1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/kernel.h>
4 #include <linux/irqflags.h>
5 #include <linux/string.h>
6 #include <linux/errno.h>
7 #include <linux/bug.h>
8 #include "printk_ringbuffer.h"
9
10 /**
11 * DOC: printk_ringbuffer overview
12 *
13 * Data Structure
14 * --------------
15 * The printk_ringbuffer is made up of 3 internal ringbuffers:
16 *
17 * desc_ring
18 * A ring of descriptors and their meta data (such as sequence number,
19 * timestamp, loglevel, etc.) as well as internal state information about
20 * the record and logical positions specifying where in the other
21 * ringbuffer the text strings are located.
22 *
23 * text_data_ring
24 * A ring of data blocks. A data block consists of an unsigned long
25 * integer (ID) that maps to a desc_ring index followed by the text
26 * string of the record.
27 *
28 * The internal state information of a descriptor is the key element to allow
29 * readers and writers to locklessly synchronize access to the data.
30 *
31 * Implementation
32 * --------------
33 *
34 * Descriptor Ring
35 * ~~~~~~~~~~~~~~~
36 * The descriptor ring is an array of descriptors. A descriptor contains
37 * essential meta data to track the data of a printk record using
38 * blk_lpos structs pointing to associated text data blocks (see
39 * "Data Rings" below). Each descriptor is assigned an ID that maps
40 * directly to index values of the descriptor array and has a state. The ID
41 * and the state are bitwise combined into a single descriptor field named
42 * @state_var, allowing ID and state to be synchronously and atomically
43 * updated.
44 *
45 * Descriptors have four states:
46 *
47 * reserved
48 * A writer is modifying the record.
49 *
50 * committed
51 * The record and all its data are written. A writer can reopen the
52 * descriptor (transitioning it back to reserved), but in the committed
53 * state the data is consistent.
54 *
55 * finalized
56 * The record and all its data are complete and available for reading. A
57 * writer cannot reopen the descriptor.
58 *
59 * reusable
60 * The record exists, but its text and/or meta data may no longer be
61 * available.
62 *
63 * Querying the @state_var of a record requires providing the ID of the
64 * descriptor to query. This can yield a possible fifth (pseudo) state:
65 *
66 * miss
67 * The descriptor being queried has an unexpected ID.
68 *
69 * The descriptor ring has a @tail_id that contains the ID of the oldest
70 * descriptor and @head_id that contains the ID of the newest descriptor.
71 *
72 * When a new descriptor should be created (and the ring is full), the tail
73 * descriptor is invalidated by first transitioning to the reusable state and
74 * then invalidating all tail data blocks up to and including the data blocks
75 * associated with the tail descriptor (for the text ring). Then
76 * @tail_id is advanced, followed by advancing @head_id. And finally the
77 * @state_var of the new descriptor is initialized to the new ID and reserved
78 * state.
79 *
80 * The @tail_id can only be advanced if the new @tail_id would be in the
81 * committed or reusable queried state. This makes it possible that a valid
82 * sequence number of the tail is always available.
83 *
84 * Descriptor Finalization
85 * ~~~~~~~~~~~~~~~~~~~~~~~
86 * When a writer calls the commit function prb_commit(), record data is
87 * fully stored and is consistent within the ringbuffer. However, a writer can
88 * reopen that record, claiming exclusive access (as with prb_reserve()), and
89 * modify that record. When finished, the writer must again commit the record.
90 *
91 * In order for a record to be made available to readers (and also become
92 * recyclable for writers), it must be finalized. A finalized record cannot be
93 * reopened and can never become "unfinalized". Record finalization can occur
94 * in three different scenarios:
95 *
96 * 1) A writer can simultaneously commit and finalize its record by calling
97 * prb_final_commit() instead of prb_commit().
98 *
99 * 2) When a new record is reserved and the previous record has been
100 * committed via prb_commit(), that previous record is automatically
101 * finalized.
102 *
103 * 3) When a record is committed via prb_commit() and a newer record
104 * already exists, the record being committed is automatically finalized.
105 *
106 * Data Ring
107 * ~~~~~~~~~
108 * The text data ring is a byte array composed of data blocks. Data blocks are
109 * referenced by blk_lpos structs that point to the logical position of the
110 * beginning of a data block and the beginning of the next adjacent data
111 * block. Logical positions are mapped directly to index values of the byte
112 * array ringbuffer.
113 *
114 * Each data block consists of an ID followed by the writer data. The ID is
115 * the identifier of a descriptor that is associated with the data block. A
116 * given data block is considered valid if all of the following conditions
117 * are met:
118 *
119 * 1) The descriptor associated with the data block is in the committed
120 * or finalized queried state.
121 *
122 * 2) The blk_lpos struct within the descriptor associated with the data
123 * block references back to the same data block.
124 *
125 * 3) The data block is within the head/tail logical position range.
126 *
127 * If the writer data of a data block would extend beyond the end of the
128 * byte array, only the ID of the data block is stored at the logical
129 * position and the full data block (ID and writer data) is stored at the
130 * beginning of the byte array. The referencing blk_lpos will point to the
131 * ID before the wrap and the next data block will be at the logical
132 * position adjacent the full data block after the wrap.
133 *
134 * Data rings have a @tail_lpos that points to the beginning of the oldest
135 * data block and a @head_lpos that points to the logical position of the
136 * next (not yet existing) data block.
137 *
138 * When a new data block should be created (and the ring is full), tail data
139 * blocks will first be invalidated by putting their associated descriptors
140 * into the reusable state and then pushing the @tail_lpos forward beyond
141 * them. Then the @head_lpos is pushed forward and is associated with a new
142 * descriptor. If a data block is not valid, the @tail_lpos cannot be
143 * advanced beyond it.
144 *
145 * Info Array
146 * ~~~~~~~~~~
147 * The general meta data of printk records are stored in printk_info structs,
148 * stored in an array with the same number of elements as the descriptor ring.
149 * Each info corresponds to the descriptor of the same index in the
150 * descriptor ring. Info validity is confirmed by evaluating the corresponding
151 * descriptor before and after loading the info.
152 *
153 * Usage
154 * -----
155 * Here are some simple examples demonstrating writers and readers. For the
156 * examples a global ringbuffer (test_rb) is available (which is not the
157 * actual ringbuffer used by printk)::
158 *
159 * DEFINE_PRINTKRB(test_rb, 15, 5);
160 *
161 * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of
162 * 1 MiB (2 ^ (15 + 5)) for text data.
163 *
164 * Sample writer code::
165 *
166 * const char *textstr = "message text";
167 * struct prb_reserved_entry e;
168 * struct printk_record r;
169 *
170 * // specify how much to allocate
171 * prb_rec_init_wr(&r, strlen(textstr) + 1);
172 *
173 * if (prb_reserve(&e, &test_rb, &r)) {
174 * snprintf(r.text_buf, r.text_buf_size, "%s", textstr);
175 *
176 * r.info->text_len = strlen(textstr);
177 * r.info->ts_nsec = local_clock();
178 * r.info->caller_id = printk_caller_id();
179 *
180 * // commit and finalize the record
181 * prb_final_commit(&e);
182 * }
183 *
184 * Note that additional writer functions are available to extend a record
185 * after it has been committed but not yet finalized. This can be done as
186 * long as no new records have been reserved and the caller is the same.
187 *
188 * Sample writer code (record extending)::
189 *
190 * // alternate rest of previous example
191 *
192 * r.info->text_len = strlen(textstr);
193 * r.info->ts_nsec = local_clock();
194 * r.info->caller_id = printk_caller_id();
195 *
196 * // commit the record (but do not finalize yet)
197 * prb_commit(&e);
198 * }
199 *
200 * ...
201 *
202 * // specify additional 5 bytes text space to extend
203 * prb_rec_init_wr(&r, 5);
204 *
205 * // try to extend, but only if it does not exceed 32 bytes
206 * if (prb_reserve_in_last(&e, &test_rb, &r, printk_caller_id()), 32) {
207 * snprintf(&r.text_buf[r.info->text_len],
208 * r.text_buf_size - r.info->text_len, "hello");
209 *
210 * r.info->text_len += 5;
211 *
212 * // commit and finalize the record
213 * prb_final_commit(&e);
214 * }
215 *
216 * Sample reader code::
217 *
218 * struct printk_info info;
219 * struct printk_record r;
220 * char text_buf[32];
221 * u64 seq;
222 *
223 * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf));
224 *
225 * prb_for_each_record(0, &test_rb, &seq, &r) {
226 * if (info.seq != seq)
227 * pr_warn("lost %llu records\n", info.seq - seq);
228 *
229 * if (info.text_len > r.text_buf_size) {
230 * pr_warn("record %llu text truncated\n", info.seq);
231 * text_buf[r.text_buf_size - 1] = 0;
232 * }
233 *
234 * pr_info("%llu: %llu: %s\n", info.seq, info.ts_nsec,
235 * &text_buf[0]);
236 * }
237 *
238 * Note that additional less convenient reader functions are available to
239 * allow complex record access.
240 *
241 * ABA Issues
242 * ~~~~~~~~~~
243 * To help avoid ABA issues, descriptors are referenced by IDs (array index
244 * values combined with tagged bits counting array wraps) and data blocks are
245 * referenced by logical positions (array index values combined with tagged
246 * bits counting array wraps). However, on 32-bit systems the number of
247 * tagged bits is relatively small such that an ABA incident is (at least
248 * theoretically) possible. For example, if 4 million maximally sized (1KiB)
249 * printk messages were to occur in NMI context on a 32-bit system, the
250 * interrupted context would not be able to recognize that the 32-bit integer
251 * completely wrapped and thus represents a different data block than the one
252 * the interrupted context expects.
253 *
254 * To help combat this possibility, additional state checking is performed
255 * (such as using cmpxchg() even though set() would suffice). These extra
256 * checks are commented as such and will hopefully catch any ABA issue that
257 * a 32-bit system might experience.
258 *
259 * Memory Barriers
260 * ~~~~~~~~~~~~~~~
261 * Multiple memory barriers are used. To simplify proving correctness and
262 * generating litmus tests, lines of code related to memory barriers
263 * (loads, stores, and the associated memory barriers) are labeled::
264 *
265 * LMM(function:letter)
266 *
267 * Comments reference the labels using only the "function:letter" part.
268 *
269 * The memory barrier pairs and their ordering are:
270 *
271 * desc_reserve:D / desc_reserve:B
272 * push descriptor tail (id), then push descriptor head (id)
273 *
274 * desc_reserve:D / data_push_tail:B
275 * push data tail (lpos), then set new descriptor reserved (state)
276 *
277 * desc_reserve:D / desc_push_tail:C
278 * push descriptor tail (id), then set new descriptor reserved (state)
279 *
280 * desc_reserve:D / prb_first_seq:C
281 * push descriptor tail (id), then set new descriptor reserved (state)
282 *
283 * desc_reserve:F / desc_read:D
284 * set new descriptor id and reserved (state), then allow writer changes
285 *
286 * data_alloc:A (or data_realloc:A) / desc_read:D
287 * set old descriptor reusable (state), then modify new data block area
288 *
289 * data_alloc:A (or data_realloc:A) / data_push_tail:B
290 * push data tail (lpos), then modify new data block area
291 *
292 * _prb_commit:B / desc_read:B
293 * store writer changes, then set new descriptor committed (state)
294 *
295 * desc_reopen_last:A / _prb_commit:B
296 * set descriptor reserved (state), then read descriptor data
297 *
298 * _prb_commit:B / desc_reserve:D
299 * set new descriptor committed (state), then check descriptor head (id)
300 *
301 * data_push_tail:D / data_push_tail:A
302 * set descriptor reusable (state), then push data tail (lpos)
303 *
304 * desc_push_tail:B / desc_reserve:D
305 * set descriptor reusable (state), then push descriptor tail (id)
306 */
307
308 #define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits)
309 #define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1)
310
311 #define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits)
312 #define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1)
313
314 /* Determine the data array index from a logical position. */
315 #define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring))
316
317 /* Determine the desc array index from an ID or sequence number. */
318 #define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring))
319
320 /* Determine how many times the data array has wrapped. */
321 #define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits)
322
323 /* Determine if a logical position refers to a data-less block. */
324 #define LPOS_DATALESS(lpos) ((lpos) & 1UL)
325 #define BLK_DATALESS(blk) (LPOS_DATALESS((blk)->begin) && \
326 LPOS_DATALESS((blk)->next))
327
328 /* Get the logical position at index 0 of the current wrap. */
329 #define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \
330 ((lpos) & ~DATA_SIZE_MASK(data_ring))
331
332 /* Get the ID for the same index of the previous wrap as the given ID. */
333 #define DESC_ID_PREV_WRAP(desc_ring, id) \
334 DESC_ID((id) - DESCS_COUNT(desc_ring))
335
336 /*
337 * A data block: mapped directly to the beginning of the data block area
338 * specified as a logical position within the data ring.
339 *
340 * @id: the ID of the associated descriptor
341 * @data: the writer data
342 *
343 * Note that the size of a data block is only known by its associated
344 * descriptor.
345 */
346 struct prb_data_block {
347 unsigned long id;
348 char data[];
349 };
350
351 /*
352 * Return the descriptor associated with @n. @n can be either a
353 * descriptor ID or a sequence number.
354 */
to_desc(struct prb_desc_ring * desc_ring,u64 n)355 static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n)
356 {
357 return &desc_ring->descs[DESC_INDEX(desc_ring, n)];
358 }
359
360 /*
361 * Return the printk_info associated with @n. @n can be either a
362 * descriptor ID or a sequence number.
363 */
to_info(struct prb_desc_ring * desc_ring,u64 n)364 static struct printk_info *to_info(struct prb_desc_ring *desc_ring, u64 n)
365 {
366 return &desc_ring->infos[DESC_INDEX(desc_ring, n)];
367 }
368
to_block(struct prb_data_ring * data_ring,unsigned long begin_lpos)369 static struct prb_data_block *to_block(struct prb_data_ring *data_ring,
370 unsigned long begin_lpos)
371 {
372 return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)];
373 }
374
375 /*
376 * Increase the data size to account for data block meta data plus any
377 * padding so that the adjacent data block is aligned on the ID size.
378 */
to_blk_size(unsigned int size)379 static unsigned int to_blk_size(unsigned int size)
380 {
381 struct prb_data_block *db = NULL;
382
383 size += sizeof(*db);
384 size = ALIGN(size, sizeof(db->id));
385 return size;
386 }
387
388 /*
389 * Sanity checker for reserve size. The ringbuffer code assumes that a data
390 * block does not exceed the maximum possible size that could fit within the
391 * ringbuffer. This function provides that basic size check so that the
392 * assumption is safe.
393 */
data_check_size(struct prb_data_ring * data_ring,unsigned int size)394 static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size)
395 {
396 struct prb_data_block *db = NULL;
397
398 if (size == 0)
399 return true;
400
401 /*
402 * Ensure the alignment padded size could possibly fit in the data
403 * array. The largest possible data block must still leave room for
404 * at least the ID of the next block.
405 */
406 size = to_blk_size(size);
407 if (size > DATA_SIZE(data_ring) - sizeof(db->id))
408 return false;
409
410 return true;
411 }
412
413 /* Query the state of a descriptor. */
get_desc_state(unsigned long id,unsigned long state_val)414 static enum desc_state get_desc_state(unsigned long id,
415 unsigned long state_val)
416 {
417 if (id != DESC_ID(state_val))
418 return desc_miss;
419
420 return DESC_STATE(state_val);
421 }
422
423 /*
424 * Get a copy of a specified descriptor and return its queried state. If the
425 * descriptor is in an inconsistent state (miss or reserved), the caller can
426 * only expect the descriptor's @state_var field to be valid.
427 *
428 * The sequence number and caller_id can be optionally retrieved. Like all
429 * non-state_var data, they are only valid if the descriptor is in a
430 * consistent state.
431 */
desc_read(struct prb_desc_ring * desc_ring,unsigned long id,struct prb_desc * desc_out,u64 * seq_out,u32 * caller_id_out)432 static enum desc_state desc_read(struct prb_desc_ring *desc_ring,
433 unsigned long id, struct prb_desc *desc_out,
434 u64 *seq_out, u32 *caller_id_out)
435 {
436 struct printk_info *info = to_info(desc_ring, id);
437 struct prb_desc *desc = to_desc(desc_ring, id);
438 atomic_long_t *state_var = &desc->state_var;
439 enum desc_state d_state;
440 unsigned long state_val;
441
442 /* Check the descriptor state. */
443 state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */
444 d_state = get_desc_state(id, state_val);
445 if (d_state == desc_miss || d_state == desc_reserved) {
446 /*
447 * The descriptor is in an inconsistent state. Set at least
448 * @state_var so that the caller can see the details of
449 * the inconsistent state.
450 */
451 goto out;
452 }
453
454 /*
455 * Guarantee the state is loaded before copying the descriptor
456 * content. This avoids copying obsolete descriptor content that might
457 * not apply to the descriptor state. This pairs with _prb_commit:B.
458 *
459 * Memory barrier involvement:
460 *
461 * If desc_read:A reads from _prb_commit:B, then desc_read:C reads
462 * from _prb_commit:A.
463 *
464 * Relies on:
465 *
466 * WMB from _prb_commit:A to _prb_commit:B
467 * matching
468 * RMB from desc_read:A to desc_read:C
469 */
470 smp_rmb(); /* LMM(desc_read:B) */
471
472 /*
473 * Copy the descriptor data. The data is not valid until the
474 * state has been re-checked. A memcpy() for all of @desc
475 * cannot be used because of the atomic_t @state_var field.
476 */
477 memcpy(&desc_out->text_blk_lpos, &desc->text_blk_lpos,
478 sizeof(desc_out->text_blk_lpos)); /* LMM(desc_read:C) */
479 if (seq_out)
480 *seq_out = info->seq; /* also part of desc_read:C */
481 if (caller_id_out)
482 *caller_id_out = info->caller_id; /* also part of desc_read:C */
483
484 /*
485 * 1. Guarantee the descriptor content is loaded before re-checking
486 * the state. This avoids reading an obsolete descriptor state
487 * that may not apply to the copied content. This pairs with
488 * desc_reserve:F.
489 *
490 * Memory barrier involvement:
491 *
492 * If desc_read:C reads from desc_reserve:G, then desc_read:E
493 * reads from desc_reserve:F.
494 *
495 * Relies on:
496 *
497 * WMB from desc_reserve:F to desc_reserve:G
498 * matching
499 * RMB from desc_read:C to desc_read:E
500 *
501 * 2. Guarantee the record data is loaded before re-checking the
502 * state. This avoids reading an obsolete descriptor state that may
503 * not apply to the copied data. This pairs with data_alloc:A and
504 * data_realloc:A.
505 *
506 * Memory barrier involvement:
507 *
508 * If copy_data:A reads from data_alloc:B, then desc_read:E
509 * reads from desc_make_reusable:A.
510 *
511 * Relies on:
512 *
513 * MB from desc_make_reusable:A to data_alloc:B
514 * matching
515 * RMB from desc_read:C to desc_read:E
516 *
517 * Note: desc_make_reusable:A and data_alloc:B can be different
518 * CPUs. However, the data_alloc:B CPU (which performs the
519 * full memory barrier) must have previously seen
520 * desc_make_reusable:A.
521 */
522 smp_rmb(); /* LMM(desc_read:D) */
523
524 /*
525 * The data has been copied. Return the current descriptor state,
526 * which may have changed since the load above.
527 */
528 state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */
529 d_state = get_desc_state(id, state_val);
530 out:
531 atomic_long_set(&desc_out->state_var, state_val);
532 return d_state;
533 }
534
535 /*
536 * Take a specified descriptor out of the finalized state by attempting
537 * the transition from finalized to reusable. Either this context or some
538 * other context will have been successful.
539 */
desc_make_reusable(struct prb_desc_ring * desc_ring,unsigned long id)540 static void desc_make_reusable(struct prb_desc_ring *desc_ring,
541 unsigned long id)
542 {
543 unsigned long val_finalized = DESC_SV(id, desc_finalized);
544 unsigned long val_reusable = DESC_SV(id, desc_reusable);
545 struct prb_desc *desc = to_desc(desc_ring, id);
546 atomic_long_t *state_var = &desc->state_var;
547
548 atomic_long_cmpxchg_relaxed(state_var, val_finalized,
549 val_reusable); /* LMM(desc_make_reusable:A) */
550 }
551
552 /*
553 * Given the text data ring, put the associated descriptor of each
554 * data block from @lpos_begin until @lpos_end into the reusable state.
555 *
556 * If there is any problem making the associated descriptor reusable, either
557 * the descriptor has not yet been finalized or another writer context has
558 * already pushed the tail lpos past the problematic data block. Regardless,
559 * on error the caller can re-load the tail lpos to determine the situation.
560 */
data_make_reusable(struct printk_ringbuffer * rb,struct prb_data_ring * data_ring,unsigned long lpos_begin,unsigned long lpos_end,unsigned long * lpos_out)561 static bool data_make_reusable(struct printk_ringbuffer *rb,
562 struct prb_data_ring *data_ring,
563 unsigned long lpos_begin,
564 unsigned long lpos_end,
565 unsigned long *lpos_out)
566 {
567 struct prb_desc_ring *desc_ring = &rb->desc_ring;
568 struct prb_data_block *blk;
569 enum desc_state d_state;
570 struct prb_desc desc;
571 struct prb_data_blk_lpos *blk_lpos = &desc.text_blk_lpos;
572 unsigned long id;
573
574 /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */
575 while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) {
576 blk = to_block(data_ring, lpos_begin);
577
578 /*
579 * Load the block ID from the data block. This is a data race
580 * against a writer that may have newly reserved this data
581 * area. If the loaded value matches a valid descriptor ID,
582 * the blk_lpos of that descriptor will be checked to make
583 * sure it points back to this data block. If the check fails,
584 * the data area has been recycled by another writer.
585 */
586 id = blk->id; /* LMM(data_make_reusable:A) */
587
588 d_state = desc_read(desc_ring, id, &desc,
589 NULL, NULL); /* LMM(data_make_reusable:B) */
590
591 switch (d_state) {
592 case desc_miss:
593 case desc_reserved:
594 case desc_committed:
595 return false;
596 case desc_finalized:
597 /*
598 * This data block is invalid if the descriptor
599 * does not point back to it.
600 */
601 if (blk_lpos->begin != lpos_begin)
602 return false;
603 desc_make_reusable(desc_ring, id);
604 break;
605 case desc_reusable:
606 /*
607 * This data block is invalid if the descriptor
608 * does not point back to it.
609 */
610 if (blk_lpos->begin != lpos_begin)
611 return false;
612 break;
613 }
614
615 /* Advance @lpos_begin to the next data block. */
616 lpos_begin = blk_lpos->next;
617 }
618
619 *lpos_out = lpos_begin;
620 return true;
621 }
622
623 /*
624 * Advance the data ring tail to at least @lpos. This function puts
625 * descriptors into the reusable state if the tail is pushed beyond
626 * their associated data block.
627 */
data_push_tail(struct printk_ringbuffer * rb,struct prb_data_ring * data_ring,unsigned long lpos)628 static bool data_push_tail(struct printk_ringbuffer *rb,
629 struct prb_data_ring *data_ring,
630 unsigned long lpos)
631 {
632 unsigned long tail_lpos_new;
633 unsigned long tail_lpos;
634 unsigned long next_lpos;
635
636 /* If @lpos is from a data-less block, there is nothing to do. */
637 if (LPOS_DATALESS(lpos))
638 return true;
639
640 /*
641 * Any descriptor states that have transitioned to reusable due to the
642 * data tail being pushed to this loaded value will be visible to this
643 * CPU. This pairs with data_push_tail:D.
644 *
645 * Memory barrier involvement:
646 *
647 * If data_push_tail:A reads from data_push_tail:D, then this CPU can
648 * see desc_make_reusable:A.
649 *
650 * Relies on:
651 *
652 * MB from desc_make_reusable:A to data_push_tail:D
653 * matches
654 * READFROM from data_push_tail:D to data_push_tail:A
655 * thus
656 * READFROM from desc_make_reusable:A to this CPU
657 */
658 tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */
659
660 /*
661 * Loop until the tail lpos is at or beyond @lpos. This condition
662 * may already be satisfied, resulting in no full memory barrier
663 * from data_push_tail:D being performed. However, since this CPU
664 * sees the new tail lpos, any descriptor states that transitioned to
665 * the reusable state must already be visible.
666 */
667 while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) {
668 /*
669 * Make all descriptors reusable that are associated with
670 * data blocks before @lpos.
671 */
672 if (!data_make_reusable(rb, data_ring, tail_lpos, lpos,
673 &next_lpos)) {
674 /*
675 * 1. Guarantee the block ID loaded in
676 * data_make_reusable() is performed before
677 * reloading the tail lpos. The failed
678 * data_make_reusable() may be due to a newly
679 * recycled data area causing the tail lpos to
680 * have been previously pushed. This pairs with
681 * data_alloc:A and data_realloc:A.
682 *
683 * Memory barrier involvement:
684 *
685 * If data_make_reusable:A reads from data_alloc:B,
686 * then data_push_tail:C reads from
687 * data_push_tail:D.
688 *
689 * Relies on:
690 *
691 * MB from data_push_tail:D to data_alloc:B
692 * matching
693 * RMB from data_make_reusable:A to
694 * data_push_tail:C
695 *
696 * Note: data_push_tail:D and data_alloc:B can be
697 * different CPUs. However, the data_alloc:B
698 * CPU (which performs the full memory
699 * barrier) must have previously seen
700 * data_push_tail:D.
701 *
702 * 2. Guarantee the descriptor state loaded in
703 * data_make_reusable() is performed before
704 * reloading the tail lpos. The failed
705 * data_make_reusable() may be due to a newly
706 * recycled descriptor causing the tail lpos to
707 * have been previously pushed. This pairs with
708 * desc_reserve:D.
709 *
710 * Memory barrier involvement:
711 *
712 * If data_make_reusable:B reads from
713 * desc_reserve:F, then data_push_tail:C reads
714 * from data_push_tail:D.
715 *
716 * Relies on:
717 *
718 * MB from data_push_tail:D to desc_reserve:F
719 * matching
720 * RMB from data_make_reusable:B to
721 * data_push_tail:C
722 *
723 * Note: data_push_tail:D and desc_reserve:F can
724 * be different CPUs. However, the
725 * desc_reserve:F CPU (which performs the
726 * full memory barrier) must have previously
727 * seen data_push_tail:D.
728 */
729 smp_rmb(); /* LMM(data_push_tail:B) */
730
731 tail_lpos_new = atomic_long_read(&data_ring->tail_lpos
732 ); /* LMM(data_push_tail:C) */
733 if (tail_lpos_new == tail_lpos)
734 return false;
735
736 /* Another CPU pushed the tail. Try again. */
737 tail_lpos = tail_lpos_new;
738 continue;
739 }
740
741 /*
742 * Guarantee any descriptor states that have transitioned to
743 * reusable are stored before pushing the tail lpos. A full
744 * memory barrier is needed since other CPUs may have made
745 * the descriptor states reusable. This pairs with
746 * data_push_tail:A.
747 */
748 if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos,
749 next_lpos)) { /* LMM(data_push_tail:D) */
750 break;
751 }
752 }
753
754 return true;
755 }
756
757 /*
758 * Advance the desc ring tail. This function advances the tail by one
759 * descriptor, thus invalidating the oldest descriptor. Before advancing
760 * the tail, the tail descriptor is made reusable and all data blocks up to
761 * and including the descriptor's data block are invalidated (i.e. the data
762 * ring tail is pushed past the data block of the descriptor being made
763 * reusable).
764 */
desc_push_tail(struct printk_ringbuffer * rb,unsigned long tail_id)765 static bool desc_push_tail(struct printk_ringbuffer *rb,
766 unsigned long tail_id)
767 {
768 struct prb_desc_ring *desc_ring = &rb->desc_ring;
769 enum desc_state d_state;
770 struct prb_desc desc;
771
772 d_state = desc_read(desc_ring, tail_id, &desc, NULL, NULL);
773
774 switch (d_state) {
775 case desc_miss:
776 /*
777 * If the ID is exactly 1 wrap behind the expected, it is
778 * in the process of being reserved by another writer and
779 * must be considered reserved.
780 */
781 if (DESC_ID(atomic_long_read(&desc.state_var)) ==
782 DESC_ID_PREV_WRAP(desc_ring, tail_id)) {
783 return false;
784 }
785
786 /*
787 * The ID has changed. Another writer must have pushed the
788 * tail and recycled the descriptor already. Success is
789 * returned because the caller is only interested in the
790 * specified tail being pushed, which it was.
791 */
792 return true;
793 case desc_reserved:
794 case desc_committed:
795 return false;
796 case desc_finalized:
797 desc_make_reusable(desc_ring, tail_id);
798 break;
799 case desc_reusable:
800 break;
801 }
802
803 /*
804 * Data blocks must be invalidated before their associated
805 * descriptor can be made available for recycling. Invalidating
806 * them later is not possible because there is no way to trust
807 * data blocks once their associated descriptor is gone.
808 */
809
810 if (!data_push_tail(rb, &rb->text_data_ring, desc.text_blk_lpos.next))
811 return false;
812
813 /*
814 * Check the next descriptor after @tail_id before pushing the tail
815 * to it because the tail must always be in a finalized or reusable
816 * state. The implementation of prb_first_seq() relies on this.
817 *
818 * A successful read implies that the next descriptor is less than or
819 * equal to @head_id so there is no risk of pushing the tail past the
820 * head.
821 */
822 d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc,
823 NULL, NULL); /* LMM(desc_push_tail:A) */
824
825 if (d_state == desc_finalized || d_state == desc_reusable) {
826 /*
827 * Guarantee any descriptor states that have transitioned to
828 * reusable are stored before pushing the tail ID. This allows
829 * verifying the recycled descriptor state. A full memory
830 * barrier is needed since other CPUs may have made the
831 * descriptor states reusable. This pairs with desc_reserve:D.
832 */
833 atomic_long_cmpxchg(&desc_ring->tail_id, tail_id,
834 DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */
835 } else {
836 /*
837 * Guarantee the last state load from desc_read() is before
838 * reloading @tail_id in order to see a new tail ID in the
839 * case that the descriptor has been recycled. This pairs
840 * with desc_reserve:D.
841 *
842 * Memory barrier involvement:
843 *
844 * If desc_push_tail:A reads from desc_reserve:F, then
845 * desc_push_tail:D reads from desc_push_tail:B.
846 *
847 * Relies on:
848 *
849 * MB from desc_push_tail:B to desc_reserve:F
850 * matching
851 * RMB from desc_push_tail:A to desc_push_tail:D
852 *
853 * Note: desc_push_tail:B and desc_reserve:F can be different
854 * CPUs. However, the desc_reserve:F CPU (which performs
855 * the full memory barrier) must have previously seen
856 * desc_push_tail:B.
857 */
858 smp_rmb(); /* LMM(desc_push_tail:C) */
859
860 /*
861 * Re-check the tail ID. The descriptor following @tail_id is
862 * not in an allowed tail state. But if the tail has since
863 * been moved by another CPU, then it does not matter.
864 */
865 if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */
866 return false;
867 }
868
869 return true;
870 }
871
872 /* Reserve a new descriptor, invalidating the oldest if necessary. */
desc_reserve(struct printk_ringbuffer * rb,unsigned long * id_out)873 static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out)
874 {
875 struct prb_desc_ring *desc_ring = &rb->desc_ring;
876 unsigned long prev_state_val;
877 unsigned long id_prev_wrap;
878 struct prb_desc *desc;
879 unsigned long head_id;
880 unsigned long id;
881
882 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */
883
884 do {
885 id = DESC_ID(head_id + 1);
886 id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id);
887
888 /*
889 * Guarantee the head ID is read before reading the tail ID.
890 * Since the tail ID is updated before the head ID, this
891 * guarantees that @id_prev_wrap is never ahead of the tail
892 * ID. This pairs with desc_reserve:D.
893 *
894 * Memory barrier involvement:
895 *
896 * If desc_reserve:A reads from desc_reserve:D, then
897 * desc_reserve:C reads from desc_push_tail:B.
898 *
899 * Relies on:
900 *
901 * MB from desc_push_tail:B to desc_reserve:D
902 * matching
903 * RMB from desc_reserve:A to desc_reserve:C
904 *
905 * Note: desc_push_tail:B and desc_reserve:D can be different
906 * CPUs. However, the desc_reserve:D CPU (which performs
907 * the full memory barrier) must have previously seen
908 * desc_push_tail:B.
909 */
910 smp_rmb(); /* LMM(desc_reserve:B) */
911
912 if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id
913 )) { /* LMM(desc_reserve:C) */
914 /*
915 * Make space for the new descriptor by
916 * advancing the tail.
917 */
918 if (!desc_push_tail(rb, id_prev_wrap))
919 return false;
920 }
921
922 /*
923 * 1. Guarantee the tail ID is read before validating the
924 * recycled descriptor state. A read memory barrier is
925 * sufficient for this. This pairs with desc_push_tail:B.
926 *
927 * Memory barrier involvement:
928 *
929 * If desc_reserve:C reads from desc_push_tail:B, then
930 * desc_reserve:E reads from desc_make_reusable:A.
931 *
932 * Relies on:
933 *
934 * MB from desc_make_reusable:A to desc_push_tail:B
935 * matching
936 * RMB from desc_reserve:C to desc_reserve:E
937 *
938 * Note: desc_make_reusable:A and desc_push_tail:B can be
939 * different CPUs. However, the desc_push_tail:B CPU
940 * (which performs the full memory barrier) must have
941 * previously seen desc_make_reusable:A.
942 *
943 * 2. Guarantee the tail ID is stored before storing the head
944 * ID. This pairs with desc_reserve:B.
945 *
946 * 3. Guarantee any data ring tail changes are stored before
947 * recycling the descriptor. Data ring tail changes can
948 * happen via desc_push_tail()->data_push_tail(). A full
949 * memory barrier is needed since another CPU may have
950 * pushed the data ring tails. This pairs with
951 * data_push_tail:B.
952 *
953 * 4. Guarantee a new tail ID is stored before recycling the
954 * descriptor. A full memory barrier is needed since
955 * another CPU may have pushed the tail ID. This pairs
956 * with desc_push_tail:C and this also pairs with
957 * prb_first_seq:C.
958 *
959 * 5. Guarantee the head ID is stored before trying to
960 * finalize the previous descriptor. This pairs with
961 * _prb_commit:B.
962 */
963 } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id,
964 id)); /* LMM(desc_reserve:D) */
965
966 desc = to_desc(desc_ring, id);
967
968 /*
969 * If the descriptor has been recycled, verify the old state val.
970 * See "ABA Issues" about why this verification is performed.
971 */
972 prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */
973 if (prev_state_val &&
974 get_desc_state(id_prev_wrap, prev_state_val) != desc_reusable) {
975 WARN_ON_ONCE(1);
976 return false;
977 }
978
979 /*
980 * Assign the descriptor a new ID and set its state to reserved.
981 * See "ABA Issues" about why cmpxchg() instead of set() is used.
982 *
983 * Guarantee the new descriptor ID and state is stored before making
984 * any other changes. A write memory barrier is sufficient for this.
985 * This pairs with desc_read:D.
986 */
987 if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val,
988 DESC_SV(id, desc_reserved))) { /* LMM(desc_reserve:F) */
989 WARN_ON_ONCE(1);
990 return false;
991 }
992
993 /* Now data in @desc can be modified: LMM(desc_reserve:G) */
994
995 *id_out = id;
996 return true;
997 }
998
999 /* Determine the end of a data block. */
get_next_lpos(struct prb_data_ring * data_ring,unsigned long lpos,unsigned int size)1000 static unsigned long get_next_lpos(struct prb_data_ring *data_ring,
1001 unsigned long lpos, unsigned int size)
1002 {
1003 unsigned long begin_lpos;
1004 unsigned long next_lpos;
1005
1006 begin_lpos = lpos;
1007 next_lpos = lpos + size;
1008
1009 /* First check if the data block does not wrap. */
1010 if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos))
1011 return next_lpos;
1012
1013 /* Wrapping data blocks store their data at the beginning. */
1014 return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size);
1015 }
1016
1017 /*
1018 * Allocate a new data block, invalidating the oldest data block(s)
1019 * if necessary. This function also associates the data block with
1020 * a specified descriptor.
1021 */
data_alloc(struct printk_ringbuffer * rb,struct prb_data_ring * data_ring,unsigned int size,struct prb_data_blk_lpos * blk_lpos,unsigned long id)1022 static char *data_alloc(struct printk_ringbuffer *rb,
1023 struct prb_data_ring *data_ring, unsigned int size,
1024 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1025 {
1026 struct prb_data_block *blk;
1027 unsigned long begin_lpos;
1028 unsigned long next_lpos;
1029
1030 if (size == 0) {
1031 /* Specify a data-less block. */
1032 blk_lpos->begin = NO_LPOS;
1033 blk_lpos->next = NO_LPOS;
1034 return NULL;
1035 }
1036
1037 size = to_blk_size(size);
1038
1039 begin_lpos = atomic_long_read(&data_ring->head_lpos);
1040
1041 do {
1042 next_lpos = get_next_lpos(data_ring, begin_lpos, size);
1043
1044 if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) {
1045 /* Failed to allocate, specify a data-less block. */
1046 blk_lpos->begin = FAILED_LPOS;
1047 blk_lpos->next = FAILED_LPOS;
1048 return NULL;
1049 }
1050
1051 /*
1052 * 1. Guarantee any descriptor states that have transitioned
1053 * to reusable are stored before modifying the newly
1054 * allocated data area. A full memory barrier is needed
1055 * since other CPUs may have made the descriptor states
1056 * reusable. See data_push_tail:A about why the reusable
1057 * states are visible. This pairs with desc_read:D.
1058 *
1059 * 2. Guarantee any updated tail lpos is stored before
1060 * modifying the newly allocated data area. Another CPU may
1061 * be in data_make_reusable() and is reading a block ID
1062 * from this area. data_make_reusable() can handle reading
1063 * a garbage block ID value, but then it must be able to
1064 * load a new tail lpos. A full memory barrier is needed
1065 * since other CPUs may have updated the tail lpos. This
1066 * pairs with data_push_tail:B.
1067 */
1068 } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos,
1069 next_lpos)); /* LMM(data_alloc:A) */
1070
1071 blk = to_block(data_ring, begin_lpos);
1072 blk->id = id; /* LMM(data_alloc:B) */
1073
1074 if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) {
1075 /* Wrapping data blocks store their data at the beginning. */
1076 blk = to_block(data_ring, 0);
1077
1078 /*
1079 * Store the ID on the wrapped block for consistency.
1080 * The printk_ringbuffer does not actually use it.
1081 */
1082 blk->id = id;
1083 }
1084
1085 blk_lpos->begin = begin_lpos;
1086 blk_lpos->next = next_lpos;
1087
1088 return &blk->data[0];
1089 }
1090
1091 /*
1092 * Try to resize an existing data block associated with the descriptor
1093 * specified by @id. If the resized data block should become wrapped, it
1094 * copies the old data to the new data block. If @size yields a data block
1095 * with the same or less size, the data block is left as is.
1096 *
1097 * Fail if this is not the last allocated data block or if there is not
1098 * enough space or it is not possible make enough space.
1099 *
1100 * Return a pointer to the beginning of the entire data buffer or NULL on
1101 * failure.
1102 */
data_realloc(struct printk_ringbuffer * rb,struct prb_data_ring * data_ring,unsigned int size,struct prb_data_blk_lpos * blk_lpos,unsigned long id)1103 static char *data_realloc(struct printk_ringbuffer *rb,
1104 struct prb_data_ring *data_ring, unsigned int size,
1105 struct prb_data_blk_lpos *blk_lpos, unsigned long id)
1106 {
1107 struct prb_data_block *blk;
1108 unsigned long head_lpos;
1109 unsigned long next_lpos;
1110 bool wrapped;
1111
1112 /* Reallocation only works if @blk_lpos is the newest data block. */
1113 head_lpos = atomic_long_read(&data_ring->head_lpos);
1114 if (head_lpos != blk_lpos->next)
1115 return NULL;
1116
1117 /* Keep track if @blk_lpos was a wrapping data block. */
1118 wrapped = (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, blk_lpos->next));
1119
1120 size = to_blk_size(size);
1121
1122 next_lpos = get_next_lpos(data_ring, blk_lpos->begin, size);
1123
1124 /* If the data block does not increase, there is nothing to do. */
1125 if (head_lpos - next_lpos < DATA_SIZE(data_ring)) {
1126 if (wrapped)
1127 blk = to_block(data_ring, 0);
1128 else
1129 blk = to_block(data_ring, blk_lpos->begin);
1130 return &blk->data[0];
1131 }
1132
1133 if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring)))
1134 return NULL;
1135
1136 /* The memory barrier involvement is the same as data_alloc:A. */
1137 if (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &head_lpos,
1138 next_lpos)) { /* LMM(data_realloc:A) */
1139 return NULL;
1140 }
1141
1142 blk = to_block(data_ring, blk_lpos->begin);
1143
1144 if (DATA_WRAPS(data_ring, blk_lpos->begin) != DATA_WRAPS(data_ring, next_lpos)) {
1145 struct prb_data_block *old_blk = blk;
1146
1147 /* Wrapping data blocks store their data at the beginning. */
1148 blk = to_block(data_ring, 0);
1149
1150 /*
1151 * Store the ID on the wrapped block for consistency.
1152 * The printk_ringbuffer does not actually use it.
1153 */
1154 blk->id = id;
1155
1156 if (!wrapped) {
1157 /*
1158 * Since the allocated space is now in the newly
1159 * created wrapping data block, copy the content
1160 * from the old data block.
1161 */
1162 memcpy(&blk->data[0], &old_blk->data[0],
1163 (blk_lpos->next - blk_lpos->begin) - sizeof(blk->id));
1164 }
1165 }
1166
1167 blk_lpos->next = next_lpos;
1168
1169 return &blk->data[0];
1170 }
1171
1172 /* Return the number of bytes used by a data block. */
space_used(struct prb_data_ring * data_ring,struct prb_data_blk_lpos * blk_lpos)1173 static unsigned int space_used(struct prb_data_ring *data_ring,
1174 struct prb_data_blk_lpos *blk_lpos)
1175 {
1176 /* Data-less blocks take no space. */
1177 if (BLK_DATALESS(blk_lpos))
1178 return 0;
1179
1180 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) {
1181 /* Data block does not wrap. */
1182 return (DATA_INDEX(data_ring, blk_lpos->next) -
1183 DATA_INDEX(data_ring, blk_lpos->begin));
1184 }
1185
1186 /*
1187 * For wrapping data blocks, the trailing (wasted) space is
1188 * also counted.
1189 */
1190 return (DATA_INDEX(data_ring, blk_lpos->next) +
1191 DATA_SIZE(data_ring) - DATA_INDEX(data_ring, blk_lpos->begin));
1192 }
1193
1194 /*
1195 * Given @blk_lpos, return a pointer to the writer data from the data block
1196 * and calculate the size of the data part. A NULL pointer is returned if
1197 * @blk_lpos specifies values that could never be legal.
1198 *
1199 * This function (used by readers) performs strict validation on the lpos
1200 * values to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1201 * triggered if an internal error is detected.
1202 */
get_data(struct prb_data_ring * data_ring,struct prb_data_blk_lpos * blk_lpos,unsigned int * data_size)1203 static const char *get_data(struct prb_data_ring *data_ring,
1204 struct prb_data_blk_lpos *blk_lpos,
1205 unsigned int *data_size)
1206 {
1207 struct prb_data_block *db;
1208
1209 /* Data-less data block description. */
1210 if (BLK_DATALESS(blk_lpos)) {
1211 if (blk_lpos->begin == NO_LPOS && blk_lpos->next == NO_LPOS) {
1212 *data_size = 0;
1213 return "";
1214 }
1215 return NULL;
1216 }
1217
1218 /* Regular data block: @begin less than @next and in same wrap. */
1219 if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next) &&
1220 blk_lpos->begin < blk_lpos->next) {
1221 db = to_block(data_ring, blk_lpos->begin);
1222 *data_size = blk_lpos->next - blk_lpos->begin;
1223
1224 /* Wrapping data block: @begin is one wrap behind @next. */
1225 } else if (DATA_WRAPS(data_ring, blk_lpos->begin + DATA_SIZE(data_ring)) ==
1226 DATA_WRAPS(data_ring, blk_lpos->next)) {
1227 db = to_block(data_ring, 0);
1228 *data_size = DATA_INDEX(data_ring, blk_lpos->next);
1229
1230 /* Illegal block description. */
1231 } else {
1232 WARN_ON_ONCE(1);
1233 return NULL;
1234 }
1235
1236 /* A valid data block will always be aligned to the ID size. */
1237 if (WARN_ON_ONCE(blk_lpos->begin != ALIGN(blk_lpos->begin, sizeof(db->id))) ||
1238 WARN_ON_ONCE(blk_lpos->next != ALIGN(blk_lpos->next, sizeof(db->id)))) {
1239 return NULL;
1240 }
1241
1242 /* A valid data block will always have at least an ID. */
1243 if (WARN_ON_ONCE(*data_size < sizeof(db->id)))
1244 return NULL;
1245
1246 /* Subtract block ID space from size to reflect data size. */
1247 *data_size -= sizeof(db->id);
1248
1249 return &db->data[0];
1250 }
1251
1252 /*
1253 * Attempt to transition the newest descriptor from committed back to reserved
1254 * so that the record can be modified by a writer again. This is only possible
1255 * if the descriptor is not yet finalized and the provided @caller_id matches.
1256 */
desc_reopen_last(struct prb_desc_ring * desc_ring,u32 caller_id,unsigned long * id_out)1257 static struct prb_desc *desc_reopen_last(struct prb_desc_ring *desc_ring,
1258 u32 caller_id, unsigned long *id_out)
1259 {
1260 unsigned long prev_state_val;
1261 enum desc_state d_state;
1262 struct prb_desc desc;
1263 struct prb_desc *d;
1264 unsigned long id;
1265 u32 cid;
1266
1267 id = atomic_long_read(&desc_ring->head_id);
1268
1269 /*
1270 * To reduce unnecessarily reopening, first check if the descriptor
1271 * state and caller ID are correct.
1272 */
1273 d_state = desc_read(desc_ring, id, &desc, NULL, &cid);
1274 if (d_state != desc_committed || cid != caller_id)
1275 return NULL;
1276
1277 d = to_desc(desc_ring, id);
1278
1279 prev_state_val = DESC_SV(id, desc_committed);
1280
1281 /*
1282 * Guarantee the reserved state is stored before reading any
1283 * record data. A full memory barrier is needed because @state_var
1284 * modification is followed by reading. This pairs with _prb_commit:B.
1285 *
1286 * Memory barrier involvement:
1287 *
1288 * If desc_reopen_last:A reads from _prb_commit:B, then
1289 * prb_reserve_in_last:A reads from _prb_commit:A.
1290 *
1291 * Relies on:
1292 *
1293 * WMB from _prb_commit:A to _prb_commit:B
1294 * matching
1295 * MB If desc_reopen_last:A to prb_reserve_in_last:A
1296 */
1297 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1298 DESC_SV(id, desc_reserved))) { /* LMM(desc_reopen_last:A) */
1299 return NULL;
1300 }
1301
1302 *id_out = id;
1303 return d;
1304 }
1305
1306 /**
1307 * prb_reserve_in_last() - Re-reserve and extend the space in the ringbuffer
1308 * used by the newest record.
1309 *
1310 * @e: The entry structure to setup.
1311 * @rb: The ringbuffer to re-reserve and extend data in.
1312 * @r: The record structure to allocate buffers for.
1313 * @caller_id: The caller ID of the caller (reserving writer).
1314 * @max_size: Fail if the extended size would be greater than this.
1315 *
1316 * This is the public function available to writers to re-reserve and extend
1317 * data.
1318 *
1319 * The writer specifies the text size to extend (not the new total size) by
1320 * setting the @text_buf_size field of @r. To ensure proper initialization
1321 * of @r, prb_rec_init_wr() should be used.
1322 *
1323 * This function will fail if @caller_id does not match the caller ID of the
1324 * newest record. In that case the caller must reserve new data using
1325 * prb_reserve().
1326 *
1327 * Context: Any context. Disables local interrupts on success.
1328 * Return: true if text data could be extended, otherwise false.
1329 *
1330 * On success:
1331 *
1332 * - @r->text_buf points to the beginning of the entire text buffer.
1333 *
1334 * - @r->text_buf_size is set to the new total size of the buffer.
1335 *
1336 * - @r->info is not touched so that @r->info->text_len could be used
1337 * to append the text.
1338 *
1339 * - prb_record_text_space() can be used on @e to query the new
1340 * actually used space.
1341 *
1342 * Important: All @r->info fields will already be set with the current values
1343 * for the record. I.e. @r->info->text_len will be less than
1344 * @text_buf_size. Writers can use @r->info->text_len to know
1345 * where concatenation begins and writers should update
1346 * @r->info->text_len after concatenating.
1347 */
prb_reserve_in_last(struct prb_reserved_entry * e,struct printk_ringbuffer * rb,struct printk_record * r,u32 caller_id,unsigned int max_size)1348 bool prb_reserve_in_last(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1349 struct printk_record *r, u32 caller_id, unsigned int max_size)
1350 {
1351 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1352 struct printk_info *info;
1353 unsigned int data_size;
1354 struct prb_desc *d;
1355 unsigned long id;
1356
1357 local_irq_save(e->irqflags);
1358
1359 /* Transition the newest descriptor back to the reserved state. */
1360 d = desc_reopen_last(desc_ring, caller_id, &id);
1361 if (!d) {
1362 local_irq_restore(e->irqflags);
1363 goto fail_reopen;
1364 }
1365
1366 /* Now the writer has exclusive access: LMM(prb_reserve_in_last:A) */
1367
1368 info = to_info(desc_ring, id);
1369
1370 /*
1371 * Set the @e fields here so that prb_commit() can be used if
1372 * anything fails from now on.
1373 */
1374 e->rb = rb;
1375 e->id = id;
1376
1377 /*
1378 * desc_reopen_last() checked the caller_id, but there was no
1379 * exclusive access at that point. The descriptor may have
1380 * changed since then.
1381 */
1382 if (caller_id != info->caller_id)
1383 goto fail;
1384
1385 if (BLK_DATALESS(&d->text_blk_lpos)) {
1386 if (WARN_ON_ONCE(info->text_len != 0)) {
1387 pr_warn_once("wrong text_len value (%hu, expecting 0)\n",
1388 info->text_len);
1389 info->text_len = 0;
1390 }
1391
1392 if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1393 goto fail;
1394
1395 if (r->text_buf_size > max_size)
1396 goto fail;
1397
1398 r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size,
1399 &d->text_blk_lpos, id);
1400 } else {
1401 if (!get_data(&rb->text_data_ring, &d->text_blk_lpos, &data_size))
1402 goto fail;
1403
1404 /*
1405 * Increase the buffer size to include the original size. If
1406 * the meta data (@text_len) is not sane, use the full data
1407 * block size.
1408 */
1409 if (WARN_ON_ONCE(info->text_len > data_size)) {
1410 pr_warn_once("wrong text_len value (%hu, expecting <=%u)\n",
1411 info->text_len, data_size);
1412 info->text_len = data_size;
1413 }
1414 r->text_buf_size += info->text_len;
1415
1416 if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1417 goto fail;
1418
1419 if (r->text_buf_size > max_size)
1420 goto fail;
1421
1422 r->text_buf = data_realloc(rb, &rb->text_data_ring, r->text_buf_size,
1423 &d->text_blk_lpos, id);
1424 }
1425 if (r->text_buf_size && !r->text_buf)
1426 goto fail;
1427
1428 r->info = info;
1429
1430 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1431
1432 return true;
1433 fail:
1434 prb_commit(e);
1435 /* prb_commit() re-enabled interrupts. */
1436 fail_reopen:
1437 /* Make it clear to the caller that the re-reserve failed. */
1438 memset(r, 0, sizeof(*r));
1439 return false;
1440 }
1441
1442 /*
1443 * Attempt to finalize a specified descriptor. If this fails, the descriptor
1444 * is either already final or it will finalize itself when the writer commits.
1445 */
desc_make_final(struct prb_desc_ring * desc_ring,unsigned long id)1446 static void desc_make_final(struct prb_desc_ring *desc_ring, unsigned long id)
1447 {
1448 unsigned long prev_state_val = DESC_SV(id, desc_committed);
1449 struct prb_desc *d = to_desc(desc_ring, id);
1450
1451 atomic_long_cmpxchg_relaxed(&d->state_var, prev_state_val,
1452 DESC_SV(id, desc_finalized)); /* LMM(desc_make_final:A) */
1453 }
1454
1455 /**
1456 * prb_reserve() - Reserve space in the ringbuffer.
1457 *
1458 * @e: The entry structure to setup.
1459 * @rb: The ringbuffer to reserve data in.
1460 * @r: The record structure to allocate buffers for.
1461 *
1462 * This is the public function available to writers to reserve data.
1463 *
1464 * The writer specifies the text size to reserve by setting the
1465 * @text_buf_size field of @r. To ensure proper initialization of @r,
1466 * prb_rec_init_wr() should be used.
1467 *
1468 * Context: Any context. Disables local interrupts on success.
1469 * Return: true if at least text data could be allocated, otherwise false.
1470 *
1471 * On success, the fields @info and @text_buf of @r will be set by this
1472 * function and should be filled in by the writer before committing. Also
1473 * on success, prb_record_text_space() can be used on @e to query the actual
1474 * space used for the text data block.
1475 *
1476 * Important: @info->text_len needs to be set correctly by the writer in
1477 * order for data to be readable and/or extended. Its value
1478 * is initialized to 0.
1479 */
prb_reserve(struct prb_reserved_entry * e,struct printk_ringbuffer * rb,struct printk_record * r)1480 bool prb_reserve(struct prb_reserved_entry *e, struct printk_ringbuffer *rb,
1481 struct printk_record *r)
1482 {
1483 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1484 struct printk_info *info;
1485 struct prb_desc *d;
1486 unsigned long id;
1487 u64 seq;
1488
1489 if (!data_check_size(&rb->text_data_ring, r->text_buf_size))
1490 goto fail;
1491
1492 /*
1493 * Descriptors in the reserved state act as blockers to all further
1494 * reservations once the desc_ring has fully wrapped. Disable
1495 * interrupts during the reserve/commit window in order to minimize
1496 * the likelihood of this happening.
1497 */
1498 local_irq_save(e->irqflags);
1499
1500 if (!desc_reserve(rb, &id)) {
1501 /* Descriptor reservation failures are tracked. */
1502 atomic_long_inc(&rb->fail);
1503 local_irq_restore(e->irqflags);
1504 goto fail;
1505 }
1506
1507 d = to_desc(desc_ring, id);
1508 info = to_info(desc_ring, id);
1509
1510 /*
1511 * All @info fields (except @seq) are cleared and must be filled in
1512 * by the writer. Save @seq before clearing because it is used to
1513 * determine the new sequence number.
1514 */
1515 seq = info->seq;
1516 memset(info, 0, sizeof(*info));
1517
1518 /*
1519 * Set the @e fields here so that prb_commit() can be used if
1520 * text data allocation fails.
1521 */
1522 e->rb = rb;
1523 e->id = id;
1524
1525 /*
1526 * Initialize the sequence number if it has "never been set".
1527 * Otherwise just increment it by a full wrap.
1528 *
1529 * @seq is considered "never been set" if it has a value of 0,
1530 * _except_ for @infos[0], which was specially setup by the ringbuffer
1531 * initializer and therefore is always considered as set.
1532 *
1533 * See the "Bootstrap" comment block in printk_ringbuffer.h for
1534 * details about how the initializer bootstraps the descriptors.
1535 */
1536 if (seq == 0 && DESC_INDEX(desc_ring, id) != 0)
1537 info->seq = DESC_INDEX(desc_ring, id);
1538 else
1539 info->seq = seq + DESCS_COUNT(desc_ring);
1540
1541 /*
1542 * New data is about to be reserved. Once that happens, previous
1543 * descriptors are no longer able to be extended. Finalize the
1544 * previous descriptor now so that it can be made available to
1545 * readers. (For seq==0 there is no previous descriptor.)
1546 */
1547 if (info->seq > 0)
1548 desc_make_final(desc_ring, DESC_ID(id - 1));
1549
1550 r->text_buf = data_alloc(rb, &rb->text_data_ring, r->text_buf_size,
1551 &d->text_blk_lpos, id);
1552 /* If text data allocation fails, a data-less record is committed. */
1553 if (r->text_buf_size && !r->text_buf) {
1554 prb_commit(e);
1555 /* prb_commit() re-enabled interrupts. */
1556 goto fail;
1557 }
1558
1559 r->info = info;
1560
1561 /* Record full text space used by record. */
1562 e->text_space = space_used(&rb->text_data_ring, &d->text_blk_lpos);
1563
1564 return true;
1565 fail:
1566 /* Make it clear to the caller that the reserve failed. */
1567 memset(r, 0, sizeof(*r));
1568 return false;
1569 }
1570
1571 /* Commit the data (possibly finalizing it) and restore interrupts. */
_prb_commit(struct prb_reserved_entry * e,unsigned long state_val)1572 static void _prb_commit(struct prb_reserved_entry *e, unsigned long state_val)
1573 {
1574 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1575 struct prb_desc *d = to_desc(desc_ring, e->id);
1576 unsigned long prev_state_val = DESC_SV(e->id, desc_reserved);
1577
1578 /* Now the writer has finished all writing: LMM(_prb_commit:A) */
1579
1580 /*
1581 * Set the descriptor as committed. See "ABA Issues" about why
1582 * cmpxchg() instead of set() is used.
1583 *
1584 * 1 Guarantee all record data is stored before the descriptor state
1585 * is stored as committed. A write memory barrier is sufficient
1586 * for this. This pairs with desc_read:B and desc_reopen_last:A.
1587 *
1588 * 2. Guarantee the descriptor state is stored as committed before
1589 * re-checking the head ID in order to possibly finalize this
1590 * descriptor. This pairs with desc_reserve:D.
1591 *
1592 * Memory barrier involvement:
1593 *
1594 * If prb_commit:A reads from desc_reserve:D, then
1595 * desc_make_final:A reads from _prb_commit:B.
1596 *
1597 * Relies on:
1598 *
1599 * MB _prb_commit:B to prb_commit:A
1600 * matching
1601 * MB desc_reserve:D to desc_make_final:A
1602 */
1603 if (!atomic_long_try_cmpxchg(&d->state_var, &prev_state_val,
1604 DESC_SV(e->id, state_val))) { /* LMM(_prb_commit:B) */
1605 WARN_ON_ONCE(1);
1606 }
1607
1608 /* Restore interrupts, the reserve/commit window is finished. */
1609 local_irq_restore(e->irqflags);
1610 }
1611
1612 /**
1613 * prb_commit() - Commit (previously reserved) data to the ringbuffer.
1614 *
1615 * @e: The entry containing the reserved data information.
1616 *
1617 * This is the public function available to writers to commit data.
1618 *
1619 * Note that the data is not yet available to readers until it is finalized.
1620 * Finalizing happens automatically when space for the next record is
1621 * reserved.
1622 *
1623 * See prb_final_commit() for a version of this function that finalizes
1624 * immediately.
1625 *
1626 * Context: Any context. Enables local interrupts.
1627 */
prb_commit(struct prb_reserved_entry * e)1628 void prb_commit(struct prb_reserved_entry *e)
1629 {
1630 struct prb_desc_ring *desc_ring = &e->rb->desc_ring;
1631 unsigned long head_id;
1632
1633 _prb_commit(e, desc_committed);
1634
1635 /*
1636 * If this descriptor is no longer the head (i.e. a new record has
1637 * been allocated), extending the data for this record is no longer
1638 * allowed and therefore it must be finalized.
1639 */
1640 head_id = atomic_long_read(&desc_ring->head_id); /* LMM(prb_commit:A) */
1641 if (head_id != e->id)
1642 desc_make_final(desc_ring, e->id);
1643 }
1644
1645 /**
1646 * prb_final_commit() - Commit and finalize (previously reserved) data to
1647 * the ringbuffer.
1648 *
1649 * @e: The entry containing the reserved data information.
1650 *
1651 * This is the public function available to writers to commit+finalize data.
1652 *
1653 * By finalizing, the data is made immediately available to readers.
1654 *
1655 * This function should only be used if there are no intentions of extending
1656 * this data using prb_reserve_in_last().
1657 *
1658 * Context: Any context. Enables local interrupts.
1659 */
prb_final_commit(struct prb_reserved_entry * e)1660 void prb_final_commit(struct prb_reserved_entry *e)
1661 {
1662 _prb_commit(e, desc_finalized);
1663 }
1664
1665 /*
1666 * Count the number of lines in provided text. All text has at least 1 line
1667 * (even if @text_size is 0). Each '\n' processed is counted as an additional
1668 * line.
1669 */
count_lines(const char * text,unsigned int text_size)1670 static unsigned int count_lines(const char *text, unsigned int text_size)
1671 {
1672 unsigned int next_size = text_size;
1673 unsigned int line_count = 1;
1674 const char *next = text;
1675
1676 while (next_size) {
1677 next = memchr(next, '\n', next_size);
1678 if (!next)
1679 break;
1680 line_count++;
1681 next++;
1682 next_size = text_size - (next - text);
1683 }
1684
1685 return line_count;
1686 }
1687
1688 /*
1689 * Given @blk_lpos, copy an expected @len of data into the provided buffer.
1690 * If @line_count is provided, count the number of lines in the data.
1691 *
1692 * This function (used by readers) performs strict validation on the data
1693 * size to possibly detect bugs in the writer code. A WARN_ON_ONCE() is
1694 * triggered if an internal error is detected.
1695 */
copy_data(struct prb_data_ring * data_ring,struct prb_data_blk_lpos * blk_lpos,u16 len,char * buf,unsigned int buf_size,unsigned int * line_count)1696 static bool copy_data(struct prb_data_ring *data_ring,
1697 struct prb_data_blk_lpos *blk_lpos, u16 len, char *buf,
1698 unsigned int buf_size, unsigned int *line_count)
1699 {
1700 unsigned int data_size;
1701 const char *data;
1702
1703 /* Caller might not want any data. */
1704 if ((!buf || !buf_size) && !line_count)
1705 return true;
1706
1707 data = get_data(data_ring, blk_lpos, &data_size);
1708 if (!data)
1709 return false;
1710
1711 /*
1712 * Actual cannot be less than expected. It can be more than expected
1713 * because of the trailing alignment padding.
1714 *
1715 * Note that invalid @len values can occur because the caller loads
1716 * the value during an allowed data race.
1717 */
1718 if (data_size < (unsigned int)len)
1719 return false;
1720
1721 /* Caller interested in the line count? */
1722 if (line_count)
1723 *line_count = count_lines(data, data_size);
1724
1725 /* Caller interested in the data content? */
1726 if (!buf || !buf_size)
1727 return true;
1728
1729 data_size = min_t(u16, buf_size, len);
1730
1731 memcpy(&buf[0], data, data_size); /* LMM(copy_data:A) */
1732 return true;
1733 }
1734
1735 /*
1736 * This is an extended version of desc_read(). It gets a copy of a specified
1737 * descriptor. However, it also verifies that the record is finalized and has
1738 * the sequence number @seq. On success, 0 is returned.
1739 *
1740 * Error return values:
1741 * -EINVAL: A finalized record with sequence number @seq does not exist.
1742 * -ENOENT: A finalized record with sequence number @seq exists, but its data
1743 * is not available. This is a valid record, so readers should
1744 * continue with the next record.
1745 */
desc_read_finalized_seq(struct prb_desc_ring * desc_ring,unsigned long id,u64 seq,struct prb_desc * desc_out)1746 static int desc_read_finalized_seq(struct prb_desc_ring *desc_ring,
1747 unsigned long id, u64 seq,
1748 struct prb_desc *desc_out)
1749 {
1750 struct prb_data_blk_lpos *blk_lpos = &desc_out->text_blk_lpos;
1751 enum desc_state d_state;
1752 u64 s;
1753
1754 d_state = desc_read(desc_ring, id, desc_out, &s, NULL);
1755
1756 /*
1757 * An unexpected @id (desc_miss) or @seq mismatch means the record
1758 * does not exist. A descriptor in the reserved or committed state
1759 * means the record does not yet exist for the reader.
1760 */
1761 if (d_state == desc_miss ||
1762 d_state == desc_reserved ||
1763 d_state == desc_committed ||
1764 s != seq) {
1765 return -EINVAL;
1766 }
1767
1768 /*
1769 * A descriptor in the reusable state may no longer have its data
1770 * available; report it as existing but with lost data. Or the record
1771 * may actually be a record with lost data.
1772 */
1773 if (d_state == desc_reusable ||
1774 (blk_lpos->begin == FAILED_LPOS && blk_lpos->next == FAILED_LPOS)) {
1775 return -ENOENT;
1776 }
1777
1778 return 0;
1779 }
1780
1781 /*
1782 * Copy the ringbuffer data from the record with @seq to the provided
1783 * @r buffer. On success, 0 is returned.
1784 *
1785 * See desc_read_finalized_seq() for error return values.
1786 */
prb_read(struct printk_ringbuffer * rb,u64 seq,struct printk_record * r,unsigned int * line_count)1787 static int prb_read(struct printk_ringbuffer *rb, u64 seq,
1788 struct printk_record *r, unsigned int *line_count)
1789 {
1790 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1791 struct printk_info *info = to_info(desc_ring, seq);
1792 struct prb_desc *rdesc = to_desc(desc_ring, seq);
1793 atomic_long_t *state_var = &rdesc->state_var;
1794 struct prb_desc desc;
1795 unsigned long id;
1796 int err;
1797
1798 /* Extract the ID, used to specify the descriptor to read. */
1799 id = DESC_ID(atomic_long_read(state_var));
1800
1801 /* Get a local copy of the correct descriptor (if available). */
1802 err = desc_read_finalized_seq(desc_ring, id, seq, &desc);
1803
1804 /*
1805 * If @r is NULL, the caller is only interested in the availability
1806 * of the record.
1807 */
1808 if (err || !r)
1809 return err;
1810
1811 /* If requested, copy meta data. */
1812 if (r->info)
1813 memcpy(r->info, info, sizeof(*(r->info)));
1814
1815 /* Copy text data. If it fails, this is a data-less record. */
1816 if (!copy_data(&rb->text_data_ring, &desc.text_blk_lpos, info->text_len,
1817 r->text_buf, r->text_buf_size, line_count)) {
1818 return -ENOENT;
1819 }
1820
1821 /* Ensure the record is still finalized and has the same @seq. */
1822 return desc_read_finalized_seq(desc_ring, id, seq, &desc);
1823 }
1824
1825 /* Get the sequence number of the tail descriptor. */
prb_first_seq(struct printk_ringbuffer * rb)1826 static u64 prb_first_seq(struct printk_ringbuffer *rb)
1827 {
1828 struct prb_desc_ring *desc_ring = &rb->desc_ring;
1829 enum desc_state d_state;
1830 struct prb_desc desc;
1831 unsigned long id;
1832 u64 seq;
1833
1834 for (;;) {
1835 id = atomic_long_read(&rb->desc_ring.tail_id); /* LMM(prb_first_seq:A) */
1836
1837 d_state = desc_read(desc_ring, id, &desc, &seq, NULL); /* LMM(prb_first_seq:B) */
1838
1839 /*
1840 * This loop will not be infinite because the tail is
1841 * _always_ in the finalized or reusable state.
1842 */
1843 if (d_state == desc_finalized || d_state == desc_reusable)
1844 break;
1845
1846 /*
1847 * Guarantee the last state load from desc_read() is before
1848 * reloading @tail_id in order to see a new tail in the case
1849 * that the descriptor has been recycled. This pairs with
1850 * desc_reserve:D.
1851 *
1852 * Memory barrier involvement:
1853 *
1854 * If prb_first_seq:B reads from desc_reserve:F, then
1855 * prb_first_seq:A reads from desc_push_tail:B.
1856 *
1857 * Relies on:
1858 *
1859 * MB from desc_push_tail:B to desc_reserve:F
1860 * matching
1861 * RMB prb_first_seq:B to prb_first_seq:A
1862 */
1863 smp_rmb(); /* LMM(prb_first_seq:C) */
1864 }
1865
1866 return seq;
1867 }
1868
1869 /*
1870 * Non-blocking read of a record. Updates @seq to the last finalized record
1871 * (which may have no data available).
1872 *
1873 * See the description of prb_read_valid() and prb_read_valid_info()
1874 * for details.
1875 */
_prb_read_valid(struct printk_ringbuffer * rb,u64 * seq,struct printk_record * r,unsigned int * line_count)1876 static bool _prb_read_valid(struct printk_ringbuffer *rb, u64 *seq,
1877 struct printk_record *r, unsigned int *line_count)
1878 {
1879 u64 tail_seq;
1880 int err;
1881
1882 while ((err = prb_read(rb, *seq, r, line_count))) {
1883 tail_seq = prb_first_seq(rb);
1884
1885 if (*seq < tail_seq) {
1886 /*
1887 * Behind the tail. Catch up and try again. This
1888 * can happen for -ENOENT and -EINVAL cases.
1889 */
1890 *seq = tail_seq;
1891
1892 } else if (err == -ENOENT) {
1893 /* Record exists, but no data available. Skip. */
1894 (*seq)++;
1895
1896 } else {
1897 /* Non-existent/non-finalized record. Must stop. */
1898 return false;
1899 }
1900 }
1901
1902 return true;
1903 }
1904
1905 /**
1906 * prb_read_valid() - Non-blocking read of a requested record or (if gone)
1907 * the next available record.
1908 *
1909 * @rb: The ringbuffer to read from.
1910 * @seq: The sequence number of the record to read.
1911 * @r: A record data buffer to store the read record to.
1912 *
1913 * This is the public function available to readers to read a record.
1914 *
1915 * The reader provides the @info and @text_buf buffers of @r to be
1916 * filled in. Any of the buffer pointers can be set to NULL if the reader
1917 * is not interested in that data. To ensure proper initialization of @r,
1918 * prb_rec_init_rd() should be used.
1919 *
1920 * Context: Any context.
1921 * Return: true if a record was read, otherwise false.
1922 *
1923 * On success, the reader must check r->info.seq to see which record was
1924 * actually read. This allows the reader to detect dropped records.
1925 *
1926 * Failure means @seq refers to a not yet written record.
1927 */
prb_read_valid(struct printk_ringbuffer * rb,u64 seq,struct printk_record * r)1928 bool prb_read_valid(struct printk_ringbuffer *rb, u64 seq,
1929 struct printk_record *r)
1930 {
1931 return _prb_read_valid(rb, &seq, r, NULL);
1932 }
1933
1934 /**
1935 * prb_read_valid_info() - Non-blocking read of meta data for a requested
1936 * record or (if gone) the next available record.
1937 *
1938 * @rb: The ringbuffer to read from.
1939 * @seq: The sequence number of the record to read.
1940 * @info: A buffer to store the read record meta data to.
1941 * @line_count: A buffer to store the number of lines in the record text.
1942 *
1943 * This is the public function available to readers to read only the
1944 * meta data of a record.
1945 *
1946 * The reader provides the @info, @line_count buffers to be filled in.
1947 * Either of the buffer pointers can be set to NULL if the reader is not
1948 * interested in that data.
1949 *
1950 * Context: Any context.
1951 * Return: true if a record's meta data was read, otherwise false.
1952 *
1953 * On success, the reader must check info->seq to see which record meta data
1954 * was actually read. This allows the reader to detect dropped records.
1955 *
1956 * Failure means @seq refers to a not yet written record.
1957 */
prb_read_valid_info(struct printk_ringbuffer * rb,u64 seq,struct printk_info * info,unsigned int * line_count)1958 bool prb_read_valid_info(struct printk_ringbuffer *rb, u64 seq,
1959 struct printk_info *info, unsigned int *line_count)
1960 {
1961 struct printk_record r;
1962
1963 prb_rec_init_rd(&r, info, NULL, 0);
1964
1965 return _prb_read_valid(rb, &seq, &r, line_count);
1966 }
1967
1968 /**
1969 * prb_first_valid_seq() - Get the sequence number of the oldest available
1970 * record.
1971 *
1972 * @rb: The ringbuffer to get the sequence number from.
1973 *
1974 * This is the public function available to readers to see what the
1975 * first/oldest valid sequence number is.
1976 *
1977 * This provides readers a starting point to begin iterating the ringbuffer.
1978 *
1979 * Context: Any context.
1980 * Return: The sequence number of the first/oldest record or, if the
1981 * ringbuffer is empty, 0 is returned.
1982 */
prb_first_valid_seq(struct printk_ringbuffer * rb)1983 u64 prb_first_valid_seq(struct printk_ringbuffer *rb)
1984 {
1985 u64 seq = 0;
1986
1987 if (!_prb_read_valid(rb, &seq, NULL, NULL))
1988 return 0;
1989
1990 return seq;
1991 }
1992
1993 /**
1994 * prb_next_seq() - Get the sequence number after the last available record.
1995 *
1996 * @rb: The ringbuffer to get the sequence number from.
1997 *
1998 * This is the public function available to readers to see what the next
1999 * newest sequence number available to readers will be.
2000 *
2001 * This provides readers a sequence number to jump to if all currently
2002 * available records should be skipped.
2003 *
2004 * Context: Any context.
2005 * Return: The sequence number of the next newest (not yet available) record
2006 * for readers.
2007 */
prb_next_seq(struct printk_ringbuffer * rb)2008 u64 prb_next_seq(struct printk_ringbuffer *rb)
2009 {
2010 u64 seq = 0;
2011
2012 /* Search forward from the oldest descriptor. */
2013 while (_prb_read_valid(rb, &seq, NULL, NULL))
2014 seq++;
2015
2016 return seq;
2017 }
2018
2019 /**
2020 * prb_init() - Initialize a ringbuffer to use provided external buffers.
2021 *
2022 * @rb: The ringbuffer to initialize.
2023 * @text_buf: The data buffer for text data.
2024 * @textbits: The size of @text_buf as a power-of-2 value.
2025 * @descs: The descriptor buffer for ringbuffer records.
2026 * @descbits: The count of @descs items as a power-of-2 value.
2027 * @infos: The printk_info buffer for ringbuffer records.
2028 *
2029 * This is the public function available to writers to setup a ringbuffer
2030 * during runtime using provided buffers.
2031 *
2032 * This must match the initialization of DEFINE_PRINTKRB().
2033 *
2034 * Context: Any context.
2035 */
prb_init(struct printk_ringbuffer * rb,char * text_buf,unsigned int textbits,struct prb_desc * descs,unsigned int descbits,struct printk_info * infos)2036 void prb_init(struct printk_ringbuffer *rb,
2037 char *text_buf, unsigned int textbits,
2038 struct prb_desc *descs, unsigned int descbits,
2039 struct printk_info *infos)
2040 {
2041 memset(descs, 0, _DESCS_COUNT(descbits) * sizeof(descs[0]));
2042 memset(infos, 0, _DESCS_COUNT(descbits) * sizeof(infos[0]));
2043
2044 rb->desc_ring.count_bits = descbits;
2045 rb->desc_ring.descs = descs;
2046 rb->desc_ring.infos = infos;
2047 atomic_long_set(&rb->desc_ring.head_id, DESC0_ID(descbits));
2048 atomic_long_set(&rb->desc_ring.tail_id, DESC0_ID(descbits));
2049
2050 rb->text_data_ring.size_bits = textbits;
2051 rb->text_data_ring.data = text_buf;
2052 atomic_long_set(&rb->text_data_ring.head_lpos, BLK0_LPOS(textbits));
2053 atomic_long_set(&rb->text_data_ring.tail_lpos, BLK0_LPOS(textbits));
2054
2055 atomic_long_set(&rb->fail, 0);
2056
2057 atomic_long_set(&(descs[_DESCS_COUNT(descbits) - 1].state_var), DESC0_SV(descbits));
2058 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.begin = FAILED_LPOS;
2059 descs[_DESCS_COUNT(descbits) - 1].text_blk_lpos.next = FAILED_LPOS;
2060
2061 infos[0].seq = -(u64)_DESCS_COUNT(descbits);
2062 infos[_DESCS_COUNT(descbits) - 1].seq = 0;
2063 }
2064
2065 /**
2066 * prb_record_text_space() - Query the full actual used ringbuffer space for
2067 * the text data of a reserved entry.
2068 *
2069 * @e: The successfully reserved entry to query.
2070 *
2071 * This is the public function available to writers to see how much actual
2072 * space is used in the ringbuffer to store the text data of the specified
2073 * entry.
2074 *
2075 * This function is only valid if @e has been successfully reserved using
2076 * prb_reserve().
2077 *
2078 * Context: Any context.
2079 * Return: The size in bytes used by the text data of the associated record.
2080 */
prb_record_text_space(struct prb_reserved_entry * e)2081 unsigned int prb_record_text_space(struct prb_reserved_entry *e)
2082 {
2083 return e->text_space;
2084 }
2085