1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105 
106 #include <trace/events/sched.h>
107 
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110 
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115 
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120 
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;	/* Handle normal Linux uptimes. */
125 int nr_threads;			/* The idle threads do not count.. */
126 
127 static int max_threads;		/* tunable limit on nr_threads */
128 
129 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
130 
131 static const char * const resident_page_types[] = {
132 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137 
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139 
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141 
142 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)143 int lockdep_tasklist_lock_is_held(void)
144 {
145 	return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149 
nr_processes(void)150 int nr_processes(void)
151 {
152 	int cpu;
153 	int total = 0;
154 
155 	for_each_possible_cpu(cpu)
156 		total += per_cpu(process_counts, cpu);
157 
158 	return total;
159 }
160 
arch_release_task_struct(struct task_struct * tsk)161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164 
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167 
alloc_task_struct_node(int node)168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172 
free_task_struct(struct task_struct * tsk)173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 	kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178 
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180 
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194 
free_vm_stack_cache(unsigned int cpu)195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 	int i;
199 
200 	for (i = 0; i < NR_CACHED_STACKS; i++) {
201 		struct vm_struct *vm_stack = cached_vm_stacks[i];
202 
203 		if (!vm_stack)
204 			continue;
205 
206 		vfree(vm_stack->addr);
207 		cached_vm_stacks[i] = NULL;
208 	}
209 
210 	return 0;
211 }
212 #endif
213 
alloc_thread_stack_node(struct task_struct * tsk,int node)214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	void *stack;
218 	int i;
219 
220 	for (i = 0; i < NR_CACHED_STACKS; i++) {
221 		struct vm_struct *s;
222 
223 		s = this_cpu_xchg(cached_stacks[i], NULL);
224 
225 		if (!s)
226 			continue;
227 
228 		/* Clear the KASAN shadow of the stack. */
229 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230 
231 		/* Clear stale pointers from reused stack. */
232 		memset(s->addr, 0, THREAD_SIZE);
233 
234 		tsk->stack_vm_area = s;
235 		tsk->stack = s->addr;
236 		return s->addr;
237 	}
238 
239 	/*
240 	 * Allocated stacks are cached and later reused by new threads,
241 	 * so memcg accounting is performed manually on assigning/releasing
242 	 * stacks to tasks. Drop __GFP_ACCOUNT.
243 	 */
244 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 				     VMALLOC_START, VMALLOC_END,
246 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
247 				     PAGE_KERNEL,
248 				     0, node, __builtin_return_address(0));
249 
250 	/*
251 	 * We can't call find_vm_area() in interrupt context, and
252 	 * free_thread_stack() can be called in interrupt context,
253 	 * so cache the vm_struct.
254 	 */
255 	if (stack) {
256 		tsk->stack_vm_area = find_vm_area(stack);
257 		tsk->stack = stack;
258 	}
259 	return stack;
260 #else
261 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 					     THREAD_SIZE_ORDER);
263 
264 	if (likely(page)) {
265 		tsk->stack = kasan_reset_tag(page_address(page));
266 		return tsk->stack;
267 	}
268 	return NULL;
269 #endif
270 }
271 
free_thread_stack(struct task_struct * tsk)272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 	struct vm_struct *vm = task_stack_vm_area(tsk);
276 
277 	if (vm) {
278 		int i;
279 
280 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 			memcg_kmem_uncharge_page(vm->pages[i], 0);
282 
283 		for (i = 0; i < NR_CACHED_STACKS; i++) {
284 			if (this_cpu_cmpxchg(cached_stacks[i],
285 					NULL, tsk->stack_vm_area) != NULL)
286 				continue;
287 
288 			return;
289 		}
290 
291 		vfree_atomic(tsk->stack);
292 		return;
293 	}
294 #endif
295 
296 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300 
alloc_thread_stack_node(struct task_struct * tsk,int node)301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 						  int node)
303 {
304 	unsigned long *stack;
305 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 	stack = kasan_reset_tag(stack);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
free_thread_stack(struct task_struct * tsk)311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
thread_stack_cache_init(void)316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
vm_area_alloc(struct mm_struct * mm)344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
vm_area_dup(struct vm_area_struct * orig)354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 		/*
362 		 * orig->shared.rb may be modified concurrently, but the clone
363 		 * will be reinitialized.
364 		 */
365 		*new = data_race(*orig);
366 		INIT_LIST_HEAD(&new->anon_vma_chain);
367 		new->vm_next = new->vm_prev = NULL;
368 	}
369 	return new;
370 }
371 
vm_area_free(struct vm_area_struct * vma)372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 	kmem_cache_free(vm_area_cachep, vma);
375 }
376 
account_kernel_stack(struct task_struct * tsk,int account)377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 	void *stack = task_stack_page(tsk);
380 	struct vm_struct *vm = task_stack_vm_area(tsk);
381 
382 
383 	/* All stack pages are in the same node. */
384 	if (vm)
385 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 				      account * (THREAD_SIZE / 1024));
387 	else
388 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
389 				      account * (THREAD_SIZE / 1024));
390 }
391 
memcg_charge_kernel_stack(struct task_struct * tsk)392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395 	struct vm_struct *vm = task_stack_vm_area(tsk);
396 	int ret;
397 
398 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399 
400 	if (vm) {
401 		int i;
402 
403 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404 
405 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 			/*
407 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
408 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
409 			 * free_thread_stack() will ignore this page.
410 			 */
411 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
412 						     0);
413 			if (ret)
414 				return ret;
415 		}
416 	}
417 #endif
418 	return 0;
419 }
420 
release_task_stack(struct task_struct * tsk)421 static void release_task_stack(struct task_struct *tsk)
422 {
423 	if (WARN_ON(tsk->state != TASK_DEAD))
424 		return;  /* Better to leak the stack than to free prematurely */
425 
426 	account_kernel_stack(tsk, -1);
427 	free_thread_stack(tsk);
428 	tsk->stack = NULL;
429 #ifdef CONFIG_VMAP_STACK
430 	tsk->stack_vm_area = NULL;
431 #endif
432 }
433 
434 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)435 void put_task_stack(struct task_struct *tsk)
436 {
437 	if (refcount_dec_and_test(&tsk->stack_refcount))
438 		release_task_stack(tsk);
439 }
440 #endif
441 
free_task(struct task_struct * tsk)442 void free_task(struct task_struct *tsk)
443 {
444 	scs_release(tsk);
445 
446 #ifndef CONFIG_THREAD_INFO_IN_TASK
447 	/*
448 	 * The task is finally done with both the stack and thread_info,
449 	 * so free both.
450 	 */
451 	release_task_stack(tsk);
452 #else
453 	/*
454 	 * If the task had a separate stack allocation, it should be gone
455 	 * by now.
456 	 */
457 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
458 #endif
459 	rt_mutex_debug_task_free(tsk);
460 	ftrace_graph_exit_task(tsk);
461 	arch_release_task_struct(tsk);
462 	if (tsk->flags & PF_KTHREAD)
463 		free_kthread_struct(tsk);
464 	free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467 
468 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 					struct mm_struct *oldmm)
471 {
472 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 	struct rb_node **rb_link, *rb_parent;
474 	int retval;
475 	unsigned long charge;
476 	LIST_HEAD(uf);
477 
478 	uprobe_start_dup_mmap();
479 	if (mmap_write_lock_killable(oldmm)) {
480 		retval = -EINTR;
481 		goto fail_uprobe_end;
482 	}
483 	flush_cache_dup_mm(oldmm);
484 	uprobe_dup_mmap(oldmm, mm);
485 	/*
486 	 * Not linked in yet - no deadlock potential:
487 	 */
488 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
489 
490 	/* No ordering required: file already has been exposed. */
491 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492 
493 	mm->total_vm = oldmm->total_vm;
494 	mm->data_vm = oldmm->data_vm;
495 	mm->exec_vm = oldmm->exec_vm;
496 	mm->stack_vm = oldmm->stack_vm;
497 
498 	rb_link = &mm->mm_rb.rb_node;
499 	rb_parent = NULL;
500 	pprev = &mm->mmap;
501 	retval = ksm_fork(mm, oldmm);
502 	if (retval)
503 		goto out;
504 	retval = khugepaged_fork(mm, oldmm);
505 	if (retval)
506 		goto out;
507 
508 	prev = NULL;
509 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 		struct file *file;
511 
512 		if (mpnt->vm_flags & VM_DONTCOPY) {
513 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 			continue;
515 		}
516 		charge = 0;
517 		/*
518 		 * Don't duplicate many vmas if we've been oom-killed (for
519 		 * example)
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			retval = -EINTR;
523 			goto out;
524 		}
525 		if (mpnt->vm_flags & VM_ACCOUNT) {
526 			unsigned long len = vma_pages(mpnt);
527 
528 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 				goto fail_nomem;
530 			charge = len;
531 		}
532 		tmp = vm_area_dup(mpnt);
533 		if (!tmp)
534 			goto fail_nomem;
535 		retval = vma_dup_policy(mpnt, tmp);
536 		if (retval)
537 			goto fail_nomem_policy;
538 		tmp->vm_mm = mm;
539 		retval = dup_userfaultfd(tmp, &uf);
540 		if (retval)
541 			goto fail_nomem_anon_vma_fork;
542 		if (tmp->vm_flags & VM_WIPEONFORK) {
543 			/*
544 			 * VM_WIPEONFORK gets a clean slate in the child.
545 			 * Don't prepare anon_vma until fault since we don't
546 			 * copy page for current vma.
547 			 */
548 			tmp->anon_vma = NULL;
549 		} else if (anon_vma_fork(tmp, mpnt))
550 			goto fail_nomem_anon_vma_fork;
551 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
552 		file = tmp->vm_file;
553 		if (file) {
554 			struct inode *inode = file_inode(file);
555 			struct address_space *mapping = file->f_mapping;
556 
557 			get_file(file);
558 			if (tmp->vm_flags & VM_DENYWRITE)
559 				put_write_access(inode);
560 			i_mmap_lock_write(mapping);
561 			if (tmp->vm_flags & VM_SHARED)
562 				mapping_allow_writable(mapping);
563 			flush_dcache_mmap_lock(mapping);
564 			/* insert tmp into the share list, just after mpnt */
565 			vma_interval_tree_insert_after(tmp, mpnt,
566 					&mapping->i_mmap);
567 			flush_dcache_mmap_unlock(mapping);
568 			i_mmap_unlock_write(mapping);
569 		}
570 
571 		/*
572 		 * Clear hugetlb-related page reserves for children. This only
573 		 * affects MAP_PRIVATE mappings. Faults generated by the child
574 		 * are not guaranteed to succeed, even if read-only
575 		 */
576 		if (is_vm_hugetlb_page(tmp))
577 			reset_vma_resv_huge_pages(tmp);
578 
579 		/*
580 		 * Link in the new vma and copy the page table entries.
581 		 */
582 		*pprev = tmp;
583 		pprev = &tmp->vm_next;
584 		tmp->vm_prev = prev;
585 		prev = tmp;
586 
587 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
588 		rb_link = &tmp->vm_rb.rb_right;
589 		rb_parent = &tmp->vm_rb;
590 
591 		mm->map_count++;
592 		if (!(tmp->vm_flags & VM_WIPEONFORK))
593 			retval = copy_page_range(tmp, mpnt);
594 
595 		if (tmp->vm_ops && tmp->vm_ops->open)
596 			tmp->vm_ops->open(tmp);
597 
598 		if (retval)
599 			goto out;
600 	}
601 	/* a new mm has just been created */
602 	retval = arch_dup_mmap(oldmm, mm);
603 out:
604 	mmap_write_unlock(mm);
605 	flush_tlb_mm(oldmm);
606 	mmap_write_unlock(oldmm);
607 	dup_userfaultfd_complete(&uf);
608 fail_uprobe_end:
609 	uprobe_end_dup_mmap();
610 	return retval;
611 fail_nomem_anon_vma_fork:
612 	mpol_put(vma_policy(tmp));
613 fail_nomem_policy:
614 	vm_area_free(tmp);
615 fail_nomem:
616 	retval = -ENOMEM;
617 	vm_unacct_memory(charge);
618 	goto out;
619 }
620 
mm_alloc_pgd(struct mm_struct * mm)621 static inline int mm_alloc_pgd(struct mm_struct *mm)
622 {
623 	mm->pgd = pgd_alloc(mm);
624 	if (unlikely(!mm->pgd))
625 		return -ENOMEM;
626 	return 0;
627 }
628 
mm_free_pgd(struct mm_struct * mm)629 static inline void mm_free_pgd(struct mm_struct *mm)
630 {
631 	pgd_free(mm, mm->pgd);
632 }
633 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)634 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
635 {
636 	mmap_write_lock(oldmm);
637 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
638 	mmap_write_unlock(oldmm);
639 	return 0;
640 }
641 #define mm_alloc_pgd(mm)	(0)
642 #define mm_free_pgd(mm)
643 #endif /* CONFIG_MMU */
644 
check_mm(struct mm_struct * mm)645 static void check_mm(struct mm_struct *mm)
646 {
647 	int i;
648 
649 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
650 			 "Please make sure 'struct resident_page_types[]' is updated as well");
651 
652 	for (i = 0; i < NR_MM_COUNTERS; i++) {
653 		long x = atomic_long_read(&mm->rss_stat.count[i]);
654 
655 		if (unlikely(x))
656 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
657 				 mm, resident_page_types[i], x);
658 	}
659 
660 	if (mm_pgtables_bytes(mm))
661 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
662 				mm_pgtables_bytes(mm));
663 
664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
665 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
666 #endif
667 }
668 
669 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
670 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
671 
672 /*
673  * Called when the last reference to the mm
674  * is dropped: either by a lazy thread or by
675  * mmput. Free the page directory and the mm.
676  */
__mmdrop(struct mm_struct * mm)677 void __mmdrop(struct mm_struct *mm)
678 {
679 	BUG_ON(mm == &init_mm);
680 	WARN_ON_ONCE(mm == current->mm);
681 	WARN_ON_ONCE(mm == current->active_mm);
682 	mm_free_pgd(mm);
683 	destroy_context(mm);
684 	mmu_notifier_subscriptions_destroy(mm);
685 	check_mm(mm);
686 	put_user_ns(mm->user_ns);
687 	free_mm(mm);
688 }
689 EXPORT_SYMBOL_GPL(__mmdrop);
690 
mmdrop_async_fn(struct work_struct * work)691 static void mmdrop_async_fn(struct work_struct *work)
692 {
693 	struct mm_struct *mm;
694 
695 	mm = container_of(work, struct mm_struct, async_put_work);
696 	__mmdrop(mm);
697 }
698 
mmdrop_async(struct mm_struct * mm)699 static void mmdrop_async(struct mm_struct *mm)
700 {
701 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
702 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
703 		schedule_work(&mm->async_put_work);
704 	}
705 }
706 
free_signal_struct(struct signal_struct * sig)707 static inline void free_signal_struct(struct signal_struct *sig)
708 {
709 	taskstats_tgid_free(sig);
710 	sched_autogroup_exit(sig);
711 	/*
712 	 * __mmdrop is not safe to call from softirq context on x86 due to
713 	 * pgd_dtor so postpone it to the async context
714 	 */
715 	if (sig->oom_mm)
716 		mmdrop_async(sig->oom_mm);
717 	kmem_cache_free(signal_cachep, sig);
718 }
719 
put_signal_struct(struct signal_struct * sig)720 static inline void put_signal_struct(struct signal_struct *sig)
721 {
722 	if (refcount_dec_and_test(&sig->sigcnt))
723 		free_signal_struct(sig);
724 }
725 
__put_task_struct(struct task_struct * tsk)726 void __put_task_struct(struct task_struct *tsk)
727 {
728 	WARN_ON(!tsk->exit_state);
729 	WARN_ON(refcount_read(&tsk->usage));
730 	WARN_ON(tsk == current);
731 
732 	io_uring_free(tsk);
733 	cgroup_free(tsk);
734 	task_numa_free(tsk, true);
735 	security_task_free(tsk);
736 	exit_creds(tsk);
737 	delayacct_tsk_free(tsk);
738 	put_signal_struct(tsk->signal);
739 
740 	if (!profile_handoff_task(tsk))
741 		free_task(tsk);
742 }
743 EXPORT_SYMBOL_GPL(__put_task_struct);
744 
arch_task_cache_init(void)745 void __init __weak arch_task_cache_init(void) { }
746 
747 /*
748  * set_max_threads
749  */
set_max_threads(unsigned int max_threads_suggested)750 static void set_max_threads(unsigned int max_threads_suggested)
751 {
752 	u64 threads;
753 	unsigned long nr_pages = totalram_pages();
754 
755 	/*
756 	 * The number of threads shall be limited such that the thread
757 	 * structures may only consume a small part of the available memory.
758 	 */
759 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
760 		threads = MAX_THREADS;
761 	else
762 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
763 				    (u64) THREAD_SIZE * 8UL);
764 
765 	if (threads > max_threads_suggested)
766 		threads = max_threads_suggested;
767 
768 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
769 }
770 
771 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772 /* Initialized by the architecture: */
773 int arch_task_struct_size __read_mostly;
774 #endif
775 
776 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)777 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
778 {
779 	/* Fetch thread_struct whitelist for the architecture. */
780 	arch_thread_struct_whitelist(offset, size);
781 
782 	/*
783 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
784 	 * adjust offset to position of thread_struct in task_struct.
785 	 */
786 	if (unlikely(*size == 0))
787 		*offset = 0;
788 	else
789 		*offset += offsetof(struct task_struct, thread);
790 }
791 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
792 
fork_init(void)793 void __init fork_init(void)
794 {
795 	int i;
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
797 #ifndef ARCH_MIN_TASKALIGN
798 #define ARCH_MIN_TASKALIGN	0
799 #endif
800 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
801 	unsigned long useroffset, usersize;
802 
803 	/* create a slab on which task_structs can be allocated */
804 	task_struct_whitelist(&useroffset, &usersize);
805 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
806 			arch_task_struct_size, align,
807 			SLAB_PANIC|SLAB_ACCOUNT,
808 			useroffset, usersize, NULL);
809 #endif
810 
811 	/* do the arch specific task caches init */
812 	arch_task_cache_init();
813 
814 	set_max_threads(MAX_THREADS);
815 
816 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
817 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
818 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
819 		init_task.signal->rlim[RLIMIT_NPROC];
820 
821 	for (i = 0; i < UCOUNT_COUNTS; i++) {
822 		init_user_ns.ucount_max[i] = max_threads/2;
823 	}
824 
825 #ifdef CONFIG_VMAP_STACK
826 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 			  NULL, free_vm_stack_cache);
828 #endif
829 
830 	scs_init();
831 
832 	lockdep_init_task(&init_task);
833 	uprobes_init();
834 }
835 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)836 int __weak arch_dup_task_struct(struct task_struct *dst,
837 					       struct task_struct *src)
838 {
839 	*dst = *src;
840 	return 0;
841 }
842 
set_task_stack_end_magic(struct task_struct * tsk)843 void set_task_stack_end_magic(struct task_struct *tsk)
844 {
845 	unsigned long *stackend;
846 
847 	stackend = end_of_stack(tsk);
848 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
849 }
850 
dup_task_struct(struct task_struct * orig,int node)851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
852 {
853 	struct task_struct *tsk;
854 	unsigned long *stack;
855 	struct vm_struct *stack_vm_area __maybe_unused;
856 	int err;
857 
858 	if (node == NUMA_NO_NODE)
859 		node = tsk_fork_get_node(orig);
860 	tsk = alloc_task_struct_node(node);
861 	if (!tsk)
862 		return NULL;
863 
864 	stack = alloc_thread_stack_node(tsk, node);
865 	if (!stack)
866 		goto free_tsk;
867 
868 	if (memcg_charge_kernel_stack(tsk))
869 		goto free_stack;
870 
871 	stack_vm_area = task_stack_vm_area(tsk);
872 
873 	err = arch_dup_task_struct(tsk, orig);
874 
875 	/*
876 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
877 	 * sure they're properly initialized before using any stack-related
878 	 * functions again.
879 	 */
880 	tsk->stack = stack;
881 #ifdef CONFIG_VMAP_STACK
882 	tsk->stack_vm_area = stack_vm_area;
883 #endif
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 	refcount_set(&tsk->stack_refcount, 1);
886 #endif
887 
888 	if (err)
889 		goto free_stack;
890 
891 	err = scs_prepare(tsk, node);
892 	if (err)
893 		goto free_stack;
894 
895 #ifdef CONFIG_SECCOMP
896 	/*
897 	 * We must handle setting up seccomp filters once we're under
898 	 * the sighand lock in case orig has changed between now and
899 	 * then. Until then, filter must be NULL to avoid messing up
900 	 * the usage counts on the error path calling free_task.
901 	 */
902 	tsk->seccomp.filter = NULL;
903 #endif
904 
905 	setup_thread_stack(tsk, orig);
906 	clear_user_return_notifier(tsk);
907 	clear_tsk_need_resched(tsk);
908 	set_task_stack_end_magic(tsk);
909 
910 #ifdef CONFIG_STACKPROTECTOR
911 	tsk->stack_canary = get_random_canary();
912 #endif
913 	if (orig->cpus_ptr == &orig->cpus_mask)
914 		tsk->cpus_ptr = &tsk->cpus_mask;
915 
916 	/*
917 	 * One for the user space visible state that goes away when reaped.
918 	 * One for the scheduler.
919 	 */
920 	refcount_set(&tsk->rcu_users, 2);
921 	/* One for the rcu users */
922 	refcount_set(&tsk->usage, 1);
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
924 	tsk->btrace_seq = 0;
925 #endif
926 	tsk->splice_pipe = NULL;
927 	tsk->task_frag.page = NULL;
928 	tsk->wake_q.next = NULL;
929 
930 	account_kernel_stack(tsk, 1);
931 
932 	kcov_task_init(tsk);
933 
934 #ifdef CONFIG_FAULT_INJECTION
935 	tsk->fail_nth = 0;
936 #endif
937 
938 #ifdef CONFIG_BLK_CGROUP
939 	tsk->throttle_queue = NULL;
940 	tsk->use_memdelay = 0;
941 #endif
942 
943 #ifdef CONFIG_MEMCG
944 	tsk->active_memcg = NULL;
945 #endif
946 	return tsk;
947 
948 free_stack:
949 	free_thread_stack(tsk);
950 free_tsk:
951 	free_task_struct(tsk);
952 	return NULL;
953 }
954 
955 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
956 
957 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
958 
coredump_filter_setup(char * s)959 static int __init coredump_filter_setup(char *s)
960 {
961 	default_dump_filter =
962 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
963 		MMF_DUMP_FILTER_MASK;
964 	return 1;
965 }
966 
967 __setup("coredump_filter=", coredump_filter_setup);
968 
969 #include <linux/init_task.h>
970 
mm_init_aio(struct mm_struct * mm)971 static void mm_init_aio(struct mm_struct *mm)
972 {
973 #ifdef CONFIG_AIO
974 	spin_lock_init(&mm->ioctx_lock);
975 	mm->ioctx_table = NULL;
976 #endif
977 }
978 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)979 static __always_inline void mm_clear_owner(struct mm_struct *mm,
980 					   struct task_struct *p)
981 {
982 #ifdef CONFIG_MEMCG
983 	if (mm->owner == p)
984 		WRITE_ONCE(mm->owner, NULL);
985 #endif
986 }
987 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)988 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
989 {
990 #ifdef CONFIG_MEMCG
991 	mm->owner = p;
992 #endif
993 }
994 
mm_init_uprobes_state(struct mm_struct * mm)995 static void mm_init_uprobes_state(struct mm_struct *mm)
996 {
997 #ifdef CONFIG_UPROBES
998 	mm->uprobes_state.xol_area = NULL;
999 #endif
1000 }
1001 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1002 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1003 	struct user_namespace *user_ns)
1004 {
1005 	mm->mmap = NULL;
1006 	mm->mm_rb = RB_ROOT;
1007 	mm->vmacache_seqnum = 0;
1008 	atomic_set(&mm->mm_users, 1);
1009 	atomic_set(&mm->mm_count, 1);
1010 	mmap_init_lock(mm);
1011 	INIT_LIST_HEAD(&mm->mmlist);
1012 	mm->core_state = NULL;
1013 	mm_pgtables_bytes_init(mm);
1014 	mm->map_count = 0;
1015 	mm->locked_vm = 0;
1016 	atomic_set(&mm->has_pinned, 0);
1017 	atomic64_set(&mm->pinned_vm, 0);
1018 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 	spin_lock_init(&mm->page_table_lock);
1020 	spin_lock_init(&mm->arg_lock);
1021 	mm_init_cpumask(mm);
1022 	mm_init_aio(mm);
1023 	mm_init_owner(mm, p);
1024 	RCU_INIT_POINTER(mm->exe_file, NULL);
1025 	mmu_notifier_subscriptions_init(mm);
1026 	init_tlb_flush_pending(mm);
1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 	mm->pmd_huge_pte = NULL;
1029 #endif
1030 	mm_init_uprobes_state(mm);
1031 
1032 	if (current->mm) {
1033 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 	} else {
1036 		mm->flags = default_dump_filter;
1037 		mm->def_flags = 0;
1038 	}
1039 
1040 	if (mm_alloc_pgd(mm))
1041 		goto fail_nopgd;
1042 
1043 	if (init_new_context(p, mm))
1044 		goto fail_nocontext;
1045 
1046 	mm->user_ns = get_user_ns(user_ns);
1047 	return mm;
1048 
1049 fail_nocontext:
1050 	mm_free_pgd(mm);
1051 fail_nopgd:
1052 	free_mm(mm);
1053 	return NULL;
1054 }
1055 
1056 /*
1057  * Allocate and initialize an mm_struct.
1058  */
mm_alloc(void)1059 struct mm_struct *mm_alloc(void)
1060 {
1061 	struct mm_struct *mm;
1062 
1063 	mm = allocate_mm();
1064 	if (!mm)
1065 		return NULL;
1066 
1067 	memset(mm, 0, sizeof(*mm));
1068 	return mm_init(mm, current, current_user_ns());
1069 }
1070 
__mmput(struct mm_struct * mm)1071 static inline void __mmput(struct mm_struct *mm)
1072 {
1073 	VM_BUG_ON(atomic_read(&mm->mm_users));
1074 
1075 	uprobe_clear_state(mm);
1076 	exit_aio(mm);
1077 	ksm_exit(mm);
1078 	khugepaged_exit(mm); /* must run before exit_mmap */
1079 	exit_mmap(mm);
1080 	mm_put_huge_zero_page(mm);
1081 	set_mm_exe_file(mm, NULL);
1082 	if (!list_empty(&mm->mmlist)) {
1083 		spin_lock(&mmlist_lock);
1084 		list_del(&mm->mmlist);
1085 		spin_unlock(&mmlist_lock);
1086 	}
1087 	if (mm->binfmt)
1088 		module_put(mm->binfmt->module);
1089 	mmdrop(mm);
1090 }
1091 
1092 /*
1093  * Decrement the use count and release all resources for an mm.
1094  */
mmput(struct mm_struct * mm)1095 void mmput(struct mm_struct *mm)
1096 {
1097 	might_sleep();
1098 
1099 	if (atomic_dec_and_test(&mm->mm_users))
1100 		__mmput(mm);
1101 }
1102 EXPORT_SYMBOL_GPL(mmput);
1103 
1104 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1105 static void mmput_async_fn(struct work_struct *work)
1106 {
1107 	struct mm_struct *mm = container_of(work, struct mm_struct,
1108 					    async_put_work);
1109 
1110 	__mmput(mm);
1111 }
1112 
mmput_async(struct mm_struct * mm)1113 void mmput_async(struct mm_struct *mm)
1114 {
1115 	if (atomic_dec_and_test(&mm->mm_users)) {
1116 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 		schedule_work(&mm->async_put_work);
1118 	}
1119 }
1120 #endif
1121 
1122 /**
1123  * set_mm_exe_file - change a reference to the mm's executable file
1124  *
1125  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126  *
1127  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128  * invocations: in mmput() nobody alive left, in execve task is single
1129  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130  * mm->exe_file, but does so without using set_mm_exe_file() in order
1131  * to do avoid the need for any locks.
1132  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134 {
1135 	struct file *old_exe_file;
1136 
1137 	/*
1138 	 * It is safe to dereference the exe_file without RCU as
1139 	 * this function is only called if nobody else can access
1140 	 * this mm -- see comment above for justification.
1141 	 */
1142 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1143 
1144 	if (new_exe_file)
1145 		get_file(new_exe_file);
1146 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 	if (old_exe_file)
1148 		fput(old_exe_file);
1149 }
1150 
1151 /**
1152  * get_mm_exe_file - acquire a reference to the mm's executable file
1153  *
1154  * Returns %NULL if mm has no associated executable file.
1155  * User must release file via fput().
1156  */
get_mm_exe_file(struct mm_struct * mm)1157 struct file *get_mm_exe_file(struct mm_struct *mm)
1158 {
1159 	struct file *exe_file;
1160 
1161 	rcu_read_lock();
1162 	exe_file = rcu_dereference(mm->exe_file);
1163 	if (exe_file && !get_file_rcu(exe_file))
1164 		exe_file = NULL;
1165 	rcu_read_unlock();
1166 	return exe_file;
1167 }
1168 EXPORT_SYMBOL(get_mm_exe_file);
1169 
1170 /**
1171  * get_task_exe_file - acquire a reference to the task's executable file
1172  *
1173  * Returns %NULL if task's mm (if any) has no associated executable file or
1174  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175  * User must release file via fput().
1176  */
get_task_exe_file(struct task_struct * task)1177 struct file *get_task_exe_file(struct task_struct *task)
1178 {
1179 	struct file *exe_file = NULL;
1180 	struct mm_struct *mm;
1181 
1182 	task_lock(task);
1183 	mm = task->mm;
1184 	if (mm) {
1185 		if (!(task->flags & PF_KTHREAD))
1186 			exe_file = get_mm_exe_file(mm);
1187 	}
1188 	task_unlock(task);
1189 	return exe_file;
1190 }
1191 EXPORT_SYMBOL(get_task_exe_file);
1192 
1193 /**
1194  * get_task_mm - acquire a reference to the task's mm
1195  *
1196  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1197  * this kernel workthread has transiently adopted a user mm with use_mm,
1198  * to do its AIO) is not set and if so returns a reference to it, after
1199  * bumping up the use count.  User must release the mm via mmput()
1200  * after use.  Typically used by /proc and ptrace.
1201  */
get_task_mm(struct task_struct * task)1202 struct mm_struct *get_task_mm(struct task_struct *task)
1203 {
1204 	struct mm_struct *mm;
1205 
1206 	task_lock(task);
1207 	mm = task->mm;
1208 	if (mm) {
1209 		if (task->flags & PF_KTHREAD)
1210 			mm = NULL;
1211 		else
1212 			mmget(mm);
1213 	}
1214 	task_unlock(task);
1215 	return mm;
1216 }
1217 EXPORT_SYMBOL_GPL(get_task_mm);
1218 
mm_access(struct task_struct * task,unsigned int mode)1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220 {
1221 	struct mm_struct *mm;
1222 	int err;
1223 
1224 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1225 	if (err)
1226 		return ERR_PTR(err);
1227 
1228 	mm = get_task_mm(task);
1229 	if (mm && mm != current->mm &&
1230 			!ptrace_may_access(task, mode)) {
1231 		mmput(mm);
1232 		mm = ERR_PTR(-EACCES);
1233 	}
1234 	mutex_unlock(&task->signal->exec_update_mutex);
1235 
1236 	return mm;
1237 }
1238 
complete_vfork_done(struct task_struct * tsk)1239 static void complete_vfork_done(struct task_struct *tsk)
1240 {
1241 	struct completion *vfork;
1242 
1243 	task_lock(tsk);
1244 	vfork = tsk->vfork_done;
1245 	if (likely(vfork)) {
1246 		tsk->vfork_done = NULL;
1247 		complete(vfork);
1248 	}
1249 	task_unlock(tsk);
1250 }
1251 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1252 static int wait_for_vfork_done(struct task_struct *child,
1253 				struct completion *vfork)
1254 {
1255 	int killed;
1256 
1257 	freezer_do_not_count();
1258 	cgroup_enter_frozen();
1259 	killed = wait_for_completion_killable(vfork);
1260 	cgroup_leave_frozen(false);
1261 	freezer_count();
1262 
1263 	if (killed) {
1264 		task_lock(child);
1265 		child->vfork_done = NULL;
1266 		task_unlock(child);
1267 	}
1268 
1269 	put_task_struct(child);
1270 	return killed;
1271 }
1272 
1273 /* Please note the differences between mmput and mm_release.
1274  * mmput is called whenever we stop holding onto a mm_struct,
1275  * error success whatever.
1276  *
1277  * mm_release is called after a mm_struct has been removed
1278  * from the current process.
1279  *
1280  * This difference is important for error handling, when we
1281  * only half set up a mm_struct for a new process and need to restore
1282  * the old one.  Because we mmput the new mm_struct before
1283  * restoring the old one. . .
1284  * Eric Biederman 10 January 1998
1285  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1286 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287 {
1288 	uprobe_free_utask(tsk);
1289 
1290 	/* Get rid of any cached register state */
1291 	deactivate_mm(tsk, mm);
1292 
1293 	/*
1294 	 * Signal userspace if we're not exiting with a core dump
1295 	 * because we want to leave the value intact for debugging
1296 	 * purposes.
1297 	 */
1298 	if (tsk->clear_child_tid) {
1299 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1300 		    atomic_read(&mm->mm_users) > 1) {
1301 			/*
1302 			 * We don't check the error code - if userspace has
1303 			 * not set up a proper pointer then tough luck.
1304 			 */
1305 			put_user(0, tsk->clear_child_tid);
1306 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1307 					1, NULL, NULL, 0, 0);
1308 		}
1309 		tsk->clear_child_tid = NULL;
1310 	}
1311 
1312 	/*
1313 	 * All done, finally we can wake up parent and return this mm to him.
1314 	 * Also kthread_stop() uses this completion for synchronization.
1315 	 */
1316 	if (tsk->vfork_done)
1317 		complete_vfork_done(tsk);
1318 }
1319 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1320 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1321 {
1322 	futex_exit_release(tsk);
1323 	mm_release(tsk, mm);
1324 }
1325 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1326 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 	futex_exec_release(tsk);
1329 	mm_release(tsk, mm);
1330 }
1331 
1332 /**
1333  * dup_mm() - duplicates an existing mm structure
1334  * @tsk: the task_struct with which the new mm will be associated.
1335  * @oldmm: the mm to duplicate.
1336  *
1337  * Allocates a new mm structure and duplicates the provided @oldmm structure
1338  * content into it.
1339  *
1340  * Return: the duplicated mm or NULL on failure.
1341  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1342 static struct mm_struct *dup_mm(struct task_struct *tsk,
1343 				struct mm_struct *oldmm)
1344 {
1345 	struct mm_struct *mm;
1346 	int err;
1347 
1348 	mm = allocate_mm();
1349 	if (!mm)
1350 		goto fail_nomem;
1351 
1352 	memcpy(mm, oldmm, sizeof(*mm));
1353 
1354 	if (!mm_init(mm, tsk, mm->user_ns))
1355 		goto fail_nomem;
1356 
1357 	err = dup_mmap(mm, oldmm);
1358 	if (err)
1359 		goto free_pt;
1360 
1361 	mm->hiwater_rss = get_mm_rss(mm);
1362 	mm->hiwater_vm = mm->total_vm;
1363 
1364 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1365 		goto free_pt;
1366 
1367 	return mm;
1368 
1369 free_pt:
1370 	/* don't put binfmt in mmput, we haven't got module yet */
1371 	mm->binfmt = NULL;
1372 	mm_init_owner(mm, NULL);
1373 	mmput(mm);
1374 
1375 fail_nomem:
1376 	return NULL;
1377 }
1378 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1379 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1380 {
1381 	struct mm_struct *mm, *oldmm;
1382 	int retval;
1383 
1384 	tsk->min_flt = tsk->maj_flt = 0;
1385 	tsk->nvcsw = tsk->nivcsw = 0;
1386 #ifdef CONFIG_DETECT_HUNG_TASK
1387 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1388 	tsk->last_switch_time = 0;
1389 #endif
1390 
1391 	tsk->mm = NULL;
1392 	tsk->active_mm = NULL;
1393 
1394 	/*
1395 	 * Are we cloning a kernel thread?
1396 	 *
1397 	 * We need to steal a active VM for that..
1398 	 */
1399 	oldmm = current->mm;
1400 	if (!oldmm)
1401 		return 0;
1402 
1403 	/* initialize the new vmacache entries */
1404 	vmacache_flush(tsk);
1405 
1406 	if (clone_flags & CLONE_VM) {
1407 		mmget(oldmm);
1408 		mm = oldmm;
1409 		goto good_mm;
1410 	}
1411 
1412 	retval = -ENOMEM;
1413 	mm = dup_mm(tsk, current->mm);
1414 	if (!mm)
1415 		goto fail_nomem;
1416 
1417 good_mm:
1418 	tsk->mm = mm;
1419 	tsk->active_mm = mm;
1420 	return 0;
1421 
1422 fail_nomem:
1423 	return retval;
1424 }
1425 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1426 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1427 {
1428 	struct fs_struct *fs = current->fs;
1429 	if (clone_flags & CLONE_FS) {
1430 		/* tsk->fs is already what we want */
1431 		spin_lock(&fs->lock);
1432 		if (fs->in_exec) {
1433 			spin_unlock(&fs->lock);
1434 			return -EAGAIN;
1435 		}
1436 		fs->users++;
1437 		spin_unlock(&fs->lock);
1438 		return 0;
1439 	}
1440 	tsk->fs = copy_fs_struct(fs);
1441 	if (!tsk->fs)
1442 		return -ENOMEM;
1443 	return 0;
1444 }
1445 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1446 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1447 {
1448 	struct files_struct *oldf, *newf;
1449 	int error = 0;
1450 
1451 	/*
1452 	 * A background process may not have any files ...
1453 	 */
1454 	oldf = current->files;
1455 	if (!oldf)
1456 		goto out;
1457 
1458 	if (clone_flags & CLONE_FILES) {
1459 		atomic_inc(&oldf->count);
1460 		goto out;
1461 	}
1462 
1463 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1464 	if (!newf)
1465 		goto out;
1466 
1467 	tsk->files = newf;
1468 	error = 0;
1469 out:
1470 	return error;
1471 }
1472 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1473 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1474 {
1475 #ifdef CONFIG_BLOCK
1476 	struct io_context *ioc = current->io_context;
1477 	struct io_context *new_ioc;
1478 
1479 	if (!ioc)
1480 		return 0;
1481 	/*
1482 	 * Share io context with parent, if CLONE_IO is set
1483 	 */
1484 	if (clone_flags & CLONE_IO) {
1485 		ioc_task_link(ioc);
1486 		tsk->io_context = ioc;
1487 	} else if (ioprio_valid(ioc->ioprio)) {
1488 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1489 		if (unlikely(!new_ioc))
1490 			return -ENOMEM;
1491 
1492 		new_ioc->ioprio = ioc->ioprio;
1493 		put_io_context(new_ioc);
1494 	}
1495 #endif
1496 	return 0;
1497 }
1498 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1499 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1500 {
1501 	struct sighand_struct *sig;
1502 
1503 	if (clone_flags & CLONE_SIGHAND) {
1504 		refcount_inc(&current->sighand->count);
1505 		return 0;
1506 	}
1507 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1508 	RCU_INIT_POINTER(tsk->sighand, sig);
1509 	if (!sig)
1510 		return -ENOMEM;
1511 
1512 	refcount_set(&sig->count, 1);
1513 	spin_lock_irq(&current->sighand->siglock);
1514 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1515 	spin_unlock_irq(&current->sighand->siglock);
1516 
1517 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1518 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1519 		flush_signal_handlers(tsk, 0);
1520 
1521 	return 0;
1522 }
1523 
__cleanup_sighand(struct sighand_struct * sighand)1524 void __cleanup_sighand(struct sighand_struct *sighand)
1525 {
1526 	if (refcount_dec_and_test(&sighand->count)) {
1527 		signalfd_cleanup(sighand);
1528 		/*
1529 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1530 		 * without an RCU grace period, see __lock_task_sighand().
1531 		 */
1532 		kmem_cache_free(sighand_cachep, sighand);
1533 	}
1534 }
1535 
1536 /*
1537  * Initialize POSIX timer handling for a thread group.
1538  */
posix_cpu_timers_init_group(struct signal_struct * sig)1539 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1540 {
1541 	struct posix_cputimers *pct = &sig->posix_cputimers;
1542 	unsigned long cpu_limit;
1543 
1544 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1545 	posix_cputimers_group_init(pct, cpu_limit);
1546 }
1547 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1548 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1549 {
1550 	struct signal_struct *sig;
1551 
1552 	if (clone_flags & CLONE_THREAD)
1553 		return 0;
1554 
1555 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1556 	tsk->signal = sig;
1557 	if (!sig)
1558 		return -ENOMEM;
1559 
1560 	sig->nr_threads = 1;
1561 	atomic_set(&sig->live, 1);
1562 	refcount_set(&sig->sigcnt, 1);
1563 
1564 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1565 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1566 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1567 
1568 	init_waitqueue_head(&sig->wait_chldexit);
1569 	sig->curr_target = tsk;
1570 	init_sigpending(&sig->shared_pending);
1571 	INIT_HLIST_HEAD(&sig->multiprocess);
1572 	seqlock_init(&sig->stats_lock);
1573 	prev_cputime_init(&sig->prev_cputime);
1574 
1575 #ifdef CONFIG_POSIX_TIMERS
1576 	INIT_LIST_HEAD(&sig->posix_timers);
1577 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1578 	sig->real_timer.function = it_real_fn;
1579 #endif
1580 
1581 	task_lock(current->group_leader);
1582 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1583 	task_unlock(current->group_leader);
1584 
1585 	posix_cpu_timers_init_group(sig);
1586 
1587 	tty_audit_fork(sig);
1588 	sched_autogroup_fork(sig);
1589 
1590 	sig->oom_score_adj = current->signal->oom_score_adj;
1591 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1592 
1593 	mutex_init(&sig->cred_guard_mutex);
1594 	mutex_init(&sig->exec_update_mutex);
1595 
1596 	return 0;
1597 }
1598 
copy_seccomp(struct task_struct * p)1599 static void copy_seccomp(struct task_struct *p)
1600 {
1601 #ifdef CONFIG_SECCOMP
1602 	/*
1603 	 * Must be called with sighand->lock held, which is common to
1604 	 * all threads in the group. Holding cred_guard_mutex is not
1605 	 * needed because this new task is not yet running and cannot
1606 	 * be racing exec.
1607 	 */
1608 	assert_spin_locked(&current->sighand->siglock);
1609 
1610 	/* Ref-count the new filter user, and assign it. */
1611 	get_seccomp_filter(current);
1612 	p->seccomp = current->seccomp;
1613 
1614 	/*
1615 	 * Explicitly enable no_new_privs here in case it got set
1616 	 * between the task_struct being duplicated and holding the
1617 	 * sighand lock. The seccomp state and nnp must be in sync.
1618 	 */
1619 	if (task_no_new_privs(current))
1620 		task_set_no_new_privs(p);
1621 
1622 	/*
1623 	 * If the parent gained a seccomp mode after copying thread
1624 	 * flags and between before we held the sighand lock, we have
1625 	 * to manually enable the seccomp thread flag here.
1626 	 */
1627 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1628 		set_tsk_thread_flag(p, TIF_SECCOMP);
1629 #endif
1630 }
1631 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1632 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1633 {
1634 	current->clear_child_tid = tidptr;
1635 
1636 	return task_pid_vnr(current);
1637 }
1638 
rt_mutex_init_task(struct task_struct * p)1639 static void rt_mutex_init_task(struct task_struct *p)
1640 {
1641 	raw_spin_lock_init(&p->pi_lock);
1642 #ifdef CONFIG_RT_MUTEXES
1643 	p->pi_waiters = RB_ROOT_CACHED;
1644 	p->pi_top_task = NULL;
1645 	p->pi_blocked_on = NULL;
1646 #endif
1647 }
1648 
init_task_pid_links(struct task_struct * task)1649 static inline void init_task_pid_links(struct task_struct *task)
1650 {
1651 	enum pid_type type;
1652 
1653 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1654 		INIT_HLIST_NODE(&task->pid_links[type]);
1655 	}
1656 }
1657 
1658 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1659 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1660 {
1661 	if (type == PIDTYPE_PID)
1662 		task->thread_pid = pid;
1663 	else
1664 		task->signal->pids[type] = pid;
1665 }
1666 
rcu_copy_process(struct task_struct * p)1667 static inline void rcu_copy_process(struct task_struct *p)
1668 {
1669 #ifdef CONFIG_PREEMPT_RCU
1670 	p->rcu_read_lock_nesting = 0;
1671 	p->rcu_read_unlock_special.s = 0;
1672 	p->rcu_blocked_node = NULL;
1673 	INIT_LIST_HEAD(&p->rcu_node_entry);
1674 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1675 #ifdef CONFIG_TASKS_RCU
1676 	p->rcu_tasks_holdout = false;
1677 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1678 	p->rcu_tasks_idle_cpu = -1;
1679 #endif /* #ifdef CONFIG_TASKS_RCU */
1680 #ifdef CONFIG_TASKS_TRACE_RCU
1681 	p->trc_reader_nesting = 0;
1682 	p->trc_reader_special.s = 0;
1683 	INIT_LIST_HEAD(&p->trc_holdout_list);
1684 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1685 }
1686 
pidfd_pid(const struct file * file)1687 struct pid *pidfd_pid(const struct file *file)
1688 {
1689 	if (file->f_op == &pidfd_fops)
1690 		return file->private_data;
1691 
1692 	return ERR_PTR(-EBADF);
1693 }
1694 
pidfd_release(struct inode * inode,struct file * file)1695 static int pidfd_release(struct inode *inode, struct file *file)
1696 {
1697 	struct pid *pid = file->private_data;
1698 
1699 	file->private_data = NULL;
1700 	put_pid(pid);
1701 	return 0;
1702 }
1703 
1704 #ifdef CONFIG_PROC_FS
1705 /**
1706  * pidfd_show_fdinfo - print information about a pidfd
1707  * @m: proc fdinfo file
1708  * @f: file referencing a pidfd
1709  *
1710  * Pid:
1711  * This function will print the pid that a given pidfd refers to in the
1712  * pid namespace of the procfs instance.
1713  * If the pid namespace of the process is not a descendant of the pid
1714  * namespace of the procfs instance 0 will be shown as its pid. This is
1715  * similar to calling getppid() on a process whose parent is outside of
1716  * its pid namespace.
1717  *
1718  * NSpid:
1719  * If pid namespaces are supported then this function will also print
1720  * the pid of a given pidfd refers to for all descendant pid namespaces
1721  * starting from the current pid namespace of the instance, i.e. the
1722  * Pid field and the first entry in the NSpid field will be identical.
1723  * If the pid namespace of the process is not a descendant of the pid
1724  * namespace of the procfs instance 0 will be shown as its first NSpid
1725  * entry and no others will be shown.
1726  * Note that this differs from the Pid and NSpid fields in
1727  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1728  * the  pid namespace of the procfs instance. The difference becomes
1729  * obvious when sending around a pidfd between pid namespaces from a
1730  * different branch of the tree, i.e. where no ancestoral relation is
1731  * present between the pid namespaces:
1732  * - create two new pid namespaces ns1 and ns2 in the initial pid
1733  *   namespace (also take care to create new mount namespaces in the
1734  *   new pid namespace and mount procfs)
1735  * - create a process with a pidfd in ns1
1736  * - send pidfd from ns1 to ns2
1737  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1738  *   have exactly one entry, which is 0
1739  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1740 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1741 {
1742 	struct pid *pid = f->private_data;
1743 	struct pid_namespace *ns;
1744 	pid_t nr = -1;
1745 
1746 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1747 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1748 		nr = pid_nr_ns(pid, ns);
1749 	}
1750 
1751 	seq_put_decimal_ll(m, "Pid:\t", nr);
1752 
1753 #ifdef CONFIG_PID_NS
1754 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1755 	if (nr > 0) {
1756 		int i;
1757 
1758 		/* If nr is non-zero it means that 'pid' is valid and that
1759 		 * ns, i.e. the pid namespace associated with the procfs
1760 		 * instance, is in the pid namespace hierarchy of pid.
1761 		 * Start at one below the already printed level.
1762 		 */
1763 		for (i = ns->level + 1; i <= pid->level; i++)
1764 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1765 	}
1766 #endif
1767 	seq_putc(m, '\n');
1768 }
1769 #endif
1770 
1771 /*
1772  * Poll support for process exit notification.
1773  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1774 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1775 {
1776 	struct pid *pid = file->private_data;
1777 	__poll_t poll_flags = 0;
1778 
1779 	poll_wait(file, &pid->wait_pidfd, pts);
1780 
1781 	/*
1782 	 * Inform pollers only when the whole thread group exits.
1783 	 * If the thread group leader exits before all other threads in the
1784 	 * group, then poll(2) should block, similar to the wait(2) family.
1785 	 */
1786 	if (thread_group_exited(pid))
1787 		poll_flags = EPOLLIN | EPOLLRDNORM;
1788 
1789 	return poll_flags;
1790 }
1791 
1792 const struct file_operations pidfd_fops = {
1793 	.release = pidfd_release,
1794 	.poll = pidfd_poll,
1795 #ifdef CONFIG_PROC_FS
1796 	.show_fdinfo = pidfd_show_fdinfo,
1797 #endif
1798 };
1799 
__delayed_free_task(struct rcu_head * rhp)1800 static void __delayed_free_task(struct rcu_head *rhp)
1801 {
1802 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1803 
1804 	free_task(tsk);
1805 }
1806 
delayed_free_task(struct task_struct * tsk)1807 static __always_inline void delayed_free_task(struct task_struct *tsk)
1808 {
1809 	if (IS_ENABLED(CONFIG_MEMCG))
1810 		call_rcu(&tsk->rcu, __delayed_free_task);
1811 	else
1812 		free_task(tsk);
1813 }
1814 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1815 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1816 {
1817 	/* Skip if kernel thread */
1818 	if (!tsk->mm)
1819 		return;
1820 
1821 	/* Skip if spawning a thread or using vfork */
1822 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1823 		return;
1824 
1825 	/* We need to synchronize with __set_oom_adj */
1826 	mutex_lock(&oom_adj_mutex);
1827 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1828 	/* Update the values in case they were changed after copy_signal */
1829 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1830 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1831 	mutex_unlock(&oom_adj_mutex);
1832 }
1833 
1834 /*
1835  * This creates a new process as a copy of the old one,
1836  * but does not actually start it yet.
1837  *
1838  * It copies the registers, and all the appropriate
1839  * parts of the process environment (as per the clone
1840  * flags). The actual kick-off is left to the caller.
1841  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1842 static __latent_entropy struct task_struct *copy_process(
1843 					struct pid *pid,
1844 					int trace,
1845 					int node,
1846 					struct kernel_clone_args *args)
1847 {
1848 	int pidfd = -1, retval;
1849 	struct task_struct *p;
1850 	struct multiprocess_signals delayed;
1851 	struct file *pidfile = NULL;
1852 	u64 clone_flags = args->flags;
1853 	struct nsproxy *nsp = current->nsproxy;
1854 
1855 	/*
1856 	 * Don't allow sharing the root directory with processes in a different
1857 	 * namespace
1858 	 */
1859 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1860 		return ERR_PTR(-EINVAL);
1861 
1862 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1863 		return ERR_PTR(-EINVAL);
1864 
1865 	/*
1866 	 * Thread groups must share signals as well, and detached threads
1867 	 * can only be started up within the thread group.
1868 	 */
1869 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1870 		return ERR_PTR(-EINVAL);
1871 
1872 	/*
1873 	 * Shared signal handlers imply shared VM. By way of the above,
1874 	 * thread groups also imply shared VM. Blocking this case allows
1875 	 * for various simplifications in other code.
1876 	 */
1877 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1878 		return ERR_PTR(-EINVAL);
1879 
1880 	/*
1881 	 * Siblings of global init remain as zombies on exit since they are
1882 	 * not reaped by their parent (swapper). To solve this and to avoid
1883 	 * multi-rooted process trees, prevent global and container-inits
1884 	 * from creating siblings.
1885 	 */
1886 	if ((clone_flags & CLONE_PARENT) &&
1887 				current->signal->flags & SIGNAL_UNKILLABLE)
1888 		return ERR_PTR(-EINVAL);
1889 
1890 	/*
1891 	 * If the new process will be in a different pid or user namespace
1892 	 * do not allow it to share a thread group with the forking task.
1893 	 */
1894 	if (clone_flags & CLONE_THREAD) {
1895 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1896 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1897 			return ERR_PTR(-EINVAL);
1898 	}
1899 
1900 	/*
1901 	 * If the new process will be in a different time namespace
1902 	 * do not allow it to share VM or a thread group with the forking task.
1903 	 */
1904 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1905 		if (nsp->time_ns != nsp->time_ns_for_children)
1906 			return ERR_PTR(-EINVAL);
1907 	}
1908 
1909 	if (clone_flags & CLONE_PIDFD) {
1910 		/*
1911 		 * - CLONE_DETACHED is blocked so that we can potentially
1912 		 *   reuse it later for CLONE_PIDFD.
1913 		 * - CLONE_THREAD is blocked until someone really needs it.
1914 		 */
1915 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1916 			return ERR_PTR(-EINVAL);
1917 	}
1918 
1919 	/*
1920 	 * Force any signals received before this point to be delivered
1921 	 * before the fork happens.  Collect up signals sent to multiple
1922 	 * processes that happen during the fork and delay them so that
1923 	 * they appear to happen after the fork.
1924 	 */
1925 	sigemptyset(&delayed.signal);
1926 	INIT_HLIST_NODE(&delayed.node);
1927 
1928 	spin_lock_irq(&current->sighand->siglock);
1929 	if (!(clone_flags & CLONE_THREAD))
1930 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1931 	recalc_sigpending();
1932 	spin_unlock_irq(&current->sighand->siglock);
1933 	retval = -ERESTARTNOINTR;
1934 	if (signal_pending(current))
1935 		goto fork_out;
1936 
1937 	retval = -ENOMEM;
1938 	p = dup_task_struct(current, node);
1939 	if (!p)
1940 		goto fork_out;
1941 
1942 	/*
1943 	 * This _must_ happen before we call free_task(), i.e. before we jump
1944 	 * to any of the bad_fork_* labels. This is to avoid freeing
1945 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1946 	 * kernel threads (PF_KTHREAD).
1947 	 */
1948 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1949 	/*
1950 	 * Clear TID on mm_release()?
1951 	 */
1952 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1953 
1954 	ftrace_graph_init_task(p);
1955 
1956 	rt_mutex_init_task(p);
1957 
1958 	lockdep_assert_irqs_enabled();
1959 #ifdef CONFIG_PROVE_LOCKING
1960 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1961 #endif
1962 	retval = -EAGAIN;
1963 	if (atomic_read(&p->real_cred->user->processes) >=
1964 			task_rlimit(p, RLIMIT_NPROC)) {
1965 		if (p->real_cred->user != INIT_USER &&
1966 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1967 			goto bad_fork_free;
1968 	}
1969 	current->flags &= ~PF_NPROC_EXCEEDED;
1970 
1971 	retval = copy_creds(p, clone_flags);
1972 	if (retval < 0)
1973 		goto bad_fork_free;
1974 
1975 	/*
1976 	 * If multiple threads are within copy_process(), then this check
1977 	 * triggers too late. This doesn't hurt, the check is only there
1978 	 * to stop root fork bombs.
1979 	 */
1980 	retval = -EAGAIN;
1981 	if (data_race(nr_threads >= max_threads))
1982 		goto bad_fork_cleanup_count;
1983 
1984 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1985 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1986 	p->flags |= PF_FORKNOEXEC;
1987 	INIT_LIST_HEAD(&p->children);
1988 	INIT_LIST_HEAD(&p->sibling);
1989 	rcu_copy_process(p);
1990 	p->vfork_done = NULL;
1991 	spin_lock_init(&p->alloc_lock);
1992 
1993 	init_sigpending(&p->pending);
1994 
1995 	p->utime = p->stime = p->gtime = 0;
1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1997 	p->utimescaled = p->stimescaled = 0;
1998 #endif
1999 	prev_cputime_init(&p->prev_cputime);
2000 
2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2002 	seqcount_init(&p->vtime.seqcount);
2003 	p->vtime.starttime = 0;
2004 	p->vtime.state = VTIME_INACTIVE;
2005 #endif
2006 
2007 #ifdef CONFIG_IO_URING
2008 	p->io_uring = NULL;
2009 #endif
2010 
2011 #if defined(SPLIT_RSS_COUNTING)
2012 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2013 #endif
2014 
2015 	p->default_timer_slack_ns = current->timer_slack_ns;
2016 
2017 #ifdef CONFIG_PSI
2018 	p->psi_flags = 0;
2019 #endif
2020 
2021 	task_io_accounting_init(&p->ioac);
2022 	acct_clear_integrals(p);
2023 
2024 	posix_cputimers_init(&p->posix_cputimers);
2025 
2026 	p->io_context = NULL;
2027 	audit_set_context(p, NULL);
2028 	cgroup_fork(p);
2029 #ifdef CONFIG_NUMA
2030 	p->mempolicy = mpol_dup(p->mempolicy);
2031 	if (IS_ERR(p->mempolicy)) {
2032 		retval = PTR_ERR(p->mempolicy);
2033 		p->mempolicy = NULL;
2034 		goto bad_fork_cleanup_threadgroup_lock;
2035 	}
2036 #endif
2037 #ifdef CONFIG_CPUSETS
2038 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2039 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2040 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2041 #endif
2042 #ifdef CONFIG_TRACE_IRQFLAGS
2043 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2044 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2045 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2046 	p->softirqs_enabled		= 1;
2047 	p->softirq_context		= 0;
2048 #endif
2049 
2050 	p->pagefault_disabled = 0;
2051 
2052 #ifdef CONFIG_LOCKDEP
2053 	lockdep_init_task(p);
2054 #endif
2055 
2056 #ifdef CONFIG_DEBUG_MUTEXES
2057 	p->blocked_on = NULL; /* not blocked yet */
2058 #endif
2059 #ifdef CONFIG_BCACHE
2060 	p->sequential_io	= 0;
2061 	p->sequential_io_avg	= 0;
2062 #endif
2063 
2064 	/* Perform scheduler related setup. Assign this task to a CPU. */
2065 	retval = sched_fork(clone_flags, p);
2066 	if (retval)
2067 		goto bad_fork_cleanup_policy;
2068 
2069 	retval = perf_event_init_task(p);
2070 	if (retval)
2071 		goto bad_fork_cleanup_policy;
2072 	retval = audit_alloc(p);
2073 	if (retval)
2074 		goto bad_fork_cleanup_perf;
2075 	/* copy all the process information */
2076 	shm_init_task(p);
2077 	retval = security_task_alloc(p, clone_flags);
2078 	if (retval)
2079 		goto bad_fork_cleanup_audit;
2080 	retval = copy_semundo(clone_flags, p);
2081 	if (retval)
2082 		goto bad_fork_cleanup_security;
2083 	retval = copy_files(clone_flags, p);
2084 	if (retval)
2085 		goto bad_fork_cleanup_semundo;
2086 	retval = copy_fs(clone_flags, p);
2087 	if (retval)
2088 		goto bad_fork_cleanup_files;
2089 	retval = copy_sighand(clone_flags, p);
2090 	if (retval)
2091 		goto bad_fork_cleanup_fs;
2092 	retval = copy_signal(clone_flags, p);
2093 	if (retval)
2094 		goto bad_fork_cleanup_sighand;
2095 	retval = copy_mm(clone_flags, p);
2096 	if (retval)
2097 		goto bad_fork_cleanup_signal;
2098 	retval = copy_namespaces(clone_flags, p);
2099 	if (retval)
2100 		goto bad_fork_cleanup_mm;
2101 	retval = copy_io(clone_flags, p);
2102 	if (retval)
2103 		goto bad_fork_cleanup_namespaces;
2104 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2105 	if (retval)
2106 		goto bad_fork_cleanup_io;
2107 
2108 	stackleak_task_init(p);
2109 
2110 	if (pid != &init_struct_pid) {
2111 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2112 				args->set_tid_size);
2113 		if (IS_ERR(pid)) {
2114 			retval = PTR_ERR(pid);
2115 			goto bad_fork_cleanup_thread;
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * This has to happen after we've potentially unshared the file
2121 	 * descriptor table (so that the pidfd doesn't leak into the child
2122 	 * if the fd table isn't shared).
2123 	 */
2124 	if (clone_flags & CLONE_PIDFD) {
2125 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2126 		if (retval < 0)
2127 			goto bad_fork_free_pid;
2128 
2129 		pidfd = retval;
2130 
2131 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2132 					      O_RDWR | O_CLOEXEC);
2133 		if (IS_ERR(pidfile)) {
2134 			put_unused_fd(pidfd);
2135 			retval = PTR_ERR(pidfile);
2136 			goto bad_fork_free_pid;
2137 		}
2138 		get_pid(pid);	/* held by pidfile now */
2139 
2140 		retval = put_user(pidfd, args->pidfd);
2141 		if (retval)
2142 			goto bad_fork_put_pidfd;
2143 	}
2144 
2145 #ifdef CONFIG_BLOCK
2146 	p->plug = NULL;
2147 #endif
2148 	futex_init_task(p);
2149 
2150 	/*
2151 	 * sigaltstack should be cleared when sharing the same VM
2152 	 */
2153 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2154 		sas_ss_reset(p);
2155 
2156 	/*
2157 	 * Syscall tracing and stepping should be turned off in the
2158 	 * child regardless of CLONE_PTRACE.
2159 	 */
2160 	user_disable_single_step(p);
2161 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2162 #ifdef TIF_SYSCALL_EMU
2163 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2164 #endif
2165 	clear_tsk_latency_tracing(p);
2166 
2167 	/* ok, now we should be set up.. */
2168 	p->pid = pid_nr(pid);
2169 	if (clone_flags & CLONE_THREAD) {
2170 		p->group_leader = current->group_leader;
2171 		p->tgid = current->tgid;
2172 	} else {
2173 		p->group_leader = p;
2174 		p->tgid = p->pid;
2175 	}
2176 
2177 	p->nr_dirtied = 0;
2178 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2179 	p->dirty_paused_when = 0;
2180 
2181 	p->pdeath_signal = 0;
2182 	INIT_LIST_HEAD(&p->thread_group);
2183 	p->task_works = NULL;
2184 
2185 	/*
2186 	 * Ensure that the cgroup subsystem policies allow the new process to be
2187 	 * forked. It should be noted that the new process's css_set can be changed
2188 	 * between here and cgroup_post_fork() if an organisation operation is in
2189 	 * progress.
2190 	 */
2191 	retval = cgroup_can_fork(p, args);
2192 	if (retval)
2193 		goto bad_fork_put_pidfd;
2194 
2195 	/*
2196 	 * From this point on we must avoid any synchronous user-space
2197 	 * communication until we take the tasklist-lock. In particular, we do
2198 	 * not want user-space to be able to predict the process start-time by
2199 	 * stalling fork(2) after we recorded the start_time but before it is
2200 	 * visible to the system.
2201 	 */
2202 
2203 	p->start_time = ktime_get_ns();
2204 	p->start_boottime = ktime_get_boottime_ns();
2205 
2206 	/*
2207 	 * Make it visible to the rest of the system, but dont wake it up yet.
2208 	 * Need tasklist lock for parent etc handling!
2209 	 */
2210 	write_lock_irq(&tasklist_lock);
2211 
2212 	/* CLONE_PARENT re-uses the old parent */
2213 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2214 		p->real_parent = current->real_parent;
2215 		p->parent_exec_id = current->parent_exec_id;
2216 		if (clone_flags & CLONE_THREAD)
2217 			p->exit_signal = -1;
2218 		else
2219 			p->exit_signal = current->group_leader->exit_signal;
2220 	} else {
2221 		p->real_parent = current;
2222 		p->parent_exec_id = current->self_exec_id;
2223 		p->exit_signal = args->exit_signal;
2224 	}
2225 
2226 	klp_copy_process(p);
2227 
2228 	spin_lock(&current->sighand->siglock);
2229 
2230 	/*
2231 	 * Copy seccomp details explicitly here, in case they were changed
2232 	 * before holding sighand lock.
2233 	 */
2234 	copy_seccomp(p);
2235 
2236 	rseq_fork(p, clone_flags);
2237 
2238 	/* Don't start children in a dying pid namespace */
2239 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2240 		retval = -ENOMEM;
2241 		goto bad_fork_cancel_cgroup;
2242 	}
2243 
2244 	/* Let kill terminate clone/fork in the middle */
2245 	if (fatal_signal_pending(current)) {
2246 		retval = -EINTR;
2247 		goto bad_fork_cancel_cgroup;
2248 	}
2249 
2250 	/* past the last point of failure */
2251 	if (pidfile)
2252 		fd_install(pidfd, pidfile);
2253 
2254 	init_task_pid_links(p);
2255 	if (likely(p->pid)) {
2256 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2257 
2258 		init_task_pid(p, PIDTYPE_PID, pid);
2259 		if (thread_group_leader(p)) {
2260 			init_task_pid(p, PIDTYPE_TGID, pid);
2261 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2262 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2263 
2264 			if (is_child_reaper(pid)) {
2265 				ns_of_pid(pid)->child_reaper = p;
2266 				p->signal->flags |= SIGNAL_UNKILLABLE;
2267 			}
2268 			p->signal->shared_pending.signal = delayed.signal;
2269 			p->signal->tty = tty_kref_get(current->signal->tty);
2270 			/*
2271 			 * Inherit has_child_subreaper flag under the same
2272 			 * tasklist_lock with adding child to the process tree
2273 			 * for propagate_has_child_subreaper optimization.
2274 			 */
2275 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2276 							 p->real_parent->signal->is_child_subreaper;
2277 			list_add_tail(&p->sibling, &p->real_parent->children);
2278 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2279 			attach_pid(p, PIDTYPE_TGID);
2280 			attach_pid(p, PIDTYPE_PGID);
2281 			attach_pid(p, PIDTYPE_SID);
2282 			__this_cpu_inc(process_counts);
2283 		} else {
2284 			current->signal->nr_threads++;
2285 			atomic_inc(&current->signal->live);
2286 			refcount_inc(&current->signal->sigcnt);
2287 			task_join_group_stop(p);
2288 			list_add_tail_rcu(&p->thread_group,
2289 					  &p->group_leader->thread_group);
2290 			list_add_tail_rcu(&p->thread_node,
2291 					  &p->signal->thread_head);
2292 		}
2293 		attach_pid(p, PIDTYPE_PID);
2294 		nr_threads++;
2295 	}
2296 	total_forks++;
2297 	hlist_del_init(&delayed.node);
2298 	spin_unlock(&current->sighand->siglock);
2299 	syscall_tracepoint_update(p);
2300 	write_unlock_irq(&tasklist_lock);
2301 
2302 	proc_fork_connector(p);
2303 	sched_post_fork(p);
2304 	cgroup_post_fork(p, args);
2305 	perf_event_fork(p);
2306 
2307 	trace_task_newtask(p, clone_flags);
2308 	uprobe_copy_process(p, clone_flags);
2309 
2310 	copy_oom_score_adj(clone_flags, p);
2311 
2312 	return p;
2313 
2314 bad_fork_cancel_cgroup:
2315 	spin_unlock(&current->sighand->siglock);
2316 	write_unlock_irq(&tasklist_lock);
2317 	cgroup_cancel_fork(p, args);
2318 bad_fork_put_pidfd:
2319 	if (clone_flags & CLONE_PIDFD) {
2320 		fput(pidfile);
2321 		put_unused_fd(pidfd);
2322 	}
2323 bad_fork_free_pid:
2324 	if (pid != &init_struct_pid)
2325 		free_pid(pid);
2326 bad_fork_cleanup_thread:
2327 	exit_thread(p);
2328 bad_fork_cleanup_io:
2329 	if (p->io_context)
2330 		exit_io_context(p);
2331 bad_fork_cleanup_namespaces:
2332 	exit_task_namespaces(p);
2333 bad_fork_cleanup_mm:
2334 	if (p->mm) {
2335 		mm_clear_owner(p->mm, p);
2336 		mmput(p->mm);
2337 	}
2338 bad_fork_cleanup_signal:
2339 	if (!(clone_flags & CLONE_THREAD))
2340 		free_signal_struct(p->signal);
2341 bad_fork_cleanup_sighand:
2342 	__cleanup_sighand(p->sighand);
2343 bad_fork_cleanup_fs:
2344 	exit_fs(p); /* blocking */
2345 bad_fork_cleanup_files:
2346 	exit_files(p); /* blocking */
2347 bad_fork_cleanup_semundo:
2348 	exit_sem(p);
2349 bad_fork_cleanup_security:
2350 	security_task_free(p);
2351 bad_fork_cleanup_audit:
2352 	audit_free(p);
2353 bad_fork_cleanup_perf:
2354 	perf_event_free_task(p);
2355 bad_fork_cleanup_policy:
2356 	lockdep_free_task(p);
2357 #ifdef CONFIG_NUMA
2358 	mpol_put(p->mempolicy);
2359 bad_fork_cleanup_threadgroup_lock:
2360 #endif
2361 	delayacct_tsk_free(p);
2362 bad_fork_cleanup_count:
2363 	atomic_dec(&p->cred->user->processes);
2364 	exit_creds(p);
2365 bad_fork_free:
2366 	p->state = TASK_DEAD;
2367 	put_task_stack(p);
2368 	delayed_free_task(p);
2369 fork_out:
2370 	spin_lock_irq(&current->sighand->siglock);
2371 	hlist_del_init(&delayed.node);
2372 	spin_unlock_irq(&current->sighand->siglock);
2373 	return ERR_PTR(retval);
2374 }
2375 
init_idle_pids(struct task_struct * idle)2376 static inline void init_idle_pids(struct task_struct *idle)
2377 {
2378 	enum pid_type type;
2379 
2380 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2381 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2382 		init_task_pid(idle, type, &init_struct_pid);
2383 	}
2384 }
2385 
fork_idle(int cpu)2386 struct task_struct *fork_idle(int cpu)
2387 {
2388 	struct task_struct *task;
2389 	struct kernel_clone_args args = {
2390 		.flags = CLONE_VM,
2391 	};
2392 
2393 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2394 	if (!IS_ERR(task)) {
2395 		init_idle_pids(task);
2396 		init_idle(task, cpu);
2397 	}
2398 
2399 	return task;
2400 }
2401 
copy_init_mm(void)2402 struct mm_struct *copy_init_mm(void)
2403 {
2404 	return dup_mm(NULL, &init_mm);
2405 }
2406 
2407 /*
2408  *  Ok, this is the main fork-routine.
2409  *
2410  * It copies the process, and if successful kick-starts
2411  * it and waits for it to finish using the VM if required.
2412  *
2413  * args->exit_signal is expected to be checked for sanity by the caller.
2414  */
kernel_clone(struct kernel_clone_args * args)2415 pid_t kernel_clone(struct kernel_clone_args *args)
2416 {
2417 	u64 clone_flags = args->flags;
2418 	struct completion vfork;
2419 	struct pid *pid;
2420 	struct task_struct *p;
2421 	int trace = 0;
2422 	pid_t nr;
2423 
2424 	/*
2425 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2426 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2427 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2428 	 * field in struct clone_args and it still doesn't make sense to have
2429 	 * them both point at the same memory location. Performing this check
2430 	 * here has the advantage that we don't need to have a separate helper
2431 	 * to check for legacy clone().
2432 	 */
2433 	if ((args->flags & CLONE_PIDFD) &&
2434 	    (args->flags & CLONE_PARENT_SETTID) &&
2435 	    (args->pidfd == args->parent_tid))
2436 		return -EINVAL;
2437 
2438 	/*
2439 	 * Determine whether and which event to report to ptracer.  When
2440 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2441 	 * requested, no event is reported; otherwise, report if the event
2442 	 * for the type of forking is enabled.
2443 	 */
2444 	if (!(clone_flags & CLONE_UNTRACED)) {
2445 		if (clone_flags & CLONE_VFORK)
2446 			trace = PTRACE_EVENT_VFORK;
2447 		else if (args->exit_signal != SIGCHLD)
2448 			trace = PTRACE_EVENT_CLONE;
2449 		else
2450 			trace = PTRACE_EVENT_FORK;
2451 
2452 		if (likely(!ptrace_event_enabled(current, trace)))
2453 			trace = 0;
2454 	}
2455 
2456 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2457 	add_latent_entropy();
2458 
2459 	if (IS_ERR(p))
2460 		return PTR_ERR(p);
2461 
2462 	/*
2463 	 * Do this prior waking up the new thread - the thread pointer
2464 	 * might get invalid after that point, if the thread exits quickly.
2465 	 */
2466 	trace_sched_process_fork(current, p);
2467 
2468 	pid = get_task_pid(p, PIDTYPE_PID);
2469 	nr = pid_vnr(pid);
2470 
2471 	if (clone_flags & CLONE_PARENT_SETTID)
2472 		put_user(nr, args->parent_tid);
2473 
2474 	if (clone_flags & CLONE_VFORK) {
2475 		p->vfork_done = &vfork;
2476 		init_completion(&vfork);
2477 		get_task_struct(p);
2478 	}
2479 
2480 	wake_up_new_task(p);
2481 
2482 	/* forking complete and child started to run, tell ptracer */
2483 	if (unlikely(trace))
2484 		ptrace_event_pid(trace, pid);
2485 
2486 	if (clone_flags & CLONE_VFORK) {
2487 		if (!wait_for_vfork_done(p, &vfork))
2488 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2489 	}
2490 
2491 	put_pid(pid);
2492 	return nr;
2493 }
2494 
2495 /*
2496  * Create a kernel thread.
2497  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2498 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2499 {
2500 	struct kernel_clone_args args = {
2501 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2502 				    CLONE_UNTRACED) & ~CSIGNAL),
2503 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2504 		.stack		= (unsigned long)fn,
2505 		.stack_size	= (unsigned long)arg,
2506 	};
2507 
2508 	return kernel_clone(&args);
2509 }
2510 
2511 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2512 SYSCALL_DEFINE0(fork)
2513 {
2514 #ifdef CONFIG_MMU
2515 	struct kernel_clone_args args = {
2516 		.exit_signal = SIGCHLD,
2517 	};
2518 
2519 	return kernel_clone(&args);
2520 #else
2521 	/* can not support in nommu mode */
2522 	return -EINVAL;
2523 #endif
2524 }
2525 #endif
2526 
2527 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2528 SYSCALL_DEFINE0(vfork)
2529 {
2530 	struct kernel_clone_args args = {
2531 		.flags		= CLONE_VFORK | CLONE_VM,
2532 		.exit_signal	= SIGCHLD,
2533 	};
2534 
2535 	return kernel_clone(&args);
2536 }
2537 #endif
2538 
2539 #ifdef __ARCH_WANT_SYS_CLONE
2540 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2541 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2542 		 int __user *, parent_tidptr,
2543 		 unsigned long, tls,
2544 		 int __user *, child_tidptr)
2545 #elif defined(CONFIG_CLONE_BACKWARDS2)
2546 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2547 		 int __user *, parent_tidptr,
2548 		 int __user *, child_tidptr,
2549 		 unsigned long, tls)
2550 #elif defined(CONFIG_CLONE_BACKWARDS3)
2551 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 		int, stack_size,
2553 		int __user *, parent_tidptr,
2554 		int __user *, child_tidptr,
2555 		unsigned long, tls)
2556 #else
2557 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2558 		 int __user *, parent_tidptr,
2559 		 int __user *, child_tidptr,
2560 		 unsigned long, tls)
2561 #endif
2562 {
2563 	struct kernel_clone_args args = {
2564 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2565 		.pidfd		= parent_tidptr,
2566 		.child_tid	= child_tidptr,
2567 		.parent_tid	= parent_tidptr,
2568 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2569 		.stack		= newsp,
2570 		.tls		= tls,
2571 	};
2572 
2573 	return kernel_clone(&args);
2574 }
2575 #endif
2576 
2577 #ifdef __ARCH_WANT_SYS_CLONE3
2578 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2579 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2580 					      struct clone_args __user *uargs,
2581 					      size_t usize)
2582 {
2583 	int err;
2584 	struct clone_args args;
2585 	pid_t *kset_tid = kargs->set_tid;
2586 
2587 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2588 		     CLONE_ARGS_SIZE_VER0);
2589 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2590 		     CLONE_ARGS_SIZE_VER1);
2591 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2592 		     CLONE_ARGS_SIZE_VER2);
2593 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2594 
2595 	if (unlikely(usize > PAGE_SIZE))
2596 		return -E2BIG;
2597 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2598 		return -EINVAL;
2599 
2600 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2601 	if (err)
2602 		return err;
2603 
2604 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2605 		return -EINVAL;
2606 
2607 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2608 		return -EINVAL;
2609 
2610 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2611 		return -EINVAL;
2612 
2613 	/*
2614 	 * Verify that higher 32bits of exit_signal are unset and that
2615 	 * it is a valid signal
2616 	 */
2617 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2618 		     !valid_signal(args.exit_signal)))
2619 		return -EINVAL;
2620 
2621 	if ((args.flags & CLONE_INTO_CGROUP) &&
2622 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2623 		return -EINVAL;
2624 
2625 	*kargs = (struct kernel_clone_args){
2626 		.flags		= args.flags,
2627 		.pidfd		= u64_to_user_ptr(args.pidfd),
2628 		.child_tid	= u64_to_user_ptr(args.child_tid),
2629 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2630 		.exit_signal	= args.exit_signal,
2631 		.stack		= args.stack,
2632 		.stack_size	= args.stack_size,
2633 		.tls		= args.tls,
2634 		.set_tid_size	= args.set_tid_size,
2635 		.cgroup		= args.cgroup,
2636 	};
2637 
2638 	if (args.set_tid &&
2639 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2640 			(kargs->set_tid_size * sizeof(pid_t))))
2641 		return -EFAULT;
2642 
2643 	kargs->set_tid = kset_tid;
2644 
2645 	return 0;
2646 }
2647 
2648 /**
2649  * clone3_stack_valid - check and prepare stack
2650  * @kargs: kernel clone args
2651  *
2652  * Verify that the stack arguments userspace gave us are sane.
2653  * In addition, set the stack direction for userspace since it's easy for us to
2654  * determine.
2655  */
clone3_stack_valid(struct kernel_clone_args * kargs)2656 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2657 {
2658 	if (kargs->stack == 0) {
2659 		if (kargs->stack_size > 0)
2660 			return false;
2661 	} else {
2662 		if (kargs->stack_size == 0)
2663 			return false;
2664 
2665 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2666 			return false;
2667 
2668 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2669 		kargs->stack += kargs->stack_size;
2670 #endif
2671 	}
2672 
2673 	return true;
2674 }
2675 
clone3_args_valid(struct kernel_clone_args * kargs)2676 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2677 {
2678 	/* Verify that no unknown flags are passed along. */
2679 	if (kargs->flags &
2680 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2681 		return false;
2682 
2683 	/*
2684 	 * - make the CLONE_DETACHED bit reuseable for clone3
2685 	 * - make the CSIGNAL bits reuseable for clone3
2686 	 */
2687 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2688 		return false;
2689 
2690 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2691 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2692 		return false;
2693 
2694 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2695 	    kargs->exit_signal)
2696 		return false;
2697 
2698 	if (!clone3_stack_valid(kargs))
2699 		return false;
2700 
2701 	return true;
2702 }
2703 
2704 /**
2705  * clone3 - create a new process with specific properties
2706  * @uargs: argument structure
2707  * @size:  size of @uargs
2708  *
2709  * clone3() is the extensible successor to clone()/clone2().
2710  * It takes a struct as argument that is versioned by its size.
2711  *
2712  * Return: On success, a positive PID for the child process.
2713  *         On error, a negative errno number.
2714  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2715 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2716 {
2717 	int err;
2718 
2719 	struct kernel_clone_args kargs;
2720 	pid_t set_tid[MAX_PID_NS_LEVEL];
2721 
2722 	kargs.set_tid = set_tid;
2723 
2724 	err = copy_clone_args_from_user(&kargs, uargs, size);
2725 	if (err)
2726 		return err;
2727 
2728 	if (!clone3_args_valid(&kargs))
2729 		return -EINVAL;
2730 
2731 	return kernel_clone(&kargs);
2732 }
2733 #endif
2734 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2735 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2736 {
2737 	struct task_struct *leader, *parent, *child;
2738 	int res;
2739 
2740 	read_lock(&tasklist_lock);
2741 	leader = top = top->group_leader;
2742 down:
2743 	for_each_thread(leader, parent) {
2744 		list_for_each_entry(child, &parent->children, sibling) {
2745 			res = visitor(child, data);
2746 			if (res) {
2747 				if (res < 0)
2748 					goto out;
2749 				leader = child;
2750 				goto down;
2751 			}
2752 up:
2753 			;
2754 		}
2755 	}
2756 
2757 	if (leader != top) {
2758 		child = leader;
2759 		parent = child->real_parent;
2760 		leader = parent->group_leader;
2761 		goto up;
2762 	}
2763 out:
2764 	read_unlock(&tasklist_lock);
2765 }
2766 
2767 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2768 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2769 #endif
2770 
sighand_ctor(void * data)2771 static void sighand_ctor(void *data)
2772 {
2773 	struct sighand_struct *sighand = data;
2774 
2775 	spin_lock_init(&sighand->siglock);
2776 	init_waitqueue_head(&sighand->signalfd_wqh);
2777 }
2778 
proc_caches_init(void)2779 void __init proc_caches_init(void)
2780 {
2781 	unsigned int mm_size;
2782 
2783 	sighand_cachep = kmem_cache_create("sighand_cache",
2784 			sizeof(struct sighand_struct), 0,
2785 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2786 			SLAB_ACCOUNT, sighand_ctor);
2787 	signal_cachep = kmem_cache_create("signal_cache",
2788 			sizeof(struct signal_struct), 0,
2789 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2790 			NULL);
2791 	files_cachep = kmem_cache_create("files_cache",
2792 			sizeof(struct files_struct), 0,
2793 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2794 			NULL);
2795 	fs_cachep = kmem_cache_create("fs_cache",
2796 			sizeof(struct fs_struct), 0,
2797 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2798 			NULL);
2799 
2800 	/*
2801 	 * The mm_cpumask is located at the end of mm_struct, and is
2802 	 * dynamically sized based on the maximum CPU number this system
2803 	 * can have, taking hotplug into account (nr_cpu_ids).
2804 	 */
2805 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2806 
2807 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2808 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2809 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2810 			offsetof(struct mm_struct, saved_auxv),
2811 			sizeof_field(struct mm_struct, saved_auxv),
2812 			NULL);
2813 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2814 	mmap_init();
2815 	nsproxy_cache_init();
2816 }
2817 
2818 /*
2819  * Check constraints on flags passed to the unshare system call.
2820  */
check_unshare_flags(unsigned long unshare_flags)2821 static int check_unshare_flags(unsigned long unshare_flags)
2822 {
2823 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2824 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2825 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2826 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2827 				CLONE_NEWTIME))
2828 		return -EINVAL;
2829 	/*
2830 	 * Not implemented, but pretend it works if there is nothing
2831 	 * to unshare.  Note that unsharing the address space or the
2832 	 * signal handlers also need to unshare the signal queues (aka
2833 	 * CLONE_THREAD).
2834 	 */
2835 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2836 		if (!thread_group_empty(current))
2837 			return -EINVAL;
2838 	}
2839 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2840 		if (refcount_read(&current->sighand->count) > 1)
2841 			return -EINVAL;
2842 	}
2843 	if (unshare_flags & CLONE_VM) {
2844 		if (!current_is_single_threaded())
2845 			return -EINVAL;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 /*
2852  * Unshare the filesystem structure if it is being shared
2853  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2854 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2855 {
2856 	struct fs_struct *fs = current->fs;
2857 
2858 	if (!(unshare_flags & CLONE_FS) || !fs)
2859 		return 0;
2860 
2861 	/* don't need lock here; in the worst case we'll do useless copy */
2862 	if (fs->users == 1)
2863 		return 0;
2864 
2865 	*new_fsp = copy_fs_struct(fs);
2866 	if (!*new_fsp)
2867 		return -ENOMEM;
2868 
2869 	return 0;
2870 }
2871 
2872 /*
2873  * Unshare file descriptor table if it is being shared
2874  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2875 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2876 	       struct files_struct **new_fdp)
2877 {
2878 	struct files_struct *fd = current->files;
2879 	int error = 0;
2880 
2881 	if ((unshare_flags & CLONE_FILES) &&
2882 	    (fd && atomic_read(&fd->count) > 1)) {
2883 		*new_fdp = dup_fd(fd, max_fds, &error);
2884 		if (!*new_fdp)
2885 			return error;
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 /*
2892  * unshare allows a process to 'unshare' part of the process
2893  * context which was originally shared using clone.  copy_*
2894  * functions used by kernel_clone() cannot be used here directly
2895  * because they modify an inactive task_struct that is being
2896  * constructed. Here we are modifying the current, active,
2897  * task_struct.
2898  */
ksys_unshare(unsigned long unshare_flags)2899 int ksys_unshare(unsigned long unshare_flags)
2900 {
2901 	struct fs_struct *fs, *new_fs = NULL;
2902 	struct files_struct *fd, *new_fd = NULL;
2903 	struct cred *new_cred = NULL;
2904 	struct nsproxy *new_nsproxy = NULL;
2905 	int do_sysvsem = 0;
2906 	int err;
2907 
2908 	/*
2909 	 * If unsharing a user namespace must also unshare the thread group
2910 	 * and unshare the filesystem root and working directories.
2911 	 */
2912 	if (unshare_flags & CLONE_NEWUSER)
2913 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2914 	/*
2915 	 * If unsharing vm, must also unshare signal handlers.
2916 	 */
2917 	if (unshare_flags & CLONE_VM)
2918 		unshare_flags |= CLONE_SIGHAND;
2919 	/*
2920 	 * If unsharing a signal handlers, must also unshare the signal queues.
2921 	 */
2922 	if (unshare_flags & CLONE_SIGHAND)
2923 		unshare_flags |= CLONE_THREAD;
2924 	/*
2925 	 * If unsharing namespace, must also unshare filesystem information.
2926 	 */
2927 	if (unshare_flags & CLONE_NEWNS)
2928 		unshare_flags |= CLONE_FS;
2929 
2930 	err = check_unshare_flags(unshare_flags);
2931 	if (err)
2932 		goto bad_unshare_out;
2933 	/*
2934 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2935 	 * to a new ipc namespace, the semaphore arrays from the old
2936 	 * namespace are unreachable.
2937 	 */
2938 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2939 		do_sysvsem = 1;
2940 	err = unshare_fs(unshare_flags, &new_fs);
2941 	if (err)
2942 		goto bad_unshare_out;
2943 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2944 	if (err)
2945 		goto bad_unshare_cleanup_fs;
2946 	err = unshare_userns(unshare_flags, &new_cred);
2947 	if (err)
2948 		goto bad_unshare_cleanup_fd;
2949 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2950 					 new_cred, new_fs);
2951 	if (err)
2952 		goto bad_unshare_cleanup_cred;
2953 
2954 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2955 		if (do_sysvsem) {
2956 			/*
2957 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2958 			 */
2959 			exit_sem(current);
2960 		}
2961 		if (unshare_flags & CLONE_NEWIPC) {
2962 			/* Orphan segments in old ns (see sem above). */
2963 			exit_shm(current);
2964 			shm_init_task(current);
2965 		}
2966 
2967 		if (new_nsproxy)
2968 			switch_task_namespaces(current, new_nsproxy);
2969 
2970 		task_lock(current);
2971 
2972 		if (new_fs) {
2973 			fs = current->fs;
2974 			spin_lock(&fs->lock);
2975 			current->fs = new_fs;
2976 			if (--fs->users)
2977 				new_fs = NULL;
2978 			else
2979 				new_fs = fs;
2980 			spin_unlock(&fs->lock);
2981 		}
2982 
2983 		if (new_fd) {
2984 			fd = current->files;
2985 			current->files = new_fd;
2986 			new_fd = fd;
2987 		}
2988 
2989 		task_unlock(current);
2990 
2991 		if (new_cred) {
2992 			/* Install the new user namespace */
2993 			commit_creds(new_cred);
2994 			new_cred = NULL;
2995 		}
2996 	}
2997 
2998 	perf_event_namespaces(current);
2999 
3000 bad_unshare_cleanup_cred:
3001 	if (new_cred)
3002 		put_cred(new_cred);
3003 bad_unshare_cleanup_fd:
3004 	if (new_fd)
3005 		put_files_struct(new_fd);
3006 
3007 bad_unshare_cleanup_fs:
3008 	if (new_fs)
3009 		free_fs_struct(new_fs);
3010 
3011 bad_unshare_out:
3012 	return err;
3013 }
3014 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3015 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3016 {
3017 	return ksys_unshare(unshare_flags);
3018 }
3019 
3020 /*
3021  *	Helper to unshare the files of the current task.
3022  *	We don't want to expose copy_files internals to
3023  *	the exec layer of the kernel.
3024  */
3025 
unshare_files(struct files_struct ** displaced)3026 int unshare_files(struct files_struct **displaced)
3027 {
3028 	struct task_struct *task = current;
3029 	struct files_struct *copy = NULL;
3030 	int error;
3031 
3032 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3033 	if (error || !copy) {
3034 		*displaced = NULL;
3035 		return error;
3036 	}
3037 	*displaced = task->files;
3038 	task_lock(task);
3039 	task->files = copy;
3040 	task_unlock(task);
3041 	return 0;
3042 }
3043 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3044 int sysctl_max_threads(struct ctl_table *table, int write,
3045 		       void *buffer, size_t *lenp, loff_t *ppos)
3046 {
3047 	struct ctl_table t;
3048 	int ret;
3049 	int threads = max_threads;
3050 	int min = 1;
3051 	int max = MAX_THREADS;
3052 
3053 	t = *table;
3054 	t.data = &threads;
3055 	t.extra1 = &min;
3056 	t.extra2 = &max;
3057 
3058 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3059 	if (ret || !write)
3060 		return ret;
3061 
3062 	max_threads = threads;
3063 
3064 	return 0;
3065 }
3066