1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    Copyright (C) 2002 Richard Henderson
4    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 
6 */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/kernel_read_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/proc_fs.h>
26 #include <linux/security.h>
27 #include <linux/seq_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/fcntl.h>
30 #include <linux/rcupdate.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/moduleparam.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/vermagic.h>
37 #include <linux/notifier.h>
38 #include <linux/sched.h>
39 #include <linux/device.h>
40 #include <linux/string.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/uaccess.h>
44 #include <asm/cacheflush.h>
45 #include <linux/set_memory.h>
46 #include <asm/mmu_context.h>
47 #include <linux/license.h>
48 #include <asm/sections.h>
49 #include <linux/tracepoint.h>
50 #include <linux/ftrace.h>
51 #include <linux/livepatch.h>
52 #include <linux/async.h>
53 #include <linux/percpu.h>
54 #include <linux/kmemleak.h>
55 #include <linux/jump_label.h>
56 #include <linux/pfn.h>
57 #include <linux/bsearch.h>
58 #include <linux/dynamic_debug.h>
59 #include <linux/audit.h>
60 #include <uapi/linux/module.h>
61 #include "module-internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65 
66 #ifndef ARCH_SHF_SMALL
67 #define ARCH_SHF_SMALL 0
68 #endif
69 
70 /*
71  * Modules' sections will be aligned on page boundaries
72  * to ensure complete separation of code and data, but
73  * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
74  */
75 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
76 # define debug_align(X) ALIGN(X, PAGE_SIZE)
77 #else
78 # define debug_align(X) (X)
79 #endif
80 
81 /* If this is set, the section belongs in the init part of the module */
82 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
83 
84 /*
85  * Mutex protects:
86  * 1) List of modules (also safely readable with preempt_disable),
87  * 2) module_use links,
88  * 3) module_addr_min/module_addr_max.
89  * (delete and add uses RCU list operations). */
90 DEFINE_MUTEX(module_mutex);
91 EXPORT_SYMBOL_GPL(module_mutex);
92 static LIST_HEAD(modules);
93 
94 /* Work queue for freeing init sections in success case */
95 static void do_free_init(struct work_struct *w);
96 static DECLARE_WORK(init_free_wq, do_free_init);
97 static LLIST_HEAD(init_free_list);
98 
99 #ifdef CONFIG_MODULES_TREE_LOOKUP
100 
101 /*
102  * Use a latched RB-tree for __module_address(); this allows us to use
103  * RCU-sched lookups of the address from any context.
104  *
105  * This is conditional on PERF_EVENTS || TRACING because those can really hit
106  * __module_address() hard by doing a lot of stack unwinding; potentially from
107  * NMI context.
108  */
109 
__mod_tree_val(struct latch_tree_node * n)110 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
111 {
112 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
113 
114 	return (unsigned long)layout->base;
115 }
116 
__mod_tree_size(struct latch_tree_node * n)117 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
118 {
119 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
120 
121 	return (unsigned long)layout->size;
122 }
123 
124 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)125 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
126 {
127 	return __mod_tree_val(a) < __mod_tree_val(b);
128 }
129 
130 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)131 mod_tree_comp(void *key, struct latch_tree_node *n)
132 {
133 	unsigned long val = (unsigned long)key;
134 	unsigned long start, end;
135 
136 	start = __mod_tree_val(n);
137 	if (val < start)
138 		return -1;
139 
140 	end = start + __mod_tree_size(n);
141 	if (val >= end)
142 		return 1;
143 
144 	return 0;
145 }
146 
147 static const struct latch_tree_ops mod_tree_ops = {
148 	.less = mod_tree_less,
149 	.comp = mod_tree_comp,
150 };
151 
152 static struct mod_tree_root {
153 	struct latch_tree_root root;
154 	unsigned long addr_min;
155 	unsigned long addr_max;
156 } mod_tree __cacheline_aligned = {
157 	.addr_min = -1UL,
158 };
159 
160 #define module_addr_min mod_tree.addr_min
161 #define module_addr_max mod_tree.addr_max
162 
__mod_tree_insert(struct mod_tree_node * node)163 static noinline void __mod_tree_insert(struct mod_tree_node *node)
164 {
165 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
166 }
167 
__mod_tree_remove(struct mod_tree_node * node)168 static void __mod_tree_remove(struct mod_tree_node *node)
169 {
170 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 }
172 
173 /*
174  * These modifications: insert, remove_init and remove; are serialized by the
175  * module_mutex.
176  */
mod_tree_insert(struct module * mod)177 static void mod_tree_insert(struct module *mod)
178 {
179 	mod->core_layout.mtn.mod = mod;
180 	mod->init_layout.mtn.mod = mod;
181 
182 	__mod_tree_insert(&mod->core_layout.mtn);
183 	if (mod->init_layout.size)
184 		__mod_tree_insert(&mod->init_layout.mtn);
185 }
186 
mod_tree_remove_init(struct module * mod)187 static void mod_tree_remove_init(struct module *mod)
188 {
189 	if (mod->init_layout.size)
190 		__mod_tree_remove(&mod->init_layout.mtn);
191 }
192 
mod_tree_remove(struct module * mod)193 static void mod_tree_remove(struct module *mod)
194 {
195 	__mod_tree_remove(&mod->core_layout.mtn);
196 	mod_tree_remove_init(mod);
197 }
198 
mod_find(unsigned long addr)199 static struct module *mod_find(unsigned long addr)
200 {
201 	struct latch_tree_node *ltn;
202 
203 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
204 	if (!ltn)
205 		return NULL;
206 
207 	return container_of(ltn, struct mod_tree_node, node)->mod;
208 }
209 
210 #else /* MODULES_TREE_LOOKUP */
211 
212 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
213 
mod_tree_insert(struct module * mod)214 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)215 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)216 static void mod_tree_remove(struct module *mod) { }
217 
mod_find(unsigned long addr)218 static struct module *mod_find(unsigned long addr)
219 {
220 	struct module *mod;
221 
222 	list_for_each_entry_rcu(mod, &modules, list,
223 				lockdep_is_held(&module_mutex)) {
224 		if (within_module(addr, mod))
225 			return mod;
226 	}
227 
228 	return NULL;
229 }
230 
231 #endif /* MODULES_TREE_LOOKUP */
232 
233 /*
234  * Bounds of module text, for speeding up __module_address.
235  * Protected by module_mutex.
236  */
__mod_update_bounds(void * base,unsigned int size)237 static void __mod_update_bounds(void *base, unsigned int size)
238 {
239 	unsigned long min = (unsigned long)base;
240 	unsigned long max = min + size;
241 
242 	if (min < module_addr_min)
243 		module_addr_min = min;
244 	if (max > module_addr_max)
245 		module_addr_max = max;
246 }
247 
mod_update_bounds(struct module * mod)248 static void mod_update_bounds(struct module *mod)
249 {
250 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
251 	if (mod->init_layout.size)
252 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
253 }
254 
255 #ifdef CONFIG_KGDB_KDB
256 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
257 #endif /* CONFIG_KGDB_KDB */
258 
module_assert_mutex(void)259 static void module_assert_mutex(void)
260 {
261 	lockdep_assert_held(&module_mutex);
262 }
263 
module_assert_mutex_or_preempt(void)264 static void module_assert_mutex_or_preempt(void)
265 {
266 #ifdef CONFIG_LOCKDEP
267 	if (unlikely(!debug_locks))
268 		return;
269 
270 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
271 		!lockdep_is_held(&module_mutex));
272 #endif
273 }
274 
275 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
276 module_param(sig_enforce, bool_enable_only, 0644);
277 
278 /*
279  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
280  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
281  */
is_module_sig_enforced(void)282 bool is_module_sig_enforced(void)
283 {
284 	return sig_enforce;
285 }
286 EXPORT_SYMBOL(is_module_sig_enforced);
287 
set_module_sig_enforced(void)288 void set_module_sig_enforced(void)
289 {
290 	sig_enforce = true;
291 }
292 
293 /* Block module loading/unloading? */
294 int modules_disabled = 0;
295 core_param(nomodule, modules_disabled, bint, 0);
296 
297 /* Waiting for a module to finish initializing? */
298 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
299 
300 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
301 
register_module_notifier(struct notifier_block * nb)302 int register_module_notifier(struct notifier_block *nb)
303 {
304 	return blocking_notifier_chain_register(&module_notify_list, nb);
305 }
306 EXPORT_SYMBOL(register_module_notifier);
307 
unregister_module_notifier(struct notifier_block * nb)308 int unregister_module_notifier(struct notifier_block *nb)
309 {
310 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
311 }
312 EXPORT_SYMBOL(unregister_module_notifier);
313 
314 /*
315  * We require a truly strong try_module_get(): 0 means success.
316  * Otherwise an error is returned due to ongoing or failed
317  * initialization etc.
318  */
strong_try_module_get(struct module * mod)319 static inline int strong_try_module_get(struct module *mod)
320 {
321 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
322 	if (mod && mod->state == MODULE_STATE_COMING)
323 		return -EBUSY;
324 	if (try_module_get(mod))
325 		return 0;
326 	else
327 		return -ENOENT;
328 }
329 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)330 static inline void add_taint_module(struct module *mod, unsigned flag,
331 				    enum lockdep_ok lockdep_ok)
332 {
333 	add_taint(flag, lockdep_ok);
334 	set_bit(flag, &mod->taints);
335 }
336 
337 /*
338  * A thread that wants to hold a reference to a module only while it
339  * is running can call this to safely exit.  nfsd and lockd use this.
340  */
__module_put_and_exit(struct module * mod,long code)341 void __noreturn __module_put_and_exit(struct module *mod, long code)
342 {
343 	module_put(mod);
344 	do_exit(code);
345 }
346 EXPORT_SYMBOL(__module_put_and_exit);
347 
348 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)349 static unsigned int find_sec(const struct load_info *info, const char *name)
350 {
351 	unsigned int i;
352 
353 	for (i = 1; i < info->hdr->e_shnum; i++) {
354 		Elf_Shdr *shdr = &info->sechdrs[i];
355 		/* Alloc bit cleared means "ignore it." */
356 		if ((shdr->sh_flags & SHF_ALLOC)
357 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
358 			return i;
359 	}
360 	return 0;
361 }
362 
363 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)364 static void *section_addr(const struct load_info *info, const char *name)
365 {
366 	/* Section 0 has sh_addr 0. */
367 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
368 }
369 
370 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)371 static void *section_objs(const struct load_info *info,
372 			  const char *name,
373 			  size_t object_size,
374 			  unsigned int *num)
375 {
376 	unsigned int sec = find_sec(info, name);
377 
378 	/* Section 0 has sh_addr 0 and sh_size 0. */
379 	*num = info->sechdrs[sec].sh_size / object_size;
380 	return (void *)info->sechdrs[sec].sh_addr;
381 }
382 
383 /* Provided by the linker */
384 extern const struct kernel_symbol __start___ksymtab[];
385 extern const struct kernel_symbol __stop___ksymtab[];
386 extern const struct kernel_symbol __start___ksymtab_gpl[];
387 extern const struct kernel_symbol __stop___ksymtab_gpl[];
388 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
389 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
390 extern const s32 __start___kcrctab[];
391 extern const s32 __start___kcrctab_gpl[];
392 extern const s32 __start___kcrctab_gpl_future[];
393 #ifdef CONFIG_UNUSED_SYMBOLS
394 extern const struct kernel_symbol __start___ksymtab_unused[];
395 extern const struct kernel_symbol __stop___ksymtab_unused[];
396 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
397 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
398 extern const s32 __start___kcrctab_unused[];
399 extern const s32 __start___kcrctab_unused_gpl[];
400 #endif
401 
402 #ifndef CONFIG_MODVERSIONS
403 #define symversion(base, idx) NULL
404 #else
405 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
406 #endif
407 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)408 static bool each_symbol_in_section(const struct symsearch *arr,
409 				   unsigned int arrsize,
410 				   struct module *owner,
411 				   bool (*fn)(const struct symsearch *syms,
412 					      struct module *owner,
413 					      void *data),
414 				   void *data)
415 {
416 	unsigned int j;
417 
418 	for (j = 0; j < arrsize; j++) {
419 		if (fn(&arr[j], owner, data))
420 			return true;
421 	}
422 
423 	return false;
424 }
425 
426 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)427 static bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
428 				    struct module *owner,
429 				    void *data),
430 			 void *data)
431 {
432 	struct module *mod;
433 	static const struct symsearch arr[] = {
434 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
435 		  NOT_GPL_ONLY, false },
436 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
437 		  __start___kcrctab_gpl,
438 		  GPL_ONLY, false },
439 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
440 		  __start___kcrctab_gpl_future,
441 		  WILL_BE_GPL_ONLY, false },
442 #ifdef CONFIG_UNUSED_SYMBOLS
443 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
444 		  __start___kcrctab_unused,
445 		  NOT_GPL_ONLY, true },
446 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
447 		  __start___kcrctab_unused_gpl,
448 		  GPL_ONLY, true },
449 #endif
450 	};
451 
452 	module_assert_mutex_or_preempt();
453 
454 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
455 		return true;
456 
457 	list_for_each_entry_rcu(mod, &modules, list,
458 				lockdep_is_held(&module_mutex)) {
459 		struct symsearch arr[] = {
460 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
461 			  NOT_GPL_ONLY, false },
462 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
463 			  mod->gpl_crcs,
464 			  GPL_ONLY, false },
465 			{ mod->gpl_future_syms,
466 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
467 			  mod->gpl_future_crcs,
468 			  WILL_BE_GPL_ONLY, false },
469 #ifdef CONFIG_UNUSED_SYMBOLS
470 			{ mod->unused_syms,
471 			  mod->unused_syms + mod->num_unused_syms,
472 			  mod->unused_crcs,
473 			  NOT_GPL_ONLY, true },
474 			{ mod->unused_gpl_syms,
475 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
476 			  mod->unused_gpl_crcs,
477 			  GPL_ONLY, true },
478 #endif
479 		};
480 
481 		if (mod->state == MODULE_STATE_UNFORMED)
482 			continue;
483 
484 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
485 			return true;
486 	}
487 	return false;
488 }
489 
490 struct find_symbol_arg {
491 	/* Input */
492 	const char *name;
493 	bool gplok;
494 	bool warn;
495 
496 	/* Output */
497 	struct module *owner;
498 	const s32 *crc;
499 	const struct kernel_symbol *sym;
500 	enum mod_license license;
501 };
502 
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)503 static bool check_exported_symbol(const struct symsearch *syms,
504 				  struct module *owner,
505 				  unsigned int symnum, void *data)
506 {
507 	struct find_symbol_arg *fsa = data;
508 
509 	if (!fsa->gplok) {
510 		if (syms->license == GPL_ONLY)
511 			return false;
512 		if (syms->license == WILL_BE_GPL_ONLY && fsa->warn) {
513 			pr_warn("Symbol %s is being used by a non-GPL module, "
514 				"which will not be allowed in the future\n",
515 				fsa->name);
516 		}
517 	}
518 
519 #ifdef CONFIG_UNUSED_SYMBOLS
520 	if (syms->unused && fsa->warn) {
521 		pr_warn("Symbol %s is marked as UNUSED, however this module is "
522 			"using it.\n", fsa->name);
523 		pr_warn("This symbol will go away in the future.\n");
524 		pr_warn("Please evaluate if this is the right api to use and "
525 			"if it really is, submit a report to the linux kernel "
526 			"mailing list together with submitting your code for "
527 			"inclusion.\n");
528 	}
529 #endif
530 
531 	fsa->owner = owner;
532 	fsa->crc = symversion(syms->crcs, symnum);
533 	fsa->sym = &syms->start[symnum];
534 	fsa->license = syms->license;
535 	return true;
536 }
537 
kernel_symbol_value(const struct kernel_symbol * sym)538 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
539 {
540 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
541 	return (unsigned long)offset_to_ptr(&sym->value_offset);
542 #else
543 	return sym->value;
544 #endif
545 }
546 
kernel_symbol_name(const struct kernel_symbol * sym)547 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
548 {
549 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
550 	return offset_to_ptr(&sym->name_offset);
551 #else
552 	return sym->name;
553 #endif
554 }
555 
kernel_symbol_namespace(const struct kernel_symbol * sym)556 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
557 {
558 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
559 	if (!sym->namespace_offset)
560 		return NULL;
561 	return offset_to_ptr(&sym->namespace_offset);
562 #else
563 	return sym->namespace;
564 #endif
565 }
566 
cmp_name(const void * name,const void * sym)567 static int cmp_name(const void *name, const void *sym)
568 {
569 	return strcmp(name, kernel_symbol_name(sym));
570 }
571 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)572 static bool find_exported_symbol_in_section(const struct symsearch *syms,
573 					    struct module *owner,
574 					    void *data)
575 {
576 	struct find_symbol_arg *fsa = data;
577 	struct kernel_symbol *sym;
578 
579 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
580 			sizeof(struct kernel_symbol), cmp_name);
581 
582 	if (sym != NULL && check_exported_symbol(syms, owner,
583 						 sym - syms->start, data))
584 		return true;
585 
586 	return false;
587 }
588 
589 /* Find an exported symbol and return it, along with, (optional) crc and
590  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const s32 ** crc,enum mod_license * license,bool gplok,bool warn)591 static const struct kernel_symbol *find_symbol(const char *name,
592 					struct module **owner,
593 					const s32 **crc,
594 					enum mod_license *license,
595 					bool gplok,
596 					bool warn)
597 {
598 	struct find_symbol_arg fsa;
599 
600 	fsa.name = name;
601 	fsa.gplok = gplok;
602 	fsa.warn = warn;
603 
604 	if (each_symbol_section(find_exported_symbol_in_section, &fsa)) {
605 		if (owner)
606 			*owner = fsa.owner;
607 		if (crc)
608 			*crc = fsa.crc;
609 		if (license)
610 			*license = fsa.license;
611 		return fsa.sym;
612 	}
613 
614 	pr_debug("Failed to find symbol %s\n", name);
615 	return NULL;
616 }
617 
618 /*
619  * Search for module by name: must hold module_mutex (or preempt disabled
620  * for read-only access).
621  */
find_module_all(const char * name,size_t len,bool even_unformed)622 static struct module *find_module_all(const char *name, size_t len,
623 				      bool even_unformed)
624 {
625 	struct module *mod;
626 
627 	module_assert_mutex_or_preempt();
628 
629 	list_for_each_entry_rcu(mod, &modules, list,
630 				lockdep_is_held(&module_mutex)) {
631 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
632 			continue;
633 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
634 			return mod;
635 	}
636 	return NULL;
637 }
638 
find_module(const char * name)639 struct module *find_module(const char *name)
640 {
641 	module_assert_mutex();
642 	return find_module_all(name, strlen(name), false);
643 }
644 EXPORT_SYMBOL_GPL(find_module);
645 
646 #ifdef CONFIG_SMP
647 
mod_percpu(struct module * mod)648 static inline void __percpu *mod_percpu(struct module *mod)
649 {
650 	return mod->percpu;
651 }
652 
percpu_modalloc(struct module * mod,struct load_info * info)653 static int percpu_modalloc(struct module *mod, struct load_info *info)
654 {
655 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
656 	unsigned long align = pcpusec->sh_addralign;
657 
658 	if (!pcpusec->sh_size)
659 		return 0;
660 
661 	if (align > PAGE_SIZE) {
662 		pr_warn("%s: per-cpu alignment %li > %li\n",
663 			mod->name, align, PAGE_SIZE);
664 		align = PAGE_SIZE;
665 	}
666 
667 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
668 	if (!mod->percpu) {
669 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
670 			mod->name, (unsigned long)pcpusec->sh_size);
671 		return -ENOMEM;
672 	}
673 	mod->percpu_size = pcpusec->sh_size;
674 	return 0;
675 }
676 
percpu_modfree(struct module * mod)677 static void percpu_modfree(struct module *mod)
678 {
679 	free_percpu(mod->percpu);
680 }
681 
find_pcpusec(struct load_info * info)682 static unsigned int find_pcpusec(struct load_info *info)
683 {
684 	return find_sec(info, ".data..percpu");
685 }
686 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)687 static void percpu_modcopy(struct module *mod,
688 			   const void *from, unsigned long size)
689 {
690 	int cpu;
691 
692 	for_each_possible_cpu(cpu)
693 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
694 }
695 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)696 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
697 {
698 	struct module *mod;
699 	unsigned int cpu;
700 
701 	preempt_disable();
702 
703 	list_for_each_entry_rcu(mod, &modules, list) {
704 		if (mod->state == MODULE_STATE_UNFORMED)
705 			continue;
706 		if (!mod->percpu_size)
707 			continue;
708 		for_each_possible_cpu(cpu) {
709 			void *start = per_cpu_ptr(mod->percpu, cpu);
710 			void *va = (void *)addr;
711 
712 			if (va >= start && va < start + mod->percpu_size) {
713 				if (can_addr) {
714 					*can_addr = (unsigned long) (va - start);
715 					*can_addr += (unsigned long)
716 						per_cpu_ptr(mod->percpu,
717 							    get_boot_cpu_id());
718 				}
719 				preempt_enable();
720 				return true;
721 			}
722 		}
723 	}
724 
725 	preempt_enable();
726 	return false;
727 }
728 
729 /**
730  * is_module_percpu_address - test whether address is from module static percpu
731  * @addr: address to test
732  *
733  * Test whether @addr belongs to module static percpu area.
734  *
735  * RETURNS:
736  * %true if @addr is from module static percpu area
737  */
is_module_percpu_address(unsigned long addr)738 bool is_module_percpu_address(unsigned long addr)
739 {
740 	return __is_module_percpu_address(addr, NULL);
741 }
742 
743 #else /* ... !CONFIG_SMP */
744 
mod_percpu(struct module * mod)745 static inline void __percpu *mod_percpu(struct module *mod)
746 {
747 	return NULL;
748 }
percpu_modalloc(struct module * mod,struct load_info * info)749 static int percpu_modalloc(struct module *mod, struct load_info *info)
750 {
751 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
752 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
753 		return -ENOMEM;
754 	return 0;
755 }
percpu_modfree(struct module * mod)756 static inline void percpu_modfree(struct module *mod)
757 {
758 }
find_pcpusec(struct load_info * info)759 static unsigned int find_pcpusec(struct load_info *info)
760 {
761 	return 0;
762 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)763 static inline void percpu_modcopy(struct module *mod,
764 				  const void *from, unsigned long size)
765 {
766 	/* pcpusec should be 0, and size of that section should be 0. */
767 	BUG_ON(size != 0);
768 }
is_module_percpu_address(unsigned long addr)769 bool is_module_percpu_address(unsigned long addr)
770 {
771 	return false;
772 }
773 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)774 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
775 {
776 	return false;
777 }
778 
779 #endif /* CONFIG_SMP */
780 
781 #define MODINFO_ATTR(field)	\
782 static void setup_modinfo_##field(struct module *mod, const char *s)  \
783 {                                                                     \
784 	mod->field = kstrdup(s, GFP_KERNEL);                          \
785 }                                                                     \
786 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
787 			struct module_kobject *mk, char *buffer)      \
788 {                                                                     \
789 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
790 }                                                                     \
791 static int modinfo_##field##_exists(struct module *mod)               \
792 {                                                                     \
793 	return mod->field != NULL;                                    \
794 }                                                                     \
795 static void free_modinfo_##field(struct module *mod)                  \
796 {                                                                     \
797 	kfree(mod->field);                                            \
798 	mod->field = NULL;                                            \
799 }                                                                     \
800 static struct module_attribute modinfo_##field = {                    \
801 	.attr = { .name = __stringify(field), .mode = 0444 },         \
802 	.show = show_modinfo_##field,                                 \
803 	.setup = setup_modinfo_##field,                               \
804 	.test = modinfo_##field##_exists,                             \
805 	.free = free_modinfo_##field,                                 \
806 };
807 
808 MODINFO_ATTR(version);
809 MODINFO_ATTR(srcversion);
810 
811 static char last_unloaded_module[MODULE_NAME_LEN+1];
812 
813 #ifdef CONFIG_MODULE_UNLOAD
814 
815 EXPORT_TRACEPOINT_SYMBOL(module_get);
816 
817 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
818 #define MODULE_REF_BASE	1
819 
820 /* Init the unload section of the module. */
module_unload_init(struct module * mod)821 static int module_unload_init(struct module *mod)
822 {
823 	/*
824 	 * Initialize reference counter to MODULE_REF_BASE.
825 	 * refcnt == 0 means module is going.
826 	 */
827 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
828 
829 	INIT_LIST_HEAD(&mod->source_list);
830 	INIT_LIST_HEAD(&mod->target_list);
831 
832 	/* Hold reference count during initialization. */
833 	atomic_inc(&mod->refcnt);
834 
835 	return 0;
836 }
837 
838 /* Does a already use b? */
already_uses(struct module * a,struct module * b)839 static int already_uses(struct module *a, struct module *b)
840 {
841 	struct module_use *use;
842 
843 	list_for_each_entry(use, &b->source_list, source_list) {
844 		if (use->source == a) {
845 			pr_debug("%s uses %s!\n", a->name, b->name);
846 			return 1;
847 		}
848 	}
849 	pr_debug("%s does not use %s!\n", a->name, b->name);
850 	return 0;
851 }
852 
853 /*
854  * Module a uses b
855  *  - we add 'a' as a "source", 'b' as a "target" of module use
856  *  - the module_use is added to the list of 'b' sources (so
857  *    'b' can walk the list to see who sourced them), and of 'a'
858  *    targets (so 'a' can see what modules it targets).
859  */
add_module_usage(struct module * a,struct module * b)860 static int add_module_usage(struct module *a, struct module *b)
861 {
862 	struct module_use *use;
863 
864 	pr_debug("Allocating new usage for %s.\n", a->name);
865 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
866 	if (!use)
867 		return -ENOMEM;
868 
869 	use->source = a;
870 	use->target = b;
871 	list_add(&use->source_list, &b->source_list);
872 	list_add(&use->target_list, &a->target_list);
873 	return 0;
874 }
875 
876 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)877 static int ref_module(struct module *a, struct module *b)
878 {
879 	int err;
880 
881 	if (b == NULL || already_uses(a, b))
882 		return 0;
883 
884 	/* If module isn't available, we fail. */
885 	err = strong_try_module_get(b);
886 	if (err)
887 		return err;
888 
889 	err = add_module_usage(a, b);
890 	if (err) {
891 		module_put(b);
892 		return err;
893 	}
894 	return 0;
895 }
896 
897 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)898 static void module_unload_free(struct module *mod)
899 {
900 	struct module_use *use, *tmp;
901 
902 	mutex_lock(&module_mutex);
903 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
904 		struct module *i = use->target;
905 		pr_debug("%s unusing %s\n", mod->name, i->name);
906 		module_put(i);
907 		list_del(&use->source_list);
908 		list_del(&use->target_list);
909 		kfree(use);
910 	}
911 	mutex_unlock(&module_mutex);
912 }
913 
914 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)915 static inline int try_force_unload(unsigned int flags)
916 {
917 	int ret = (flags & O_TRUNC);
918 	if (ret)
919 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
920 	return ret;
921 }
922 #else
try_force_unload(unsigned int flags)923 static inline int try_force_unload(unsigned int flags)
924 {
925 	return 0;
926 }
927 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
928 
929 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)930 static int try_release_module_ref(struct module *mod)
931 {
932 	int ret;
933 
934 	/* Try to decrement refcnt which we set at loading */
935 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
936 	BUG_ON(ret < 0);
937 	if (ret)
938 		/* Someone can put this right now, recover with checking */
939 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
940 
941 	return ret;
942 }
943 
try_stop_module(struct module * mod,int flags,int * forced)944 static int try_stop_module(struct module *mod, int flags, int *forced)
945 {
946 	/* If it's not unused, quit unless we're forcing. */
947 	if (try_release_module_ref(mod) != 0) {
948 		*forced = try_force_unload(flags);
949 		if (!(*forced))
950 			return -EWOULDBLOCK;
951 	}
952 
953 	/* Mark it as dying. */
954 	mod->state = MODULE_STATE_GOING;
955 
956 	return 0;
957 }
958 
959 /**
960  * module_refcount - return the refcount or -1 if unloading
961  *
962  * @mod:	the module we're checking
963  *
964  * Returns:
965  *	-1 if the module is in the process of unloading
966  *	otherwise the number of references in the kernel to the module
967  */
module_refcount(struct module * mod)968 int module_refcount(struct module *mod)
969 {
970 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
971 }
972 EXPORT_SYMBOL(module_refcount);
973 
974 /* This exists whether we can unload or not */
975 static void free_module(struct module *mod);
976 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)977 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
978 		unsigned int, flags)
979 {
980 	struct module *mod;
981 	char name[MODULE_NAME_LEN];
982 	int ret, forced = 0;
983 
984 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
985 		return -EPERM;
986 
987 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
988 		return -EFAULT;
989 	name[MODULE_NAME_LEN-1] = '\0';
990 
991 	audit_log_kern_module(name);
992 
993 	if (mutex_lock_interruptible(&module_mutex) != 0)
994 		return -EINTR;
995 
996 	mod = find_module(name);
997 	if (!mod) {
998 		ret = -ENOENT;
999 		goto out;
1000 	}
1001 
1002 	if (!list_empty(&mod->source_list)) {
1003 		/* Other modules depend on us: get rid of them first. */
1004 		ret = -EWOULDBLOCK;
1005 		goto out;
1006 	}
1007 
1008 	/* Doing init or already dying? */
1009 	if (mod->state != MODULE_STATE_LIVE) {
1010 		/* FIXME: if (force), slam module count damn the torpedoes */
1011 		pr_debug("%s already dying\n", mod->name);
1012 		ret = -EBUSY;
1013 		goto out;
1014 	}
1015 
1016 	/* If it has an init func, it must have an exit func to unload */
1017 	if (mod->init && !mod->exit) {
1018 		forced = try_force_unload(flags);
1019 		if (!forced) {
1020 			/* This module can't be removed */
1021 			ret = -EBUSY;
1022 			goto out;
1023 		}
1024 	}
1025 
1026 	/* Stop the machine so refcounts can't move and disable module. */
1027 	ret = try_stop_module(mod, flags, &forced);
1028 	if (ret != 0)
1029 		goto out;
1030 
1031 	mutex_unlock(&module_mutex);
1032 	/* Final destruction now no one is using it. */
1033 	if (mod->exit != NULL)
1034 		mod->exit();
1035 	blocking_notifier_call_chain(&module_notify_list,
1036 				     MODULE_STATE_GOING, mod);
1037 	klp_module_going(mod);
1038 	ftrace_release_mod(mod);
1039 
1040 	async_synchronize_full();
1041 
1042 	/* Store the name of the last unloaded module for diagnostic purposes */
1043 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1044 
1045 	free_module(mod);
1046 	/* someone could wait for the module in add_unformed_module() */
1047 	wake_up_all(&module_wq);
1048 	return 0;
1049 out:
1050 	mutex_unlock(&module_mutex);
1051 	return ret;
1052 }
1053 
print_unload_info(struct seq_file * m,struct module * mod)1054 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1055 {
1056 	struct module_use *use;
1057 	int printed_something = 0;
1058 
1059 	seq_printf(m, " %i ", module_refcount(mod));
1060 
1061 	/*
1062 	 * Always include a trailing , so userspace can differentiate
1063 	 * between this and the old multi-field proc format.
1064 	 */
1065 	list_for_each_entry(use, &mod->source_list, source_list) {
1066 		printed_something = 1;
1067 		seq_printf(m, "%s,", use->source->name);
1068 	}
1069 
1070 	if (mod->init != NULL && mod->exit == NULL) {
1071 		printed_something = 1;
1072 		seq_puts(m, "[permanent],");
1073 	}
1074 
1075 	if (!printed_something)
1076 		seq_puts(m, "-");
1077 }
1078 
__symbol_put(const char * symbol)1079 void __symbol_put(const char *symbol)
1080 {
1081 	struct module *owner;
1082 
1083 	preempt_disable();
1084 	if (!find_symbol(symbol, &owner, NULL, NULL, true, false))
1085 		BUG();
1086 	module_put(owner);
1087 	preempt_enable();
1088 }
1089 EXPORT_SYMBOL(__symbol_put);
1090 
1091 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1092 void symbol_put_addr(void *addr)
1093 {
1094 	struct module *modaddr;
1095 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1096 
1097 	if (core_kernel_text(a))
1098 		return;
1099 
1100 	/*
1101 	 * Even though we hold a reference on the module; we still need to
1102 	 * disable preemption in order to safely traverse the data structure.
1103 	 */
1104 	preempt_disable();
1105 	modaddr = __module_text_address(a);
1106 	BUG_ON(!modaddr);
1107 	module_put(modaddr);
1108 	preempt_enable();
1109 }
1110 EXPORT_SYMBOL_GPL(symbol_put_addr);
1111 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1112 static ssize_t show_refcnt(struct module_attribute *mattr,
1113 			   struct module_kobject *mk, char *buffer)
1114 {
1115 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1116 }
1117 
1118 static struct module_attribute modinfo_refcnt =
1119 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1120 
__module_get(struct module * module)1121 void __module_get(struct module *module)
1122 {
1123 	if (module) {
1124 		preempt_disable();
1125 		atomic_inc(&module->refcnt);
1126 		trace_module_get(module, _RET_IP_);
1127 		preempt_enable();
1128 	}
1129 }
1130 EXPORT_SYMBOL(__module_get);
1131 
try_module_get(struct module * module)1132 bool try_module_get(struct module *module)
1133 {
1134 	bool ret = true;
1135 
1136 	if (module) {
1137 		preempt_disable();
1138 		/* Note: here, we can fail to get a reference */
1139 		if (likely(module_is_live(module) &&
1140 			   atomic_inc_not_zero(&module->refcnt) != 0))
1141 			trace_module_get(module, _RET_IP_);
1142 		else
1143 			ret = false;
1144 
1145 		preempt_enable();
1146 	}
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL(try_module_get);
1150 
module_put(struct module * module)1151 void module_put(struct module *module)
1152 {
1153 	int ret;
1154 
1155 	if (module) {
1156 		preempt_disable();
1157 		ret = atomic_dec_if_positive(&module->refcnt);
1158 		WARN_ON(ret < 0);	/* Failed to put refcount */
1159 		trace_module_put(module, _RET_IP_);
1160 		preempt_enable();
1161 	}
1162 }
1163 EXPORT_SYMBOL(module_put);
1164 
1165 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1166 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1167 {
1168 	/* We don't know the usage count, or what modules are using. */
1169 	seq_puts(m, " - -");
1170 }
1171 
module_unload_free(struct module * mod)1172 static inline void module_unload_free(struct module *mod)
1173 {
1174 }
1175 
ref_module(struct module * a,struct module * b)1176 static int ref_module(struct module *a, struct module *b)
1177 {
1178 	return strong_try_module_get(b);
1179 }
1180 
module_unload_init(struct module * mod)1181 static inline int module_unload_init(struct module *mod)
1182 {
1183 	return 0;
1184 }
1185 #endif /* CONFIG_MODULE_UNLOAD */
1186 
module_flags_taint(struct module * mod,char * buf)1187 static size_t module_flags_taint(struct module *mod, char *buf)
1188 {
1189 	size_t l = 0;
1190 	int i;
1191 
1192 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1193 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1194 			buf[l++] = taint_flags[i].c_true;
1195 	}
1196 
1197 	return l;
1198 }
1199 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1200 static ssize_t show_initstate(struct module_attribute *mattr,
1201 			      struct module_kobject *mk, char *buffer)
1202 {
1203 	const char *state = "unknown";
1204 
1205 	switch (mk->mod->state) {
1206 	case MODULE_STATE_LIVE:
1207 		state = "live";
1208 		break;
1209 	case MODULE_STATE_COMING:
1210 		state = "coming";
1211 		break;
1212 	case MODULE_STATE_GOING:
1213 		state = "going";
1214 		break;
1215 	default:
1216 		BUG();
1217 	}
1218 	return sprintf(buffer, "%s\n", state);
1219 }
1220 
1221 static struct module_attribute modinfo_initstate =
1222 	__ATTR(initstate, 0444, show_initstate, NULL);
1223 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1224 static ssize_t store_uevent(struct module_attribute *mattr,
1225 			    struct module_kobject *mk,
1226 			    const char *buffer, size_t count)
1227 {
1228 	int rc;
1229 
1230 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1231 	return rc ? rc : count;
1232 }
1233 
1234 struct module_attribute module_uevent =
1235 	__ATTR(uevent, 0200, NULL, store_uevent);
1236 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1237 static ssize_t show_coresize(struct module_attribute *mattr,
1238 			     struct module_kobject *mk, char *buffer)
1239 {
1240 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1241 }
1242 
1243 static struct module_attribute modinfo_coresize =
1244 	__ATTR(coresize, 0444, show_coresize, NULL);
1245 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1246 static ssize_t show_initsize(struct module_attribute *mattr,
1247 			     struct module_kobject *mk, char *buffer)
1248 {
1249 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1250 }
1251 
1252 static struct module_attribute modinfo_initsize =
1253 	__ATTR(initsize, 0444, show_initsize, NULL);
1254 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1255 static ssize_t show_taint(struct module_attribute *mattr,
1256 			  struct module_kobject *mk, char *buffer)
1257 {
1258 	size_t l;
1259 
1260 	l = module_flags_taint(mk->mod, buffer);
1261 	buffer[l++] = '\n';
1262 	return l;
1263 }
1264 
1265 static struct module_attribute modinfo_taint =
1266 	__ATTR(taint, 0444, show_taint, NULL);
1267 
1268 static struct module_attribute *modinfo_attrs[] = {
1269 	&module_uevent,
1270 	&modinfo_version,
1271 	&modinfo_srcversion,
1272 	&modinfo_initstate,
1273 	&modinfo_coresize,
1274 	&modinfo_initsize,
1275 	&modinfo_taint,
1276 #ifdef CONFIG_MODULE_UNLOAD
1277 	&modinfo_refcnt,
1278 #endif
1279 	NULL,
1280 };
1281 
1282 static const char vermagic[] = VERMAGIC_STRING;
1283 
try_to_force_load(struct module * mod,const char * reason)1284 static int try_to_force_load(struct module *mod, const char *reason)
1285 {
1286 #ifdef CONFIG_MODULE_FORCE_LOAD
1287 	if (!test_taint(TAINT_FORCED_MODULE))
1288 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1289 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1290 	return 0;
1291 #else
1292 	return -ENOEXEC;
1293 #endif
1294 }
1295 
1296 #ifdef CONFIG_MODVERSIONS
1297 
resolve_rel_crc(const s32 * crc)1298 static u32 resolve_rel_crc(const s32 *crc)
1299 {
1300 	return *(u32 *)((void *)crc + *crc);
1301 }
1302 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1303 static int check_version(const struct load_info *info,
1304 			 const char *symname,
1305 			 struct module *mod,
1306 			 const s32 *crc)
1307 {
1308 	Elf_Shdr *sechdrs = info->sechdrs;
1309 	unsigned int versindex = info->index.vers;
1310 	unsigned int i, num_versions;
1311 	struct modversion_info *versions;
1312 
1313 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1314 	if (!crc)
1315 		return 1;
1316 
1317 	/* No versions at all?  modprobe --force does this. */
1318 	if (versindex == 0)
1319 		return try_to_force_load(mod, symname) == 0;
1320 
1321 	versions = (void *) sechdrs[versindex].sh_addr;
1322 	num_versions = sechdrs[versindex].sh_size
1323 		/ sizeof(struct modversion_info);
1324 
1325 	for (i = 0; i < num_versions; i++) {
1326 		u32 crcval;
1327 
1328 		if (strcmp(versions[i].name, symname) != 0)
1329 			continue;
1330 
1331 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1332 			crcval = resolve_rel_crc(crc);
1333 		else
1334 			crcval = *crc;
1335 		if (versions[i].crc == crcval)
1336 			return 1;
1337 		pr_debug("Found checksum %X vs module %lX\n",
1338 			 crcval, versions[i].crc);
1339 		goto bad_version;
1340 	}
1341 
1342 	/* Broken toolchain. Warn once, then let it go.. */
1343 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1344 	return 1;
1345 
1346 bad_version:
1347 	pr_warn("%s: disagrees about version of symbol %s\n",
1348 	       info->name, symname);
1349 	return 0;
1350 }
1351 
check_modstruct_version(const struct load_info * info,struct module * mod)1352 static inline int check_modstruct_version(const struct load_info *info,
1353 					  struct module *mod)
1354 {
1355 	const s32 *crc;
1356 
1357 	/*
1358 	 * Since this should be found in kernel (which can't be removed), no
1359 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1360 	 */
1361 	preempt_disable();
1362 	if (!find_symbol("module_layout", NULL, &crc, NULL, true, false)) {
1363 		preempt_enable();
1364 		BUG();
1365 	}
1366 	preempt_enable();
1367 	return check_version(info, "module_layout", mod, crc);
1368 }
1369 
1370 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1371 static inline int same_magic(const char *amagic, const char *bmagic,
1372 			     bool has_crcs)
1373 {
1374 	if (has_crcs) {
1375 		amagic += strcspn(amagic, " ");
1376 		bmagic += strcspn(bmagic, " ");
1377 	}
1378 	return strcmp(amagic, bmagic) == 0;
1379 }
1380 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1381 static inline int check_version(const struct load_info *info,
1382 				const char *symname,
1383 				struct module *mod,
1384 				const s32 *crc)
1385 {
1386 	return 1;
1387 }
1388 
check_modstruct_version(const struct load_info * info,struct module * mod)1389 static inline int check_modstruct_version(const struct load_info *info,
1390 					  struct module *mod)
1391 {
1392 	return 1;
1393 }
1394 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1395 static inline int same_magic(const char *amagic, const char *bmagic,
1396 			     bool has_crcs)
1397 {
1398 	return strcmp(amagic, bmagic) == 0;
1399 }
1400 #endif /* CONFIG_MODVERSIONS */
1401 
1402 static char *get_modinfo(const struct load_info *info, const char *tag);
1403 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1404 			      char *prev);
1405 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1406 static int verify_namespace_is_imported(const struct load_info *info,
1407 					const struct kernel_symbol *sym,
1408 					struct module *mod)
1409 {
1410 	const char *namespace;
1411 	char *imported_namespace;
1412 
1413 	namespace = kernel_symbol_namespace(sym);
1414 	if (namespace && namespace[0]) {
1415 		imported_namespace = get_modinfo(info, "import_ns");
1416 		while (imported_namespace) {
1417 			if (strcmp(namespace, imported_namespace) == 0)
1418 				return 0;
1419 			imported_namespace = get_next_modinfo(
1420 				info, "import_ns", imported_namespace);
1421 		}
1422 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1423 		pr_warn(
1424 #else
1425 		pr_err(
1426 #endif
1427 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1428 			mod->name, kernel_symbol_name(sym), namespace);
1429 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1430 		return -EINVAL;
1431 #endif
1432 	}
1433 	return 0;
1434 }
1435 
inherit_taint(struct module * mod,struct module * owner)1436 static bool inherit_taint(struct module *mod, struct module *owner)
1437 {
1438 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1439 		return true;
1440 
1441 	if (mod->using_gplonly_symbols) {
1442 		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1443 			mod->name, owner->name);
1444 		return false;
1445 	}
1446 
1447 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1448 		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1449 			mod->name, owner->name);
1450 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1451 	}
1452 	return true;
1453 }
1454 
1455 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1456 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1457 						  const struct load_info *info,
1458 						  const char *name,
1459 						  char ownername[])
1460 {
1461 	struct module *owner;
1462 	const struct kernel_symbol *sym;
1463 	const s32 *crc;
1464 	enum mod_license license;
1465 	int err;
1466 
1467 	/*
1468 	 * The module_mutex should not be a heavily contended lock;
1469 	 * if we get the occasional sleep here, we'll go an extra iteration
1470 	 * in the wait_event_interruptible(), which is harmless.
1471 	 */
1472 	sched_annotate_sleep();
1473 	mutex_lock(&module_mutex);
1474 	sym = find_symbol(name, &owner, &crc, &license,
1475 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1476 	if (!sym)
1477 		goto unlock;
1478 
1479 	if (license == GPL_ONLY)
1480 		mod->using_gplonly_symbols = true;
1481 
1482 	if (!inherit_taint(mod, owner)) {
1483 		sym = NULL;
1484 		goto getname;
1485 	}
1486 
1487 	if (!check_version(info, name, mod, crc)) {
1488 		sym = ERR_PTR(-EINVAL);
1489 		goto getname;
1490 	}
1491 
1492 	err = verify_namespace_is_imported(info, sym, mod);
1493 	if (err) {
1494 		sym = ERR_PTR(err);
1495 		goto getname;
1496 	}
1497 
1498 	err = ref_module(mod, owner);
1499 	if (err) {
1500 		sym = ERR_PTR(err);
1501 		goto getname;
1502 	}
1503 
1504 getname:
1505 	/* We must make copy under the lock if we failed to get ref. */
1506 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1507 unlock:
1508 	mutex_unlock(&module_mutex);
1509 	return sym;
1510 }
1511 
1512 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1513 resolve_symbol_wait(struct module *mod,
1514 		    const struct load_info *info,
1515 		    const char *name)
1516 {
1517 	const struct kernel_symbol *ksym;
1518 	char owner[MODULE_NAME_LEN];
1519 
1520 	if (wait_event_interruptible_timeout(module_wq,
1521 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1522 			|| PTR_ERR(ksym) != -EBUSY,
1523 					     30 * HZ) <= 0) {
1524 		pr_warn("%s: gave up waiting for init of module %s.\n",
1525 			mod->name, owner);
1526 	}
1527 	return ksym;
1528 }
1529 
1530 /*
1531  * /sys/module/foo/sections stuff
1532  * J. Corbet <corbet@lwn.net>
1533  */
1534 #ifdef CONFIG_SYSFS
1535 
1536 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1537 static inline bool sect_empty(const Elf_Shdr *sect)
1538 {
1539 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1540 }
1541 
1542 struct module_sect_attr {
1543 	struct bin_attribute battr;
1544 	unsigned long address;
1545 };
1546 
1547 struct module_sect_attrs {
1548 	struct attribute_group grp;
1549 	unsigned int nsections;
1550 	struct module_sect_attr attrs[];
1551 };
1552 
1553 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1554 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1555 				struct bin_attribute *battr,
1556 				char *buf, loff_t pos, size_t count)
1557 {
1558 	struct module_sect_attr *sattr =
1559 		container_of(battr, struct module_sect_attr, battr);
1560 	char bounce[MODULE_SECT_READ_SIZE + 1];
1561 	size_t wrote;
1562 
1563 	if (pos != 0)
1564 		return -EINVAL;
1565 
1566 	/*
1567 	 * Since we're a binary read handler, we must account for the
1568 	 * trailing NUL byte that sprintf will write: if "buf" is
1569 	 * too small to hold the NUL, or the NUL is exactly the last
1570 	 * byte, the read will look like it got truncated by one byte.
1571 	 * Since there is no way to ask sprintf nicely to not write
1572 	 * the NUL, we have to use a bounce buffer.
1573 	 */
1574 	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1575 			 kallsyms_show_value(file->f_cred)
1576 				? (void *)sattr->address : NULL);
1577 	count = min(count, wrote);
1578 	memcpy(buf, bounce, count);
1579 
1580 	return count;
1581 }
1582 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1583 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1584 {
1585 	unsigned int section;
1586 
1587 	for (section = 0; section < sect_attrs->nsections; section++)
1588 		kfree(sect_attrs->attrs[section].battr.attr.name);
1589 	kfree(sect_attrs);
1590 }
1591 
add_sect_attrs(struct module * mod,const struct load_info * info)1592 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1593 {
1594 	unsigned int nloaded = 0, i, size[2];
1595 	struct module_sect_attrs *sect_attrs;
1596 	struct module_sect_attr *sattr;
1597 	struct bin_attribute **gattr;
1598 
1599 	/* Count loaded sections and allocate structures */
1600 	for (i = 0; i < info->hdr->e_shnum; i++)
1601 		if (!sect_empty(&info->sechdrs[i]))
1602 			nloaded++;
1603 	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1604 			sizeof(sect_attrs->grp.bin_attrs[0]));
1605 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1606 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1607 	if (sect_attrs == NULL)
1608 		return;
1609 
1610 	/* Setup section attributes. */
1611 	sect_attrs->grp.name = "sections";
1612 	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1613 
1614 	sect_attrs->nsections = 0;
1615 	sattr = &sect_attrs->attrs[0];
1616 	gattr = &sect_attrs->grp.bin_attrs[0];
1617 	for (i = 0; i < info->hdr->e_shnum; i++) {
1618 		Elf_Shdr *sec = &info->sechdrs[i];
1619 		if (sect_empty(sec))
1620 			continue;
1621 		sysfs_bin_attr_init(&sattr->battr);
1622 		sattr->address = sec->sh_addr;
1623 		sattr->battr.attr.name =
1624 			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1625 		if (sattr->battr.attr.name == NULL)
1626 			goto out;
1627 		sect_attrs->nsections++;
1628 		sattr->battr.read = module_sect_read;
1629 		sattr->battr.size = MODULE_SECT_READ_SIZE;
1630 		sattr->battr.attr.mode = 0400;
1631 		*(gattr++) = &(sattr++)->battr;
1632 	}
1633 	*gattr = NULL;
1634 
1635 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1636 		goto out;
1637 
1638 	mod->sect_attrs = sect_attrs;
1639 	return;
1640   out:
1641 	free_sect_attrs(sect_attrs);
1642 }
1643 
remove_sect_attrs(struct module * mod)1644 static void remove_sect_attrs(struct module *mod)
1645 {
1646 	if (mod->sect_attrs) {
1647 		sysfs_remove_group(&mod->mkobj.kobj,
1648 				   &mod->sect_attrs->grp);
1649 		/* We are positive that no one is using any sect attrs
1650 		 * at this point.  Deallocate immediately. */
1651 		free_sect_attrs(mod->sect_attrs);
1652 		mod->sect_attrs = NULL;
1653 	}
1654 }
1655 
1656 /*
1657  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1658  */
1659 
1660 struct module_notes_attrs {
1661 	struct kobject *dir;
1662 	unsigned int notes;
1663 	struct bin_attribute attrs[];
1664 };
1665 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1666 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1667 				 struct bin_attribute *bin_attr,
1668 				 char *buf, loff_t pos, size_t count)
1669 {
1670 	/*
1671 	 * The caller checked the pos and count against our size.
1672 	 */
1673 	memcpy(buf, bin_attr->private + pos, count);
1674 	return count;
1675 }
1676 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1677 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1678 			     unsigned int i)
1679 {
1680 	if (notes_attrs->dir) {
1681 		while (i-- > 0)
1682 			sysfs_remove_bin_file(notes_attrs->dir,
1683 					      &notes_attrs->attrs[i]);
1684 		kobject_put(notes_attrs->dir);
1685 	}
1686 	kfree(notes_attrs);
1687 }
1688 
add_notes_attrs(struct module * mod,const struct load_info * info)1689 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1690 {
1691 	unsigned int notes, loaded, i;
1692 	struct module_notes_attrs *notes_attrs;
1693 	struct bin_attribute *nattr;
1694 
1695 	/* failed to create section attributes, so can't create notes */
1696 	if (!mod->sect_attrs)
1697 		return;
1698 
1699 	/* Count notes sections and allocate structures.  */
1700 	notes = 0;
1701 	for (i = 0; i < info->hdr->e_shnum; i++)
1702 		if (!sect_empty(&info->sechdrs[i]) &&
1703 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1704 			++notes;
1705 
1706 	if (notes == 0)
1707 		return;
1708 
1709 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1710 			      GFP_KERNEL);
1711 	if (notes_attrs == NULL)
1712 		return;
1713 
1714 	notes_attrs->notes = notes;
1715 	nattr = &notes_attrs->attrs[0];
1716 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1717 		if (sect_empty(&info->sechdrs[i]))
1718 			continue;
1719 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1720 			sysfs_bin_attr_init(nattr);
1721 			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1722 			nattr->attr.mode = S_IRUGO;
1723 			nattr->size = info->sechdrs[i].sh_size;
1724 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1725 			nattr->read = module_notes_read;
1726 			++nattr;
1727 		}
1728 		++loaded;
1729 	}
1730 
1731 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1732 	if (!notes_attrs->dir)
1733 		goto out;
1734 
1735 	for (i = 0; i < notes; ++i)
1736 		if (sysfs_create_bin_file(notes_attrs->dir,
1737 					  &notes_attrs->attrs[i]))
1738 			goto out;
1739 
1740 	mod->notes_attrs = notes_attrs;
1741 	return;
1742 
1743   out:
1744 	free_notes_attrs(notes_attrs, i);
1745 }
1746 
remove_notes_attrs(struct module * mod)1747 static void remove_notes_attrs(struct module *mod)
1748 {
1749 	if (mod->notes_attrs)
1750 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1751 }
1752 
1753 #else
1754 
add_sect_attrs(struct module * mod,const struct load_info * info)1755 static inline void add_sect_attrs(struct module *mod,
1756 				  const struct load_info *info)
1757 {
1758 }
1759 
remove_sect_attrs(struct module * mod)1760 static inline void remove_sect_attrs(struct module *mod)
1761 {
1762 }
1763 
add_notes_attrs(struct module * mod,const struct load_info * info)1764 static inline void add_notes_attrs(struct module *mod,
1765 				   const struct load_info *info)
1766 {
1767 }
1768 
remove_notes_attrs(struct module * mod)1769 static inline void remove_notes_attrs(struct module *mod)
1770 {
1771 }
1772 #endif /* CONFIG_KALLSYMS */
1773 
del_usage_links(struct module * mod)1774 static void del_usage_links(struct module *mod)
1775 {
1776 #ifdef CONFIG_MODULE_UNLOAD
1777 	struct module_use *use;
1778 
1779 	mutex_lock(&module_mutex);
1780 	list_for_each_entry(use, &mod->target_list, target_list)
1781 		sysfs_remove_link(use->target->holders_dir, mod->name);
1782 	mutex_unlock(&module_mutex);
1783 #endif
1784 }
1785 
add_usage_links(struct module * mod)1786 static int add_usage_links(struct module *mod)
1787 {
1788 	int ret = 0;
1789 #ifdef CONFIG_MODULE_UNLOAD
1790 	struct module_use *use;
1791 
1792 	mutex_lock(&module_mutex);
1793 	list_for_each_entry(use, &mod->target_list, target_list) {
1794 		ret = sysfs_create_link(use->target->holders_dir,
1795 					&mod->mkobj.kobj, mod->name);
1796 		if (ret)
1797 			break;
1798 	}
1799 	mutex_unlock(&module_mutex);
1800 	if (ret)
1801 		del_usage_links(mod);
1802 #endif
1803 	return ret;
1804 }
1805 
1806 static void module_remove_modinfo_attrs(struct module *mod, int end);
1807 
module_add_modinfo_attrs(struct module * mod)1808 static int module_add_modinfo_attrs(struct module *mod)
1809 {
1810 	struct module_attribute *attr;
1811 	struct module_attribute *temp_attr;
1812 	int error = 0;
1813 	int i;
1814 
1815 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1816 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1817 					GFP_KERNEL);
1818 	if (!mod->modinfo_attrs)
1819 		return -ENOMEM;
1820 
1821 	temp_attr = mod->modinfo_attrs;
1822 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1823 		if (!attr->test || attr->test(mod)) {
1824 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1825 			sysfs_attr_init(&temp_attr->attr);
1826 			error = sysfs_create_file(&mod->mkobj.kobj,
1827 					&temp_attr->attr);
1828 			if (error)
1829 				goto error_out;
1830 			++temp_attr;
1831 		}
1832 	}
1833 
1834 	return 0;
1835 
1836 error_out:
1837 	if (i > 0)
1838 		module_remove_modinfo_attrs(mod, --i);
1839 	else
1840 		kfree(mod->modinfo_attrs);
1841 	return error;
1842 }
1843 
module_remove_modinfo_attrs(struct module * mod,int end)1844 static void module_remove_modinfo_attrs(struct module *mod, int end)
1845 {
1846 	struct module_attribute *attr;
1847 	int i;
1848 
1849 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1850 		if (end >= 0 && i > end)
1851 			break;
1852 		/* pick a field to test for end of list */
1853 		if (!attr->attr.name)
1854 			break;
1855 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1856 		if (attr->free)
1857 			attr->free(mod);
1858 	}
1859 	kfree(mod->modinfo_attrs);
1860 }
1861 
mod_kobject_put(struct module * mod)1862 static void mod_kobject_put(struct module *mod)
1863 {
1864 	DECLARE_COMPLETION_ONSTACK(c);
1865 	mod->mkobj.kobj_completion = &c;
1866 	kobject_put(&mod->mkobj.kobj);
1867 	wait_for_completion(&c);
1868 }
1869 
mod_sysfs_init(struct module * mod)1870 static int mod_sysfs_init(struct module *mod)
1871 {
1872 	int err;
1873 	struct kobject *kobj;
1874 
1875 	if (!module_sysfs_initialized) {
1876 		pr_err("%s: module sysfs not initialized\n", mod->name);
1877 		err = -EINVAL;
1878 		goto out;
1879 	}
1880 
1881 	kobj = kset_find_obj(module_kset, mod->name);
1882 	if (kobj) {
1883 		pr_err("%s: module is already loaded\n", mod->name);
1884 		kobject_put(kobj);
1885 		err = -EINVAL;
1886 		goto out;
1887 	}
1888 
1889 	mod->mkobj.mod = mod;
1890 
1891 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1892 	mod->mkobj.kobj.kset = module_kset;
1893 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1894 				   "%s", mod->name);
1895 	if (err)
1896 		mod_kobject_put(mod);
1897 
1898 	/* delay uevent until full sysfs population */
1899 out:
1900 	return err;
1901 }
1902 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1903 static int mod_sysfs_setup(struct module *mod,
1904 			   const struct load_info *info,
1905 			   struct kernel_param *kparam,
1906 			   unsigned int num_params)
1907 {
1908 	int err;
1909 
1910 	err = mod_sysfs_init(mod);
1911 	if (err)
1912 		goto out;
1913 
1914 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1915 	if (!mod->holders_dir) {
1916 		err = -ENOMEM;
1917 		goto out_unreg;
1918 	}
1919 
1920 	err = module_param_sysfs_setup(mod, kparam, num_params);
1921 	if (err)
1922 		goto out_unreg_holders;
1923 
1924 	err = module_add_modinfo_attrs(mod);
1925 	if (err)
1926 		goto out_unreg_param;
1927 
1928 	err = add_usage_links(mod);
1929 	if (err)
1930 		goto out_unreg_modinfo_attrs;
1931 
1932 	add_sect_attrs(mod, info);
1933 	add_notes_attrs(mod, info);
1934 
1935 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1936 	return 0;
1937 
1938 out_unreg_modinfo_attrs:
1939 	module_remove_modinfo_attrs(mod, -1);
1940 out_unreg_param:
1941 	module_param_sysfs_remove(mod);
1942 out_unreg_holders:
1943 	kobject_put(mod->holders_dir);
1944 out_unreg:
1945 	mod_kobject_put(mod);
1946 out:
1947 	return err;
1948 }
1949 
mod_sysfs_fini(struct module * mod)1950 static void mod_sysfs_fini(struct module *mod)
1951 {
1952 	remove_notes_attrs(mod);
1953 	remove_sect_attrs(mod);
1954 	mod_kobject_put(mod);
1955 }
1956 
init_param_lock(struct module * mod)1957 static void init_param_lock(struct module *mod)
1958 {
1959 	mutex_init(&mod->param_lock);
1960 }
1961 #else /* !CONFIG_SYSFS */
1962 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1963 static int mod_sysfs_setup(struct module *mod,
1964 			   const struct load_info *info,
1965 			   struct kernel_param *kparam,
1966 			   unsigned int num_params)
1967 {
1968 	return 0;
1969 }
1970 
mod_sysfs_fini(struct module * mod)1971 static void mod_sysfs_fini(struct module *mod)
1972 {
1973 }
1974 
module_remove_modinfo_attrs(struct module * mod,int end)1975 static void module_remove_modinfo_attrs(struct module *mod, int end)
1976 {
1977 }
1978 
del_usage_links(struct module * mod)1979 static void del_usage_links(struct module *mod)
1980 {
1981 }
1982 
init_param_lock(struct module * mod)1983 static void init_param_lock(struct module *mod)
1984 {
1985 }
1986 #endif /* CONFIG_SYSFS */
1987 
mod_sysfs_teardown(struct module * mod)1988 static void mod_sysfs_teardown(struct module *mod)
1989 {
1990 	del_usage_links(mod);
1991 	module_remove_modinfo_attrs(mod, -1);
1992 	module_param_sysfs_remove(mod);
1993 	kobject_put(mod->mkobj.drivers_dir);
1994 	kobject_put(mod->holders_dir);
1995 	mod_sysfs_fini(mod);
1996 }
1997 
1998 /*
1999  * LKM RO/NX protection: protect module's text/ro-data
2000  * from modification and any data from execution.
2001  *
2002  * General layout of module is:
2003  *          [text] [read-only-data] [ro-after-init] [writable data]
2004  * text_size -----^                ^               ^               ^
2005  * ro_size ------------------------|               |               |
2006  * ro_after_init_size -----------------------------|               |
2007  * size -----------------------------------------------------------|
2008  *
2009  * These values are always page-aligned (as is base)
2010  */
2011 
2012 /*
2013  * Since some arches are moving towards PAGE_KERNEL module allocations instead
2014  * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
2015  * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
2016  * whether we are strict.
2017  */
2018 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2019 static void frob_text(const struct module_layout *layout,
2020 		      int (*set_memory)(unsigned long start, int num_pages))
2021 {
2022 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2023 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2024 	set_memory((unsigned long)layout->base,
2025 		   layout->text_size >> PAGE_SHIFT);
2026 }
2027 
module_enable_x(const struct module * mod)2028 static void module_enable_x(const struct module *mod)
2029 {
2030 	frob_text(&mod->core_layout, set_memory_x);
2031 	frob_text(&mod->init_layout, set_memory_x);
2032 }
2033 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)2034 static void module_enable_x(const struct module *mod) { }
2035 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
2036 
2037 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2038 static void frob_rodata(const struct module_layout *layout,
2039 			int (*set_memory)(unsigned long start, int num_pages))
2040 {
2041 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2042 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
2043 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2044 	set_memory((unsigned long)layout->base + layout->text_size,
2045 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
2046 }
2047 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2048 static void frob_ro_after_init(const struct module_layout *layout,
2049 				int (*set_memory)(unsigned long start, int num_pages))
2050 {
2051 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2052 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
2053 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2054 	set_memory((unsigned long)layout->base + layout->ro_size,
2055 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
2056 }
2057 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))2058 static void frob_writable_data(const struct module_layout *layout,
2059 			       int (*set_memory)(unsigned long start, int num_pages))
2060 {
2061 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2062 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2063 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2064 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2065 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2066 }
2067 
module_enable_ro(const struct module * mod,bool after_init)2068 static void module_enable_ro(const struct module *mod, bool after_init)
2069 {
2070 	if (!rodata_enabled)
2071 		return;
2072 
2073 	set_vm_flush_reset_perms(mod->core_layout.base);
2074 	set_vm_flush_reset_perms(mod->init_layout.base);
2075 	frob_text(&mod->core_layout, set_memory_ro);
2076 
2077 	frob_rodata(&mod->core_layout, set_memory_ro);
2078 	frob_text(&mod->init_layout, set_memory_ro);
2079 	frob_rodata(&mod->init_layout, set_memory_ro);
2080 
2081 	if (after_init)
2082 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2083 }
2084 
module_enable_nx(const struct module * mod)2085 static void module_enable_nx(const struct module *mod)
2086 {
2087 	frob_rodata(&mod->core_layout, set_memory_nx);
2088 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2089 	frob_writable_data(&mod->core_layout, set_memory_nx);
2090 	frob_rodata(&mod->init_layout, set_memory_nx);
2091 	frob_writable_data(&mod->init_layout, set_memory_nx);
2092 }
2093 
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2094 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2095 				       char *secstrings, struct module *mod)
2096 {
2097 	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2098 	int i;
2099 
2100 	for (i = 0; i < hdr->e_shnum; i++) {
2101 		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2102 			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2103 				mod->name, secstrings + sechdrs[i].sh_name, i);
2104 			return -ENOEXEC;
2105 		}
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2112 static void module_enable_nx(const struct module *mod) { }
module_enable_ro(const struct module * mod,bool after_init)2113 static void module_enable_ro(const struct module *mod, bool after_init) {}
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2114 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2115 				       char *secstrings, struct module *mod)
2116 {
2117 	return 0;
2118 }
2119 #endif /*  CONFIG_STRICT_MODULE_RWX */
2120 
2121 #ifdef CONFIG_LIVEPATCH
2122 /*
2123  * Persist Elf information about a module. Copy the Elf header,
2124  * section header table, section string table, and symtab section
2125  * index from info to mod->klp_info.
2126  */
copy_module_elf(struct module * mod,struct load_info * info)2127 static int copy_module_elf(struct module *mod, struct load_info *info)
2128 {
2129 	unsigned int size, symndx;
2130 	int ret;
2131 
2132 	size = sizeof(*mod->klp_info);
2133 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2134 	if (mod->klp_info == NULL)
2135 		return -ENOMEM;
2136 
2137 	/* Elf header */
2138 	size = sizeof(mod->klp_info->hdr);
2139 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2140 
2141 	/* Elf section header table */
2142 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2143 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2144 	if (mod->klp_info->sechdrs == NULL) {
2145 		ret = -ENOMEM;
2146 		goto free_info;
2147 	}
2148 
2149 	/* Elf section name string table */
2150 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2151 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2152 	if (mod->klp_info->secstrings == NULL) {
2153 		ret = -ENOMEM;
2154 		goto free_sechdrs;
2155 	}
2156 
2157 	/* Elf symbol section index */
2158 	symndx = info->index.sym;
2159 	mod->klp_info->symndx = symndx;
2160 
2161 	/*
2162 	 * For livepatch modules, core_kallsyms.symtab is a complete
2163 	 * copy of the original symbol table. Adjust sh_addr to point
2164 	 * to core_kallsyms.symtab since the copy of the symtab in module
2165 	 * init memory is freed at the end of do_init_module().
2166 	 */
2167 	mod->klp_info->sechdrs[symndx].sh_addr = \
2168 		(unsigned long) mod->core_kallsyms.symtab;
2169 
2170 	return 0;
2171 
2172 free_sechdrs:
2173 	kfree(mod->klp_info->sechdrs);
2174 free_info:
2175 	kfree(mod->klp_info);
2176 	return ret;
2177 }
2178 
free_module_elf(struct module * mod)2179 static void free_module_elf(struct module *mod)
2180 {
2181 	kfree(mod->klp_info->sechdrs);
2182 	kfree(mod->klp_info->secstrings);
2183 	kfree(mod->klp_info);
2184 }
2185 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2186 static int copy_module_elf(struct module *mod, struct load_info *info)
2187 {
2188 	return 0;
2189 }
2190 
free_module_elf(struct module * mod)2191 static void free_module_elf(struct module *mod)
2192 {
2193 }
2194 #endif /* CONFIG_LIVEPATCH */
2195 
module_memfree(void * module_region)2196 void __weak module_memfree(void *module_region)
2197 {
2198 	/*
2199 	 * This memory may be RO, and freeing RO memory in an interrupt is not
2200 	 * supported by vmalloc.
2201 	 */
2202 	WARN_ON(in_interrupt());
2203 	vfree(module_region);
2204 }
2205 
module_arch_cleanup(struct module * mod)2206 void __weak module_arch_cleanup(struct module *mod)
2207 {
2208 }
2209 
module_arch_freeing_init(struct module * mod)2210 void __weak module_arch_freeing_init(struct module *mod)
2211 {
2212 }
2213 
2214 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2215 static void free_module(struct module *mod)
2216 {
2217 	trace_module_free(mod);
2218 
2219 	mod_sysfs_teardown(mod);
2220 
2221 	/* We leave it in list to prevent duplicate loads, but make sure
2222 	 * that noone uses it while it's being deconstructed. */
2223 	mutex_lock(&module_mutex);
2224 	mod->state = MODULE_STATE_UNFORMED;
2225 	mutex_unlock(&module_mutex);
2226 
2227 	/* Remove dynamic debug info */
2228 	ddebug_remove_module(mod->name);
2229 
2230 	/* Arch-specific cleanup. */
2231 	module_arch_cleanup(mod);
2232 
2233 	/* Module unload stuff */
2234 	module_unload_free(mod);
2235 
2236 	/* Free any allocated parameters. */
2237 	destroy_params(mod->kp, mod->num_kp);
2238 
2239 	if (is_livepatch_module(mod))
2240 		free_module_elf(mod);
2241 
2242 	/* Now we can delete it from the lists */
2243 	mutex_lock(&module_mutex);
2244 	/* Unlink carefully: kallsyms could be walking list. */
2245 	list_del_rcu(&mod->list);
2246 	mod_tree_remove(mod);
2247 	/* Remove this module from bug list, this uses list_del_rcu */
2248 	module_bug_cleanup(mod);
2249 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2250 	synchronize_rcu();
2251 	mutex_unlock(&module_mutex);
2252 
2253 	/* This may be empty, but that's OK */
2254 	module_arch_freeing_init(mod);
2255 	module_memfree(mod->init_layout.base);
2256 	kfree(mod->args);
2257 	percpu_modfree(mod);
2258 
2259 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2260 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2261 
2262 	/* Finally, free the core (containing the module structure) */
2263 	module_memfree(mod->core_layout.base);
2264 }
2265 
__symbol_get(const char * symbol)2266 void *__symbol_get(const char *symbol)
2267 {
2268 	struct module *owner;
2269 	const struct kernel_symbol *sym;
2270 
2271 	preempt_disable();
2272 	sym = find_symbol(symbol, &owner, NULL, NULL, true, true);
2273 	if (sym && strong_try_module_get(owner))
2274 		sym = NULL;
2275 	preempt_enable();
2276 
2277 	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2278 }
2279 EXPORT_SYMBOL_GPL(__symbol_get);
2280 
2281 /*
2282  * Ensure that an exported symbol [global namespace] does not already exist
2283  * in the kernel or in some other module's exported symbol table.
2284  *
2285  * You must hold the module_mutex.
2286  */
verify_exported_symbols(struct module * mod)2287 static int verify_exported_symbols(struct module *mod)
2288 {
2289 	unsigned int i;
2290 	struct module *owner;
2291 	const struct kernel_symbol *s;
2292 	struct {
2293 		const struct kernel_symbol *sym;
2294 		unsigned int num;
2295 	} arr[] = {
2296 		{ mod->syms, mod->num_syms },
2297 		{ mod->gpl_syms, mod->num_gpl_syms },
2298 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2299 #ifdef CONFIG_UNUSED_SYMBOLS
2300 		{ mod->unused_syms, mod->num_unused_syms },
2301 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2302 #endif
2303 	};
2304 
2305 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2306 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2307 			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2308 					NULL, true, false)) {
2309 				pr_err("%s: exports duplicate symbol %s"
2310 				       " (owned by %s)\n",
2311 				       mod->name, kernel_symbol_name(s),
2312 				       module_name(owner));
2313 				return -ENOEXEC;
2314 			}
2315 		}
2316 	}
2317 	return 0;
2318 }
2319 
2320 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2321 static int simplify_symbols(struct module *mod, const struct load_info *info)
2322 {
2323 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2324 	Elf_Sym *sym = (void *)symsec->sh_addr;
2325 	unsigned long secbase;
2326 	unsigned int i;
2327 	int ret = 0;
2328 	const struct kernel_symbol *ksym;
2329 
2330 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2331 		const char *name = info->strtab + sym[i].st_name;
2332 
2333 		switch (sym[i].st_shndx) {
2334 		case SHN_COMMON:
2335 			/* Ignore common symbols */
2336 			if (!strncmp(name, "__gnu_lto", 9))
2337 				break;
2338 
2339 			/* We compiled with -fno-common.  These are not
2340 			   supposed to happen.  */
2341 			pr_debug("Common symbol: %s\n", name);
2342 			pr_warn("%s: please compile with -fno-common\n",
2343 			       mod->name);
2344 			ret = -ENOEXEC;
2345 			break;
2346 
2347 		case SHN_ABS:
2348 			/* Don't need to do anything */
2349 			pr_debug("Absolute symbol: 0x%08lx\n",
2350 			       (long)sym[i].st_value);
2351 			break;
2352 
2353 		case SHN_LIVEPATCH:
2354 			/* Livepatch symbols are resolved by livepatch */
2355 			break;
2356 
2357 		case SHN_UNDEF:
2358 			ksym = resolve_symbol_wait(mod, info, name);
2359 			/* Ok if resolved.  */
2360 			if (ksym && !IS_ERR(ksym)) {
2361 				sym[i].st_value = kernel_symbol_value(ksym);
2362 				break;
2363 			}
2364 
2365 			/* Ok if weak.  */
2366 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2367 				break;
2368 
2369 			ret = PTR_ERR(ksym) ?: -ENOENT;
2370 			pr_warn("%s: Unknown symbol %s (err %d)\n",
2371 				mod->name, name, ret);
2372 			break;
2373 
2374 		default:
2375 			/* Divert to percpu allocation if a percpu var. */
2376 			if (sym[i].st_shndx == info->index.pcpu)
2377 				secbase = (unsigned long)mod_percpu(mod);
2378 			else
2379 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2380 			sym[i].st_value += secbase;
2381 			break;
2382 		}
2383 	}
2384 
2385 	return ret;
2386 }
2387 
apply_relocations(struct module * mod,const struct load_info * info)2388 static int apply_relocations(struct module *mod, const struct load_info *info)
2389 {
2390 	unsigned int i;
2391 	int err = 0;
2392 
2393 	/* Now do relocations. */
2394 	for (i = 1; i < info->hdr->e_shnum; i++) {
2395 		unsigned int infosec = info->sechdrs[i].sh_info;
2396 
2397 		/* Not a valid relocation section? */
2398 		if (infosec >= info->hdr->e_shnum)
2399 			continue;
2400 
2401 		/* Don't bother with non-allocated sections */
2402 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2403 			continue;
2404 
2405 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2406 			err = klp_apply_section_relocs(mod, info->sechdrs,
2407 						       info->secstrings,
2408 						       info->strtab,
2409 						       info->index.sym, i,
2410 						       NULL);
2411 		else if (info->sechdrs[i].sh_type == SHT_REL)
2412 			err = apply_relocate(info->sechdrs, info->strtab,
2413 					     info->index.sym, i, mod);
2414 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2415 			err = apply_relocate_add(info->sechdrs, info->strtab,
2416 						 info->index.sym, i, mod);
2417 		if (err < 0)
2418 			break;
2419 	}
2420 	return err;
2421 }
2422 
2423 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2424 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2425 					     unsigned int section)
2426 {
2427 	/* default implementation just returns zero */
2428 	return 0;
2429 }
2430 
2431 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2432 static long get_offset(struct module *mod, unsigned int *size,
2433 		       Elf_Shdr *sechdr, unsigned int section)
2434 {
2435 	long ret;
2436 
2437 	*size += arch_mod_section_prepend(mod, section);
2438 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2439 	*size = ret + sechdr->sh_size;
2440 	return ret;
2441 }
2442 
2443 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2444    might -- code, read-only data, read-write data, small data.  Tally
2445    sizes, and place the offsets into sh_entsize fields: high bit means it
2446    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2447 static void layout_sections(struct module *mod, struct load_info *info)
2448 {
2449 	static unsigned long const masks[][2] = {
2450 		/* NOTE: all executable code must be the first section
2451 		 * in this array; otherwise modify the text_size
2452 		 * finder in the two loops below */
2453 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2454 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2455 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2456 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2457 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2458 	};
2459 	unsigned int m, i;
2460 
2461 	for (i = 0; i < info->hdr->e_shnum; i++)
2462 		info->sechdrs[i].sh_entsize = ~0UL;
2463 
2464 	pr_debug("Core section allocation order:\n");
2465 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2466 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2467 			Elf_Shdr *s = &info->sechdrs[i];
2468 			const char *sname = info->secstrings + s->sh_name;
2469 
2470 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2471 			    || (s->sh_flags & masks[m][1])
2472 			    || s->sh_entsize != ~0UL
2473 			    || module_init_section(sname))
2474 				continue;
2475 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2476 			pr_debug("\t%s\n", sname);
2477 		}
2478 		switch (m) {
2479 		case 0: /* executable */
2480 			mod->core_layout.size = debug_align(mod->core_layout.size);
2481 			mod->core_layout.text_size = mod->core_layout.size;
2482 			break;
2483 		case 1: /* RO: text and ro-data */
2484 			mod->core_layout.size = debug_align(mod->core_layout.size);
2485 			mod->core_layout.ro_size = mod->core_layout.size;
2486 			break;
2487 		case 2: /* RO after init */
2488 			mod->core_layout.size = debug_align(mod->core_layout.size);
2489 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2490 			break;
2491 		case 4: /* whole core */
2492 			mod->core_layout.size = debug_align(mod->core_layout.size);
2493 			break;
2494 		}
2495 	}
2496 
2497 	pr_debug("Init section allocation order:\n");
2498 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2499 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2500 			Elf_Shdr *s = &info->sechdrs[i];
2501 			const char *sname = info->secstrings + s->sh_name;
2502 
2503 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2504 			    || (s->sh_flags & masks[m][1])
2505 			    || s->sh_entsize != ~0UL
2506 			    || !module_init_section(sname))
2507 				continue;
2508 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2509 					 | INIT_OFFSET_MASK);
2510 			pr_debug("\t%s\n", sname);
2511 		}
2512 		switch (m) {
2513 		case 0: /* executable */
2514 			mod->init_layout.size = debug_align(mod->init_layout.size);
2515 			mod->init_layout.text_size = mod->init_layout.size;
2516 			break;
2517 		case 1: /* RO: text and ro-data */
2518 			mod->init_layout.size = debug_align(mod->init_layout.size);
2519 			mod->init_layout.ro_size = mod->init_layout.size;
2520 			break;
2521 		case 2:
2522 			/*
2523 			 * RO after init doesn't apply to init_layout (only
2524 			 * core_layout), so it just takes the value of ro_size.
2525 			 */
2526 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2527 			break;
2528 		case 4: /* whole init */
2529 			mod->init_layout.size = debug_align(mod->init_layout.size);
2530 			break;
2531 		}
2532 	}
2533 }
2534 
set_license(struct module * mod,const char * license)2535 static void set_license(struct module *mod, const char *license)
2536 {
2537 	if (!license)
2538 		license = "unspecified";
2539 
2540 	if (!license_is_gpl_compatible(license)) {
2541 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2542 			pr_warn("%s: module license '%s' taints kernel.\n",
2543 				mod->name, license);
2544 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2545 				 LOCKDEP_NOW_UNRELIABLE);
2546 	}
2547 }
2548 
2549 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2550 static char *next_string(char *string, unsigned long *secsize)
2551 {
2552 	/* Skip non-zero chars */
2553 	while (string[0]) {
2554 		string++;
2555 		if ((*secsize)-- <= 1)
2556 			return NULL;
2557 	}
2558 
2559 	/* Skip any zero padding. */
2560 	while (!string[0]) {
2561 		string++;
2562 		if ((*secsize)-- <= 1)
2563 			return NULL;
2564 	}
2565 	return string;
2566 }
2567 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2568 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2569 			      char *prev)
2570 {
2571 	char *p;
2572 	unsigned int taglen = strlen(tag);
2573 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2574 	unsigned long size = infosec->sh_size;
2575 
2576 	/*
2577 	 * get_modinfo() calls made before rewrite_section_headers()
2578 	 * must use sh_offset, as sh_addr isn't set!
2579 	 */
2580 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2581 
2582 	if (prev) {
2583 		size -= prev - modinfo;
2584 		modinfo = next_string(prev, &size);
2585 	}
2586 
2587 	for (p = modinfo; p; p = next_string(p, &size)) {
2588 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2589 			return p + taglen + 1;
2590 	}
2591 	return NULL;
2592 }
2593 
get_modinfo(const struct load_info * info,const char * tag)2594 static char *get_modinfo(const struct load_info *info, const char *tag)
2595 {
2596 	return get_next_modinfo(info, tag, NULL);
2597 }
2598 
setup_modinfo(struct module * mod,struct load_info * info)2599 static void setup_modinfo(struct module *mod, struct load_info *info)
2600 {
2601 	struct module_attribute *attr;
2602 	int i;
2603 
2604 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2605 		if (attr->setup)
2606 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2607 	}
2608 }
2609 
free_modinfo(struct module * mod)2610 static void free_modinfo(struct module *mod)
2611 {
2612 	struct module_attribute *attr;
2613 	int i;
2614 
2615 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2616 		if (attr->free)
2617 			attr->free(mod);
2618 	}
2619 }
2620 
2621 #ifdef CONFIG_KALLSYMS
2622 
2623 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2624 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2625 							  const struct kernel_symbol *start,
2626 							  const struct kernel_symbol *stop)
2627 {
2628 	return bsearch(name, start, stop - start,
2629 			sizeof(struct kernel_symbol), cmp_name);
2630 }
2631 
is_exported(const char * name,unsigned long value,const struct module * mod)2632 static int is_exported(const char *name, unsigned long value,
2633 		       const struct module *mod)
2634 {
2635 	const struct kernel_symbol *ks;
2636 	if (!mod)
2637 		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2638 	else
2639 		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2640 
2641 	return ks != NULL && kernel_symbol_value(ks) == value;
2642 }
2643 
2644 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2645 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2646 {
2647 	const Elf_Shdr *sechdrs = info->sechdrs;
2648 
2649 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2650 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2651 			return 'v';
2652 		else
2653 			return 'w';
2654 	}
2655 	if (sym->st_shndx == SHN_UNDEF)
2656 		return 'U';
2657 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2658 		return 'a';
2659 	if (sym->st_shndx >= SHN_LORESERVE)
2660 		return '?';
2661 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2662 		return 't';
2663 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2664 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2665 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2666 			return 'r';
2667 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2668 			return 'g';
2669 		else
2670 			return 'd';
2671 	}
2672 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2673 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2674 			return 's';
2675 		else
2676 			return 'b';
2677 	}
2678 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2679 		      ".debug")) {
2680 		return 'n';
2681 	}
2682 	return '?';
2683 }
2684 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2685 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2686 			unsigned int shnum, unsigned int pcpundx)
2687 {
2688 	const Elf_Shdr *sec;
2689 
2690 	if (src->st_shndx == SHN_UNDEF
2691 	    || src->st_shndx >= shnum
2692 	    || !src->st_name)
2693 		return false;
2694 
2695 #ifdef CONFIG_KALLSYMS_ALL
2696 	if (src->st_shndx == pcpundx)
2697 		return true;
2698 #endif
2699 
2700 	sec = sechdrs + src->st_shndx;
2701 	if (!(sec->sh_flags & SHF_ALLOC)
2702 #ifndef CONFIG_KALLSYMS_ALL
2703 	    || !(sec->sh_flags & SHF_EXECINSTR)
2704 #endif
2705 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2706 		return false;
2707 
2708 	return true;
2709 }
2710 
2711 /*
2712  * We only allocate and copy the strings needed by the parts of symtab
2713  * we keep.  This is simple, but has the effect of making multiple
2714  * copies of duplicates.  We could be more sophisticated, see
2715  * linux-kernel thread starting with
2716  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2717  */
layout_symtab(struct module * mod,struct load_info * info)2718 static void layout_symtab(struct module *mod, struct load_info *info)
2719 {
2720 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2721 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2722 	const Elf_Sym *src;
2723 	unsigned int i, nsrc, ndst, strtab_size = 0;
2724 
2725 	/* Put symbol section at end of init part of module. */
2726 	symsect->sh_flags |= SHF_ALLOC;
2727 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2728 					 info->index.sym) | INIT_OFFSET_MASK;
2729 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2730 
2731 	src = (void *)info->hdr + symsect->sh_offset;
2732 	nsrc = symsect->sh_size / sizeof(*src);
2733 
2734 	/* Compute total space required for the core symbols' strtab. */
2735 	for (ndst = i = 0; i < nsrc; i++) {
2736 		if (i == 0 || is_livepatch_module(mod) ||
2737 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2738 				   info->index.pcpu)) {
2739 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2740 			ndst++;
2741 		}
2742 	}
2743 
2744 	/* Append room for core symbols at end of core part. */
2745 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2746 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2747 	mod->core_layout.size += strtab_size;
2748 	info->core_typeoffs = mod->core_layout.size;
2749 	mod->core_layout.size += ndst * sizeof(char);
2750 	mod->core_layout.size = debug_align(mod->core_layout.size);
2751 
2752 	/* Put string table section at end of init part of module. */
2753 	strsect->sh_flags |= SHF_ALLOC;
2754 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2755 					 info->index.str) | INIT_OFFSET_MASK;
2756 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2757 
2758 	/* We'll tack temporary mod_kallsyms on the end. */
2759 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2760 				      __alignof__(struct mod_kallsyms));
2761 	info->mod_kallsyms_init_off = mod->init_layout.size;
2762 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2763 	info->init_typeoffs = mod->init_layout.size;
2764 	mod->init_layout.size += nsrc * sizeof(char);
2765 	mod->init_layout.size = debug_align(mod->init_layout.size);
2766 }
2767 
2768 /*
2769  * We use the full symtab and strtab which layout_symtab arranged to
2770  * be appended to the init section.  Later we switch to the cut-down
2771  * core-only ones.
2772  */
add_kallsyms(struct module * mod,const struct load_info * info)2773 static void add_kallsyms(struct module *mod, const struct load_info *info)
2774 {
2775 	unsigned int i, ndst;
2776 	const Elf_Sym *src;
2777 	Elf_Sym *dst;
2778 	char *s;
2779 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2780 
2781 	/* Set up to point into init section. */
2782 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2783 
2784 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2785 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2786 	/* Make sure we get permanent strtab: don't use info->strtab. */
2787 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2788 	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2789 
2790 	/*
2791 	 * Now populate the cut down core kallsyms for after init
2792 	 * and set types up while we still have access to sections.
2793 	 */
2794 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2795 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2796 	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2797 	src = mod->kallsyms->symtab;
2798 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2799 		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2800 		if (i == 0 || is_livepatch_module(mod) ||
2801 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2802 				   info->index.pcpu)) {
2803 			mod->core_kallsyms.typetab[ndst] =
2804 			    mod->kallsyms->typetab[i];
2805 			dst[ndst] = src[i];
2806 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2807 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2808 				     KSYM_NAME_LEN) + 1;
2809 		}
2810 	}
2811 	mod->core_kallsyms.num_symtab = ndst;
2812 }
2813 #else
layout_symtab(struct module * mod,struct load_info * info)2814 static inline void layout_symtab(struct module *mod, struct load_info *info)
2815 {
2816 }
2817 
add_kallsyms(struct module * mod,const struct load_info * info)2818 static void add_kallsyms(struct module *mod, const struct load_info *info)
2819 {
2820 }
2821 #endif /* CONFIG_KALLSYMS */
2822 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2823 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2824 {
2825 	if (!debug)
2826 		return;
2827 	ddebug_add_module(debug, num, mod->name);
2828 }
2829 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2830 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2831 {
2832 	if (debug)
2833 		ddebug_remove_module(mod->name);
2834 }
2835 
module_alloc(unsigned long size)2836 void * __weak module_alloc(unsigned long size)
2837 {
2838 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2839 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2840 			NUMA_NO_NODE, __builtin_return_address(0));
2841 }
2842 
module_init_section(const char * name)2843 bool __weak module_init_section(const char *name)
2844 {
2845 	return strstarts(name, ".init");
2846 }
2847 
module_exit_section(const char * name)2848 bool __weak module_exit_section(const char *name)
2849 {
2850 	return strstarts(name, ".exit");
2851 }
2852 
2853 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2854 static void kmemleak_load_module(const struct module *mod,
2855 				 const struct load_info *info)
2856 {
2857 	unsigned int i;
2858 
2859 	/* only scan the sections containing data */
2860 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2861 
2862 	for (i = 1; i < info->hdr->e_shnum; i++) {
2863 		/* Scan all writable sections that's not executable */
2864 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2865 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2866 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2867 			continue;
2868 
2869 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2870 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2871 	}
2872 }
2873 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2874 static inline void kmemleak_load_module(const struct module *mod,
2875 					const struct load_info *info)
2876 {
2877 }
2878 #endif
2879 
2880 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2881 static int module_sig_check(struct load_info *info, int flags)
2882 {
2883 	int err = -ENODATA;
2884 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2885 	const char *reason;
2886 	const void *mod = info->hdr;
2887 
2888 	/*
2889 	 * Require flags == 0, as a module with version information
2890 	 * removed is no longer the module that was signed
2891 	 */
2892 	if (flags == 0 &&
2893 	    info->len > markerlen &&
2894 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895 		/* We truncate the module to discard the signature */
2896 		info->len -= markerlen;
2897 		err = mod_verify_sig(mod, info);
2898 	}
2899 
2900 	switch (err) {
2901 	case 0:
2902 		info->sig_ok = true;
2903 		return 0;
2904 
2905 		/* We don't permit modules to be loaded into trusted kernels
2906 		 * without a valid signature on them, but if we're not
2907 		 * enforcing, certain errors are non-fatal.
2908 		 */
2909 	case -ENODATA:
2910 		reason = "Loading of unsigned module";
2911 		goto decide;
2912 	case -ENOPKG:
2913 		reason = "Loading of module with unsupported crypto";
2914 		goto decide;
2915 	case -ENOKEY:
2916 		reason = "Loading of module with unavailable key";
2917 	decide:
2918 		if (is_module_sig_enforced()) {
2919 			pr_notice("%s: %s is rejected\n", info->name, reason);
2920 			return -EKEYREJECTED;
2921 		}
2922 
2923 		return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2924 
2925 		/* All other errors are fatal, including nomem, unparseable
2926 		 * signatures and signature check failures - even if signatures
2927 		 * aren't required.
2928 		 */
2929 	default:
2930 		return err;
2931 	}
2932 }
2933 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2934 static int module_sig_check(struct load_info *info, int flags)
2935 {
2936 	return 0;
2937 }
2938 #endif /* !CONFIG_MODULE_SIG */
2939 
2940 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2941 static int elf_header_check(struct load_info *info)
2942 {
2943 	if (info->len < sizeof(*(info->hdr)))
2944 		return -ENOEXEC;
2945 
2946 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2947 	    || info->hdr->e_type != ET_REL
2948 	    || !elf_check_arch(info->hdr)
2949 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2950 		return -ENOEXEC;
2951 
2952 	if (info->hdr->e_shoff >= info->len
2953 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2954 		info->len - info->hdr->e_shoff))
2955 		return -ENOEXEC;
2956 
2957 	return 0;
2958 }
2959 
2960 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2961 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2962 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2963 {
2964 	do {
2965 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2966 
2967 		if (copy_from_user(dst, usrc, n) != 0)
2968 			return -EFAULT;
2969 		cond_resched();
2970 		dst += n;
2971 		usrc += n;
2972 		len -= n;
2973 	} while (len);
2974 	return 0;
2975 }
2976 
2977 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)2978 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2979 {
2980 	if (get_modinfo(info, "livepatch")) {
2981 		mod->klp = true;
2982 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2983 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2984 			       mod->name);
2985 	}
2986 
2987 	return 0;
2988 }
2989 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)2990 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2991 {
2992 	if (get_modinfo(info, "livepatch")) {
2993 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2994 		       mod->name);
2995 		return -ENOEXEC;
2996 	}
2997 
2998 	return 0;
2999 }
3000 #endif /* CONFIG_LIVEPATCH */
3001 
check_modinfo_retpoline(struct module * mod,struct load_info * info)3002 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3003 {
3004 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3005 		return;
3006 
3007 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3008 		mod->name);
3009 }
3010 
3011 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3012 static int copy_module_from_user(const void __user *umod, unsigned long len,
3013 				  struct load_info *info)
3014 {
3015 	int err;
3016 
3017 	info->len = len;
3018 	if (info->len < sizeof(*(info->hdr)))
3019 		return -ENOEXEC;
3020 
3021 	err = security_kernel_load_data(LOADING_MODULE, true);
3022 	if (err)
3023 		return err;
3024 
3025 	/* Suck in entire file: we'll want most of it. */
3026 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3027 	if (!info->hdr)
3028 		return -ENOMEM;
3029 
3030 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3031 		err = -EFAULT;
3032 		goto out;
3033 	}
3034 
3035 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3036 					     LOADING_MODULE, "init_module");
3037 out:
3038 	if (err)
3039 		vfree(info->hdr);
3040 
3041 	return err;
3042 }
3043 
free_copy(struct load_info * info)3044 static void free_copy(struct load_info *info)
3045 {
3046 	vfree(info->hdr);
3047 }
3048 
rewrite_section_headers(struct load_info * info,int flags)3049 static int rewrite_section_headers(struct load_info *info, int flags)
3050 {
3051 	unsigned int i;
3052 
3053 	/* This should always be true, but let's be sure. */
3054 	info->sechdrs[0].sh_addr = 0;
3055 
3056 	for (i = 1; i < info->hdr->e_shnum; i++) {
3057 		Elf_Shdr *shdr = &info->sechdrs[i];
3058 		if (shdr->sh_type != SHT_NOBITS
3059 		    && info->len < shdr->sh_offset + shdr->sh_size) {
3060 			pr_err("Module len %lu truncated\n", info->len);
3061 			return -ENOEXEC;
3062 		}
3063 
3064 		/* Mark all sections sh_addr with their address in the
3065 		   temporary image. */
3066 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3067 
3068 #ifndef CONFIG_MODULE_UNLOAD
3069 		/* Don't load .exit sections */
3070 		if (module_exit_section(info->secstrings+shdr->sh_name))
3071 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
3072 #endif
3073 	}
3074 
3075 	/* Track but don't keep modinfo and version sections. */
3076 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3077 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3078 
3079 	return 0;
3080 }
3081 
3082 /*
3083  * Set up our basic convenience variables (pointers to section headers,
3084  * search for module section index etc), and do some basic section
3085  * verification.
3086  *
3087  * Set info->mod to the temporary copy of the module in info->hdr. The final one
3088  * will be allocated in move_module().
3089  */
setup_load_info(struct load_info * info,int flags)3090 static int setup_load_info(struct load_info *info, int flags)
3091 {
3092 	unsigned int i;
3093 
3094 	/* Set up the convenience variables */
3095 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
3096 	info->secstrings = (void *)info->hdr
3097 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
3098 
3099 	/* Try to find a name early so we can log errors with a module name */
3100 	info->index.info = find_sec(info, ".modinfo");
3101 	if (info->index.info)
3102 		info->name = get_modinfo(info, "name");
3103 
3104 	/* Find internal symbols and strings. */
3105 	for (i = 1; i < info->hdr->e_shnum; i++) {
3106 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3107 			info->index.sym = i;
3108 			info->index.str = info->sechdrs[i].sh_link;
3109 			info->strtab = (char *)info->hdr
3110 				+ info->sechdrs[info->index.str].sh_offset;
3111 			break;
3112 		}
3113 	}
3114 
3115 	if (info->index.sym == 0) {
3116 		pr_warn("%s: module has no symbols (stripped?)\n",
3117 			info->name ?: "(missing .modinfo section or name field)");
3118 		return -ENOEXEC;
3119 	}
3120 
3121 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3122 	if (!info->index.mod) {
3123 		pr_warn("%s: No module found in object\n",
3124 			info->name ?: "(missing .modinfo section or name field)");
3125 		return -ENOEXEC;
3126 	}
3127 	/* This is temporary: point mod into copy of data. */
3128 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3129 
3130 	/*
3131 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3132 	 * on-disk struct mod 'name' field.
3133 	 */
3134 	if (!info->name)
3135 		info->name = info->mod->name;
3136 
3137 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3138 		info->index.vers = 0; /* Pretend no __versions section! */
3139 	else
3140 		info->index.vers = find_sec(info, "__versions");
3141 
3142 	info->index.pcpu = find_pcpusec(info);
3143 
3144 	return 0;
3145 }
3146 
check_modinfo(struct module * mod,struct load_info * info,int flags)3147 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3148 {
3149 	const char *modmagic = get_modinfo(info, "vermagic");
3150 	int err;
3151 
3152 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3153 		modmagic = NULL;
3154 
3155 	/* This is allowed: modprobe --force will invalidate it. */
3156 	if (!modmagic) {
3157 		err = try_to_force_load(mod, "bad vermagic");
3158 		if (err)
3159 			return err;
3160 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3161 		pr_err("%s: version magic '%s' should be '%s'\n",
3162 		       info->name, modmagic, vermagic);
3163 		return -ENOEXEC;
3164 	}
3165 
3166 	if (!get_modinfo(info, "intree")) {
3167 		if (!test_taint(TAINT_OOT_MODULE))
3168 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3169 				mod->name);
3170 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3171 	}
3172 
3173 	check_modinfo_retpoline(mod, info);
3174 
3175 	if (get_modinfo(info, "staging")) {
3176 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3177 		pr_warn("%s: module is from the staging directory, the quality "
3178 			"is unknown, you have been warned.\n", mod->name);
3179 	}
3180 
3181 	err = check_modinfo_livepatch(mod, info);
3182 	if (err)
3183 		return err;
3184 
3185 	/* Set up license info based on the info section */
3186 	set_license(mod, get_modinfo(info, "license"));
3187 
3188 	return 0;
3189 }
3190 
find_module_sections(struct module * mod,struct load_info * info)3191 static int find_module_sections(struct module *mod, struct load_info *info)
3192 {
3193 	mod->kp = section_objs(info, "__param",
3194 			       sizeof(*mod->kp), &mod->num_kp);
3195 	mod->syms = section_objs(info, "__ksymtab",
3196 				 sizeof(*mod->syms), &mod->num_syms);
3197 	mod->crcs = section_addr(info, "__kcrctab");
3198 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3199 				     sizeof(*mod->gpl_syms),
3200 				     &mod->num_gpl_syms);
3201 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3202 	mod->gpl_future_syms = section_objs(info,
3203 					    "__ksymtab_gpl_future",
3204 					    sizeof(*mod->gpl_future_syms),
3205 					    &mod->num_gpl_future_syms);
3206 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3207 
3208 #ifdef CONFIG_UNUSED_SYMBOLS
3209 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3210 					sizeof(*mod->unused_syms),
3211 					&mod->num_unused_syms);
3212 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3213 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3214 					    sizeof(*mod->unused_gpl_syms),
3215 					    &mod->num_unused_gpl_syms);
3216 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3217 #endif
3218 #ifdef CONFIG_CONSTRUCTORS
3219 	mod->ctors = section_objs(info, ".ctors",
3220 				  sizeof(*mod->ctors), &mod->num_ctors);
3221 	if (!mod->ctors)
3222 		mod->ctors = section_objs(info, ".init_array",
3223 				sizeof(*mod->ctors), &mod->num_ctors);
3224 	else if (find_sec(info, ".init_array")) {
3225 		/*
3226 		 * This shouldn't happen with same compiler and binutils
3227 		 * building all parts of the module.
3228 		 */
3229 		pr_warn("%s: has both .ctors and .init_array.\n",
3230 		       mod->name);
3231 		return -EINVAL;
3232 	}
3233 #endif
3234 
3235 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3236 						&mod->noinstr_text_size);
3237 
3238 #ifdef CONFIG_TRACEPOINTS
3239 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3240 					     sizeof(*mod->tracepoints_ptrs),
3241 					     &mod->num_tracepoints);
3242 #endif
3243 #ifdef CONFIG_TREE_SRCU
3244 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3245 					     sizeof(*mod->srcu_struct_ptrs),
3246 					     &mod->num_srcu_structs);
3247 #endif
3248 #ifdef CONFIG_BPF_EVENTS
3249 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3250 					   sizeof(*mod->bpf_raw_events),
3251 					   &mod->num_bpf_raw_events);
3252 #endif
3253 #ifdef CONFIG_JUMP_LABEL
3254 	mod->jump_entries = section_objs(info, "__jump_table",
3255 					sizeof(*mod->jump_entries),
3256 					&mod->num_jump_entries);
3257 #endif
3258 #ifdef CONFIG_EVENT_TRACING
3259 	mod->trace_events = section_objs(info, "_ftrace_events",
3260 					 sizeof(*mod->trace_events),
3261 					 &mod->num_trace_events);
3262 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3263 					sizeof(*mod->trace_evals),
3264 					&mod->num_trace_evals);
3265 #endif
3266 #ifdef CONFIG_TRACING
3267 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3268 					 sizeof(*mod->trace_bprintk_fmt_start),
3269 					 &mod->num_trace_bprintk_fmt);
3270 #endif
3271 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3272 	/* sechdrs[0].sh_size is always zero */
3273 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3274 					     sizeof(*mod->ftrace_callsites),
3275 					     &mod->num_ftrace_callsites);
3276 #endif
3277 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3278 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3279 					    sizeof(*mod->ei_funcs),
3280 					    &mod->num_ei_funcs);
3281 #endif
3282 #ifdef CONFIG_KPROBES
3283 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3284 						&mod->kprobes_text_size);
3285 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3286 						sizeof(unsigned long),
3287 						&mod->num_kprobe_blacklist);
3288 #endif
3289 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3290 	mod->static_call_sites = section_objs(info, ".static_call_sites",
3291 					      sizeof(*mod->static_call_sites),
3292 					      &mod->num_static_call_sites);
3293 #endif
3294 	mod->extable = section_objs(info, "__ex_table",
3295 				    sizeof(*mod->extable), &mod->num_exentries);
3296 
3297 	if (section_addr(info, "__obsparm"))
3298 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3299 
3300 	info->debug = section_objs(info, "__dyndbg",
3301 				   sizeof(*info->debug), &info->num_debug);
3302 
3303 	return 0;
3304 }
3305 
move_module(struct module * mod,struct load_info * info)3306 static int move_module(struct module *mod, struct load_info *info)
3307 {
3308 	int i;
3309 	void *ptr;
3310 
3311 	/* Do the allocs. */
3312 	ptr = module_alloc(mod->core_layout.size);
3313 	/*
3314 	 * The pointer to this block is stored in the module structure
3315 	 * which is inside the block. Just mark it as not being a
3316 	 * leak.
3317 	 */
3318 	kmemleak_not_leak(ptr);
3319 	if (!ptr)
3320 		return -ENOMEM;
3321 
3322 	memset(ptr, 0, mod->core_layout.size);
3323 	mod->core_layout.base = ptr;
3324 
3325 	if (mod->init_layout.size) {
3326 		ptr = module_alloc(mod->init_layout.size);
3327 		/*
3328 		 * The pointer to this block is stored in the module structure
3329 		 * which is inside the block. This block doesn't need to be
3330 		 * scanned as it contains data and code that will be freed
3331 		 * after the module is initialized.
3332 		 */
3333 		kmemleak_ignore(ptr);
3334 		if (!ptr) {
3335 			module_memfree(mod->core_layout.base);
3336 			return -ENOMEM;
3337 		}
3338 		memset(ptr, 0, mod->init_layout.size);
3339 		mod->init_layout.base = ptr;
3340 	} else
3341 		mod->init_layout.base = NULL;
3342 
3343 	/* Transfer each section which specifies SHF_ALLOC */
3344 	pr_debug("final section addresses:\n");
3345 	for (i = 0; i < info->hdr->e_shnum; i++) {
3346 		void *dest;
3347 		Elf_Shdr *shdr = &info->sechdrs[i];
3348 
3349 		if (!(shdr->sh_flags & SHF_ALLOC))
3350 			continue;
3351 
3352 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3353 			dest = mod->init_layout.base
3354 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3355 		else
3356 			dest = mod->core_layout.base + shdr->sh_entsize;
3357 
3358 		if (shdr->sh_type != SHT_NOBITS)
3359 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3360 		/* Update sh_addr to point to copy in image. */
3361 		shdr->sh_addr = (unsigned long)dest;
3362 		pr_debug("\t0x%lx %s\n",
3363 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3364 	}
3365 
3366 	return 0;
3367 }
3368 
check_module_license_and_versions(struct module * mod)3369 static int check_module_license_and_versions(struct module *mod)
3370 {
3371 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3372 
3373 	/*
3374 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3375 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3376 	 * using GPL-only symbols it needs.
3377 	 */
3378 	if (strcmp(mod->name, "ndiswrapper") == 0)
3379 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3380 
3381 	/* driverloader was caught wrongly pretending to be under GPL */
3382 	if (strcmp(mod->name, "driverloader") == 0)
3383 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3384 				 LOCKDEP_NOW_UNRELIABLE);
3385 
3386 	/* lve claims to be GPL but upstream won't provide source */
3387 	if (strcmp(mod->name, "lve") == 0)
3388 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3389 				 LOCKDEP_NOW_UNRELIABLE);
3390 
3391 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3392 		pr_warn("%s: module license taints kernel.\n", mod->name);
3393 
3394 #ifdef CONFIG_MODVERSIONS
3395 	if ((mod->num_syms && !mod->crcs)
3396 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3397 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3398 #ifdef CONFIG_UNUSED_SYMBOLS
3399 	    || (mod->num_unused_syms && !mod->unused_crcs)
3400 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3401 #endif
3402 		) {
3403 		return try_to_force_load(mod,
3404 					 "no versions for exported symbols");
3405 	}
3406 #endif
3407 	return 0;
3408 }
3409 
flush_module_icache(const struct module * mod)3410 static void flush_module_icache(const struct module *mod)
3411 {
3412 	/*
3413 	 * Flush the instruction cache, since we've played with text.
3414 	 * Do it before processing of module parameters, so the module
3415 	 * can provide parameter accessor functions of its own.
3416 	 */
3417 	if (mod->init_layout.base)
3418 		flush_icache_range((unsigned long)mod->init_layout.base,
3419 				   (unsigned long)mod->init_layout.base
3420 				   + mod->init_layout.size);
3421 	flush_icache_range((unsigned long)mod->core_layout.base,
3422 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3423 }
3424 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3425 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3426 				     Elf_Shdr *sechdrs,
3427 				     char *secstrings,
3428 				     struct module *mod)
3429 {
3430 	return 0;
3431 }
3432 
3433 /* module_blacklist is a comma-separated list of module names */
3434 static char *module_blacklist;
blacklisted(const char * module_name)3435 static bool blacklisted(const char *module_name)
3436 {
3437 	const char *p;
3438 	size_t len;
3439 
3440 	if (!module_blacklist)
3441 		return false;
3442 
3443 	for (p = module_blacklist; *p; p += len) {
3444 		len = strcspn(p, ",");
3445 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3446 			return true;
3447 		if (p[len] == ',')
3448 			len++;
3449 	}
3450 	return false;
3451 }
3452 core_param(module_blacklist, module_blacklist, charp, 0400);
3453 
layout_and_allocate(struct load_info * info,int flags)3454 static struct module *layout_and_allocate(struct load_info *info, int flags)
3455 {
3456 	struct module *mod;
3457 	unsigned int ndx;
3458 	int err;
3459 
3460 	err = check_modinfo(info->mod, info, flags);
3461 	if (err)
3462 		return ERR_PTR(err);
3463 
3464 	/* Allow arches to frob section contents and sizes.  */
3465 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3466 					info->secstrings, info->mod);
3467 	if (err < 0)
3468 		return ERR_PTR(err);
3469 
3470 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3471 					  info->secstrings, info->mod);
3472 	if (err < 0)
3473 		return ERR_PTR(err);
3474 
3475 	/* We will do a special allocation for per-cpu sections later. */
3476 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3477 
3478 	/*
3479 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3480 	 * layout_sections() can put it in the right place.
3481 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3482 	 */
3483 	ndx = find_sec(info, ".data..ro_after_init");
3484 	if (ndx)
3485 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3486 	/*
3487 	 * Mark the __jump_table section as ro_after_init as well: these data
3488 	 * structures are never modified, with the exception of entries that
3489 	 * refer to code in the __init section, which are annotated as such
3490 	 * at module load time.
3491 	 */
3492 	ndx = find_sec(info, "__jump_table");
3493 	if (ndx)
3494 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3495 
3496 	/* Determine total sizes, and put offsets in sh_entsize.  For now
3497 	   this is done generically; there doesn't appear to be any
3498 	   special cases for the architectures. */
3499 	layout_sections(info->mod, info);
3500 	layout_symtab(info->mod, info);
3501 
3502 	/* Allocate and move to the final place */
3503 	err = move_module(info->mod, info);
3504 	if (err)
3505 		return ERR_PTR(err);
3506 
3507 	/* Module has been copied to its final place now: return it. */
3508 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3509 	kmemleak_load_module(mod, info);
3510 	return mod;
3511 }
3512 
3513 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3514 static void module_deallocate(struct module *mod, struct load_info *info)
3515 {
3516 	percpu_modfree(mod);
3517 	module_arch_freeing_init(mod);
3518 	module_memfree(mod->init_layout.base);
3519 	module_memfree(mod->core_layout.base);
3520 }
3521 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3522 int __weak module_finalize(const Elf_Ehdr *hdr,
3523 			   const Elf_Shdr *sechdrs,
3524 			   struct module *me)
3525 {
3526 	return 0;
3527 }
3528 
post_relocation(struct module * mod,const struct load_info * info)3529 static int post_relocation(struct module *mod, const struct load_info *info)
3530 {
3531 	/* Sort exception table now relocations are done. */
3532 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3533 
3534 	/* Copy relocated percpu area over. */
3535 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3536 		       info->sechdrs[info->index.pcpu].sh_size);
3537 
3538 	/* Setup kallsyms-specific fields. */
3539 	add_kallsyms(mod, info);
3540 
3541 	/* Arch-specific module finalizing. */
3542 	return module_finalize(info->hdr, info->sechdrs, mod);
3543 }
3544 
3545 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3546 static bool finished_loading(const char *name)
3547 {
3548 	struct module *mod;
3549 	bool ret;
3550 
3551 	/*
3552 	 * The module_mutex should not be a heavily contended lock;
3553 	 * if we get the occasional sleep here, we'll go an extra iteration
3554 	 * in the wait_event_interruptible(), which is harmless.
3555 	 */
3556 	sched_annotate_sleep();
3557 	mutex_lock(&module_mutex);
3558 	mod = find_module_all(name, strlen(name), true);
3559 	ret = !mod || mod->state == MODULE_STATE_LIVE;
3560 	mutex_unlock(&module_mutex);
3561 
3562 	return ret;
3563 }
3564 
3565 /* Call module constructors. */
do_mod_ctors(struct module * mod)3566 static void do_mod_ctors(struct module *mod)
3567 {
3568 #ifdef CONFIG_CONSTRUCTORS
3569 	unsigned long i;
3570 
3571 	for (i = 0; i < mod->num_ctors; i++)
3572 		mod->ctors[i]();
3573 #endif
3574 }
3575 
3576 /* For freeing module_init on success, in case kallsyms traversing */
3577 struct mod_initfree {
3578 	struct llist_node node;
3579 	void *module_init;
3580 };
3581 
do_free_init(struct work_struct * w)3582 static void do_free_init(struct work_struct *w)
3583 {
3584 	struct llist_node *pos, *n, *list;
3585 	struct mod_initfree *initfree;
3586 
3587 	list = llist_del_all(&init_free_list);
3588 
3589 	synchronize_rcu();
3590 
3591 	llist_for_each_safe(pos, n, list) {
3592 		initfree = container_of(pos, struct mod_initfree, node);
3593 		module_memfree(initfree->module_init);
3594 		kfree(initfree);
3595 	}
3596 }
3597 
3598 /*
3599  * This is where the real work happens.
3600  *
3601  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3602  * helper command 'lx-symbols'.
3603  */
do_init_module(struct module * mod)3604 static noinline int do_init_module(struct module *mod)
3605 {
3606 	int ret = 0;
3607 	struct mod_initfree *freeinit;
3608 
3609 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3610 	if (!freeinit) {
3611 		ret = -ENOMEM;
3612 		goto fail;
3613 	}
3614 	freeinit->module_init = mod->init_layout.base;
3615 
3616 	/*
3617 	 * We want to find out whether @mod uses async during init.  Clear
3618 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3619 	 */
3620 	current->flags &= ~PF_USED_ASYNC;
3621 
3622 	do_mod_ctors(mod);
3623 	/* Start the module */
3624 	if (mod->init != NULL)
3625 		ret = do_one_initcall(mod->init);
3626 	if (ret < 0) {
3627 		goto fail_free_freeinit;
3628 	}
3629 	if (ret > 0) {
3630 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3631 			"follow 0/-E convention\n"
3632 			"%s: loading module anyway...\n",
3633 			__func__, mod->name, ret, __func__);
3634 		dump_stack();
3635 	}
3636 
3637 	/* Now it's a first class citizen! */
3638 	mod->state = MODULE_STATE_LIVE;
3639 	blocking_notifier_call_chain(&module_notify_list,
3640 				     MODULE_STATE_LIVE, mod);
3641 
3642 	/*
3643 	 * We need to finish all async code before the module init sequence
3644 	 * is done.  This has potential to deadlock.  For example, a newly
3645 	 * detected block device can trigger request_module() of the
3646 	 * default iosched from async probing task.  Once userland helper
3647 	 * reaches here, async_synchronize_full() will wait on the async
3648 	 * task waiting on request_module() and deadlock.
3649 	 *
3650 	 * This deadlock is avoided by perfomring async_synchronize_full()
3651 	 * iff module init queued any async jobs.  This isn't a full
3652 	 * solution as it will deadlock the same if module loading from
3653 	 * async jobs nests more than once; however, due to the various
3654 	 * constraints, this hack seems to be the best option for now.
3655 	 * Please refer to the following thread for details.
3656 	 *
3657 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3658 	 */
3659 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3660 		async_synchronize_full();
3661 
3662 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3663 			mod->init_layout.size);
3664 	mutex_lock(&module_mutex);
3665 	/* Drop initial reference. */
3666 	module_put(mod);
3667 	trim_init_extable(mod);
3668 #ifdef CONFIG_KALLSYMS
3669 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3670 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3671 #endif
3672 	module_enable_ro(mod, true);
3673 	mod_tree_remove_init(mod);
3674 	module_arch_freeing_init(mod);
3675 	mod->init_layout.base = NULL;
3676 	mod->init_layout.size = 0;
3677 	mod->init_layout.ro_size = 0;
3678 	mod->init_layout.ro_after_init_size = 0;
3679 	mod->init_layout.text_size = 0;
3680 	/*
3681 	 * We want to free module_init, but be aware that kallsyms may be
3682 	 * walking this with preempt disabled.  In all the failure paths, we
3683 	 * call synchronize_rcu(), but we don't want to slow down the success
3684 	 * path. module_memfree() cannot be called in an interrupt, so do the
3685 	 * work and call synchronize_rcu() in a work queue.
3686 	 *
3687 	 * Note that module_alloc() on most architectures creates W+X page
3688 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3689 	 * code such as mark_rodata_ro() which depends on those mappings to
3690 	 * be cleaned up needs to sync with the queued work - ie
3691 	 * rcu_barrier()
3692 	 */
3693 	if (llist_add(&freeinit->node, &init_free_list))
3694 		schedule_work(&init_free_wq);
3695 
3696 	mutex_unlock(&module_mutex);
3697 	wake_up_all(&module_wq);
3698 
3699 	return 0;
3700 
3701 fail_free_freeinit:
3702 	kfree(freeinit);
3703 fail:
3704 	/* Try to protect us from buggy refcounters. */
3705 	mod->state = MODULE_STATE_GOING;
3706 	synchronize_rcu();
3707 	module_put(mod);
3708 	blocking_notifier_call_chain(&module_notify_list,
3709 				     MODULE_STATE_GOING, mod);
3710 	klp_module_going(mod);
3711 	ftrace_release_mod(mod);
3712 	free_module(mod);
3713 	wake_up_all(&module_wq);
3714 	return ret;
3715 }
3716 
may_init_module(void)3717 static int may_init_module(void)
3718 {
3719 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3720 		return -EPERM;
3721 
3722 	return 0;
3723 }
3724 
3725 /*
3726  * We try to place it in the list now to make sure it's unique before
3727  * we dedicate too many resources.  In particular, temporary percpu
3728  * memory exhaustion.
3729  */
add_unformed_module(struct module * mod)3730 static int add_unformed_module(struct module *mod)
3731 {
3732 	int err;
3733 	struct module *old;
3734 
3735 	mod->state = MODULE_STATE_UNFORMED;
3736 
3737 again:
3738 	mutex_lock(&module_mutex);
3739 	old = find_module_all(mod->name, strlen(mod->name), true);
3740 	if (old != NULL) {
3741 		if (old->state != MODULE_STATE_LIVE) {
3742 			/* Wait in case it fails to load. */
3743 			mutex_unlock(&module_mutex);
3744 			err = wait_event_interruptible(module_wq,
3745 					       finished_loading(mod->name));
3746 			if (err)
3747 				goto out_unlocked;
3748 			goto again;
3749 		}
3750 		err = -EEXIST;
3751 		goto out;
3752 	}
3753 	mod_update_bounds(mod);
3754 	list_add_rcu(&mod->list, &modules);
3755 	mod_tree_insert(mod);
3756 	err = 0;
3757 
3758 out:
3759 	mutex_unlock(&module_mutex);
3760 out_unlocked:
3761 	return err;
3762 }
3763 
complete_formation(struct module * mod,struct load_info * info)3764 static int complete_formation(struct module *mod, struct load_info *info)
3765 {
3766 	int err;
3767 
3768 	mutex_lock(&module_mutex);
3769 
3770 	/* Find duplicate symbols (must be called under lock). */
3771 	err = verify_exported_symbols(mod);
3772 	if (err < 0)
3773 		goto out;
3774 
3775 	/* This relies on module_mutex for list integrity. */
3776 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3777 
3778 	module_enable_ro(mod, false);
3779 	module_enable_nx(mod);
3780 	module_enable_x(mod);
3781 
3782 	/* Mark state as coming so strong_try_module_get() ignores us,
3783 	 * but kallsyms etc. can see us. */
3784 	mod->state = MODULE_STATE_COMING;
3785 	mutex_unlock(&module_mutex);
3786 
3787 	return 0;
3788 
3789 out:
3790 	mutex_unlock(&module_mutex);
3791 	return err;
3792 }
3793 
prepare_coming_module(struct module * mod)3794 static int prepare_coming_module(struct module *mod)
3795 {
3796 	int err;
3797 
3798 	ftrace_module_enable(mod);
3799 	err = klp_module_coming(mod);
3800 	if (err)
3801 		return err;
3802 
3803 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3804 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3805 	err = notifier_to_errno(err);
3806 	if (err)
3807 		klp_module_going(mod);
3808 
3809 	return err;
3810 }
3811 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3812 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3813 				   void *arg)
3814 {
3815 	struct module *mod = arg;
3816 	int ret;
3817 
3818 	if (strcmp(param, "async_probe") == 0) {
3819 		mod->async_probe_requested = true;
3820 		return 0;
3821 	}
3822 
3823 	/* Check for magic 'dyndbg' arg */
3824 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3825 	if (ret != 0)
3826 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3827 	return 0;
3828 }
3829 
3830 /* Allocate and load the module: note that size of section 0 is always
3831    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3832 static int load_module(struct load_info *info, const char __user *uargs,
3833 		       int flags)
3834 {
3835 	struct module *mod;
3836 	long err = 0;
3837 	char *after_dashes;
3838 
3839 	err = elf_header_check(info);
3840 	if (err) {
3841 		pr_err("Module has invalid ELF header\n");
3842 		goto free_copy;
3843 	}
3844 
3845 	err = setup_load_info(info, flags);
3846 	if (err)
3847 		goto free_copy;
3848 
3849 	if (blacklisted(info->name)) {
3850 		err = -EPERM;
3851 		pr_err("Module %s is blacklisted\n", info->name);
3852 		goto free_copy;
3853 	}
3854 
3855 	err = module_sig_check(info, flags);
3856 	if (err)
3857 		goto free_copy;
3858 
3859 	err = rewrite_section_headers(info, flags);
3860 	if (err)
3861 		goto free_copy;
3862 
3863 	/* Check module struct version now, before we try to use module. */
3864 	if (!check_modstruct_version(info, info->mod)) {
3865 		err = -ENOEXEC;
3866 		goto free_copy;
3867 	}
3868 
3869 	/* Figure out module layout, and allocate all the memory. */
3870 	mod = layout_and_allocate(info, flags);
3871 	if (IS_ERR(mod)) {
3872 		err = PTR_ERR(mod);
3873 		goto free_copy;
3874 	}
3875 
3876 	audit_log_kern_module(mod->name);
3877 
3878 	/* Reserve our place in the list. */
3879 	err = add_unformed_module(mod);
3880 	if (err)
3881 		goto free_module;
3882 
3883 #ifdef CONFIG_MODULE_SIG
3884 	mod->sig_ok = info->sig_ok;
3885 	if (!mod->sig_ok) {
3886 		pr_notice_once("%s: module verification failed: signature "
3887 			       "and/or required key missing - tainting "
3888 			       "kernel\n", mod->name);
3889 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3890 	}
3891 #endif
3892 
3893 	/* To avoid stressing percpu allocator, do this once we're unique. */
3894 	err = percpu_modalloc(mod, info);
3895 	if (err)
3896 		goto unlink_mod;
3897 
3898 	/* Now module is in final location, initialize linked lists, etc. */
3899 	err = module_unload_init(mod);
3900 	if (err)
3901 		goto unlink_mod;
3902 
3903 	init_param_lock(mod);
3904 
3905 	/* Now we've got everything in the final locations, we can
3906 	 * find optional sections. */
3907 	err = find_module_sections(mod, info);
3908 	if (err)
3909 		goto free_unload;
3910 
3911 	err = check_module_license_and_versions(mod);
3912 	if (err)
3913 		goto free_unload;
3914 
3915 	/* Set up MODINFO_ATTR fields */
3916 	setup_modinfo(mod, info);
3917 
3918 	/* Fix up syms, so that st_value is a pointer to location. */
3919 	err = simplify_symbols(mod, info);
3920 	if (err < 0)
3921 		goto free_modinfo;
3922 
3923 	err = apply_relocations(mod, info);
3924 	if (err < 0)
3925 		goto free_modinfo;
3926 
3927 	err = post_relocation(mod, info);
3928 	if (err < 0)
3929 		goto free_modinfo;
3930 
3931 	flush_module_icache(mod);
3932 
3933 	/* Now copy in args */
3934 	mod->args = strndup_user(uargs, ~0UL >> 1);
3935 	if (IS_ERR(mod->args)) {
3936 		err = PTR_ERR(mod->args);
3937 		goto free_arch_cleanup;
3938 	}
3939 
3940 	dynamic_debug_setup(mod, info->debug, info->num_debug);
3941 
3942 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3943 	ftrace_module_init(mod);
3944 
3945 	/* Finally it's fully formed, ready to start executing. */
3946 	err = complete_formation(mod, info);
3947 	if (err)
3948 		goto ddebug_cleanup;
3949 
3950 	err = prepare_coming_module(mod);
3951 	if (err)
3952 		goto bug_cleanup;
3953 
3954 	/* Module is ready to execute: parsing args may do that. */
3955 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3956 				  -32768, 32767, mod,
3957 				  unknown_module_param_cb);
3958 	if (IS_ERR(after_dashes)) {
3959 		err = PTR_ERR(after_dashes);
3960 		goto coming_cleanup;
3961 	} else if (after_dashes) {
3962 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3963 		       mod->name, after_dashes);
3964 	}
3965 
3966 	/* Link in to sysfs. */
3967 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3968 	if (err < 0)
3969 		goto coming_cleanup;
3970 
3971 	if (is_livepatch_module(mod)) {
3972 		err = copy_module_elf(mod, info);
3973 		if (err < 0)
3974 			goto sysfs_cleanup;
3975 	}
3976 
3977 	/* Get rid of temporary copy. */
3978 	free_copy(info);
3979 
3980 	/* Done! */
3981 	trace_module_load(mod);
3982 
3983 	return do_init_module(mod);
3984 
3985  sysfs_cleanup:
3986 	mod_sysfs_teardown(mod);
3987  coming_cleanup:
3988 	mod->state = MODULE_STATE_GOING;
3989 	destroy_params(mod->kp, mod->num_kp);
3990 	blocking_notifier_call_chain(&module_notify_list,
3991 				     MODULE_STATE_GOING, mod);
3992 	klp_module_going(mod);
3993  bug_cleanup:
3994 	/* module_bug_cleanup needs module_mutex protection */
3995 	mutex_lock(&module_mutex);
3996 	module_bug_cleanup(mod);
3997 	mutex_unlock(&module_mutex);
3998 
3999  ddebug_cleanup:
4000 	ftrace_release_mod(mod);
4001 	dynamic_debug_remove(mod, info->debug);
4002 	synchronize_rcu();
4003 	kfree(mod->args);
4004  free_arch_cleanup:
4005 	module_arch_cleanup(mod);
4006  free_modinfo:
4007 	free_modinfo(mod);
4008  free_unload:
4009 	module_unload_free(mod);
4010  unlink_mod:
4011 	mutex_lock(&module_mutex);
4012 	/* Unlink carefully: kallsyms could be walking list. */
4013 	list_del_rcu(&mod->list);
4014 	mod_tree_remove(mod);
4015 	wake_up_all(&module_wq);
4016 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4017 	synchronize_rcu();
4018 	mutex_unlock(&module_mutex);
4019  free_module:
4020 	/* Free lock-classes; relies on the preceding sync_rcu() */
4021 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4022 
4023 	module_deallocate(mod, info);
4024  free_copy:
4025 	free_copy(info);
4026 	return err;
4027 }
4028 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4029 SYSCALL_DEFINE3(init_module, void __user *, umod,
4030 		unsigned long, len, const char __user *, uargs)
4031 {
4032 	int err;
4033 	struct load_info info = { };
4034 
4035 	err = may_init_module();
4036 	if (err)
4037 		return err;
4038 
4039 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4040 	       umod, len, uargs);
4041 
4042 	err = copy_module_from_user(umod, len, &info);
4043 	if (err)
4044 		return err;
4045 
4046 	return load_module(&info, uargs, 0);
4047 }
4048 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4049 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4050 {
4051 	struct load_info info = { };
4052 	void *hdr = NULL;
4053 	int err;
4054 
4055 	err = may_init_module();
4056 	if (err)
4057 		return err;
4058 
4059 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4060 
4061 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4062 		      |MODULE_INIT_IGNORE_VERMAGIC))
4063 		return -EINVAL;
4064 
4065 	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4066 				       READING_MODULE);
4067 	if (err < 0)
4068 		return err;
4069 	info.hdr = hdr;
4070 	info.len = err;
4071 
4072 	return load_module(&info, uargs, flags);
4073 }
4074 
within(unsigned long addr,void * start,unsigned long size)4075 static inline int within(unsigned long addr, void *start, unsigned long size)
4076 {
4077 	return ((void *)addr >= start && (void *)addr < start + size);
4078 }
4079 
4080 #ifdef CONFIG_KALLSYMS
4081 /*
4082  * This ignores the intensely annoying "mapping symbols" found
4083  * in ARM ELF files: $a, $t and $d.
4084  */
is_arm_mapping_symbol(const char * str)4085 static inline int is_arm_mapping_symbol(const char *str)
4086 {
4087 	if (str[0] == '.' && str[1] == 'L')
4088 		return true;
4089 	return str[0] == '$' && strchr("axtd", str[1])
4090 	       && (str[2] == '\0' || str[2] == '.');
4091 }
4092 
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4093 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4094 {
4095 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4096 }
4097 
4098 /*
4099  * Given a module and address, find the corresponding symbol and return its name
4100  * while providing its size and offset if needed.
4101  */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4102 static const char *find_kallsyms_symbol(struct module *mod,
4103 					unsigned long addr,
4104 					unsigned long *size,
4105 					unsigned long *offset)
4106 {
4107 	unsigned int i, best = 0;
4108 	unsigned long nextval, bestval;
4109 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4110 
4111 	/* At worse, next value is at end of module */
4112 	if (within_module_init(addr, mod))
4113 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4114 	else
4115 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4116 
4117 	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4118 
4119 	/* Scan for closest preceding symbol, and next symbol. (ELF
4120 	   starts real symbols at 1). */
4121 	for (i = 1; i < kallsyms->num_symtab; i++) {
4122 		const Elf_Sym *sym = &kallsyms->symtab[i];
4123 		unsigned long thisval = kallsyms_symbol_value(sym);
4124 
4125 		if (sym->st_shndx == SHN_UNDEF)
4126 			continue;
4127 
4128 		/* We ignore unnamed symbols: they're uninformative
4129 		 * and inserted at a whim. */
4130 		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4131 		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4132 			continue;
4133 
4134 		if (thisval <= addr && thisval > bestval) {
4135 			best = i;
4136 			bestval = thisval;
4137 		}
4138 		if (thisval > addr && thisval < nextval)
4139 			nextval = thisval;
4140 	}
4141 
4142 	if (!best)
4143 		return NULL;
4144 
4145 	if (size)
4146 		*size = nextval - bestval;
4147 	if (offset)
4148 		*offset = addr - bestval;
4149 
4150 	return kallsyms_symbol_name(kallsyms, best);
4151 }
4152 
dereference_module_function_descriptor(struct module * mod,void * ptr)4153 void * __weak dereference_module_function_descriptor(struct module *mod,
4154 						     void *ptr)
4155 {
4156 	return ptr;
4157 }
4158 
4159 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
4160  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)4161 const char *module_address_lookup(unsigned long addr,
4162 			    unsigned long *size,
4163 			    unsigned long *offset,
4164 			    char **modname,
4165 			    char *namebuf)
4166 {
4167 	const char *ret = NULL;
4168 	struct module *mod;
4169 
4170 	preempt_disable();
4171 	mod = __module_address(addr);
4172 	if (mod) {
4173 		if (modname)
4174 			*modname = mod->name;
4175 
4176 		ret = find_kallsyms_symbol(mod, addr, size, offset);
4177 	}
4178 	/* Make a copy in here where it's safe */
4179 	if (ret) {
4180 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4181 		ret = namebuf;
4182 	}
4183 	preempt_enable();
4184 
4185 	return ret;
4186 }
4187 
lookup_module_symbol_name(unsigned long addr,char * symname)4188 int lookup_module_symbol_name(unsigned long addr, char *symname)
4189 {
4190 	struct module *mod;
4191 
4192 	preempt_disable();
4193 	list_for_each_entry_rcu(mod, &modules, list) {
4194 		if (mod->state == MODULE_STATE_UNFORMED)
4195 			continue;
4196 		if (within_module(addr, mod)) {
4197 			const char *sym;
4198 
4199 			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4200 			if (!sym)
4201 				goto out;
4202 
4203 			strlcpy(symname, sym, KSYM_NAME_LEN);
4204 			preempt_enable();
4205 			return 0;
4206 		}
4207 	}
4208 out:
4209 	preempt_enable();
4210 	return -ERANGE;
4211 }
4212 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4213 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4214 			unsigned long *offset, char *modname, char *name)
4215 {
4216 	struct module *mod;
4217 
4218 	preempt_disable();
4219 	list_for_each_entry_rcu(mod, &modules, list) {
4220 		if (mod->state == MODULE_STATE_UNFORMED)
4221 			continue;
4222 		if (within_module(addr, mod)) {
4223 			const char *sym;
4224 
4225 			sym = find_kallsyms_symbol(mod, addr, size, offset);
4226 			if (!sym)
4227 				goto out;
4228 			if (modname)
4229 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4230 			if (name)
4231 				strlcpy(name, sym, KSYM_NAME_LEN);
4232 			preempt_enable();
4233 			return 0;
4234 		}
4235 	}
4236 out:
4237 	preempt_enable();
4238 	return -ERANGE;
4239 }
4240 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4241 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4242 			char *name, char *module_name, int *exported)
4243 {
4244 	struct module *mod;
4245 
4246 	preempt_disable();
4247 	list_for_each_entry_rcu(mod, &modules, list) {
4248 		struct mod_kallsyms *kallsyms;
4249 
4250 		if (mod->state == MODULE_STATE_UNFORMED)
4251 			continue;
4252 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4253 		if (symnum < kallsyms->num_symtab) {
4254 			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4255 
4256 			*value = kallsyms_symbol_value(sym);
4257 			*type = kallsyms->typetab[symnum];
4258 			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4259 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4260 			*exported = is_exported(name, *value, mod);
4261 			preempt_enable();
4262 			return 0;
4263 		}
4264 		symnum -= kallsyms->num_symtab;
4265 	}
4266 	preempt_enable();
4267 	return -ERANGE;
4268 }
4269 
4270 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4271 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4272 {
4273 	unsigned int i;
4274 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4275 
4276 	for (i = 0; i < kallsyms->num_symtab; i++) {
4277 		const Elf_Sym *sym = &kallsyms->symtab[i];
4278 
4279 		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4280 		    sym->st_shndx != SHN_UNDEF)
4281 			return kallsyms_symbol_value(sym);
4282 	}
4283 	return 0;
4284 }
4285 
4286 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4287 unsigned long module_kallsyms_lookup_name(const char *name)
4288 {
4289 	struct module *mod;
4290 	char *colon;
4291 	unsigned long ret = 0;
4292 
4293 	/* Don't lock: we're in enough trouble already. */
4294 	preempt_disable();
4295 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4296 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4297 			ret = find_kallsyms_symbol_value(mod, colon+1);
4298 	} else {
4299 		list_for_each_entry_rcu(mod, &modules, list) {
4300 			if (mod->state == MODULE_STATE_UNFORMED)
4301 				continue;
4302 			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4303 				break;
4304 		}
4305 	}
4306 	preempt_enable();
4307 	return ret;
4308 }
4309 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4310 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4311 					     struct module *, unsigned long),
4312 				   void *data)
4313 {
4314 	struct module *mod;
4315 	unsigned int i;
4316 	int ret;
4317 
4318 	module_assert_mutex();
4319 
4320 	list_for_each_entry(mod, &modules, list) {
4321 		/* We hold module_mutex: no need for rcu_dereference_sched */
4322 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4323 
4324 		if (mod->state == MODULE_STATE_UNFORMED)
4325 			continue;
4326 		for (i = 0; i < kallsyms->num_symtab; i++) {
4327 			const Elf_Sym *sym = &kallsyms->symtab[i];
4328 
4329 			if (sym->st_shndx == SHN_UNDEF)
4330 				continue;
4331 
4332 			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4333 				 mod, kallsyms_symbol_value(sym));
4334 			if (ret != 0)
4335 				return ret;
4336 		}
4337 	}
4338 	return 0;
4339 }
4340 #endif /* CONFIG_KALLSYMS */
4341 
4342 /* Maximum number of characters written by module_flags() */
4343 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4344 
4345 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4346 static char *module_flags(struct module *mod, char *buf)
4347 {
4348 	int bx = 0;
4349 
4350 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4351 	if (mod->taints ||
4352 	    mod->state == MODULE_STATE_GOING ||
4353 	    mod->state == MODULE_STATE_COMING) {
4354 		buf[bx++] = '(';
4355 		bx += module_flags_taint(mod, buf + bx);
4356 		/* Show a - for module-is-being-unloaded */
4357 		if (mod->state == MODULE_STATE_GOING)
4358 			buf[bx++] = '-';
4359 		/* Show a + for module-is-being-loaded */
4360 		if (mod->state == MODULE_STATE_COMING)
4361 			buf[bx++] = '+';
4362 		buf[bx++] = ')';
4363 	}
4364 	buf[bx] = '\0';
4365 
4366 	return buf;
4367 }
4368 
4369 #ifdef CONFIG_PROC_FS
4370 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4371 static void *m_start(struct seq_file *m, loff_t *pos)
4372 {
4373 	mutex_lock(&module_mutex);
4374 	return seq_list_start(&modules, *pos);
4375 }
4376 
m_next(struct seq_file * m,void * p,loff_t * pos)4377 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4378 {
4379 	return seq_list_next(p, &modules, pos);
4380 }
4381 
m_stop(struct seq_file * m,void * p)4382 static void m_stop(struct seq_file *m, void *p)
4383 {
4384 	mutex_unlock(&module_mutex);
4385 }
4386 
m_show(struct seq_file * m,void * p)4387 static int m_show(struct seq_file *m, void *p)
4388 {
4389 	struct module *mod = list_entry(p, struct module, list);
4390 	char buf[MODULE_FLAGS_BUF_SIZE];
4391 	void *value;
4392 
4393 	/* We always ignore unformed modules. */
4394 	if (mod->state == MODULE_STATE_UNFORMED)
4395 		return 0;
4396 
4397 	seq_printf(m, "%s %u",
4398 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4399 	print_unload_info(m, mod);
4400 
4401 	/* Informative for users. */
4402 	seq_printf(m, " %s",
4403 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4404 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4405 		   "Live");
4406 	/* Used by oprofile and other similar tools. */
4407 	value = m->private ? NULL : mod->core_layout.base;
4408 	seq_printf(m, " 0x%px", value);
4409 
4410 	/* Taints info */
4411 	if (mod->taints)
4412 		seq_printf(m, " %s", module_flags(mod, buf));
4413 
4414 	seq_puts(m, "\n");
4415 	return 0;
4416 }
4417 
4418 /* Format: modulename size refcount deps address
4419 
4420    Where refcount is a number or -, and deps is a comma-separated list
4421    of depends or -.
4422 */
4423 static const struct seq_operations modules_op = {
4424 	.start	= m_start,
4425 	.next	= m_next,
4426 	.stop	= m_stop,
4427 	.show	= m_show
4428 };
4429 
4430 /*
4431  * This also sets the "private" pointer to non-NULL if the
4432  * kernel pointers should be hidden (so you can just test
4433  * "m->private" to see if you should keep the values private).
4434  *
4435  * We use the same logic as for /proc/kallsyms.
4436  */
modules_open(struct inode * inode,struct file * file)4437 static int modules_open(struct inode *inode, struct file *file)
4438 {
4439 	int err = seq_open(file, &modules_op);
4440 
4441 	if (!err) {
4442 		struct seq_file *m = file->private_data;
4443 		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4444 	}
4445 
4446 	return err;
4447 }
4448 
4449 static const struct proc_ops modules_proc_ops = {
4450 	.proc_flags	= PROC_ENTRY_PERMANENT,
4451 	.proc_open	= modules_open,
4452 	.proc_read	= seq_read,
4453 	.proc_lseek	= seq_lseek,
4454 	.proc_release	= seq_release,
4455 };
4456 
proc_modules_init(void)4457 static int __init proc_modules_init(void)
4458 {
4459 	proc_create("modules", 0, NULL, &modules_proc_ops);
4460 	return 0;
4461 }
4462 module_init(proc_modules_init);
4463 #endif
4464 
4465 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4466 const struct exception_table_entry *search_module_extables(unsigned long addr)
4467 {
4468 	const struct exception_table_entry *e = NULL;
4469 	struct module *mod;
4470 
4471 	preempt_disable();
4472 	mod = __module_address(addr);
4473 	if (!mod)
4474 		goto out;
4475 
4476 	if (!mod->num_exentries)
4477 		goto out;
4478 
4479 	e = search_extable(mod->extable,
4480 			   mod->num_exentries,
4481 			   addr);
4482 out:
4483 	preempt_enable();
4484 
4485 	/*
4486 	 * Now, if we found one, we are running inside it now, hence
4487 	 * we cannot unload the module, hence no refcnt needed.
4488 	 */
4489 	return e;
4490 }
4491 
4492 /*
4493  * is_module_address - is this address inside a module?
4494  * @addr: the address to check.
4495  *
4496  * See is_module_text_address() if you simply want to see if the address
4497  * is code (not data).
4498  */
is_module_address(unsigned long addr)4499 bool is_module_address(unsigned long addr)
4500 {
4501 	bool ret;
4502 
4503 	preempt_disable();
4504 	ret = __module_address(addr) != NULL;
4505 	preempt_enable();
4506 
4507 	return ret;
4508 }
4509 
4510 /*
4511  * __module_address - get the module which contains an address.
4512  * @addr: the address.
4513  *
4514  * Must be called with preempt disabled or module mutex held so that
4515  * module doesn't get freed during this.
4516  */
__module_address(unsigned long addr)4517 struct module *__module_address(unsigned long addr)
4518 {
4519 	struct module *mod;
4520 
4521 	if (addr < module_addr_min || addr > module_addr_max)
4522 		return NULL;
4523 
4524 	module_assert_mutex_or_preempt();
4525 
4526 	mod = mod_find(addr);
4527 	if (mod) {
4528 		BUG_ON(!within_module(addr, mod));
4529 		if (mod->state == MODULE_STATE_UNFORMED)
4530 			mod = NULL;
4531 	}
4532 	return mod;
4533 }
4534 
4535 /*
4536  * is_module_text_address - is this address inside module code?
4537  * @addr: the address to check.
4538  *
4539  * See is_module_address() if you simply want to see if the address is
4540  * anywhere in a module.  See kernel_text_address() for testing if an
4541  * address corresponds to kernel or module code.
4542  */
is_module_text_address(unsigned long addr)4543 bool is_module_text_address(unsigned long addr)
4544 {
4545 	bool ret;
4546 
4547 	preempt_disable();
4548 	ret = __module_text_address(addr) != NULL;
4549 	preempt_enable();
4550 
4551 	return ret;
4552 }
4553 
4554 /*
4555  * __module_text_address - get the module whose code contains an address.
4556  * @addr: the address.
4557  *
4558  * Must be called with preempt disabled or module mutex held so that
4559  * module doesn't get freed during this.
4560  */
__module_text_address(unsigned long addr)4561 struct module *__module_text_address(unsigned long addr)
4562 {
4563 	struct module *mod = __module_address(addr);
4564 	if (mod) {
4565 		/* Make sure it's within the text section. */
4566 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4567 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4568 			mod = NULL;
4569 	}
4570 	return mod;
4571 }
4572 
4573 /* Don't grab lock, we're oopsing. */
print_modules(void)4574 void print_modules(void)
4575 {
4576 	struct module *mod;
4577 	char buf[MODULE_FLAGS_BUF_SIZE];
4578 
4579 	printk(KERN_DEFAULT "Modules linked in:");
4580 	/* Most callers should already have preempt disabled, but make sure */
4581 	preempt_disable();
4582 	list_for_each_entry_rcu(mod, &modules, list) {
4583 		if (mod->state == MODULE_STATE_UNFORMED)
4584 			continue;
4585 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4586 	}
4587 	preempt_enable();
4588 	if (last_unloaded_module[0])
4589 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4590 	pr_cont("\n");
4591 }
4592 
4593 #ifdef CONFIG_MODVERSIONS
4594 /* Generate the signature for all relevant module structures here.
4595  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4596 void module_layout(struct module *mod,
4597 		   struct modversion_info *ver,
4598 		   struct kernel_param *kp,
4599 		   struct kernel_symbol *ks,
4600 		   struct tracepoint * const *tp)
4601 {
4602 }
4603 EXPORT_SYMBOL(module_layout);
4604 #endif
4605