1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/ptrace.c
4 *
5 * (C) Copyright 1999 Linus Torvalds
6 *
7 * Common interfaces for "ptrace()" which we do not want
8 * to continually duplicate across every architecture.
9 */
10
11 #include <linux/capability.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/coredump.h>
16 #include <linux/sched/task.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/ptrace.h>
22 #include <linux/security.h>
23 #include <linux/signal.h>
24 #include <linux/uio.h>
25 #include <linux/audit.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/syscalls.h>
28 #include <linux/uaccess.h>
29 #include <linux/regset.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/cn_proc.h>
32 #include <linux/compat.h>
33 #include <linux/sched/signal.h>
34
35 #include <asm/syscall.h> /* for syscall_get_* */
36
37 /*
38 * Access another process' address space via ptrace.
39 * Source/target buffer must be kernel space,
40 * Do not walk the page table directly, use get_user_pages
41 */
ptrace_access_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)42 int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
43 void *buf, int len, unsigned int gup_flags)
44 {
45 struct mm_struct *mm;
46 int ret;
47
48 mm = get_task_mm(tsk);
49 if (!mm)
50 return 0;
51
52 if (!tsk->ptrace ||
53 (current != tsk->parent) ||
54 ((get_dumpable(mm) != SUID_DUMP_USER) &&
55 !ptracer_capable(tsk, mm->user_ns))) {
56 mmput(mm);
57 return 0;
58 }
59
60 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
61 mmput(mm);
62
63 return ret;
64 }
65
66
__ptrace_link(struct task_struct * child,struct task_struct * new_parent,const struct cred * ptracer_cred)67 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent,
68 const struct cred *ptracer_cred)
69 {
70 BUG_ON(!list_empty(&child->ptrace_entry));
71 list_add(&child->ptrace_entry, &new_parent->ptraced);
72 child->parent = new_parent;
73 child->ptracer_cred = get_cred(ptracer_cred);
74 }
75
76 /*
77 * ptrace a task: make the debugger its new parent and
78 * move it to the ptrace list.
79 *
80 * Must be called with the tasklist lock write-held.
81 */
ptrace_link(struct task_struct * child,struct task_struct * new_parent)82 static void ptrace_link(struct task_struct *child, struct task_struct *new_parent)
83 {
84 __ptrace_link(child, new_parent, current_cred());
85 }
86
87 /**
88 * __ptrace_unlink - unlink ptracee and restore its execution state
89 * @child: ptracee to be unlinked
90 *
91 * Remove @child from the ptrace list, move it back to the original parent,
92 * and restore the execution state so that it conforms to the group stop
93 * state.
94 *
95 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
96 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
97 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
98 * If the ptracer is exiting, the ptracee can be in any state.
99 *
100 * After detach, the ptracee should be in a state which conforms to the
101 * group stop. If the group is stopped or in the process of stopping, the
102 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
103 * up from TASK_TRACED.
104 *
105 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
106 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
107 * to but in the opposite direction of what happens while attaching to a
108 * stopped task. However, in this direction, the intermediate RUNNING
109 * state is not hidden even from the current ptracer and if it immediately
110 * re-attaches and performs a WNOHANG wait(2), it may fail.
111 *
112 * CONTEXT:
113 * write_lock_irq(tasklist_lock)
114 */
__ptrace_unlink(struct task_struct * child)115 void __ptrace_unlink(struct task_struct *child)
116 {
117 const struct cred *old_cred;
118 BUG_ON(!child->ptrace);
119
120 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
121 #ifdef TIF_SYSCALL_EMU
122 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
123 #endif
124
125 child->parent = child->real_parent;
126 list_del_init(&child->ptrace_entry);
127 old_cred = child->ptracer_cred;
128 child->ptracer_cred = NULL;
129 put_cred(old_cred);
130
131 spin_lock(&child->sighand->siglock);
132 child->ptrace = 0;
133 /*
134 * Clear all pending traps and TRAPPING. TRAPPING should be
135 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
136 */
137 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
138 task_clear_jobctl_trapping(child);
139
140 /*
141 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
142 * @child isn't dead.
143 */
144 if (!(child->flags & PF_EXITING) &&
145 (child->signal->flags & SIGNAL_STOP_STOPPED ||
146 child->signal->group_stop_count)) {
147 child->jobctl |= JOBCTL_STOP_PENDING;
148
149 /*
150 * This is only possible if this thread was cloned by the
151 * traced task running in the stopped group, set the signal
152 * for the future reports.
153 * FIXME: we should change ptrace_init_task() to handle this
154 * case.
155 */
156 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
157 child->jobctl |= SIGSTOP;
158 }
159
160 /*
161 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
162 * @child in the butt. Note that @resume should be used iff @child
163 * is in TASK_TRACED; otherwise, we might unduly disrupt
164 * TASK_KILLABLE sleeps.
165 */
166 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
167 ptrace_signal_wake_up(child, true);
168
169 spin_unlock(&child->sighand->siglock);
170 }
171
172 /* Ensure that nothing can wake it up, even SIGKILL */
ptrace_freeze_traced(struct task_struct * task)173 static bool ptrace_freeze_traced(struct task_struct *task)
174 {
175 bool ret = false;
176
177 /* Lockless, nobody but us can set this flag */
178 if (task->jobctl & JOBCTL_LISTENING)
179 return ret;
180
181 spin_lock_irq(&task->sighand->siglock);
182 if (task_is_traced(task) && !__fatal_signal_pending(task)) {
183 task->state = __TASK_TRACED;
184 ret = true;
185 }
186 spin_unlock_irq(&task->sighand->siglock);
187
188 return ret;
189 }
190
ptrace_unfreeze_traced(struct task_struct * task)191 static void ptrace_unfreeze_traced(struct task_struct *task)
192 {
193 if (task->state != __TASK_TRACED)
194 return;
195
196 WARN_ON(!task->ptrace || task->parent != current);
197
198 /*
199 * PTRACE_LISTEN can allow ptrace_trap_notify to wake us up remotely.
200 * Recheck state under the lock to close this race.
201 */
202 spin_lock_irq(&task->sighand->siglock);
203 if (task->state == __TASK_TRACED) {
204 if (__fatal_signal_pending(task))
205 wake_up_state(task, __TASK_TRACED);
206 else
207 task->state = TASK_TRACED;
208 }
209 spin_unlock_irq(&task->sighand->siglock);
210 }
211
212 /**
213 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
214 * @child: ptracee to check for
215 * @ignore_state: don't check whether @child is currently %TASK_TRACED
216 *
217 * Check whether @child is being ptraced by %current and ready for further
218 * ptrace operations. If @ignore_state is %false, @child also should be in
219 * %TASK_TRACED state and on return the child is guaranteed to be traced
220 * and not executing. If @ignore_state is %true, @child can be in any
221 * state.
222 *
223 * CONTEXT:
224 * Grabs and releases tasklist_lock and @child->sighand->siglock.
225 *
226 * RETURNS:
227 * 0 on success, -ESRCH if %child is not ready.
228 */
ptrace_check_attach(struct task_struct * child,bool ignore_state)229 static int ptrace_check_attach(struct task_struct *child, bool ignore_state)
230 {
231 int ret = -ESRCH;
232
233 /*
234 * We take the read lock around doing both checks to close a
235 * possible race where someone else was tracing our child and
236 * detached between these two checks. After this locked check,
237 * we are sure that this is our traced child and that can only
238 * be changed by us so it's not changing right after this.
239 */
240 read_lock(&tasklist_lock);
241 if (child->ptrace && child->parent == current) {
242 WARN_ON(child->state == __TASK_TRACED);
243 /*
244 * child->sighand can't be NULL, release_task()
245 * does ptrace_unlink() before __exit_signal().
246 */
247 if (ignore_state || ptrace_freeze_traced(child))
248 ret = 0;
249 }
250 read_unlock(&tasklist_lock);
251
252 if (!ret && !ignore_state) {
253 if (!wait_task_inactive(child, __TASK_TRACED)) {
254 /*
255 * This can only happen if may_ptrace_stop() fails and
256 * ptrace_stop() changes ->state back to TASK_RUNNING,
257 * so we should not worry about leaking __TASK_TRACED.
258 */
259 WARN_ON(child->state == __TASK_TRACED);
260 ret = -ESRCH;
261 }
262 }
263
264 return ret;
265 }
266
ptrace_has_cap(struct user_namespace * ns,unsigned int mode)267 static bool ptrace_has_cap(struct user_namespace *ns, unsigned int mode)
268 {
269 if (mode & PTRACE_MODE_NOAUDIT)
270 return ns_capable_noaudit(ns, CAP_SYS_PTRACE);
271 return ns_capable(ns, CAP_SYS_PTRACE);
272 }
273
274 /* Returns 0 on success, -errno on denial. */
__ptrace_may_access(struct task_struct * task,unsigned int mode)275 static int __ptrace_may_access(struct task_struct *task, unsigned int mode)
276 {
277 const struct cred *cred = current_cred(), *tcred;
278 struct mm_struct *mm;
279 kuid_t caller_uid;
280 kgid_t caller_gid;
281
282 if (!(mode & PTRACE_MODE_FSCREDS) == !(mode & PTRACE_MODE_REALCREDS)) {
283 WARN(1, "denying ptrace access check without PTRACE_MODE_*CREDS\n");
284 return -EPERM;
285 }
286
287 /* May we inspect the given task?
288 * This check is used both for attaching with ptrace
289 * and for allowing access to sensitive information in /proc.
290 *
291 * ptrace_attach denies several cases that /proc allows
292 * because setting up the necessary parent/child relationship
293 * or halting the specified task is impossible.
294 */
295
296 /* Don't let security modules deny introspection */
297 if (same_thread_group(task, current))
298 return 0;
299 rcu_read_lock();
300 if (mode & PTRACE_MODE_FSCREDS) {
301 caller_uid = cred->fsuid;
302 caller_gid = cred->fsgid;
303 } else {
304 /*
305 * Using the euid would make more sense here, but something
306 * in userland might rely on the old behavior, and this
307 * shouldn't be a security problem since
308 * PTRACE_MODE_REALCREDS implies that the caller explicitly
309 * used a syscall that requests access to another process
310 * (and not a filesystem syscall to procfs).
311 */
312 caller_uid = cred->uid;
313 caller_gid = cred->gid;
314 }
315 tcred = __task_cred(task);
316 if (uid_eq(caller_uid, tcred->euid) &&
317 uid_eq(caller_uid, tcred->suid) &&
318 uid_eq(caller_uid, tcred->uid) &&
319 gid_eq(caller_gid, tcred->egid) &&
320 gid_eq(caller_gid, tcred->sgid) &&
321 gid_eq(caller_gid, tcred->gid))
322 goto ok;
323 if (ptrace_has_cap(tcred->user_ns, mode))
324 goto ok;
325 rcu_read_unlock();
326 return -EPERM;
327 ok:
328 rcu_read_unlock();
329 /*
330 * If a task drops privileges and becomes nondumpable (through a syscall
331 * like setresuid()) while we are trying to access it, we must ensure
332 * that the dumpability is read after the credentials; otherwise,
333 * we may be able to attach to a task that we shouldn't be able to
334 * attach to (as if the task had dropped privileges without becoming
335 * nondumpable).
336 * Pairs with a write barrier in commit_creds().
337 */
338 smp_rmb();
339 mm = task->mm;
340 if (mm &&
341 ((get_dumpable(mm) != SUID_DUMP_USER) &&
342 !ptrace_has_cap(mm->user_ns, mode)))
343 return -EPERM;
344
345 return security_ptrace_access_check(task, mode);
346 }
347
ptrace_may_access(struct task_struct * task,unsigned int mode)348 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
349 {
350 int err;
351 task_lock(task);
352 err = __ptrace_may_access(task, mode);
353 task_unlock(task);
354 return !err;
355 }
356
ptrace_attach(struct task_struct * task,long request,unsigned long addr,unsigned long flags)357 static int ptrace_attach(struct task_struct *task, long request,
358 unsigned long addr,
359 unsigned long flags)
360 {
361 bool seize = (request == PTRACE_SEIZE);
362 int retval;
363
364 retval = -EIO;
365 if (seize) {
366 if (addr != 0)
367 goto out;
368 if (flags & ~(unsigned long)PTRACE_O_MASK)
369 goto out;
370 flags = PT_PTRACED | PT_SEIZED | (flags << PT_OPT_FLAG_SHIFT);
371 } else {
372 flags = PT_PTRACED;
373 }
374
375 audit_ptrace(task);
376
377 retval = -EPERM;
378 if (unlikely(task->flags & PF_KTHREAD))
379 goto out;
380 if (same_thread_group(task, current))
381 goto out;
382
383 /*
384 * Protect exec's credential calculations against our interference;
385 * SUID, SGID and LSM creds get determined differently
386 * under ptrace.
387 */
388 retval = -ERESTARTNOINTR;
389 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
390 goto out;
391
392 task_lock(task);
393 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS);
394 task_unlock(task);
395 if (retval)
396 goto unlock_creds;
397
398 write_lock_irq(&tasklist_lock);
399 retval = -EPERM;
400 if (unlikely(task->exit_state))
401 goto unlock_tasklist;
402 if (task->ptrace)
403 goto unlock_tasklist;
404
405 if (seize)
406 flags |= PT_SEIZED;
407 task->ptrace = flags;
408
409 ptrace_link(task, current);
410
411 /* SEIZE doesn't trap tracee on attach */
412 if (!seize)
413 send_sig_info(SIGSTOP, SEND_SIG_PRIV, task);
414
415 spin_lock(&task->sighand->siglock);
416
417 /*
418 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
419 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
420 * will be cleared if the child completes the transition or any
421 * event which clears the group stop states happens. We'll wait
422 * for the transition to complete before returning from this
423 * function.
424 *
425 * This hides STOPPED -> RUNNING -> TRACED transition from the
426 * attaching thread but a different thread in the same group can
427 * still observe the transient RUNNING state. IOW, if another
428 * thread's WNOHANG wait(2) on the stopped tracee races against
429 * ATTACH, the wait(2) may fail due to the transient RUNNING.
430 *
431 * The following task_is_stopped() test is safe as both transitions
432 * in and out of STOPPED are protected by siglock.
433 */
434 if (task_is_stopped(task) &&
435 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
436 signal_wake_up_state(task, __TASK_STOPPED);
437
438 spin_unlock(&task->sighand->siglock);
439
440 retval = 0;
441 unlock_tasklist:
442 write_unlock_irq(&tasklist_lock);
443 unlock_creds:
444 mutex_unlock(&task->signal->cred_guard_mutex);
445 out:
446 if (!retval) {
447 /*
448 * We do not bother to change retval or clear JOBCTL_TRAPPING
449 * if wait_on_bit() was interrupted by SIGKILL. The tracer will
450 * not return to user-mode, it will exit and clear this bit in
451 * __ptrace_unlink() if it wasn't already cleared by the tracee;
452 * and until then nobody can ptrace this task.
453 */
454 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT, TASK_KILLABLE);
455 proc_ptrace_connector(task, PTRACE_ATTACH);
456 }
457
458 return retval;
459 }
460
461 /**
462 * ptrace_traceme -- helper for PTRACE_TRACEME
463 *
464 * Performs checks and sets PT_PTRACED.
465 * Should be used by all ptrace implementations for PTRACE_TRACEME.
466 */
ptrace_traceme(void)467 static int ptrace_traceme(void)
468 {
469 int ret = -EPERM;
470
471 write_lock_irq(&tasklist_lock);
472 /* Are we already being traced? */
473 if (!current->ptrace) {
474 ret = security_ptrace_traceme(current->parent);
475 /*
476 * Check PF_EXITING to ensure ->real_parent has not passed
477 * exit_ptrace(). Otherwise we don't report the error but
478 * pretend ->real_parent untraces us right after return.
479 */
480 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
481 current->ptrace = PT_PTRACED;
482 ptrace_link(current, current->real_parent);
483 }
484 }
485 write_unlock_irq(&tasklist_lock);
486
487 return ret;
488 }
489
490 /*
491 * Called with irqs disabled, returns true if childs should reap themselves.
492 */
ignoring_children(struct sighand_struct * sigh)493 static int ignoring_children(struct sighand_struct *sigh)
494 {
495 int ret;
496 spin_lock(&sigh->siglock);
497 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
498 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
499 spin_unlock(&sigh->siglock);
500 return ret;
501 }
502
503 /*
504 * Called with tasklist_lock held for writing.
505 * Unlink a traced task, and clean it up if it was a traced zombie.
506 * Return true if it needs to be reaped with release_task().
507 * (We can't call release_task() here because we already hold tasklist_lock.)
508 *
509 * If it's a zombie, our attachedness prevented normal parent notification
510 * or self-reaping. Do notification now if it would have happened earlier.
511 * If it should reap itself, return true.
512 *
513 * If it's our own child, there is no notification to do. But if our normal
514 * children self-reap, then this child was prevented by ptrace and we must
515 * reap it now, in that case we must also wake up sub-threads sleeping in
516 * do_wait().
517 */
__ptrace_detach(struct task_struct * tracer,struct task_struct * p)518 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
519 {
520 bool dead;
521
522 __ptrace_unlink(p);
523
524 if (p->exit_state != EXIT_ZOMBIE)
525 return false;
526
527 dead = !thread_group_leader(p);
528
529 if (!dead && thread_group_empty(p)) {
530 if (!same_thread_group(p->real_parent, tracer))
531 dead = do_notify_parent(p, p->exit_signal);
532 else if (ignoring_children(tracer->sighand)) {
533 __wake_up_parent(p, tracer);
534 dead = true;
535 }
536 }
537 /* Mark it as in the process of being reaped. */
538 if (dead)
539 p->exit_state = EXIT_DEAD;
540 return dead;
541 }
542
ptrace_detach(struct task_struct * child,unsigned int data)543 static int ptrace_detach(struct task_struct *child, unsigned int data)
544 {
545 if (!valid_signal(data))
546 return -EIO;
547
548 /* Architecture-specific hardware disable .. */
549 ptrace_disable(child);
550
551 write_lock_irq(&tasklist_lock);
552 /*
553 * We rely on ptrace_freeze_traced(). It can't be killed and
554 * untraced by another thread, it can't be a zombie.
555 */
556 WARN_ON(!child->ptrace || child->exit_state);
557 /*
558 * tasklist_lock avoids the race with wait_task_stopped(), see
559 * the comment in ptrace_resume().
560 */
561 child->exit_code = data;
562 __ptrace_detach(current, child);
563 write_unlock_irq(&tasklist_lock);
564
565 proc_ptrace_connector(child, PTRACE_DETACH);
566
567 return 0;
568 }
569
570 /*
571 * Detach all tasks we were using ptrace on. Called with tasklist held
572 * for writing.
573 */
exit_ptrace(struct task_struct * tracer,struct list_head * dead)574 void exit_ptrace(struct task_struct *tracer, struct list_head *dead)
575 {
576 struct task_struct *p, *n;
577
578 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
579 if (unlikely(p->ptrace & PT_EXITKILL))
580 send_sig_info(SIGKILL, SEND_SIG_PRIV, p);
581
582 if (__ptrace_detach(tracer, p))
583 list_add(&p->ptrace_entry, dead);
584 }
585 }
586
ptrace_readdata(struct task_struct * tsk,unsigned long src,char __user * dst,int len)587 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
588 {
589 int copied = 0;
590
591 while (len > 0) {
592 char buf[128];
593 int this_len, retval;
594
595 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
596 retval = ptrace_access_vm(tsk, src, buf, this_len, FOLL_FORCE);
597
598 if (!retval) {
599 if (copied)
600 break;
601 return -EIO;
602 }
603 if (copy_to_user(dst, buf, retval))
604 return -EFAULT;
605 copied += retval;
606 src += retval;
607 dst += retval;
608 len -= retval;
609 }
610 return copied;
611 }
612
ptrace_writedata(struct task_struct * tsk,char __user * src,unsigned long dst,int len)613 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
614 {
615 int copied = 0;
616
617 while (len > 0) {
618 char buf[128];
619 int this_len, retval;
620
621 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
622 if (copy_from_user(buf, src, this_len))
623 return -EFAULT;
624 retval = ptrace_access_vm(tsk, dst, buf, this_len,
625 FOLL_FORCE | FOLL_WRITE);
626 if (!retval) {
627 if (copied)
628 break;
629 return -EIO;
630 }
631 copied += retval;
632 src += retval;
633 dst += retval;
634 len -= retval;
635 }
636 return copied;
637 }
638
ptrace_setoptions(struct task_struct * child,unsigned long data)639 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
640 {
641 unsigned flags;
642
643 if (data & ~(unsigned long)PTRACE_O_MASK)
644 return -EINVAL;
645
646 if (unlikely(data & PTRACE_O_SUSPEND_SECCOMP)) {
647 if (!IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) ||
648 !IS_ENABLED(CONFIG_SECCOMP))
649 return -EINVAL;
650
651 if (!capable(CAP_SYS_ADMIN))
652 return -EPERM;
653
654 if (seccomp_mode(¤t->seccomp) != SECCOMP_MODE_DISABLED ||
655 current->ptrace & PT_SUSPEND_SECCOMP)
656 return -EPERM;
657 }
658
659 /* Avoid intermediate state when all opts are cleared */
660 flags = child->ptrace;
661 flags &= ~(PTRACE_O_MASK << PT_OPT_FLAG_SHIFT);
662 flags |= (data << PT_OPT_FLAG_SHIFT);
663 child->ptrace = flags;
664
665 return 0;
666 }
667
ptrace_getsiginfo(struct task_struct * child,kernel_siginfo_t * info)668 static int ptrace_getsiginfo(struct task_struct *child, kernel_siginfo_t *info)
669 {
670 unsigned long flags;
671 int error = -ESRCH;
672
673 if (lock_task_sighand(child, &flags)) {
674 error = -EINVAL;
675 if (likely(child->last_siginfo != NULL)) {
676 copy_siginfo(info, child->last_siginfo);
677 error = 0;
678 }
679 unlock_task_sighand(child, &flags);
680 }
681 return error;
682 }
683
ptrace_setsiginfo(struct task_struct * child,const kernel_siginfo_t * info)684 static int ptrace_setsiginfo(struct task_struct *child, const kernel_siginfo_t *info)
685 {
686 unsigned long flags;
687 int error = -ESRCH;
688
689 if (lock_task_sighand(child, &flags)) {
690 error = -EINVAL;
691 if (likely(child->last_siginfo != NULL)) {
692 copy_siginfo(child->last_siginfo, info);
693 error = 0;
694 }
695 unlock_task_sighand(child, &flags);
696 }
697 return error;
698 }
699
ptrace_peek_siginfo(struct task_struct * child,unsigned long addr,unsigned long data)700 static int ptrace_peek_siginfo(struct task_struct *child,
701 unsigned long addr,
702 unsigned long data)
703 {
704 struct ptrace_peeksiginfo_args arg;
705 struct sigpending *pending;
706 struct sigqueue *q;
707 int ret, i;
708
709 ret = copy_from_user(&arg, (void __user *) addr,
710 sizeof(struct ptrace_peeksiginfo_args));
711 if (ret)
712 return -EFAULT;
713
714 if (arg.flags & ~PTRACE_PEEKSIGINFO_SHARED)
715 return -EINVAL; /* unknown flags */
716
717 if (arg.nr < 0)
718 return -EINVAL;
719
720 /* Ensure arg.off fits in an unsigned long */
721 if (arg.off > ULONG_MAX)
722 return 0;
723
724 if (arg.flags & PTRACE_PEEKSIGINFO_SHARED)
725 pending = &child->signal->shared_pending;
726 else
727 pending = &child->pending;
728
729 for (i = 0; i < arg.nr; ) {
730 kernel_siginfo_t info;
731 unsigned long off = arg.off + i;
732 bool found = false;
733
734 spin_lock_irq(&child->sighand->siglock);
735 list_for_each_entry(q, &pending->list, list) {
736 if (!off--) {
737 found = true;
738 copy_siginfo(&info, &q->info);
739 break;
740 }
741 }
742 spin_unlock_irq(&child->sighand->siglock);
743
744 if (!found) /* beyond the end of the list */
745 break;
746
747 #ifdef CONFIG_COMPAT
748 if (unlikely(in_compat_syscall())) {
749 compat_siginfo_t __user *uinfo = compat_ptr(data);
750
751 if (copy_siginfo_to_user32(uinfo, &info)) {
752 ret = -EFAULT;
753 break;
754 }
755
756 } else
757 #endif
758 {
759 siginfo_t __user *uinfo = (siginfo_t __user *) data;
760
761 if (copy_siginfo_to_user(uinfo, &info)) {
762 ret = -EFAULT;
763 break;
764 }
765 }
766
767 data += sizeof(siginfo_t);
768 i++;
769
770 if (signal_pending(current))
771 break;
772
773 cond_resched();
774 }
775
776 if (i > 0)
777 return i;
778
779 return ret;
780 }
781
782 #ifdef PTRACE_SINGLESTEP
783 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
784 #else
785 #define is_singlestep(request) 0
786 #endif
787
788 #ifdef PTRACE_SINGLEBLOCK
789 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
790 #else
791 #define is_singleblock(request) 0
792 #endif
793
794 #ifdef PTRACE_SYSEMU
795 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
796 #else
797 #define is_sysemu_singlestep(request) 0
798 #endif
799
ptrace_resume(struct task_struct * child,long request,unsigned long data)800 static int ptrace_resume(struct task_struct *child, long request,
801 unsigned long data)
802 {
803 bool need_siglock;
804
805 if (!valid_signal(data))
806 return -EIO;
807
808 if (request == PTRACE_SYSCALL)
809 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
810 else
811 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
812
813 #ifdef TIF_SYSCALL_EMU
814 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
815 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
816 else
817 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
818 #endif
819
820 if (is_singleblock(request)) {
821 if (unlikely(!arch_has_block_step()))
822 return -EIO;
823 user_enable_block_step(child);
824 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
825 if (unlikely(!arch_has_single_step()))
826 return -EIO;
827 user_enable_single_step(child);
828 } else {
829 user_disable_single_step(child);
830 }
831
832 /*
833 * Change ->exit_code and ->state under siglock to avoid the race
834 * with wait_task_stopped() in between; a non-zero ->exit_code will
835 * wrongly look like another report from tracee.
836 *
837 * Note that we need siglock even if ->exit_code == data and/or this
838 * status was not reported yet, the new status must not be cleared by
839 * wait_task_stopped() after resume.
840 *
841 * If data == 0 we do not care if wait_task_stopped() reports the old
842 * status and clears the code too; this can't race with the tracee, it
843 * takes siglock after resume.
844 */
845 need_siglock = data && !thread_group_empty(current);
846 if (need_siglock)
847 spin_lock_irq(&child->sighand->siglock);
848 child->exit_code = data;
849 wake_up_state(child, __TASK_TRACED);
850 if (need_siglock)
851 spin_unlock_irq(&child->sighand->siglock);
852
853 return 0;
854 }
855
856 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
857
858 static const struct user_regset *
find_regset(const struct user_regset_view * view,unsigned int type)859 find_regset(const struct user_regset_view *view, unsigned int type)
860 {
861 const struct user_regset *regset;
862 int n;
863
864 for (n = 0; n < view->n; ++n) {
865 regset = view->regsets + n;
866 if (regset->core_note_type == type)
867 return regset;
868 }
869
870 return NULL;
871 }
872
ptrace_regset(struct task_struct * task,int req,unsigned int type,struct iovec * kiov)873 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
874 struct iovec *kiov)
875 {
876 const struct user_regset_view *view = task_user_regset_view(task);
877 const struct user_regset *regset = find_regset(view, type);
878 int regset_no;
879
880 if (!regset || (kiov->iov_len % regset->size) != 0)
881 return -EINVAL;
882
883 regset_no = regset - view->regsets;
884 kiov->iov_len = min(kiov->iov_len,
885 (__kernel_size_t) (regset->n * regset->size));
886
887 if (req == PTRACE_GETREGSET)
888 return copy_regset_to_user(task, view, regset_no, 0,
889 kiov->iov_len, kiov->iov_base);
890 else
891 return copy_regset_from_user(task, view, regset_no, 0,
892 kiov->iov_len, kiov->iov_base);
893 }
894
895 /*
896 * This is declared in linux/regset.h and defined in machine-dependent
897 * code. We put the export here, near the primary machine-neutral use,
898 * to ensure no machine forgets it.
899 */
900 EXPORT_SYMBOL_GPL(task_user_regset_view);
901
902 static unsigned long
ptrace_get_syscall_info_entry(struct task_struct * child,struct pt_regs * regs,struct ptrace_syscall_info * info)903 ptrace_get_syscall_info_entry(struct task_struct *child, struct pt_regs *regs,
904 struct ptrace_syscall_info *info)
905 {
906 unsigned long args[ARRAY_SIZE(info->entry.args)];
907 int i;
908
909 info->op = PTRACE_SYSCALL_INFO_ENTRY;
910 info->entry.nr = syscall_get_nr(child, regs);
911 syscall_get_arguments(child, regs, args);
912 for (i = 0; i < ARRAY_SIZE(args); i++)
913 info->entry.args[i] = args[i];
914
915 /* args is the last field in struct ptrace_syscall_info.entry */
916 return offsetofend(struct ptrace_syscall_info, entry.args);
917 }
918
919 static unsigned long
ptrace_get_syscall_info_seccomp(struct task_struct * child,struct pt_regs * regs,struct ptrace_syscall_info * info)920 ptrace_get_syscall_info_seccomp(struct task_struct *child, struct pt_regs *regs,
921 struct ptrace_syscall_info *info)
922 {
923 /*
924 * As struct ptrace_syscall_info.entry is currently a subset
925 * of struct ptrace_syscall_info.seccomp, it makes sense to
926 * initialize that subset using ptrace_get_syscall_info_entry().
927 * This can be reconsidered in the future if these structures
928 * diverge significantly enough.
929 */
930 ptrace_get_syscall_info_entry(child, regs, info);
931 info->op = PTRACE_SYSCALL_INFO_SECCOMP;
932 info->seccomp.ret_data = child->ptrace_message;
933
934 /* ret_data is the last field in struct ptrace_syscall_info.seccomp */
935 return offsetofend(struct ptrace_syscall_info, seccomp.ret_data);
936 }
937
938 static unsigned long
ptrace_get_syscall_info_exit(struct task_struct * child,struct pt_regs * regs,struct ptrace_syscall_info * info)939 ptrace_get_syscall_info_exit(struct task_struct *child, struct pt_regs *regs,
940 struct ptrace_syscall_info *info)
941 {
942 info->op = PTRACE_SYSCALL_INFO_EXIT;
943 info->exit.rval = syscall_get_error(child, regs);
944 info->exit.is_error = !!info->exit.rval;
945 if (!info->exit.is_error)
946 info->exit.rval = syscall_get_return_value(child, regs);
947
948 /* is_error is the last field in struct ptrace_syscall_info.exit */
949 return offsetofend(struct ptrace_syscall_info, exit.is_error);
950 }
951
952 static int
ptrace_get_syscall_info(struct task_struct * child,unsigned long user_size,void __user * datavp)953 ptrace_get_syscall_info(struct task_struct *child, unsigned long user_size,
954 void __user *datavp)
955 {
956 struct pt_regs *regs = task_pt_regs(child);
957 struct ptrace_syscall_info info = {
958 .op = PTRACE_SYSCALL_INFO_NONE,
959 .arch = syscall_get_arch(child),
960 .instruction_pointer = instruction_pointer(regs),
961 .stack_pointer = user_stack_pointer(regs),
962 };
963 unsigned long actual_size = offsetof(struct ptrace_syscall_info, entry);
964 unsigned long write_size;
965
966 /*
967 * This does not need lock_task_sighand() to access
968 * child->last_siginfo because ptrace_freeze_traced()
969 * called earlier by ptrace_check_attach() ensures that
970 * the tracee cannot go away and clear its last_siginfo.
971 */
972 switch (child->last_siginfo ? child->last_siginfo->si_code : 0) {
973 case SIGTRAP | 0x80:
974 switch (child->ptrace_message) {
975 case PTRACE_EVENTMSG_SYSCALL_ENTRY:
976 actual_size = ptrace_get_syscall_info_entry(child, regs,
977 &info);
978 break;
979 case PTRACE_EVENTMSG_SYSCALL_EXIT:
980 actual_size = ptrace_get_syscall_info_exit(child, regs,
981 &info);
982 break;
983 }
984 break;
985 case SIGTRAP | (PTRACE_EVENT_SECCOMP << 8):
986 actual_size = ptrace_get_syscall_info_seccomp(child, regs,
987 &info);
988 break;
989 }
990
991 write_size = min(actual_size, user_size);
992 return copy_to_user(datavp, &info, write_size) ? -EFAULT : actual_size;
993 }
994 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
995
ptrace_request(struct task_struct * child,long request,unsigned long addr,unsigned long data)996 int ptrace_request(struct task_struct *child, long request,
997 unsigned long addr, unsigned long data)
998 {
999 bool seized = child->ptrace & PT_SEIZED;
1000 int ret = -EIO;
1001 kernel_siginfo_t siginfo, *si;
1002 void __user *datavp = (void __user *) data;
1003 unsigned long __user *datalp = datavp;
1004 unsigned long flags;
1005
1006 switch (request) {
1007 case PTRACE_PEEKTEXT:
1008 case PTRACE_PEEKDATA:
1009 return generic_ptrace_peekdata(child, addr, data);
1010 case PTRACE_POKETEXT:
1011 case PTRACE_POKEDATA:
1012 return generic_ptrace_pokedata(child, addr, data);
1013
1014 #ifdef PTRACE_OLDSETOPTIONS
1015 case PTRACE_OLDSETOPTIONS:
1016 #endif
1017 case PTRACE_SETOPTIONS:
1018 ret = ptrace_setoptions(child, data);
1019 break;
1020 case PTRACE_GETEVENTMSG:
1021 ret = put_user(child->ptrace_message, datalp);
1022 break;
1023
1024 case PTRACE_PEEKSIGINFO:
1025 ret = ptrace_peek_siginfo(child, addr, data);
1026 break;
1027
1028 case PTRACE_GETSIGINFO:
1029 ret = ptrace_getsiginfo(child, &siginfo);
1030 if (!ret)
1031 ret = copy_siginfo_to_user(datavp, &siginfo);
1032 break;
1033
1034 case PTRACE_SETSIGINFO:
1035 ret = copy_siginfo_from_user(&siginfo, datavp);
1036 if (!ret)
1037 ret = ptrace_setsiginfo(child, &siginfo);
1038 break;
1039
1040 case PTRACE_GETSIGMASK: {
1041 sigset_t *mask;
1042
1043 if (addr != sizeof(sigset_t)) {
1044 ret = -EINVAL;
1045 break;
1046 }
1047
1048 if (test_tsk_restore_sigmask(child))
1049 mask = &child->saved_sigmask;
1050 else
1051 mask = &child->blocked;
1052
1053 if (copy_to_user(datavp, mask, sizeof(sigset_t)))
1054 ret = -EFAULT;
1055 else
1056 ret = 0;
1057
1058 break;
1059 }
1060
1061 case PTRACE_SETSIGMASK: {
1062 sigset_t new_set;
1063
1064 if (addr != sizeof(sigset_t)) {
1065 ret = -EINVAL;
1066 break;
1067 }
1068
1069 if (copy_from_user(&new_set, datavp, sizeof(sigset_t))) {
1070 ret = -EFAULT;
1071 break;
1072 }
1073
1074 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1075
1076 /*
1077 * Every thread does recalc_sigpending() after resume, so
1078 * retarget_shared_pending() and recalc_sigpending() are not
1079 * called here.
1080 */
1081 spin_lock_irq(&child->sighand->siglock);
1082 child->blocked = new_set;
1083 spin_unlock_irq(&child->sighand->siglock);
1084
1085 clear_tsk_restore_sigmask(child);
1086
1087 ret = 0;
1088 break;
1089 }
1090
1091 case PTRACE_INTERRUPT:
1092 /*
1093 * Stop tracee without any side-effect on signal or job
1094 * control. At least one trap is guaranteed to happen
1095 * after this request. If @child is already trapped, the
1096 * current trap is not disturbed and another trap will
1097 * happen after the current trap is ended with PTRACE_CONT.
1098 *
1099 * The actual trap might not be PTRACE_EVENT_STOP trap but
1100 * the pending condition is cleared regardless.
1101 */
1102 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1103 break;
1104
1105 /*
1106 * INTERRUPT doesn't disturb existing trap sans one
1107 * exception. If ptracer issued LISTEN for the current
1108 * STOP, this INTERRUPT should clear LISTEN and re-trap
1109 * tracee into STOP.
1110 */
1111 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
1112 ptrace_signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
1113
1114 unlock_task_sighand(child, &flags);
1115 ret = 0;
1116 break;
1117
1118 case PTRACE_LISTEN:
1119 /*
1120 * Listen for events. Tracee must be in STOP. It's not
1121 * resumed per-se but is not considered to be in TRACED by
1122 * wait(2) or ptrace(2). If an async event (e.g. group
1123 * stop state change) happens, tracee will enter STOP trap
1124 * again. Alternatively, ptracer can issue INTERRUPT to
1125 * finish listening and re-trap tracee into STOP.
1126 */
1127 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
1128 break;
1129
1130 si = child->last_siginfo;
1131 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
1132 child->jobctl |= JOBCTL_LISTENING;
1133 /*
1134 * If NOTIFY is set, it means event happened between
1135 * start of this trap and now. Trigger re-trap.
1136 */
1137 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
1138 ptrace_signal_wake_up(child, true);
1139 ret = 0;
1140 }
1141 unlock_task_sighand(child, &flags);
1142 break;
1143
1144 case PTRACE_DETACH: /* detach a process that was attached. */
1145 ret = ptrace_detach(child, data);
1146 break;
1147
1148 #ifdef CONFIG_BINFMT_ELF_FDPIC
1149 case PTRACE_GETFDPIC: {
1150 struct mm_struct *mm = get_task_mm(child);
1151 unsigned long tmp = 0;
1152
1153 ret = -ESRCH;
1154 if (!mm)
1155 break;
1156
1157 switch (addr) {
1158 case PTRACE_GETFDPIC_EXEC:
1159 tmp = mm->context.exec_fdpic_loadmap;
1160 break;
1161 case PTRACE_GETFDPIC_INTERP:
1162 tmp = mm->context.interp_fdpic_loadmap;
1163 break;
1164 default:
1165 break;
1166 }
1167 mmput(mm);
1168
1169 ret = put_user(tmp, datalp);
1170 break;
1171 }
1172 #endif
1173
1174 #ifdef PTRACE_SINGLESTEP
1175 case PTRACE_SINGLESTEP:
1176 #endif
1177 #ifdef PTRACE_SINGLEBLOCK
1178 case PTRACE_SINGLEBLOCK:
1179 #endif
1180 #ifdef PTRACE_SYSEMU
1181 case PTRACE_SYSEMU:
1182 case PTRACE_SYSEMU_SINGLESTEP:
1183 #endif
1184 case PTRACE_SYSCALL:
1185 case PTRACE_CONT:
1186 return ptrace_resume(child, request, data);
1187
1188 case PTRACE_KILL:
1189 if (child->exit_state) /* already dead */
1190 return 0;
1191 return ptrace_resume(child, request, SIGKILL);
1192
1193 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1194 case PTRACE_GETREGSET:
1195 case PTRACE_SETREGSET: {
1196 struct iovec kiov;
1197 struct iovec __user *uiov = datavp;
1198
1199 if (!access_ok(uiov, sizeof(*uiov)))
1200 return -EFAULT;
1201
1202 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
1203 __get_user(kiov.iov_len, &uiov->iov_len))
1204 return -EFAULT;
1205
1206 ret = ptrace_regset(child, request, addr, &kiov);
1207 if (!ret)
1208 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1209 break;
1210 }
1211
1212 case PTRACE_GET_SYSCALL_INFO:
1213 ret = ptrace_get_syscall_info(child, addr, datavp);
1214 break;
1215 #endif
1216
1217 case PTRACE_SECCOMP_GET_FILTER:
1218 ret = seccomp_get_filter(child, addr, datavp);
1219 break;
1220
1221 case PTRACE_SECCOMP_GET_METADATA:
1222 ret = seccomp_get_metadata(child, addr, datavp);
1223 break;
1224
1225 default:
1226 break;
1227 }
1228
1229 return ret;
1230 }
1231
1232 #ifndef arch_ptrace_attach
1233 #define arch_ptrace_attach(child) do { } while (0)
1234 #endif
1235
SYSCALL_DEFINE4(ptrace,long,request,long,pid,unsigned long,addr,unsigned long,data)1236 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
1237 unsigned long, data)
1238 {
1239 struct task_struct *child;
1240 long ret;
1241
1242 if (request == PTRACE_TRACEME) {
1243 ret = ptrace_traceme();
1244 if (!ret)
1245 arch_ptrace_attach(current);
1246 goto out;
1247 }
1248
1249 child = find_get_task_by_vpid(pid);
1250 if (!child) {
1251 ret = -ESRCH;
1252 goto out;
1253 }
1254
1255 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1256 ret = ptrace_attach(child, request, addr, data);
1257 /*
1258 * Some architectures need to do book-keeping after
1259 * a ptrace attach.
1260 */
1261 if (!ret)
1262 arch_ptrace_attach(child);
1263 goto out_put_task_struct;
1264 }
1265
1266 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1267 request == PTRACE_INTERRUPT);
1268 if (ret < 0)
1269 goto out_put_task_struct;
1270
1271 ret = arch_ptrace(child, request, addr, data);
1272 if (ret || request != PTRACE_DETACH)
1273 ptrace_unfreeze_traced(child);
1274
1275 out_put_task_struct:
1276 put_task_struct(child);
1277 out:
1278 return ret;
1279 }
1280
generic_ptrace_peekdata(struct task_struct * tsk,unsigned long addr,unsigned long data)1281 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
1282 unsigned long data)
1283 {
1284 unsigned long tmp;
1285 int copied;
1286
1287 copied = ptrace_access_vm(tsk, addr, &tmp, sizeof(tmp), FOLL_FORCE);
1288 if (copied != sizeof(tmp))
1289 return -EIO;
1290 return put_user(tmp, (unsigned long __user *)data);
1291 }
1292
generic_ptrace_pokedata(struct task_struct * tsk,unsigned long addr,unsigned long data)1293 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
1294 unsigned long data)
1295 {
1296 int copied;
1297
1298 copied = ptrace_access_vm(tsk, addr, &data, sizeof(data),
1299 FOLL_FORCE | FOLL_WRITE);
1300 return (copied == sizeof(data)) ? 0 : -EIO;
1301 }
1302
1303 #if defined CONFIG_COMPAT
1304
compat_ptrace_request(struct task_struct * child,compat_long_t request,compat_ulong_t addr,compat_ulong_t data)1305 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
1306 compat_ulong_t addr, compat_ulong_t data)
1307 {
1308 compat_ulong_t __user *datap = compat_ptr(data);
1309 compat_ulong_t word;
1310 kernel_siginfo_t siginfo;
1311 int ret;
1312
1313 switch (request) {
1314 case PTRACE_PEEKTEXT:
1315 case PTRACE_PEEKDATA:
1316 ret = ptrace_access_vm(child, addr, &word, sizeof(word),
1317 FOLL_FORCE);
1318 if (ret != sizeof(word))
1319 ret = -EIO;
1320 else
1321 ret = put_user(word, datap);
1322 break;
1323
1324 case PTRACE_POKETEXT:
1325 case PTRACE_POKEDATA:
1326 ret = ptrace_access_vm(child, addr, &data, sizeof(data),
1327 FOLL_FORCE | FOLL_WRITE);
1328 ret = (ret != sizeof(data) ? -EIO : 0);
1329 break;
1330
1331 case PTRACE_GETEVENTMSG:
1332 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
1333 break;
1334
1335 case PTRACE_GETSIGINFO:
1336 ret = ptrace_getsiginfo(child, &siginfo);
1337 if (!ret)
1338 ret = copy_siginfo_to_user32(
1339 (struct compat_siginfo __user *) datap,
1340 &siginfo);
1341 break;
1342
1343 case PTRACE_SETSIGINFO:
1344 ret = copy_siginfo_from_user32(
1345 &siginfo, (struct compat_siginfo __user *) datap);
1346 if (!ret)
1347 ret = ptrace_setsiginfo(child, &siginfo);
1348 break;
1349 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
1350 case PTRACE_GETREGSET:
1351 case PTRACE_SETREGSET:
1352 {
1353 struct iovec kiov;
1354 struct compat_iovec __user *uiov =
1355 (struct compat_iovec __user *) datap;
1356 compat_uptr_t ptr;
1357 compat_size_t len;
1358
1359 if (!access_ok(uiov, sizeof(*uiov)))
1360 return -EFAULT;
1361
1362 if (__get_user(ptr, &uiov->iov_base) ||
1363 __get_user(len, &uiov->iov_len))
1364 return -EFAULT;
1365
1366 kiov.iov_base = compat_ptr(ptr);
1367 kiov.iov_len = len;
1368
1369 ret = ptrace_regset(child, request, addr, &kiov);
1370 if (!ret)
1371 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1372 break;
1373 }
1374 #endif
1375
1376 default:
1377 ret = ptrace_request(child, request, addr, data);
1378 }
1379
1380 return ret;
1381 }
1382
COMPAT_SYSCALL_DEFINE4(ptrace,compat_long_t,request,compat_long_t,pid,compat_long_t,addr,compat_long_t,data)1383 COMPAT_SYSCALL_DEFINE4(ptrace, compat_long_t, request, compat_long_t, pid,
1384 compat_long_t, addr, compat_long_t, data)
1385 {
1386 struct task_struct *child;
1387 long ret;
1388
1389 if (request == PTRACE_TRACEME) {
1390 ret = ptrace_traceme();
1391 goto out;
1392 }
1393
1394 child = find_get_task_by_vpid(pid);
1395 if (!child) {
1396 ret = -ESRCH;
1397 goto out;
1398 }
1399
1400 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1401 ret = ptrace_attach(child, request, addr, data);
1402 /*
1403 * Some architectures need to do book-keeping after
1404 * a ptrace attach.
1405 */
1406 if (!ret)
1407 arch_ptrace_attach(child);
1408 goto out_put_task_struct;
1409 }
1410
1411 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1412 request == PTRACE_INTERRUPT);
1413 if (!ret) {
1414 ret = compat_arch_ptrace(child, request, addr, data);
1415 if (ret || request != PTRACE_DETACH)
1416 ptrace_unfreeze_traced(child);
1417 }
1418
1419 out_put_task_struct:
1420 put_task_struct(child);
1421 out:
1422 return ret;
1423 }
1424 #endif /* CONFIG_COMPAT */
1425