from CPU_ONLINE, the following shouldn't fail.
4960 */
4961 for_each_pool_worker(worker, pool)
4962 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4963 pool->attrs->cpumask) < 0);
4964
4965 raw_spin_lock_irq(&pool->lock);
4966
4967 pool->flags &= ~POOL_DISASSOCIATED;
4968
4969 for_each_pool_worker(worker, pool) {
4970 unsigned int worker_flags = worker->flags;
4971
4972 /*
4973 * A bound idle worker should actually be on the runqueue
4974 * of the associated CPU for local wake-ups targeting it to
4975 * work. Kick all idle workers so that they migrate to the
4976 * associated CPU. Doing this in the same loop as
4977 * replacing UNBOUND with REBOUND is safe as no worker will
4978 * be bound before @pool->lock is released.
4979 */
4980 if (worker_flags & WORKER_IDLE)
4981 wake_up_process(worker->task);
4982
4983 /*
4984 * We want to clear UNBOUND but can't directly call
4985 * worker_clr_flags() or adjust nr_running. Atomically
4986 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4987 * @worker will clear REBOUND using worker_clr_flags() when
4988 * it initiates the next execution cycle thus restoring
4989 * concurrency management. Note that when or whether
4990 * @worker clears REBOUND doesn't affect correctness.
4991 *
4992 * WRITE_ONCE() is necessary because @worker->flags may be
4993 * tested without holding any lock in
4994 * wq_worker_running(). Without it, NOT_RUNNING test may
4995 * fail incorrectly leading to premature concurrency
4996 * management operations.
4997 */
4998 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4999 worker_flags |= WORKER_REBOUND;
5000 worker_flags &= ~WORKER_UNBOUND;
5001 WRITE_ONCE(worker->flags, worker_flags);
5002 }
5003
5004 raw_spin_unlock_irq(&pool->lock);
5005 }
5006
5007 /**
5008 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5009 * @pool: unbound pool of interest
5010 * @cpu: the CPU which is coming up
5011 *
5012 * An unbound pool may end up with a cpumask which doesn't have any online
5013 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5014 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5015 * online CPU before, cpus_allowed of all its workers should be restored.
5016 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5017 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5018 {
5019 static cpumask_t cpumask;
5020 struct worker *worker;
5021
5022 lockdep_assert_held(&wq_pool_attach_mutex);
5023
5024 /* is @cpu allowed for @pool? */
5025 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5026 return;
5027
5028 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5029
5030 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5031 for_each_pool_worker(worker, pool)
5032 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5033 }
5034
workqueue_prepare_cpu(unsigned int cpu)5035 int workqueue_prepare_cpu(unsigned int cpu)
5036 {
5037 struct worker_pool *pool;
5038
5039 for_each_cpu_worker_pool(pool, cpu) {
5040 if (pool->nr_workers)
5041 continue;
5042 if (!create_worker(pool))
5043 return -ENOMEM;
5044 }
5045 return 0;
5046 }
5047
workqueue_online_cpu(unsigned int cpu)5048 int workqueue_online_cpu(unsigned int cpu)
5049 {
5050 struct worker_pool *pool;
5051 struct workqueue_struct *wq;
5052 int pi;
5053
5054 mutex_lock(&wq_pool_mutex);
5055
5056 for_each_pool(pool, pi) {
5057 mutex_lock(&wq_pool_attach_mutex);
5058
5059 if (pool->cpu == cpu)
5060 rebind_workers(pool);
5061 else if (pool->cpu < 0)
5062 restore_unbound_workers_cpumask(pool, cpu);
5063
5064 mutex_unlock(&wq_pool_attach_mutex);
5065 }
5066
5067 /* update NUMA affinity of unbound workqueues */
5068 list_for_each_entry(wq, &workqueues, list)
5069 wq_update_unbound_numa(wq, cpu, true);
5070
5071 mutex_unlock(&wq_pool_mutex);
5072 return 0;
5073 }
5074
workqueue_offline_cpu(unsigned int cpu)5075 int workqueue_offline_cpu(unsigned int cpu)
5076 {
5077 struct workqueue_struct *wq;
5078
5079 /* unbinding per-cpu workers should happen on the local CPU */
5080 if (WARN_ON(cpu != smp_processor_id()))
5081 return -1;
5082
5083 unbind_workers(cpu);
5084
5085 /* update NUMA affinity of unbound workqueues */
5086 mutex_lock(&wq_pool_mutex);
5087 list_for_each_entry(wq, &workqueues, list)
5088 wq_update_unbound_numa(wq, cpu, false);
5089 mutex_unlock(&wq_pool_mutex);
5090
5091 return 0;
5092 }
5093
5094 struct work_for_cpu {
5095 struct work_struct work;
5096 long (*fn)(void *);
5097 void *arg;
5098 long ret;
5099 };
5100
work_for_cpu_fn(struct work_struct * work)5101 static void work_for_cpu_fn(struct work_struct *work)
5102 {
5103 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5104
5105 wfc->ret = wfc->fn(wfc->arg);
5106 }
5107
5108 /**
5109 * work_on_cpu - run a function in thread context on a particular cpu
5110 * @cpu: the cpu to run on
5111 * @fn: the function to run
5112 * @arg: the function arg
5113 *
5114 * It is up to the caller to ensure that the cpu doesn't go offline.
5115 * The caller must not hold any locks which would prevent @fn from completing.
5116 *
5117 * Return: The value @fn returns.
5118 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5119 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5120 {
5121 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5122
5123 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5124 schedule_work_on(cpu, &wfc.work);
5125 flush_work(&wfc.work);
5126 destroy_work_on_stack(&wfc.work);
5127 return wfc.ret;
5128 }
5129 EXPORT_SYMBOL_GPL(work_on_cpu);
5130
5131 /**
5132 * work_on_cpu_safe - run a function in thread context on a particular cpu
5133 * @cpu: the cpu to run on
5134 * @fn: the function to run
5135 * @arg: the function argument
5136 *
5137 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5138 * any locks which would prevent @fn from completing.
5139 *
5140 * Return: The value @fn returns.
5141 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5142 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5143 {
5144 long ret = -ENODEV;
5145
5146 get_online_cpus();
5147 if (cpu_online(cpu))
5148 ret = work_on_cpu(cpu, fn, arg);
5149 put_online_cpus();
5150 return ret;
5151 }
5152 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5153 #endif /* CONFIG_SMP */
5154
5155 #ifdef CONFIG_FREEZER
5156
5157 /**
5158 * freeze_workqueues_begin - begin freezing workqueues
5159 *
5160 * Start freezing workqueues. After this function returns, all freezable
5161 * workqueues will queue new works to their delayed_works list instead of
5162 * pool->worklist.
5163 *
5164 * CONTEXT:
5165 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5166 */
freeze_workqueues_begin(void)5167 void freeze_workqueues_begin(void)
5168 {
5169 struct workqueue_struct *wq;
5170 struct pool_workqueue *pwq;
5171
5172 mutex_lock(&wq_pool_mutex);
5173
5174 WARN_ON_ONCE(workqueue_freezing);
5175 workqueue_freezing = true;
5176
5177 list_for_each_entry(wq, &workqueues, list) {
5178 mutex_lock(&wq->mutex);
5179 for_each_pwq(pwq, wq)
5180 pwq_adjust_max_active(pwq);
5181 mutex_unlock(&wq->mutex);
5182 }
5183
5184 mutex_unlock(&wq_pool_mutex);
5185 }
5186
5187 /**
5188 * freeze_workqueues_busy - are freezable workqueues still busy?
5189 *
5190 * Check whether freezing is complete. This function must be called
5191 * between freeze_workqueues_begin() and thaw_workqueues().
5192 *
5193 * CONTEXT:
5194 * Grabs and releases wq_pool_mutex.
5195 *
5196 * Return:
5197 * %true if some freezable workqueues are still busy. %false if freezing
5198 * is complete.
5199 */
freeze_workqueues_busy(void)5200 bool freeze_workqueues_busy(void)
5201 {
5202 bool busy = false;
5203 struct workqueue_struct *wq;
5204 struct pool_workqueue *pwq;
5205
5206 mutex_lock(&wq_pool_mutex);
5207
5208 WARN_ON_ONCE(!workqueue_freezing);
5209
5210 list_for_each_entry(wq, &workqueues, list) {
5211 if (!(wq->flags & WQ_FREEZABLE))
5212 continue;
5213 /*
5214 * nr_active is monotonically decreasing. It's safe
5215 * to peek without lock.
5216 */
5217 rcu_read_lock();
5218 for_each_pwq(pwq, wq) {
5219 WARN_ON_ONCE(pwq->nr_active < 0);
5220 if (pwq->nr_active) {
5221 busy = true;
5222 rcu_read_unlock();
5223 goto out_unlock;
5224 }
5225 }
5226 rcu_read_unlock();
5227 }
5228 out_unlock:
5229 mutex_unlock(&wq_pool_mutex);
5230 return busy;
5231 }
5232
5233 /**
5234 * thaw_workqueues - thaw workqueues
5235 *
5236 * Thaw workqueues. Normal queueing is restored and all collected
5237 * frozen works are transferred to their respective pool worklists.
5238 *
5239 * CONTEXT:
5240 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5241 */
thaw_workqueues(void)5242 void thaw_workqueues(void)
5243 {
5244 struct workqueue_struct *wq;
5245 struct pool_workqueue *pwq;
5246
5247 mutex_lock(&wq_pool_mutex);
5248
5249 if (!workqueue_freezing)
5250 goto out_unlock;
5251
5252 workqueue_freezing = false;
5253
5254 /* restore max_active and repopulate worklist */
5255 list_for_each_entry(wq, &workqueues, list) {
5256 mutex_lock(&wq->mutex);
5257 for_each_pwq(pwq, wq)
5258 pwq_adjust_max_active(pwq);
5259 mutex_unlock(&wq->mutex);
5260 }
5261
5262 out_unlock:
5263 mutex_unlock(&wq_pool_mutex);
5264 }
5265 #endif /* CONFIG_FREEZER */
5266
workqueue_apply_unbound_cpumask(void)5267 static int workqueue_apply_unbound_cpumask(void)
5268 {
5269 LIST_HEAD(ctxs);
5270 int ret = 0;
5271 struct workqueue_struct *wq;
5272 struct apply_wqattrs_ctx *ctx, *n;
5273
5274 lockdep_assert_held(&wq_pool_mutex);
5275
5276 list_for_each_entry(wq, &workqueues, list) {
5277 if (!(wq->flags & WQ_UNBOUND))
5278 continue;
5279 /* creating multiple pwqs breaks ordering guarantee */
5280 if (wq->flags & __WQ_ORDERED)
5281 continue;
5282
5283 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5284 if (!ctx) {
5285 ret = -ENOMEM;
5286 break;
5287 }
5288
5289 list_add_tail(&ctx->list, &ctxs);
5290 }
5291
5292 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5293 if (!ret)
5294 apply_wqattrs_commit(ctx);
5295 apply_wqattrs_cleanup(ctx);
5296 }
5297
5298 return ret;
5299 }
5300
5301 /**
5302 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5303 * @cpumask: the cpumask to set
5304 *
5305 * The low-level workqueues cpumask is a global cpumask that limits
5306 * the affinity of all unbound workqueues. This function check the @cpumask
5307 * and apply it to all unbound workqueues and updates all pwqs of them.
5308 *
5309 * Retun: 0 - Success
5310 * -EINVAL - Invalid @cpumask
5311 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5312 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5313 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5314 {
5315 int ret = -EINVAL;
5316 cpumask_var_t saved_cpumask;
5317
5318 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5319 return -ENOMEM;
5320
5321 /*
5322 * Not excluding isolated cpus on purpose.
5323 * If the user wishes to include them, we allow that.
5324 */
5325 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5326 if (!cpumask_empty(cpumask)) {
5327 apply_wqattrs_lock();
5328
5329 /* save the old wq_unbound_cpumask. */
5330 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5331
5332 /* update wq_unbound_cpumask at first and apply it to wqs. */
5333 cpumask_copy(wq_unbound_cpumask, cpumask);
5334 ret = workqueue_apply_unbound_cpumask();
5335
5336 /* restore the wq_unbound_cpumask when failed. */
5337 if (ret < 0)
5338 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5339
5340 apply_wqattrs_unlock();
5341 }
5342
5343 free_cpumask_var(saved_cpumask);
5344 return ret;
5345 }
5346
5347 #ifdef CONFIG_SYSFS
5348 /*
5349 * Workqueues with WQ_SYSFS flag set is visible to userland via
5350 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5351 * following attributes.
5352 *
5353 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5354 * max_active RW int : maximum number of in-flight work items
5355 *
5356 * Unbound workqueues have the following extra attributes.
5357 *
5358 * pool_ids RO int : the associated pool IDs for each node
5359 * nice RW int : nice value of the workers
5360 * cpumask RW mask : bitmask of allowed CPUs for the workers
5361 * numa RW bool : whether enable NUMA affinity
5362 */
5363 struct wq_device {
5364 struct workqueue_struct *wq;
5365 struct device dev;
5366 };
5367
dev_to_wq(struct device * dev)5368 static struct workqueue_struct *dev_to_wq(struct device *dev)
5369 {
5370 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5371
5372 return wq_dev->wq;
5373 }
5374
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5375 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5376 char *buf)
5377 {
5378 struct workqueue_struct *wq = dev_to_wq(dev);
5379
5380 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5381 }
5382 static DEVICE_ATTR_RO(per_cpu);
5383
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5384 static ssize_t max_active_show(struct device *dev,
5385 struct device_attribute *attr, char *buf)
5386 {
5387 struct workqueue_struct *wq = dev_to_wq(dev);
5388
5389 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5390 }
5391
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5392 static ssize_t max_active_store(struct device *dev,
5393 struct device_attribute *attr, const char *buf,
5394 size_t count)
5395 {
5396 struct workqueue_struct *wq = dev_to_wq(dev);
5397 int val;
5398
5399 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5400 return -EINVAL;
5401
5402 workqueue_set_max_active(wq, val);
5403 return count;
5404 }
5405 static DEVICE_ATTR_RW(max_active);
5406
5407 static struct attribute *wq_sysfs_attrs[] = {
5408 &dev_attr_per_cpu.attr,
5409 &dev_attr_max_active.attr,
5410 NULL,
5411 };
5412 ATTRIBUTE_GROUPS(wq_sysfs);
5413
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5414 static ssize_t wq_pool_ids_show(struct device *dev,
5415 struct device_attribute *attr, char *buf)
5416 {
5417 struct workqueue_struct *wq = dev_to_wq(dev);
5418 const char *delim = "";
5419 int node, written = 0;
5420
5421 get_online_cpus();
5422 rcu_read_lock();
5423 for_each_node(node) {
5424 written += scnprintf(buf + written, PAGE_SIZE - written,
5425 "%s%d:%d", delim, node,
5426 unbound_pwq_by_node(wq, node)->pool->id);
5427 delim = " ";
5428 }
5429 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5430 rcu_read_unlock();
5431 put_online_cpus();
5432
5433 return written;
5434 }
5435
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5436 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5437 char *buf)
5438 {
5439 struct workqueue_struct *wq = dev_to_wq(dev);
5440 int written;
5441
5442 mutex_lock(&wq->mutex);
5443 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5444 mutex_unlock(&wq->mutex);
5445
5446 return written;
5447 }
5448
5449 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5450 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5451 {
5452 struct workqueue_attrs *attrs;
5453
5454 lockdep_assert_held(&wq_pool_mutex);
5455
5456 attrs = alloc_workqueue_attrs();
5457 if (!attrs)
5458 return NULL;
5459
5460 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5461 return attrs;
5462 }
5463
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5464 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5465 const char *buf, size_t count)
5466 {
5467 struct workqueue_struct *wq = dev_to_wq(dev);
5468 struct workqueue_attrs *attrs;
5469 int ret = -ENOMEM;
5470
5471 apply_wqattrs_lock();
5472
5473 attrs = wq_sysfs_prep_attrs(wq);
5474 if (!attrs)
5475 goto out_unlock;
5476
5477 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5478 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5479 ret = apply_workqueue_attrs_locked(wq, attrs);
5480 else
5481 ret = -EINVAL;
5482
5483 out_unlock:
5484 apply_wqattrs_unlock();
5485 free_workqueue_attrs(attrs);
5486 return ret ?: count;
5487 }
5488
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5489 static ssize_t wq_cpumask_show(struct device *dev,
5490 struct device_attribute *attr, char *buf)
5491 {
5492 struct workqueue_struct *wq = dev_to_wq(dev);
5493 int written;
5494
5495 mutex_lock(&wq->mutex);
5496 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5497 cpumask_pr_args(wq->unbound_attrs->cpumask));
5498 mutex_unlock(&wq->mutex);
5499 return written;
5500 }
5501
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5502 static ssize_t wq_cpumask_store(struct device *dev,
5503 struct device_attribute *attr,
5504 const char *buf, size_t count)
5505 {
5506 struct workqueue_struct *wq = dev_to_wq(dev);
5507 struct workqueue_attrs *attrs;
5508 int ret = -ENOMEM;
5509
5510 apply_wqattrs_lock();
5511
5512 attrs = wq_sysfs_prep_attrs(wq);
5513 if (!attrs)
5514 goto out_unlock;
5515
5516 ret = cpumask_parse(buf, attrs->cpumask);
5517 if (!ret)
5518 ret = apply_workqueue_attrs_locked(wq, attrs);
5519
5520 out_unlock:
5521 apply_wqattrs_unlock();
5522 free_workqueue_attrs(attrs);
5523 return ret ?: count;
5524 }
5525
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5526 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5527 char *buf)
5528 {
5529 struct workqueue_struct *wq = dev_to_wq(dev);
5530 int written;
5531
5532 mutex_lock(&wq->mutex);
5533 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5534 !wq->unbound_attrs->no_numa);
5535 mutex_unlock(&wq->mutex);
5536
5537 return written;
5538 }
5539
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5540 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5541 const char *buf, size_t count)
5542 {
5543 struct workqueue_struct *wq = dev_to_wq(dev);
5544 struct workqueue_attrs *attrs;
5545 int v, ret = -ENOMEM;
5546
5547 apply_wqattrs_lock();
5548
5549 attrs = wq_sysfs_prep_attrs(wq);
5550 if (!attrs)
5551 goto out_unlock;
5552
5553 ret = -EINVAL;
5554 if (sscanf(buf, "%d", &v) == 1) {
5555 attrs->no_numa = !v;
5556 ret = apply_workqueue_attrs_locked(wq, attrs);
5557 }
5558
5559 out_unlock:
5560 apply_wqattrs_unlock();
5561 free_workqueue_attrs(attrs);
5562 return ret ?: count;
5563 }
5564
5565 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5566 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5567 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5568 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5569 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5570 __ATTR_NULL,
5571 };
5572
5573 static struct bus_type wq_subsys = {
5574 .name = "workqueue",
5575 .dev_groups = wq_sysfs_groups,
5576 };
5577
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5578 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5579 struct device_attribute *attr, char *buf)
5580 {
5581 int written;
5582
5583 mutex_lock(&wq_pool_mutex);
5584 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5585 cpumask_pr_args(wq_unbound_cpumask));
5586 mutex_unlock(&wq_pool_mutex);
5587
5588 return written;
5589 }
5590
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5591 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5592 struct device_attribute *attr, const char *buf, size_t count)
5593 {
5594 cpumask_var_t cpumask;
5595 int ret;
5596
5597 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5598 return -ENOMEM;
5599
5600 ret = cpumask_parse(buf, cpumask);
5601 if (!ret)
5602 ret = workqueue_set_unbound_cpumask(cpumask);
5603
5604 free_cpumask_var(cpumask);
5605 return ret ? ret : count;
5606 }
5607
5608 static struct device_attribute wq_sysfs_cpumask_attr =
5609 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5610 wq_unbound_cpumask_store);
5611
wq_sysfs_init(void)5612 static int __init wq_sysfs_init(void)
5613 {
5614 int err;
5615
5616 err = subsys_virtual_register(&wq_subsys, NULL);
5617 if (err)
5618 return err;
5619
5620 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5621 }
5622 core_initcall(wq_sysfs_init);
5623
wq_device_release(struct device * dev)5624 static void wq_device_release(struct device *dev)
5625 {
5626 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5627
5628 kfree(wq_dev);
5629 }
5630
5631 /**
5632 * workqueue_sysfs_register - make a workqueue visible in sysfs
5633 * @wq: the workqueue to register
5634 *
5635 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5636 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5637 * which is the preferred method.
5638 *
5639 * Workqueue user should use this function directly iff it wants to apply
5640 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5641 * apply_workqueue_attrs() may race against userland updating the
5642 * attributes.
5643 *
5644 * Return: 0 on success, -errno on failure.
5645 */
workqueue_sysfs_register(struct workqueue_struct * wq)5646 int workqueue_sysfs_register(struct workqueue_struct *wq)
5647 {
5648 struct wq_device *wq_dev;
5649 int ret;
5650
5651 /*
5652 * Adjusting max_active or creating new pwqs by applying
5653 * attributes breaks ordering guarantee. Disallow exposing ordered
5654 * workqueues.
5655 */
5656 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5657 return -EINVAL;
5658
5659 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5660 if (!wq_dev)
5661 return -ENOMEM;
5662
5663 wq_dev->wq = wq;
5664 wq_dev->dev.bus = &wq_subsys;
5665 wq_dev->dev.release = wq_device_release;
5666 dev_set_name(&wq_dev->dev, "%s", wq->name);
5667
5668 /*
5669 * unbound_attrs are created separately. Suppress uevent until
5670 * everything is ready.
5671 */
5672 dev_set_uevent_suppress(&wq_dev->dev, true);
5673
5674 ret = device_register(&wq_dev->dev);
5675 if (ret) {
5676 put_device(&wq_dev->dev);
5677 wq->wq_dev = NULL;
5678 return ret;
5679 }
5680
5681 if (wq->flags & WQ_UNBOUND) {
5682 struct device_attribute *attr;
5683
5684 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5685 ret = device_create_file(&wq_dev->dev, attr);
5686 if (ret) {
5687 device_unregister(&wq_dev->dev);
5688 wq->wq_dev = NULL;
5689 return ret;
5690 }
5691 }
5692 }
5693
5694 dev_set_uevent_suppress(&wq_dev->dev, false);
5695 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5696 return 0;
5697 }
5698
5699 /**
5700 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5701 * @wq: the workqueue to unregister
5702 *
5703 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5704 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5705 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5706 {
5707 struct wq_device *wq_dev = wq->wq_dev;
5708
5709 if (!wq->wq_dev)
5710 return;
5711
5712 wq->wq_dev = NULL;
5713 device_unregister(&wq_dev->dev);
5714 }
5715 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5716 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5717 #endif /* CONFIG_SYSFS */
5718
5719 /*
5720 * Workqueue watchdog.
5721 *
5722 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5723 * flush dependency, a concurrency managed work item which stays RUNNING
5724 * indefinitely. Workqueue stalls can be very difficult to debug as the
5725 * usual warning mechanisms don't trigger and internal workqueue state is
5726 * largely opaque.
5727 *
5728 * Workqueue watchdog monitors all worker pools periodically and dumps
5729 * state if some pools failed to make forward progress for a while where
5730 * forward progress is defined as the first item on ->worklist changing.
5731 *
5732 * This mechanism is controlled through the kernel parameter
5733 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5734 * corresponding sysfs parameter file.
5735 */
5736 #ifdef CONFIG_WQ_WATCHDOG
5737
5738 static unsigned long wq_watchdog_thresh = 30;
5739 static struct timer_list wq_watchdog_timer;
5740
5741 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5742 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5743
wq_watchdog_reset_touched(void)5744 static void wq_watchdog_reset_touched(void)
5745 {
5746 int cpu;
5747
5748 wq_watchdog_touched = jiffies;
5749 for_each_possible_cpu(cpu)
5750 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5751 }
5752
wq_watchdog_timer_fn(struct timer_list * unused)5753 static void wq_watchdog_timer_fn(struct timer_list *unused)
5754 {
5755 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5756 bool lockup_detected = false;
5757 struct worker_pool *pool;
5758 int pi;
5759
5760 if (!thresh)
5761 return;
5762
5763 rcu_read_lock();
5764
5765 for_each_pool(pool, pi) {
5766 unsigned long pool_ts, touched, ts;
5767
5768 if (list_empty(&pool->worklist))
5769 continue;
5770
5771 /* get the latest of pool and touched timestamps */
5772 pool_ts = READ_ONCE(pool->watchdog_ts);
5773 touched = READ_ONCE(wq_watchdog_touched);
5774
5775 if (time_after(pool_ts, touched))
5776 ts = pool_ts;
5777 else
5778 ts = touched;
5779
5780 if (pool->cpu >= 0) {
5781 unsigned long cpu_touched =
5782 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5783 pool->cpu));
5784 if (time_after(cpu_touched, ts))
5785 ts = cpu_touched;
5786 }
5787
5788 /* did we stall? */
5789 if (time_after(jiffies, ts + thresh)) {
5790 lockup_detected = true;
5791 pr_emerg("BUG: workqueue lockup - pool");
5792 pr_cont_pool_info(pool);
5793 pr_cont(" stuck for %us!\n",
5794 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5795 }
5796 }
5797
5798 rcu_read_unlock();
5799
5800 if (lockup_detected)
5801 show_workqueue_state();
5802
5803 wq_watchdog_reset_touched();
5804 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5805 }
5806
wq_watchdog_touch(int cpu)5807 notrace void wq_watchdog_touch(int cpu)
5808 {
5809 if (cpu >= 0)
5810 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5811 else
5812 wq_watchdog_touched = jiffies;
5813 }
5814
wq_watchdog_set_thresh(unsigned long thresh)5815 static void wq_watchdog_set_thresh(unsigned long thresh)
5816 {
5817 wq_watchdog_thresh = 0;
5818 del_timer_sync(&wq_watchdog_timer);
5819
5820 if (thresh) {
5821 wq_watchdog_thresh = thresh;
5822 wq_watchdog_reset_touched();
5823 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5824 }
5825 }
5826
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5827 static int wq_watchdog_param_set_thresh(const char *val,
5828 const struct kernel_param *kp)
5829 {
5830 unsigned long thresh;
5831 int ret;
5832
5833 ret = kstrtoul(val, 0, &thresh);
5834 if (ret)
5835 return ret;
5836
5837 if (system_wq)
5838 wq_watchdog_set_thresh(thresh);
5839 else
5840 wq_watchdog_thresh = thresh;
5841
5842 return 0;
5843 }
5844
5845 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5846 .set = wq_watchdog_param_set_thresh,
5847 .get = param_get_ulong,
5848 };
5849
5850 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5851 0644);
5852
wq_watchdog_init(void)5853 static void wq_watchdog_init(void)
5854 {
5855 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5856 wq_watchdog_set_thresh(wq_watchdog_thresh);
5857 }
5858
5859 #else /* CONFIG_WQ_WATCHDOG */
5860
wq_watchdog_init(void)5861 static inline void wq_watchdog_init(void) { }
5862
5863 #endif /* CONFIG_WQ_WATCHDOG */
5864
wq_numa_init(void)5865 static void __init wq_numa_init(void)
5866 {
5867 cpumask_var_t *tbl;
5868 int node, cpu;
5869
5870 if (num_possible_nodes() <= 1)
5871 return;
5872
5873 if (wq_disable_numa) {
5874 pr_info("workqueue: NUMA affinity support disabled\n");
5875 return;
5876 }
5877
5878 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5879 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5880
5881 /*
5882 * We want masks of possible CPUs of each node which isn't readily
5883 * available. Build one from cpu_to_node() which should have been
5884 * fully initialized by now.
5885 */
5886 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5887 BUG_ON(!tbl);
5888
5889 for_each_node(node)
5890 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5891 node_online(node) ? node : NUMA_NO_NODE));
5892
5893 for_each_possible_cpu(cpu) {
5894 node = cpu_to_node(cpu);
5895 if (WARN_ON(node == NUMA_NO_NODE)) {
5896 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5897 /* happens iff arch is bonkers, let's just proceed */
5898 return;
5899 }
5900 cpumask_set_cpu(cpu, tbl[node]);
5901 }
5902
5903 wq_numa_possible_cpumask = tbl;
5904 wq_numa_enabled = true;
5905 }
5906
5907 /**
5908 * workqueue_init_early - early init for workqueue subsystem
5909 *
5910 * This is the first half of two-staged workqueue subsystem initialization
5911 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5912 * idr are up. It sets up all the data structures and system workqueues
5913 * and allows early boot code to create workqueues and queue/cancel work
5914 * items. Actual work item execution starts only after kthreads can be
5915 * created and scheduled right before early initcalls.
5916 */
workqueue_init_early(void)5917 void __init workqueue_init_early(void)
5918 {
5919 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5920 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5921 int i, cpu;
5922
5923 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5924
5925 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5926 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5927
5928 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5929
5930 /* initialize CPU pools */
5931 for_each_possible_cpu(cpu) {
5932 struct worker_pool *pool;
5933
5934 i = 0;
5935 for_each_cpu_worker_pool(pool, cpu) {
5936 BUG_ON(init_worker_pool(pool));
5937 pool->cpu = cpu;
5938 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5939 pool->attrs->nice = std_nice[i++];
5940 pool->node = cpu_to_node(cpu);
5941
5942 /* alloc pool ID */
5943 mutex_lock(&wq_pool_mutex);
5944 BUG_ON(worker_pool_assign_id(pool));
5945 mutex_unlock(&wq_pool_mutex);
5946 }
5947 }
5948
5949 /* create default unbound and ordered wq attrs */
5950 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5951 struct workqueue_attrs *attrs;
5952
5953 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5954 attrs->nice = std_nice[i];
5955 unbound_std_wq_attrs[i] = attrs;
5956
5957 /*
5958 * An ordered wq should have only one pwq as ordering is
5959 * guaranteed by max_active which is enforced by pwqs.
5960 * Turn off NUMA so that dfl_pwq is used for all nodes.
5961 */
5962 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5963 attrs->nice = std_nice[i];
5964 attrs->no_numa = true;
5965 ordered_wq_attrs[i] = attrs;
5966 }
5967
5968 system_wq = alloc_workqueue("events", 0, 0);
5969 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5970 system_long_wq = alloc_workqueue("events_long", 0, 0);
5971 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5972 WQ_UNBOUND_MAX_ACTIVE);
5973 system_freezable_wq = alloc_workqueue("events_freezable",
5974 WQ_FREEZABLE, 0);
5975 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5976 WQ_POWER_EFFICIENT, 0);
5977 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5978 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5979 0);
5980 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5981 !system_unbound_wq || !system_freezable_wq ||
5982 !system_power_efficient_wq ||
5983 !system_freezable_power_efficient_wq);
5984 }
5985
5986 /**
5987 * workqueue_init - bring workqueue subsystem fully online
5988 *
5989 * This is the latter half of two-staged workqueue subsystem initialization
5990 * and invoked as soon as kthreads can be created and scheduled.
5991 * Workqueues have been created and work items queued on them, but there
5992 * are no kworkers executing the work items yet. Populate the worker pools
5993 * with the initial workers and enable future kworker creations.
5994 */
workqueue_init(void)5995 void __init workqueue_init(void)
5996 {
5997 struct workqueue_struct *wq;
5998 struct worker_pool *pool;
5999 int cpu, bkt;
6000
6001 /*
6002 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6003 * CPU to node mapping may not be available that early on some
6004 * archs such as power and arm64. As per-cpu pools created
6005 * previously could be missing node hint and unbound pools NUMA
6006 * affinity, fix them up.
6007 *
6008 * Also, while iterating workqueues, create rescuers if requested.
6009 */
6010 wq_numa_init();
6011
6012 mutex_lock(&wq_pool_mutex);
6013
6014 for_each_possible_cpu(cpu) {
6015 for_each_cpu_worker_pool(pool, cpu) {
6016 pool->node = cpu_to_node(cpu);
6017 }
6018 }
6019
6020 list_for_each_entry(wq, &workqueues, list) {
6021 wq_update_unbound_numa(wq, smp_processor_id(), true);
6022 WARN(init_rescuer(wq),
6023 "workqueue: failed to create early rescuer for %s",
6024 wq->name);
6025 }
6026
6027 mutex_unlock(&wq_pool_mutex);
6028
6029 /* create the initial workers */
6030 for_each_online_cpu(cpu) {
6031 for_each_cpu_worker_pool(pool, cpu) {
6032 pool->flags &= ~POOL_DISASSOCIATED;
6033 BUG_ON(!create_worker(pool));
6034 }
6035 }
6036
6037 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6038 BUG_ON(!create_worker(pool));
6039
6040 wq_online = true;
6041 wq_watchdog_init();
6042 }
6043