1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105
106 #include <trace/events/sched.h>
107
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 static int max_threads; /* tunable limit on nr_threads */
128
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
130
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
141
142 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)143 int lockdep_tasklist_lock_is_held(void)
144 {
145 return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149
nr_processes(void)150 int nr_processes(void)
151 {
152 int cpu;
153 int total = 0;
154
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
157
158 return total;
159 }
160
arch_release_task_struct(struct task_struct * tsk)161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167
alloc_task_struct_node(int node)168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172
free_task_struct(struct task_struct * tsk)173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180
181 /*
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
184 */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186
187 #ifdef CONFIG_VMAP_STACK
188 /*
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
191 */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194
free_vm_stack_cache(unsigned int cpu)195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 int i;
199
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203 if (!vm_stack)
204 continue;
205
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
208 }
209
210 return 0;
211 }
212 #endif
213
alloc_thread_stack_node(struct task_struct * tsk,int node)214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 void *stack;
218 int i;
219
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
221 struct vm_struct *s;
222
223 s = this_cpu_xchg(cached_stacks[i], NULL);
224
225 if (!s)
226 continue;
227
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
233
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
236 return s->addr;
237 }
238
239 /*
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
243 */
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
247 PAGE_KERNEL,
248 0, node, __builtin_return_address(0));
249
250 /*
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
254 */
255 if (stack) {
256 tsk->stack_vm_area = find_vm_area(stack);
257 tsk->stack = stack;
258 }
259 return stack;
260 #else
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 THREAD_SIZE_ORDER);
263
264 if (likely(page)) {
265 tsk->stack = kasan_reset_tag(page_address(page));
266 return tsk->stack;
267 }
268 return NULL;
269 #endif
270 }
271
free_thread_stack(struct task_struct * tsk)272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
276
277 if (vm) {
278 int i;
279
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
286 continue;
287
288 return;
289 }
290
291 vfree_atomic(tsk->stack);
292 return;
293 }
294 #endif
295
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300
alloc_thread_stack_node(struct task_struct * tsk,int node)301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 int node)
303 {
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 stack = kasan_reset_tag(stack);
307 tsk->stack = stack;
308 return stack;
309 }
310
free_thread_stack(struct task_struct * tsk)311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
thread_stack_cache_init(void)316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
vm_area_alloc(struct mm_struct * mm)344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
vm_area_dup(struct vm_area_struct * orig)354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 /*
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
364 */
365 *new = data_race(*orig);
366 INIT_LIST_HEAD(&new->anon_vma_chain);
367 new->vm_next = new->vm_prev = NULL;
368 }
369 return new;
370 }
371
vm_area_free(struct vm_area_struct * vma)372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 kmem_cache_free(vm_area_cachep, vma);
375 }
376
account_kernel_stack(struct task_struct * tsk,int account)377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 void *stack = task_stack_page(tsk);
380 struct vm_struct *vm = task_stack_vm_area(tsk);
381
382
383 /* All stack pages are in the same node. */
384 if (vm)
385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
387 else
388 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
390 }
391
memcg_charge_kernel_stack(struct task_struct * tsk)392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395 struct vm_struct *vm = task_stack_vm_area(tsk);
396 int ret;
397
398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399
400 if (vm) {
401 int i;
402
403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404
405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 /*
407 * If memcg_kmem_charge_page() fails, page->mem_cgroup
408 * pointer is NULL, and memcg_kmem_uncharge_page() in
409 * free_thread_stack() will ignore this page.
410 */
411 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
412 0);
413 if (ret)
414 return ret;
415 }
416 }
417 #endif
418 return 0;
419 }
420
release_task_stack(struct task_struct * tsk)421 static void release_task_stack(struct task_struct *tsk)
422 {
423 if (WARN_ON(tsk->state != TASK_DEAD))
424 return; /* Better to leak the stack than to free prematurely */
425
426 account_kernel_stack(tsk, -1);
427 free_thread_stack(tsk);
428 tsk->stack = NULL;
429 #ifdef CONFIG_VMAP_STACK
430 tsk->stack_vm_area = NULL;
431 #endif
432 }
433
434 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)435 void put_task_stack(struct task_struct *tsk)
436 {
437 if (refcount_dec_and_test(&tsk->stack_refcount))
438 release_task_stack(tsk);
439 }
440 #endif
441
free_task(struct task_struct * tsk)442 void free_task(struct task_struct *tsk)
443 {
444 scs_release(tsk);
445
446 #ifndef CONFIG_THREAD_INFO_IN_TASK
447 /*
448 * The task is finally done with both the stack and thread_info,
449 * so free both.
450 */
451 release_task_stack(tsk);
452 #else
453 /*
454 * If the task had a separate stack allocation, it should be gone
455 * by now.
456 */
457 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
458 #endif
459 rt_mutex_debug_task_free(tsk);
460 ftrace_graph_exit_task(tsk);
461 arch_release_task_struct(tsk);
462 if (tsk->flags & PF_KTHREAD)
463 free_kthread_struct(tsk);
464 free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467
468 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
471 {
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
474 int retval;
475 unsigned long charge;
476 LIST_HEAD(uf);
477
478 uprobe_start_dup_mmap();
479 if (mmap_write_lock_killable(oldmm)) {
480 retval = -EINTR;
481 goto fail_uprobe_end;
482 }
483 flush_cache_dup_mm(oldmm);
484 uprobe_dup_mmap(oldmm, mm);
485 /*
486 * Not linked in yet - no deadlock potential:
487 */
488 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
489
490 /* No ordering required: file already has been exposed. */
491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492
493 mm->total_vm = oldmm->total_vm;
494 mm->data_vm = oldmm->data_vm;
495 mm->exec_vm = oldmm->exec_vm;
496 mm->stack_vm = oldmm->stack_vm;
497
498 rb_link = &mm->mm_rb.rb_node;
499 rb_parent = NULL;
500 pprev = &mm->mmap;
501 retval = ksm_fork(mm, oldmm);
502 if (retval)
503 goto out;
504 retval = khugepaged_fork(mm, oldmm);
505 if (retval)
506 goto out;
507
508 prev = NULL;
509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 struct file *file;
511
512 if (mpnt->vm_flags & VM_DONTCOPY) {
513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 continue;
515 }
516 charge = 0;
517 /*
518 * Don't duplicate many vmas if we've been oom-killed (for
519 * example)
520 */
521 if (fatal_signal_pending(current)) {
522 retval = -EINTR;
523 goto out;
524 }
525 if (mpnt->vm_flags & VM_ACCOUNT) {
526 unsigned long len = vma_pages(mpnt);
527
528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 goto fail_nomem;
530 charge = len;
531 }
532 tmp = vm_area_dup(mpnt);
533 if (!tmp)
534 goto fail_nomem;
535 retval = vma_dup_policy(mpnt, tmp);
536 if (retval)
537 goto fail_nomem_policy;
538 tmp->vm_mm = mm;
539 retval = dup_userfaultfd(tmp, &uf);
540 if (retval)
541 goto fail_nomem_anon_vma_fork;
542 if (tmp->vm_flags & VM_WIPEONFORK) {
543 /*
544 * VM_WIPEONFORK gets a clean slate in the child.
545 * Don't prepare anon_vma until fault since we don't
546 * copy page for current vma.
547 */
548 tmp->anon_vma = NULL;
549 } else if (anon_vma_fork(tmp, mpnt))
550 goto fail_nomem_anon_vma_fork;
551 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
552 file = tmp->vm_file;
553 if (file) {
554 struct inode *inode = file_inode(file);
555 struct address_space *mapping = file->f_mapping;
556
557 get_file(file);
558 if (tmp->vm_flags & VM_DENYWRITE)
559 put_write_access(inode);
560 i_mmap_lock_write(mapping);
561 if (tmp->vm_flags & VM_SHARED)
562 mapping_allow_writable(mapping);
563 flush_dcache_mmap_lock(mapping);
564 /* insert tmp into the share list, just after mpnt */
565 vma_interval_tree_insert_after(tmp, mpnt,
566 &mapping->i_mmap);
567 flush_dcache_mmap_unlock(mapping);
568 i_mmap_unlock_write(mapping);
569 }
570
571 /*
572 * Clear hugetlb-related page reserves for children. This only
573 * affects MAP_PRIVATE mappings. Faults generated by the child
574 * are not guaranteed to succeed, even if read-only
575 */
576 if (is_vm_hugetlb_page(tmp))
577 reset_vma_resv_huge_pages(tmp);
578
579 /*
580 * Link in the new vma and copy the page table entries.
581 */
582 *pprev = tmp;
583 pprev = &tmp->vm_next;
584 tmp->vm_prev = prev;
585 prev = tmp;
586
587 __vma_link_rb(mm, tmp, rb_link, rb_parent);
588 rb_link = &tmp->vm_rb.rb_right;
589 rb_parent = &tmp->vm_rb;
590
591 mm->map_count++;
592 if (!(tmp->vm_flags & VM_WIPEONFORK))
593 retval = copy_page_range(tmp, mpnt);
594
595 if (tmp->vm_ops && tmp->vm_ops->open)
596 tmp->vm_ops->open(tmp);
597
598 if (retval)
599 goto out;
600 }
601 /* a new mm has just been created */
602 retval = arch_dup_mmap(oldmm, mm);
603 out:
604 mmap_write_unlock(mm);
605 flush_tlb_mm(oldmm);
606 mmap_write_unlock(oldmm);
607 dup_userfaultfd_complete(&uf);
608 fail_uprobe_end:
609 uprobe_end_dup_mmap();
610 return retval;
611 fail_nomem_anon_vma_fork:
612 mpol_put(vma_policy(tmp));
613 fail_nomem_policy:
614 vm_area_free(tmp);
615 fail_nomem:
616 retval = -ENOMEM;
617 vm_unacct_memory(charge);
618 goto out;
619 }
620
mm_alloc_pgd(struct mm_struct * mm)621 static inline int mm_alloc_pgd(struct mm_struct *mm)
622 {
623 mm->pgd = pgd_alloc(mm);
624 if (unlikely(!mm->pgd))
625 return -ENOMEM;
626 return 0;
627 }
628
mm_free_pgd(struct mm_struct * mm)629 static inline void mm_free_pgd(struct mm_struct *mm)
630 {
631 pgd_free(mm, mm->pgd);
632 }
633 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)634 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
635 {
636 mmap_write_lock(oldmm);
637 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
638 mmap_write_unlock(oldmm);
639 return 0;
640 }
641 #define mm_alloc_pgd(mm) (0)
642 #define mm_free_pgd(mm)
643 #endif /* CONFIG_MMU */
644
check_mm(struct mm_struct * mm)645 static void check_mm(struct mm_struct *mm)
646 {
647 int i;
648
649 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
650 "Please make sure 'struct resident_page_types[]' is updated as well");
651
652 for (i = 0; i < NR_MM_COUNTERS; i++) {
653 long x = atomic_long_read(&mm->rss_stat.count[i]);
654
655 if (unlikely(x))
656 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
657 mm, resident_page_types[i], x);
658 }
659
660 if (mm_pgtables_bytes(mm))
661 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
662 mm_pgtables_bytes(mm));
663
664 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
665 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
666 #endif
667 }
668
669 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
670 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
671
672 /*
673 * Called when the last reference to the mm
674 * is dropped: either by a lazy thread or by
675 * mmput. Free the page directory and the mm.
676 */
__mmdrop(struct mm_struct * mm)677 void __mmdrop(struct mm_struct *mm)
678 {
679 BUG_ON(mm == &init_mm);
680 WARN_ON_ONCE(mm == current->mm);
681 WARN_ON_ONCE(mm == current->active_mm);
682 mm_free_pgd(mm);
683 destroy_context(mm);
684 mmu_notifier_subscriptions_destroy(mm);
685 check_mm(mm);
686 put_user_ns(mm->user_ns);
687 free_mm(mm);
688 }
689 EXPORT_SYMBOL_GPL(__mmdrop);
690
mmdrop_async_fn(struct work_struct * work)691 static void mmdrop_async_fn(struct work_struct *work)
692 {
693 struct mm_struct *mm;
694
695 mm = container_of(work, struct mm_struct, async_put_work);
696 __mmdrop(mm);
697 }
698
mmdrop_async(struct mm_struct * mm)699 static void mmdrop_async(struct mm_struct *mm)
700 {
701 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
702 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
703 schedule_work(&mm->async_put_work);
704 }
705 }
706
free_signal_struct(struct signal_struct * sig)707 static inline void free_signal_struct(struct signal_struct *sig)
708 {
709 taskstats_tgid_free(sig);
710 sched_autogroup_exit(sig);
711 /*
712 * __mmdrop is not safe to call from softirq context on x86 due to
713 * pgd_dtor so postpone it to the async context
714 */
715 if (sig->oom_mm)
716 mmdrop_async(sig->oom_mm);
717 kmem_cache_free(signal_cachep, sig);
718 }
719
put_signal_struct(struct signal_struct * sig)720 static inline void put_signal_struct(struct signal_struct *sig)
721 {
722 if (refcount_dec_and_test(&sig->sigcnt))
723 free_signal_struct(sig);
724 }
725
__put_task_struct(struct task_struct * tsk)726 void __put_task_struct(struct task_struct *tsk)
727 {
728 WARN_ON(!tsk->exit_state);
729 WARN_ON(refcount_read(&tsk->usage));
730 WARN_ON(tsk == current);
731
732 io_uring_free(tsk);
733 cgroup_free(tsk);
734 task_numa_free(tsk, true);
735 security_task_free(tsk);
736 exit_creds(tsk);
737 delayacct_tsk_free(tsk);
738 put_signal_struct(tsk->signal);
739
740 if (!profile_handoff_task(tsk))
741 free_task(tsk);
742 }
743 EXPORT_SYMBOL_GPL(__put_task_struct);
744
arch_task_cache_init(void)745 void __init __weak arch_task_cache_init(void) { }
746
747 /*
748 * set_max_threads
749 */
set_max_threads(unsigned int max_threads_suggested)750 static void set_max_threads(unsigned int max_threads_suggested)
751 {
752 u64 threads;
753 unsigned long nr_pages = totalram_pages();
754
755 /*
756 * The number of threads shall be limited such that the thread
757 * structures may only consume a small part of the available memory.
758 */
759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
760 threads = MAX_THREADS;
761 else
762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
763 (u64) THREAD_SIZE * 8UL);
764
765 if (threads > max_threads_suggested)
766 threads = max_threads_suggested;
767
768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
769 }
770
771 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772 /* Initialized by the architecture: */
773 int arch_task_struct_size __read_mostly;
774 #endif
775
776 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)777 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
778 {
779 /* Fetch thread_struct whitelist for the architecture. */
780 arch_thread_struct_whitelist(offset, size);
781
782 /*
783 * Handle zero-sized whitelist or empty thread_struct, otherwise
784 * adjust offset to position of thread_struct in task_struct.
785 */
786 if (unlikely(*size == 0))
787 *offset = 0;
788 else
789 *offset += offsetof(struct task_struct, thread);
790 }
791 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
792
fork_init(void)793 void __init fork_init(void)
794 {
795 int i;
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
797 #ifndef ARCH_MIN_TASKALIGN
798 #define ARCH_MIN_TASKALIGN 0
799 #endif
800 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
801 unsigned long useroffset, usersize;
802
803 /* create a slab on which task_structs can be allocated */
804 task_struct_whitelist(&useroffset, &usersize);
805 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
806 arch_task_struct_size, align,
807 SLAB_PANIC|SLAB_ACCOUNT,
808 useroffset, usersize, NULL);
809 #endif
810
811 /* do the arch specific task caches init */
812 arch_task_cache_init();
813
814 set_max_threads(MAX_THREADS);
815
816 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
817 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
818 init_task.signal->rlim[RLIMIT_SIGPENDING] =
819 init_task.signal->rlim[RLIMIT_NPROC];
820
821 for (i = 0; i < UCOUNT_COUNTS; i++) {
822 init_user_ns.ucount_max[i] = max_threads/2;
823 }
824
825 #ifdef CONFIG_VMAP_STACK
826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 NULL, free_vm_stack_cache);
828 #endif
829
830 scs_init();
831
832 lockdep_init_task(&init_task);
833 uprobes_init();
834 }
835
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)836 int __weak arch_dup_task_struct(struct task_struct *dst,
837 struct task_struct *src)
838 {
839 *dst = *src;
840 return 0;
841 }
842
set_task_stack_end_magic(struct task_struct * tsk)843 void set_task_stack_end_magic(struct task_struct *tsk)
844 {
845 unsigned long *stackend;
846
847 stackend = end_of_stack(tsk);
848 *stackend = STACK_END_MAGIC; /* for overflow detection */
849 }
850
dup_task_struct(struct task_struct * orig,int node)851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
852 {
853 struct task_struct *tsk;
854 unsigned long *stack;
855 struct vm_struct *stack_vm_area __maybe_unused;
856 int err;
857
858 if (node == NUMA_NO_NODE)
859 node = tsk_fork_get_node(orig);
860 tsk = alloc_task_struct_node(node);
861 if (!tsk)
862 return NULL;
863
864 stack = alloc_thread_stack_node(tsk, node);
865 if (!stack)
866 goto free_tsk;
867
868 if (memcg_charge_kernel_stack(tsk))
869 goto free_stack;
870
871 stack_vm_area = task_stack_vm_area(tsk);
872
873 err = arch_dup_task_struct(tsk, orig);
874
875 /*
876 * arch_dup_task_struct() clobbers the stack-related fields. Make
877 * sure they're properly initialized before using any stack-related
878 * functions again.
879 */
880 tsk->stack = stack;
881 #ifdef CONFIG_VMAP_STACK
882 tsk->stack_vm_area = stack_vm_area;
883 #endif
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 refcount_set(&tsk->stack_refcount, 1);
886 #endif
887
888 if (err)
889 goto free_stack;
890
891 err = scs_prepare(tsk, node);
892 if (err)
893 goto free_stack;
894
895 #ifdef CONFIG_SECCOMP
896 /*
897 * We must handle setting up seccomp filters once we're under
898 * the sighand lock in case orig has changed between now and
899 * then. Until then, filter must be NULL to avoid messing up
900 * the usage counts on the error path calling free_task.
901 */
902 tsk->seccomp.filter = NULL;
903 #endif
904
905 setup_thread_stack(tsk, orig);
906 clear_user_return_notifier(tsk);
907 clear_tsk_need_resched(tsk);
908 set_task_stack_end_magic(tsk);
909
910 #ifdef CONFIG_STACKPROTECTOR
911 tsk->stack_canary = get_random_canary();
912 #endif
913 if (orig->cpus_ptr == &orig->cpus_mask)
914 tsk->cpus_ptr = &tsk->cpus_mask;
915
916 /*
917 * One for the user space visible state that goes away when reaped.
918 * One for the scheduler.
919 */
920 refcount_set(&tsk->rcu_users, 2);
921 /* One for the rcu users */
922 refcount_set(&tsk->usage, 1);
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
924 tsk->btrace_seq = 0;
925 #endif
926 tsk->splice_pipe = NULL;
927 tsk->task_frag.page = NULL;
928 tsk->wake_q.next = NULL;
929
930 account_kernel_stack(tsk, 1);
931
932 kcov_task_init(tsk);
933
934 #ifdef CONFIG_FAULT_INJECTION
935 tsk->fail_nth = 0;
936 #endif
937
938 #ifdef CONFIG_BLK_CGROUP
939 tsk->throttle_queue = NULL;
940 tsk->use_memdelay = 0;
941 #endif
942
943 #ifdef CONFIG_MEMCG
944 tsk->active_memcg = NULL;
945 #endif
946 return tsk;
947
948 free_stack:
949 free_thread_stack(tsk);
950 free_tsk:
951 free_task_struct(tsk);
952 return NULL;
953 }
954
955 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
956
957 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
958
coredump_filter_setup(char * s)959 static int __init coredump_filter_setup(char *s)
960 {
961 default_dump_filter =
962 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
963 MMF_DUMP_FILTER_MASK;
964 return 1;
965 }
966
967 __setup("coredump_filter=", coredump_filter_setup);
968
969 #include <linux/init_task.h>
970
mm_init_aio(struct mm_struct * mm)971 static void mm_init_aio(struct mm_struct *mm)
972 {
973 #ifdef CONFIG_AIO
974 spin_lock_init(&mm->ioctx_lock);
975 mm->ioctx_table = NULL;
976 #endif
977 }
978
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)979 static __always_inline void mm_clear_owner(struct mm_struct *mm,
980 struct task_struct *p)
981 {
982 #ifdef CONFIG_MEMCG
983 if (mm->owner == p)
984 WRITE_ONCE(mm->owner, NULL);
985 #endif
986 }
987
mm_init_owner(struct mm_struct * mm,struct task_struct * p)988 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
989 {
990 #ifdef CONFIG_MEMCG
991 mm->owner = p;
992 #endif
993 }
994
mm_init_uprobes_state(struct mm_struct * mm)995 static void mm_init_uprobes_state(struct mm_struct *mm)
996 {
997 #ifdef CONFIG_UPROBES
998 mm->uprobes_state.xol_area = NULL;
999 #endif
1000 }
1001
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1002 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1003 struct user_namespace *user_ns)
1004 {
1005 mm->mmap = NULL;
1006 mm->mm_rb = RB_ROOT;
1007 mm->vmacache_seqnum = 0;
1008 atomic_set(&mm->mm_users, 1);
1009 atomic_set(&mm->mm_count, 1);
1010 mmap_init_lock(mm);
1011 INIT_LIST_HEAD(&mm->mmlist);
1012 mm->core_state = NULL;
1013 mm_pgtables_bytes_init(mm);
1014 mm->map_count = 0;
1015 mm->locked_vm = 0;
1016 atomic_set(&mm->has_pinned, 0);
1017 atomic64_set(&mm->pinned_vm, 0);
1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 spin_lock_init(&mm->page_table_lock);
1020 spin_lock_init(&mm->arg_lock);
1021 mm_init_cpumask(mm);
1022 mm_init_aio(mm);
1023 mm_init_owner(mm, p);
1024 RCU_INIT_POINTER(mm->exe_file, NULL);
1025 mmu_notifier_subscriptions_init(mm);
1026 init_tlb_flush_pending(mm);
1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 mm->pmd_huge_pte = NULL;
1029 #endif
1030 mm_init_uprobes_state(mm);
1031
1032 if (current->mm) {
1033 mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 } else {
1036 mm->flags = default_dump_filter;
1037 mm->def_flags = 0;
1038 }
1039
1040 if (mm_alloc_pgd(mm))
1041 goto fail_nopgd;
1042
1043 if (init_new_context(p, mm))
1044 goto fail_nocontext;
1045
1046 mm->user_ns = get_user_ns(user_ns);
1047 return mm;
1048
1049 fail_nocontext:
1050 mm_free_pgd(mm);
1051 fail_nopgd:
1052 free_mm(mm);
1053 return NULL;
1054 }
1055
1056 /*
1057 * Allocate and initialize an mm_struct.
1058 */
mm_alloc(void)1059 struct mm_struct *mm_alloc(void)
1060 {
1061 struct mm_struct *mm;
1062
1063 mm = allocate_mm();
1064 if (!mm)
1065 return NULL;
1066
1067 memset(mm, 0, sizeof(*mm));
1068 return mm_init(mm, current, current_user_ns());
1069 }
1070
__mmput(struct mm_struct * mm)1071 static inline void __mmput(struct mm_struct *mm)
1072 {
1073 VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075 uprobe_clear_state(mm);
1076 exit_aio(mm);
1077 ksm_exit(mm);
1078 khugepaged_exit(mm); /* must run before exit_mmap */
1079 exit_mmap(mm);
1080 mm_put_huge_zero_page(mm);
1081 set_mm_exe_file(mm, NULL);
1082 if (!list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 list_del(&mm->mmlist);
1085 spin_unlock(&mmlist_lock);
1086 }
1087 if (mm->binfmt)
1088 module_put(mm->binfmt->module);
1089 mmdrop(mm);
1090 }
1091
1092 /*
1093 * Decrement the use count and release all resources for an mm.
1094 */
mmput(struct mm_struct * mm)1095 void mmput(struct mm_struct *mm)
1096 {
1097 might_sleep();
1098
1099 if (atomic_dec_and_test(&mm->mm_users))
1100 __mmput(mm);
1101 }
1102 EXPORT_SYMBOL_GPL(mmput);
1103
1104 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1105 static void mmput_async_fn(struct work_struct *work)
1106 {
1107 struct mm_struct *mm = container_of(work, struct mm_struct,
1108 async_put_work);
1109
1110 __mmput(mm);
1111 }
1112
mmput_async(struct mm_struct * mm)1113 void mmput_async(struct mm_struct *mm)
1114 {
1115 if (atomic_dec_and_test(&mm->mm_users)) {
1116 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 schedule_work(&mm->async_put_work);
1118 }
1119 }
1120 #endif
1121
1122 /**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
1132 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134 {
1135 struct file *old_exe_file;
1136
1137 /*
1138 * It is safe to dereference the exe_file without RCU as
1139 * this function is only called if nobody else can access
1140 * this mm -- see comment above for justification.
1141 */
1142 old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144 if (new_exe_file)
1145 get_file(new_exe_file);
1146 rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 if (old_exe_file)
1148 fput(old_exe_file);
1149 }
1150
1151 /**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
get_mm_exe_file(struct mm_struct * mm)1157 struct file *get_mm_exe_file(struct mm_struct *mm)
1158 {
1159 struct file *exe_file;
1160
1161 rcu_read_lock();
1162 exe_file = rcu_dereference(mm->exe_file);
1163 if (exe_file && !get_file_rcu(exe_file))
1164 exe_file = NULL;
1165 rcu_read_unlock();
1166 return exe_file;
1167 }
1168 EXPORT_SYMBOL(get_mm_exe_file);
1169
1170 /**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
get_task_exe_file(struct task_struct * task)1177 struct file *get_task_exe_file(struct task_struct *task)
1178 {
1179 struct file *exe_file = NULL;
1180 struct mm_struct *mm;
1181
1182 task_lock(task);
1183 mm = task->mm;
1184 if (mm) {
1185 if (!(task->flags & PF_KTHREAD))
1186 exe_file = get_mm_exe_file(mm);
1187 }
1188 task_unlock(task);
1189 return exe_file;
1190 }
1191 EXPORT_SYMBOL(get_task_exe_file);
1192
1193 /**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count. User must release the mm via mmput()
1200 * after use. Typically used by /proc and ptrace.
1201 */
get_task_mm(struct task_struct * task)1202 struct mm_struct *get_task_mm(struct task_struct *task)
1203 {
1204 struct mm_struct *mm;
1205
1206 task_lock(task);
1207 mm = task->mm;
1208 if (mm) {
1209 if (task->flags & PF_KTHREAD)
1210 mm = NULL;
1211 else
1212 mmget(mm);
1213 }
1214 task_unlock(task);
1215 return mm;
1216 }
1217 EXPORT_SYMBOL_GPL(get_task_mm);
1218
mm_access(struct task_struct * task,unsigned int mode)1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220 {
1221 struct mm_struct *mm;
1222 int err;
1223
1224 err = mutex_lock_killable(&task->signal->exec_update_mutex);
1225 if (err)
1226 return ERR_PTR(err);
1227
1228 mm = get_task_mm(task);
1229 if (mm && mm != current->mm &&
1230 !ptrace_may_access(task, mode)) {
1231 mmput(mm);
1232 mm = ERR_PTR(-EACCES);
1233 }
1234 mutex_unlock(&task->signal->exec_update_mutex);
1235
1236 return mm;
1237 }
1238
complete_vfork_done(struct task_struct * tsk)1239 static void complete_vfork_done(struct task_struct *tsk)
1240 {
1241 struct completion *vfork;
1242
1243 task_lock(tsk);
1244 vfork = tsk->vfork_done;
1245 if (likely(vfork)) {
1246 tsk->vfork_done = NULL;
1247 complete(vfork);
1248 }
1249 task_unlock(tsk);
1250 }
1251
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1252 static int wait_for_vfork_done(struct task_struct *child,
1253 struct completion *vfork)
1254 {
1255 int killed;
1256
1257 freezer_do_not_count();
1258 cgroup_enter_frozen();
1259 killed = wait_for_completion_killable(vfork);
1260 cgroup_leave_frozen(false);
1261 freezer_count();
1262
1263 if (killed) {
1264 task_lock(child);
1265 child->vfork_done = NULL;
1266 task_unlock(child);
1267 }
1268
1269 put_task_struct(child);
1270 return killed;
1271 }
1272
1273 /* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one. Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1286 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287 {
1288 uprobe_free_utask(tsk);
1289
1290 /* Get rid of any cached register state */
1291 deactivate_mm(tsk, mm);
1292
1293 /*
1294 * Signal userspace if we're not exiting with a core dump
1295 * because we want to leave the value intact for debugging
1296 * purposes.
1297 */
1298 if (tsk->clear_child_tid) {
1299 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1300 atomic_read(&mm->mm_users) > 1) {
1301 /*
1302 * We don't check the error code - if userspace has
1303 * not set up a proper pointer then tough luck.
1304 */
1305 put_user(0, tsk->clear_child_tid);
1306 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1307 1, NULL, NULL, 0, 0);
1308 }
1309 tsk->clear_child_tid = NULL;
1310 }
1311
1312 /*
1313 * All done, finally we can wake up parent and return this mm to him.
1314 * Also kthread_stop() uses this completion for synchronization.
1315 */
1316 if (tsk->vfork_done)
1317 complete_vfork_done(tsk);
1318 }
1319
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1320 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1321 {
1322 futex_exit_release(tsk);
1323 mm_release(tsk, mm);
1324 }
1325
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1326 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 futex_exec_release(tsk);
1329 mm_release(tsk, mm);
1330 }
1331
1332 /**
1333 * dup_mm() - duplicates an existing mm structure
1334 * @tsk: the task_struct with which the new mm will be associated.
1335 * @oldmm: the mm to duplicate.
1336 *
1337 * Allocates a new mm structure and duplicates the provided @oldmm structure
1338 * content into it.
1339 *
1340 * Return: the duplicated mm or NULL on failure.
1341 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1342 static struct mm_struct *dup_mm(struct task_struct *tsk,
1343 struct mm_struct *oldmm)
1344 {
1345 struct mm_struct *mm;
1346 int err;
1347
1348 mm = allocate_mm();
1349 if (!mm)
1350 goto fail_nomem;
1351
1352 memcpy(mm, oldmm, sizeof(*mm));
1353
1354 if (!mm_init(mm, tsk, mm->user_ns))
1355 goto fail_nomem;
1356
1357 err = dup_mmap(mm, oldmm);
1358 if (err)
1359 goto free_pt;
1360
1361 mm->hiwater_rss = get_mm_rss(mm);
1362 mm->hiwater_vm = mm->total_vm;
1363
1364 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1365 goto free_pt;
1366
1367 return mm;
1368
1369 free_pt:
1370 /* don't put binfmt in mmput, we haven't got module yet */
1371 mm->binfmt = NULL;
1372 mm_init_owner(mm, NULL);
1373 mmput(mm);
1374
1375 fail_nomem:
1376 return NULL;
1377 }
1378
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1379 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1380 {
1381 struct mm_struct *mm, *oldmm;
1382 int retval;
1383
1384 tsk->min_flt = tsk->maj_flt = 0;
1385 tsk->nvcsw = tsk->nivcsw = 0;
1386 #ifdef CONFIG_DETECT_HUNG_TASK
1387 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1388 tsk->last_switch_time = 0;
1389 #endif
1390
1391 tsk->mm = NULL;
1392 tsk->active_mm = NULL;
1393
1394 /*
1395 * Are we cloning a kernel thread?
1396 *
1397 * We need to steal a active VM for that..
1398 */
1399 oldmm = current->mm;
1400 if (!oldmm)
1401 return 0;
1402
1403 /* initialize the new vmacache entries */
1404 vmacache_flush(tsk);
1405
1406 if (clone_flags & CLONE_VM) {
1407 mmget(oldmm);
1408 mm = oldmm;
1409 goto good_mm;
1410 }
1411
1412 retval = -ENOMEM;
1413 mm = dup_mm(tsk, current->mm);
1414 if (!mm)
1415 goto fail_nomem;
1416
1417 good_mm:
1418 tsk->mm = mm;
1419 tsk->active_mm = mm;
1420 return 0;
1421
1422 fail_nomem:
1423 return retval;
1424 }
1425
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1426 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1427 {
1428 struct fs_struct *fs = current->fs;
1429 if (clone_flags & CLONE_FS) {
1430 /* tsk->fs is already what we want */
1431 spin_lock(&fs->lock);
1432 if (fs->in_exec) {
1433 spin_unlock(&fs->lock);
1434 return -EAGAIN;
1435 }
1436 fs->users++;
1437 spin_unlock(&fs->lock);
1438 return 0;
1439 }
1440 tsk->fs = copy_fs_struct(fs);
1441 if (!tsk->fs)
1442 return -ENOMEM;
1443 return 0;
1444 }
1445
copy_files(unsigned long clone_flags,struct task_struct * tsk)1446 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1447 {
1448 struct files_struct *oldf, *newf;
1449 int error = 0;
1450
1451 /*
1452 * A background process may not have any files ...
1453 */
1454 oldf = current->files;
1455 if (!oldf)
1456 goto out;
1457
1458 if (clone_flags & CLONE_FILES) {
1459 atomic_inc(&oldf->count);
1460 goto out;
1461 }
1462
1463 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1464 if (!newf)
1465 goto out;
1466
1467 tsk->files = newf;
1468 error = 0;
1469 out:
1470 return error;
1471 }
1472
copy_io(unsigned long clone_flags,struct task_struct * tsk)1473 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1474 {
1475 #ifdef CONFIG_BLOCK
1476 struct io_context *ioc = current->io_context;
1477 struct io_context *new_ioc;
1478
1479 if (!ioc)
1480 return 0;
1481 /*
1482 * Share io context with parent, if CLONE_IO is set
1483 */
1484 if (clone_flags & CLONE_IO) {
1485 ioc_task_link(ioc);
1486 tsk->io_context = ioc;
1487 } else if (ioprio_valid(ioc->ioprio)) {
1488 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1489 if (unlikely(!new_ioc))
1490 return -ENOMEM;
1491
1492 new_ioc->ioprio = ioc->ioprio;
1493 put_io_context(new_ioc);
1494 }
1495 #endif
1496 return 0;
1497 }
1498
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1499 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1500 {
1501 struct sighand_struct *sig;
1502
1503 if (clone_flags & CLONE_SIGHAND) {
1504 refcount_inc(¤t->sighand->count);
1505 return 0;
1506 }
1507 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1508 RCU_INIT_POINTER(tsk->sighand, sig);
1509 if (!sig)
1510 return -ENOMEM;
1511
1512 refcount_set(&sig->count, 1);
1513 spin_lock_irq(¤t->sighand->siglock);
1514 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1515 spin_unlock_irq(¤t->sighand->siglock);
1516
1517 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1518 if (clone_flags & CLONE_CLEAR_SIGHAND)
1519 flush_signal_handlers(tsk, 0);
1520
1521 return 0;
1522 }
1523
__cleanup_sighand(struct sighand_struct * sighand)1524 void __cleanup_sighand(struct sighand_struct *sighand)
1525 {
1526 if (refcount_dec_and_test(&sighand->count)) {
1527 signalfd_cleanup(sighand);
1528 /*
1529 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1530 * without an RCU grace period, see __lock_task_sighand().
1531 */
1532 kmem_cache_free(sighand_cachep, sighand);
1533 }
1534 }
1535
1536 /*
1537 * Initialize POSIX timer handling for a thread group.
1538 */
posix_cpu_timers_init_group(struct signal_struct * sig)1539 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1540 {
1541 struct posix_cputimers *pct = &sig->posix_cputimers;
1542 unsigned long cpu_limit;
1543
1544 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1545 posix_cputimers_group_init(pct, cpu_limit);
1546 }
1547
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1548 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1549 {
1550 struct signal_struct *sig;
1551
1552 if (clone_flags & CLONE_THREAD)
1553 return 0;
1554
1555 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1556 tsk->signal = sig;
1557 if (!sig)
1558 return -ENOMEM;
1559
1560 sig->nr_threads = 1;
1561 atomic_set(&sig->live, 1);
1562 refcount_set(&sig->sigcnt, 1);
1563
1564 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1565 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1566 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1567
1568 init_waitqueue_head(&sig->wait_chldexit);
1569 sig->curr_target = tsk;
1570 init_sigpending(&sig->shared_pending);
1571 INIT_HLIST_HEAD(&sig->multiprocess);
1572 seqlock_init(&sig->stats_lock);
1573 prev_cputime_init(&sig->prev_cputime);
1574
1575 #ifdef CONFIG_POSIX_TIMERS
1576 INIT_LIST_HEAD(&sig->posix_timers);
1577 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1578 sig->real_timer.function = it_real_fn;
1579 #endif
1580
1581 task_lock(current->group_leader);
1582 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1583 task_unlock(current->group_leader);
1584
1585 posix_cpu_timers_init_group(sig);
1586
1587 tty_audit_fork(sig);
1588 sched_autogroup_fork(sig);
1589
1590 sig->oom_score_adj = current->signal->oom_score_adj;
1591 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1592
1593 mutex_init(&sig->cred_guard_mutex);
1594 mutex_init(&sig->exec_update_mutex);
1595
1596 return 0;
1597 }
1598
copy_seccomp(struct task_struct * p)1599 static void copy_seccomp(struct task_struct *p)
1600 {
1601 #ifdef CONFIG_SECCOMP
1602 /*
1603 * Must be called with sighand->lock held, which is common to
1604 * all threads in the group. Holding cred_guard_mutex is not
1605 * needed because this new task is not yet running and cannot
1606 * be racing exec.
1607 */
1608 assert_spin_locked(¤t->sighand->siglock);
1609
1610 /* Ref-count the new filter user, and assign it. */
1611 get_seccomp_filter(current);
1612 p->seccomp = current->seccomp;
1613
1614 /*
1615 * Explicitly enable no_new_privs here in case it got set
1616 * between the task_struct being duplicated and holding the
1617 * sighand lock. The seccomp state and nnp must be in sync.
1618 */
1619 if (task_no_new_privs(current))
1620 task_set_no_new_privs(p);
1621
1622 /*
1623 * If the parent gained a seccomp mode after copying thread
1624 * flags and between before we held the sighand lock, we have
1625 * to manually enable the seccomp thread flag here.
1626 */
1627 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1628 set_tsk_thread_flag(p, TIF_SECCOMP);
1629 #endif
1630 }
1631
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1632 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1633 {
1634 current->clear_child_tid = tidptr;
1635
1636 return task_pid_vnr(current);
1637 }
1638
rt_mutex_init_task(struct task_struct * p)1639 static void rt_mutex_init_task(struct task_struct *p)
1640 {
1641 raw_spin_lock_init(&p->pi_lock);
1642 #ifdef CONFIG_RT_MUTEXES
1643 p->pi_waiters = RB_ROOT_CACHED;
1644 p->pi_top_task = NULL;
1645 p->pi_blocked_on = NULL;
1646 #endif
1647 }
1648
init_task_pid_links(struct task_struct * task)1649 static inline void init_task_pid_links(struct task_struct *task)
1650 {
1651 enum pid_type type;
1652
1653 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1654 INIT_HLIST_NODE(&task->pid_links[type]);
1655 }
1656 }
1657
1658 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1659 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1660 {
1661 if (type == PIDTYPE_PID)
1662 task->thread_pid = pid;
1663 else
1664 task->signal->pids[type] = pid;
1665 }
1666
rcu_copy_process(struct task_struct * p)1667 static inline void rcu_copy_process(struct task_struct *p)
1668 {
1669 #ifdef CONFIG_PREEMPT_RCU
1670 p->rcu_read_lock_nesting = 0;
1671 p->rcu_read_unlock_special.s = 0;
1672 p->rcu_blocked_node = NULL;
1673 INIT_LIST_HEAD(&p->rcu_node_entry);
1674 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1675 #ifdef CONFIG_TASKS_RCU
1676 p->rcu_tasks_holdout = false;
1677 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1678 p->rcu_tasks_idle_cpu = -1;
1679 #endif /* #ifdef CONFIG_TASKS_RCU */
1680 #ifdef CONFIG_TASKS_TRACE_RCU
1681 p->trc_reader_nesting = 0;
1682 p->trc_reader_special.s = 0;
1683 INIT_LIST_HEAD(&p->trc_holdout_list);
1684 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1685 }
1686
pidfd_pid(const struct file * file)1687 struct pid *pidfd_pid(const struct file *file)
1688 {
1689 if (file->f_op == &pidfd_fops)
1690 return file->private_data;
1691
1692 return ERR_PTR(-EBADF);
1693 }
1694
pidfd_release(struct inode * inode,struct file * file)1695 static int pidfd_release(struct inode *inode, struct file *file)
1696 {
1697 struct pid *pid = file->private_data;
1698
1699 file->private_data = NULL;
1700 put_pid(pid);
1701 return 0;
1702 }
1703
1704 #ifdef CONFIG_PROC_FS
1705 /**
1706 * pidfd_show_fdinfo - print information about a pidfd
1707 * @m: proc fdinfo file
1708 * @f: file referencing a pidfd
1709 *
1710 * Pid:
1711 * This function will print the pid that a given pidfd refers to in the
1712 * pid namespace of the procfs instance.
1713 * If the pid namespace of the process is not a descendant of the pid
1714 * namespace of the procfs instance 0 will be shown as its pid. This is
1715 * similar to calling getppid() on a process whose parent is outside of
1716 * its pid namespace.
1717 *
1718 * NSpid:
1719 * If pid namespaces are supported then this function will also print
1720 * the pid of a given pidfd refers to for all descendant pid namespaces
1721 * starting from the current pid namespace of the instance, i.e. the
1722 * Pid field and the first entry in the NSpid field will be identical.
1723 * If the pid namespace of the process is not a descendant of the pid
1724 * namespace of the procfs instance 0 will be shown as its first NSpid
1725 * entry and no others will be shown.
1726 * Note that this differs from the Pid and NSpid fields in
1727 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1728 * the pid namespace of the procfs instance. The difference becomes
1729 * obvious when sending around a pidfd between pid namespaces from a
1730 * different branch of the tree, i.e. where no ancestoral relation is
1731 * present between the pid namespaces:
1732 * - create two new pid namespaces ns1 and ns2 in the initial pid
1733 * namespace (also take care to create new mount namespaces in the
1734 * new pid namespace and mount procfs)
1735 * - create a process with a pidfd in ns1
1736 * - send pidfd from ns1 to ns2
1737 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1738 * have exactly one entry, which is 0
1739 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1740 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1741 {
1742 struct pid *pid = f->private_data;
1743 struct pid_namespace *ns;
1744 pid_t nr = -1;
1745
1746 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1747 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1748 nr = pid_nr_ns(pid, ns);
1749 }
1750
1751 seq_put_decimal_ll(m, "Pid:\t", nr);
1752
1753 #ifdef CONFIG_PID_NS
1754 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1755 if (nr > 0) {
1756 int i;
1757
1758 /* If nr is non-zero it means that 'pid' is valid and that
1759 * ns, i.e. the pid namespace associated with the procfs
1760 * instance, is in the pid namespace hierarchy of pid.
1761 * Start at one below the already printed level.
1762 */
1763 for (i = ns->level + 1; i <= pid->level; i++)
1764 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1765 }
1766 #endif
1767 seq_putc(m, '\n');
1768 }
1769 #endif
1770
1771 /*
1772 * Poll support for process exit notification.
1773 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1774 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1775 {
1776 struct pid *pid = file->private_data;
1777 __poll_t poll_flags = 0;
1778
1779 poll_wait(file, &pid->wait_pidfd, pts);
1780
1781 /*
1782 * Inform pollers only when the whole thread group exits.
1783 * If the thread group leader exits before all other threads in the
1784 * group, then poll(2) should block, similar to the wait(2) family.
1785 */
1786 if (thread_group_exited(pid))
1787 poll_flags = EPOLLIN | EPOLLRDNORM;
1788
1789 return poll_flags;
1790 }
1791
1792 const struct file_operations pidfd_fops = {
1793 .release = pidfd_release,
1794 .poll = pidfd_poll,
1795 #ifdef CONFIG_PROC_FS
1796 .show_fdinfo = pidfd_show_fdinfo,
1797 #endif
1798 };
1799
__delayed_free_task(struct rcu_head * rhp)1800 static void __delayed_free_task(struct rcu_head *rhp)
1801 {
1802 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1803
1804 free_task(tsk);
1805 }
1806
delayed_free_task(struct task_struct * tsk)1807 static __always_inline void delayed_free_task(struct task_struct *tsk)
1808 {
1809 if (IS_ENABLED(CONFIG_MEMCG))
1810 call_rcu(&tsk->rcu, __delayed_free_task);
1811 else
1812 free_task(tsk);
1813 }
1814
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1815 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1816 {
1817 /* Skip if kernel thread */
1818 if (!tsk->mm)
1819 return;
1820
1821 /* Skip if spawning a thread or using vfork */
1822 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1823 return;
1824
1825 /* We need to synchronize with __set_oom_adj */
1826 mutex_lock(&oom_adj_mutex);
1827 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1828 /* Update the values in case they were changed after copy_signal */
1829 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1830 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1831 mutex_unlock(&oom_adj_mutex);
1832 }
1833
1834 /*
1835 * This creates a new process as a copy of the old one,
1836 * but does not actually start it yet.
1837 *
1838 * It copies the registers, and all the appropriate
1839 * parts of the process environment (as per the clone
1840 * flags). The actual kick-off is left to the caller.
1841 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1842 static __latent_entropy struct task_struct *copy_process(
1843 struct pid *pid,
1844 int trace,
1845 int node,
1846 struct kernel_clone_args *args)
1847 {
1848 int pidfd = -1, retval;
1849 struct task_struct *p;
1850 struct multiprocess_signals delayed;
1851 struct file *pidfile = NULL;
1852 u64 clone_flags = args->flags;
1853 struct nsproxy *nsp = current->nsproxy;
1854
1855 /*
1856 * Don't allow sharing the root directory with processes in a different
1857 * namespace
1858 */
1859 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1860 return ERR_PTR(-EINVAL);
1861
1862 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1863 return ERR_PTR(-EINVAL);
1864
1865 /*
1866 * Thread groups must share signals as well, and detached threads
1867 * can only be started up within the thread group.
1868 */
1869 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1870 return ERR_PTR(-EINVAL);
1871
1872 /*
1873 * Shared signal handlers imply shared VM. By way of the above,
1874 * thread groups also imply shared VM. Blocking this case allows
1875 * for various simplifications in other code.
1876 */
1877 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1878 return ERR_PTR(-EINVAL);
1879
1880 /*
1881 * Siblings of global init remain as zombies on exit since they are
1882 * not reaped by their parent (swapper). To solve this and to avoid
1883 * multi-rooted process trees, prevent global and container-inits
1884 * from creating siblings.
1885 */
1886 if ((clone_flags & CLONE_PARENT) &&
1887 current->signal->flags & SIGNAL_UNKILLABLE)
1888 return ERR_PTR(-EINVAL);
1889
1890 /*
1891 * If the new process will be in a different pid or user namespace
1892 * do not allow it to share a thread group with the forking task.
1893 */
1894 if (clone_flags & CLONE_THREAD) {
1895 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1896 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1897 return ERR_PTR(-EINVAL);
1898 }
1899
1900 /*
1901 * If the new process will be in a different time namespace
1902 * do not allow it to share VM or a thread group with the forking task.
1903 */
1904 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1905 if (nsp->time_ns != nsp->time_ns_for_children)
1906 return ERR_PTR(-EINVAL);
1907 }
1908
1909 if (clone_flags & CLONE_PIDFD) {
1910 /*
1911 * - CLONE_DETACHED is blocked so that we can potentially
1912 * reuse it later for CLONE_PIDFD.
1913 * - CLONE_THREAD is blocked until someone really needs it.
1914 */
1915 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1916 return ERR_PTR(-EINVAL);
1917 }
1918
1919 /*
1920 * Force any signals received before this point to be delivered
1921 * before the fork happens. Collect up signals sent to multiple
1922 * processes that happen during the fork and delay them so that
1923 * they appear to happen after the fork.
1924 */
1925 sigemptyset(&delayed.signal);
1926 INIT_HLIST_NODE(&delayed.node);
1927
1928 spin_lock_irq(¤t->sighand->siglock);
1929 if (!(clone_flags & CLONE_THREAD))
1930 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1931 recalc_sigpending();
1932 spin_unlock_irq(¤t->sighand->siglock);
1933 retval = -ERESTARTNOINTR;
1934 if (signal_pending(current))
1935 goto fork_out;
1936
1937 retval = -ENOMEM;
1938 p = dup_task_struct(current, node);
1939 if (!p)
1940 goto fork_out;
1941
1942 /*
1943 * This _must_ happen before we call free_task(), i.e. before we jump
1944 * to any of the bad_fork_* labels. This is to avoid freeing
1945 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1946 * kernel threads (PF_KTHREAD).
1947 */
1948 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1949 /*
1950 * Clear TID on mm_release()?
1951 */
1952 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1953
1954 ftrace_graph_init_task(p);
1955
1956 rt_mutex_init_task(p);
1957
1958 lockdep_assert_irqs_enabled();
1959 #ifdef CONFIG_PROVE_LOCKING
1960 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1961 #endif
1962 retval = -EAGAIN;
1963 if (atomic_read(&p->real_cred->user->processes) >=
1964 task_rlimit(p, RLIMIT_NPROC)) {
1965 if (p->real_cred->user != INIT_USER &&
1966 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1967 goto bad_fork_free;
1968 }
1969 current->flags &= ~PF_NPROC_EXCEEDED;
1970
1971 retval = copy_creds(p, clone_flags);
1972 if (retval < 0)
1973 goto bad_fork_free;
1974
1975 /*
1976 * If multiple threads are within copy_process(), then this check
1977 * triggers too late. This doesn't hurt, the check is only there
1978 * to stop root fork bombs.
1979 */
1980 retval = -EAGAIN;
1981 if (data_race(nr_threads >= max_threads))
1982 goto bad_fork_cleanup_count;
1983
1984 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1985 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1986 p->flags |= PF_FORKNOEXEC;
1987 INIT_LIST_HEAD(&p->children);
1988 INIT_LIST_HEAD(&p->sibling);
1989 rcu_copy_process(p);
1990 p->vfork_done = NULL;
1991 spin_lock_init(&p->alloc_lock);
1992
1993 init_sigpending(&p->pending);
1994
1995 p->utime = p->stime = p->gtime = 0;
1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1997 p->utimescaled = p->stimescaled = 0;
1998 #endif
1999 prev_cputime_init(&p->prev_cputime);
2000
2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2002 seqcount_init(&p->vtime.seqcount);
2003 p->vtime.starttime = 0;
2004 p->vtime.state = VTIME_INACTIVE;
2005 #endif
2006
2007 #ifdef CONFIG_IO_URING
2008 p->io_uring = NULL;
2009 #endif
2010
2011 #if defined(SPLIT_RSS_COUNTING)
2012 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2013 #endif
2014
2015 p->default_timer_slack_ns = current->timer_slack_ns;
2016
2017 #ifdef CONFIG_PSI
2018 p->psi_flags = 0;
2019 #endif
2020
2021 task_io_accounting_init(&p->ioac);
2022 acct_clear_integrals(p);
2023
2024 posix_cputimers_init(&p->posix_cputimers);
2025
2026 p->io_context = NULL;
2027 audit_set_context(p, NULL);
2028 cgroup_fork(p);
2029 #ifdef CONFIG_NUMA
2030 p->mempolicy = mpol_dup(p->mempolicy);
2031 if (IS_ERR(p->mempolicy)) {
2032 retval = PTR_ERR(p->mempolicy);
2033 p->mempolicy = NULL;
2034 goto bad_fork_cleanup_threadgroup_lock;
2035 }
2036 #endif
2037 #ifdef CONFIG_CPUSETS
2038 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2039 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2040 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2041 #endif
2042 #ifdef CONFIG_TRACE_IRQFLAGS
2043 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2044 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2045 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2046 p->softirqs_enabled = 1;
2047 p->softirq_context = 0;
2048 #endif
2049
2050 p->pagefault_disabled = 0;
2051
2052 #ifdef CONFIG_LOCKDEP
2053 lockdep_init_task(p);
2054 #endif
2055
2056 #ifdef CONFIG_DEBUG_MUTEXES
2057 p->blocked_on = NULL; /* not blocked yet */
2058 #endif
2059 #ifdef CONFIG_BCACHE
2060 p->sequential_io = 0;
2061 p->sequential_io_avg = 0;
2062 #endif
2063
2064 /* Perform scheduler related setup. Assign this task to a CPU. */
2065 retval = sched_fork(clone_flags, p);
2066 if (retval)
2067 goto bad_fork_cleanup_policy;
2068
2069 retval = perf_event_init_task(p);
2070 if (retval)
2071 goto bad_fork_cleanup_policy;
2072 retval = audit_alloc(p);
2073 if (retval)
2074 goto bad_fork_cleanup_perf;
2075 /* copy all the process information */
2076 shm_init_task(p);
2077 retval = security_task_alloc(p, clone_flags);
2078 if (retval)
2079 goto bad_fork_cleanup_audit;
2080 retval = copy_semundo(clone_flags, p);
2081 if (retval)
2082 goto bad_fork_cleanup_security;
2083 retval = copy_files(clone_flags, p);
2084 if (retval)
2085 goto bad_fork_cleanup_semundo;
2086 retval = copy_fs(clone_flags, p);
2087 if (retval)
2088 goto bad_fork_cleanup_files;
2089 retval = copy_sighand(clone_flags, p);
2090 if (retval)
2091 goto bad_fork_cleanup_fs;
2092 retval = copy_signal(clone_flags, p);
2093 if (retval)
2094 goto bad_fork_cleanup_sighand;
2095 retval = copy_mm(clone_flags, p);
2096 if (retval)
2097 goto bad_fork_cleanup_signal;
2098 retval = copy_namespaces(clone_flags, p);
2099 if (retval)
2100 goto bad_fork_cleanup_mm;
2101 retval = copy_io(clone_flags, p);
2102 if (retval)
2103 goto bad_fork_cleanup_namespaces;
2104 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2105 if (retval)
2106 goto bad_fork_cleanup_io;
2107
2108 stackleak_task_init(p);
2109
2110 if (pid != &init_struct_pid) {
2111 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2112 args->set_tid_size);
2113 if (IS_ERR(pid)) {
2114 retval = PTR_ERR(pid);
2115 goto bad_fork_cleanup_thread;
2116 }
2117 }
2118
2119 /*
2120 * This has to happen after we've potentially unshared the file
2121 * descriptor table (so that the pidfd doesn't leak into the child
2122 * if the fd table isn't shared).
2123 */
2124 if (clone_flags & CLONE_PIDFD) {
2125 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2126 if (retval < 0)
2127 goto bad_fork_free_pid;
2128
2129 pidfd = retval;
2130
2131 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2132 O_RDWR | O_CLOEXEC);
2133 if (IS_ERR(pidfile)) {
2134 put_unused_fd(pidfd);
2135 retval = PTR_ERR(pidfile);
2136 goto bad_fork_free_pid;
2137 }
2138 get_pid(pid); /* held by pidfile now */
2139
2140 retval = put_user(pidfd, args->pidfd);
2141 if (retval)
2142 goto bad_fork_put_pidfd;
2143 }
2144
2145 #ifdef CONFIG_BLOCK
2146 p->plug = NULL;
2147 #endif
2148 futex_init_task(p);
2149
2150 /*
2151 * sigaltstack should be cleared when sharing the same VM
2152 */
2153 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2154 sas_ss_reset(p);
2155
2156 /*
2157 * Syscall tracing and stepping should be turned off in the
2158 * child regardless of CLONE_PTRACE.
2159 */
2160 user_disable_single_step(p);
2161 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2162 #ifdef TIF_SYSCALL_EMU
2163 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2164 #endif
2165 clear_tsk_latency_tracing(p);
2166
2167 /* ok, now we should be set up.. */
2168 p->pid = pid_nr(pid);
2169 if (clone_flags & CLONE_THREAD) {
2170 p->group_leader = current->group_leader;
2171 p->tgid = current->tgid;
2172 } else {
2173 p->group_leader = p;
2174 p->tgid = p->pid;
2175 }
2176
2177 p->nr_dirtied = 0;
2178 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2179 p->dirty_paused_when = 0;
2180
2181 p->pdeath_signal = 0;
2182 INIT_LIST_HEAD(&p->thread_group);
2183 p->task_works = NULL;
2184
2185 /*
2186 * Ensure that the cgroup subsystem policies allow the new process to be
2187 * forked. It should be noted that the new process's css_set can be changed
2188 * between here and cgroup_post_fork() if an organisation operation is in
2189 * progress.
2190 */
2191 retval = cgroup_can_fork(p, args);
2192 if (retval)
2193 goto bad_fork_put_pidfd;
2194
2195 /*
2196 * From this point on we must avoid any synchronous user-space
2197 * communication until we take the tasklist-lock. In particular, we do
2198 * not want user-space to be able to predict the process start-time by
2199 * stalling fork(2) after we recorded the start_time but before it is
2200 * visible to the system.
2201 */
2202
2203 p->start_time = ktime_get_ns();
2204 p->start_boottime = ktime_get_boottime_ns();
2205
2206 /*
2207 * Make it visible to the rest of the system, but dont wake it up yet.
2208 * Need tasklist lock for parent etc handling!
2209 */
2210 write_lock_irq(&tasklist_lock);
2211
2212 /* CLONE_PARENT re-uses the old parent */
2213 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2214 p->real_parent = current->real_parent;
2215 p->parent_exec_id = current->parent_exec_id;
2216 if (clone_flags & CLONE_THREAD)
2217 p->exit_signal = -1;
2218 else
2219 p->exit_signal = current->group_leader->exit_signal;
2220 } else {
2221 p->real_parent = current;
2222 p->parent_exec_id = current->self_exec_id;
2223 p->exit_signal = args->exit_signal;
2224 }
2225
2226 klp_copy_process(p);
2227
2228 spin_lock(¤t->sighand->siglock);
2229
2230 /*
2231 * Copy seccomp details explicitly here, in case they were changed
2232 * before holding sighand lock.
2233 */
2234 copy_seccomp(p);
2235
2236 rseq_fork(p, clone_flags);
2237
2238 /* Don't start children in a dying pid namespace */
2239 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2240 retval = -ENOMEM;
2241 goto bad_fork_cancel_cgroup;
2242 }
2243
2244 /* Let kill terminate clone/fork in the middle */
2245 if (fatal_signal_pending(current)) {
2246 retval = -EINTR;
2247 goto bad_fork_cancel_cgroup;
2248 }
2249
2250 /* past the last point of failure */
2251 if (pidfile)
2252 fd_install(pidfd, pidfile);
2253
2254 init_task_pid_links(p);
2255 if (likely(p->pid)) {
2256 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2257
2258 init_task_pid(p, PIDTYPE_PID, pid);
2259 if (thread_group_leader(p)) {
2260 init_task_pid(p, PIDTYPE_TGID, pid);
2261 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2262 init_task_pid(p, PIDTYPE_SID, task_session(current));
2263
2264 if (is_child_reaper(pid)) {
2265 ns_of_pid(pid)->child_reaper = p;
2266 p->signal->flags |= SIGNAL_UNKILLABLE;
2267 }
2268 p->signal->shared_pending.signal = delayed.signal;
2269 p->signal->tty = tty_kref_get(current->signal->tty);
2270 /*
2271 * Inherit has_child_subreaper flag under the same
2272 * tasklist_lock with adding child to the process tree
2273 * for propagate_has_child_subreaper optimization.
2274 */
2275 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2276 p->real_parent->signal->is_child_subreaper;
2277 list_add_tail(&p->sibling, &p->real_parent->children);
2278 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2279 attach_pid(p, PIDTYPE_TGID);
2280 attach_pid(p, PIDTYPE_PGID);
2281 attach_pid(p, PIDTYPE_SID);
2282 __this_cpu_inc(process_counts);
2283 } else {
2284 current->signal->nr_threads++;
2285 atomic_inc(¤t->signal->live);
2286 refcount_inc(¤t->signal->sigcnt);
2287 task_join_group_stop(p);
2288 list_add_tail_rcu(&p->thread_group,
2289 &p->group_leader->thread_group);
2290 list_add_tail_rcu(&p->thread_node,
2291 &p->signal->thread_head);
2292 }
2293 attach_pid(p, PIDTYPE_PID);
2294 nr_threads++;
2295 }
2296 total_forks++;
2297 hlist_del_init(&delayed.node);
2298 spin_unlock(¤t->sighand->siglock);
2299 syscall_tracepoint_update(p);
2300 write_unlock_irq(&tasklist_lock);
2301
2302 proc_fork_connector(p);
2303 sched_post_fork(p);
2304 cgroup_post_fork(p, args);
2305 perf_event_fork(p);
2306
2307 trace_task_newtask(p, clone_flags);
2308 uprobe_copy_process(p, clone_flags);
2309
2310 copy_oom_score_adj(clone_flags, p);
2311
2312 return p;
2313
2314 bad_fork_cancel_cgroup:
2315 spin_unlock(¤t->sighand->siglock);
2316 write_unlock_irq(&tasklist_lock);
2317 cgroup_cancel_fork(p, args);
2318 bad_fork_put_pidfd:
2319 if (clone_flags & CLONE_PIDFD) {
2320 fput(pidfile);
2321 put_unused_fd(pidfd);
2322 }
2323 bad_fork_free_pid:
2324 if (pid != &init_struct_pid)
2325 free_pid(pid);
2326 bad_fork_cleanup_thread:
2327 exit_thread(p);
2328 bad_fork_cleanup_io:
2329 if (p->io_context)
2330 exit_io_context(p);
2331 bad_fork_cleanup_namespaces:
2332 exit_task_namespaces(p);
2333 bad_fork_cleanup_mm:
2334 if (p->mm) {
2335 mm_clear_owner(p->mm, p);
2336 mmput(p->mm);
2337 }
2338 bad_fork_cleanup_signal:
2339 if (!(clone_flags & CLONE_THREAD))
2340 free_signal_struct(p->signal);
2341 bad_fork_cleanup_sighand:
2342 __cleanup_sighand(p->sighand);
2343 bad_fork_cleanup_fs:
2344 exit_fs(p); /* blocking */
2345 bad_fork_cleanup_files:
2346 exit_files(p); /* blocking */
2347 bad_fork_cleanup_semundo:
2348 exit_sem(p);
2349 bad_fork_cleanup_security:
2350 security_task_free(p);
2351 bad_fork_cleanup_audit:
2352 audit_free(p);
2353 bad_fork_cleanup_perf:
2354 perf_event_free_task(p);
2355 bad_fork_cleanup_policy:
2356 lockdep_free_task(p);
2357 #ifdef CONFIG_NUMA
2358 mpol_put(p->mempolicy);
2359 bad_fork_cleanup_threadgroup_lock:
2360 #endif
2361 delayacct_tsk_free(p);
2362 bad_fork_cleanup_count:
2363 atomic_dec(&p->cred->user->processes);
2364 exit_creds(p);
2365 bad_fork_free:
2366 p->state = TASK_DEAD;
2367 put_task_stack(p);
2368 delayed_free_task(p);
2369 fork_out:
2370 spin_lock_irq(¤t->sighand->siglock);
2371 hlist_del_init(&delayed.node);
2372 spin_unlock_irq(¤t->sighand->siglock);
2373 return ERR_PTR(retval);
2374 }
2375
init_idle_pids(struct task_struct * idle)2376 static inline void init_idle_pids(struct task_struct *idle)
2377 {
2378 enum pid_type type;
2379
2380 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2381 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2382 init_task_pid(idle, type, &init_struct_pid);
2383 }
2384 }
2385
fork_idle(int cpu)2386 struct task_struct *fork_idle(int cpu)
2387 {
2388 struct task_struct *task;
2389 struct kernel_clone_args args = {
2390 .flags = CLONE_VM,
2391 };
2392
2393 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2394 if (!IS_ERR(task)) {
2395 init_idle_pids(task);
2396 init_idle(task, cpu);
2397 }
2398
2399 return task;
2400 }
2401
copy_init_mm(void)2402 struct mm_struct *copy_init_mm(void)
2403 {
2404 return dup_mm(NULL, &init_mm);
2405 }
2406
2407 /*
2408 * Ok, this is the main fork-routine.
2409 *
2410 * It copies the process, and if successful kick-starts
2411 * it and waits for it to finish using the VM if required.
2412 *
2413 * args->exit_signal is expected to be checked for sanity by the caller.
2414 */
kernel_clone(struct kernel_clone_args * args)2415 pid_t kernel_clone(struct kernel_clone_args *args)
2416 {
2417 u64 clone_flags = args->flags;
2418 struct completion vfork;
2419 struct pid *pid;
2420 struct task_struct *p;
2421 int trace = 0;
2422 pid_t nr;
2423
2424 /*
2425 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2426 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2427 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2428 * field in struct clone_args and it still doesn't make sense to have
2429 * them both point at the same memory location. Performing this check
2430 * here has the advantage that we don't need to have a separate helper
2431 * to check for legacy clone().
2432 */
2433 if ((args->flags & CLONE_PIDFD) &&
2434 (args->flags & CLONE_PARENT_SETTID) &&
2435 (args->pidfd == args->parent_tid))
2436 return -EINVAL;
2437
2438 /*
2439 * Determine whether and which event to report to ptracer. When
2440 * called from kernel_thread or CLONE_UNTRACED is explicitly
2441 * requested, no event is reported; otherwise, report if the event
2442 * for the type of forking is enabled.
2443 */
2444 if (!(clone_flags & CLONE_UNTRACED)) {
2445 if (clone_flags & CLONE_VFORK)
2446 trace = PTRACE_EVENT_VFORK;
2447 else if (args->exit_signal != SIGCHLD)
2448 trace = PTRACE_EVENT_CLONE;
2449 else
2450 trace = PTRACE_EVENT_FORK;
2451
2452 if (likely(!ptrace_event_enabled(current, trace)))
2453 trace = 0;
2454 }
2455
2456 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2457 add_latent_entropy();
2458
2459 if (IS_ERR(p))
2460 return PTR_ERR(p);
2461
2462 /*
2463 * Do this prior waking up the new thread - the thread pointer
2464 * might get invalid after that point, if the thread exits quickly.
2465 */
2466 trace_sched_process_fork(current, p);
2467
2468 pid = get_task_pid(p, PIDTYPE_PID);
2469 nr = pid_vnr(pid);
2470
2471 if (clone_flags & CLONE_PARENT_SETTID)
2472 put_user(nr, args->parent_tid);
2473
2474 if (clone_flags & CLONE_VFORK) {
2475 p->vfork_done = &vfork;
2476 init_completion(&vfork);
2477 get_task_struct(p);
2478 }
2479
2480 wake_up_new_task(p);
2481
2482 /* forking complete and child started to run, tell ptracer */
2483 if (unlikely(trace))
2484 ptrace_event_pid(trace, pid);
2485
2486 if (clone_flags & CLONE_VFORK) {
2487 if (!wait_for_vfork_done(p, &vfork))
2488 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2489 }
2490
2491 put_pid(pid);
2492 return nr;
2493 }
2494
2495 /*
2496 * Create a kernel thread.
2497 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2498 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2499 {
2500 struct kernel_clone_args args = {
2501 .flags = ((lower_32_bits(flags) | CLONE_VM |
2502 CLONE_UNTRACED) & ~CSIGNAL),
2503 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2504 .stack = (unsigned long)fn,
2505 .stack_size = (unsigned long)arg,
2506 };
2507
2508 return kernel_clone(&args);
2509 }
2510
2511 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2512 SYSCALL_DEFINE0(fork)
2513 {
2514 #ifdef CONFIG_MMU
2515 struct kernel_clone_args args = {
2516 .exit_signal = SIGCHLD,
2517 };
2518
2519 return kernel_clone(&args);
2520 #else
2521 /* can not support in nommu mode */
2522 return -EINVAL;
2523 #endif
2524 }
2525 #endif
2526
2527 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2528 SYSCALL_DEFINE0(vfork)
2529 {
2530 struct kernel_clone_args args = {
2531 .flags = CLONE_VFORK | CLONE_VM,
2532 .exit_signal = SIGCHLD,
2533 };
2534
2535 return kernel_clone(&args);
2536 }
2537 #endif
2538
2539 #ifdef __ARCH_WANT_SYS_CLONE
2540 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2541 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2542 int __user *, parent_tidptr,
2543 unsigned long, tls,
2544 int __user *, child_tidptr)
2545 #elif defined(CONFIG_CLONE_BACKWARDS2)
2546 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2547 int __user *, parent_tidptr,
2548 int __user *, child_tidptr,
2549 unsigned long, tls)
2550 #elif defined(CONFIG_CLONE_BACKWARDS3)
2551 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 int, stack_size,
2553 int __user *, parent_tidptr,
2554 int __user *, child_tidptr,
2555 unsigned long, tls)
2556 #else
2557 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2558 int __user *, parent_tidptr,
2559 int __user *, child_tidptr,
2560 unsigned long, tls)
2561 #endif
2562 {
2563 struct kernel_clone_args args = {
2564 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2565 .pidfd = parent_tidptr,
2566 .child_tid = child_tidptr,
2567 .parent_tid = parent_tidptr,
2568 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2569 .stack = newsp,
2570 .tls = tls,
2571 };
2572
2573 return kernel_clone(&args);
2574 }
2575 #endif
2576
2577 #ifdef __ARCH_WANT_SYS_CLONE3
2578
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2579 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2580 struct clone_args __user *uargs,
2581 size_t usize)
2582 {
2583 int err;
2584 struct clone_args args;
2585 pid_t *kset_tid = kargs->set_tid;
2586
2587 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2588 CLONE_ARGS_SIZE_VER0);
2589 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2590 CLONE_ARGS_SIZE_VER1);
2591 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2592 CLONE_ARGS_SIZE_VER2);
2593 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2594
2595 if (unlikely(usize > PAGE_SIZE))
2596 return -E2BIG;
2597 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2598 return -EINVAL;
2599
2600 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2601 if (err)
2602 return err;
2603
2604 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2605 return -EINVAL;
2606
2607 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2608 return -EINVAL;
2609
2610 if (unlikely(args.set_tid && args.set_tid_size == 0))
2611 return -EINVAL;
2612
2613 /*
2614 * Verify that higher 32bits of exit_signal are unset and that
2615 * it is a valid signal
2616 */
2617 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2618 !valid_signal(args.exit_signal)))
2619 return -EINVAL;
2620
2621 if ((args.flags & CLONE_INTO_CGROUP) &&
2622 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2623 return -EINVAL;
2624
2625 *kargs = (struct kernel_clone_args){
2626 .flags = args.flags,
2627 .pidfd = u64_to_user_ptr(args.pidfd),
2628 .child_tid = u64_to_user_ptr(args.child_tid),
2629 .parent_tid = u64_to_user_ptr(args.parent_tid),
2630 .exit_signal = args.exit_signal,
2631 .stack = args.stack,
2632 .stack_size = args.stack_size,
2633 .tls = args.tls,
2634 .set_tid_size = args.set_tid_size,
2635 .cgroup = args.cgroup,
2636 };
2637
2638 if (args.set_tid &&
2639 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2640 (kargs->set_tid_size * sizeof(pid_t))))
2641 return -EFAULT;
2642
2643 kargs->set_tid = kset_tid;
2644
2645 return 0;
2646 }
2647
2648 /**
2649 * clone3_stack_valid - check and prepare stack
2650 * @kargs: kernel clone args
2651 *
2652 * Verify that the stack arguments userspace gave us are sane.
2653 * In addition, set the stack direction for userspace since it's easy for us to
2654 * determine.
2655 */
clone3_stack_valid(struct kernel_clone_args * kargs)2656 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2657 {
2658 if (kargs->stack == 0) {
2659 if (kargs->stack_size > 0)
2660 return false;
2661 } else {
2662 if (kargs->stack_size == 0)
2663 return false;
2664
2665 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2666 return false;
2667
2668 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2669 kargs->stack += kargs->stack_size;
2670 #endif
2671 }
2672
2673 return true;
2674 }
2675
clone3_args_valid(struct kernel_clone_args * kargs)2676 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2677 {
2678 /* Verify that no unknown flags are passed along. */
2679 if (kargs->flags &
2680 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2681 return false;
2682
2683 /*
2684 * - make the CLONE_DETACHED bit reuseable for clone3
2685 * - make the CSIGNAL bits reuseable for clone3
2686 */
2687 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2688 return false;
2689
2690 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2691 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2692 return false;
2693
2694 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2695 kargs->exit_signal)
2696 return false;
2697
2698 if (!clone3_stack_valid(kargs))
2699 return false;
2700
2701 return true;
2702 }
2703
2704 /**
2705 * clone3 - create a new process with specific properties
2706 * @uargs: argument structure
2707 * @size: size of @uargs
2708 *
2709 * clone3() is the extensible successor to clone()/clone2().
2710 * It takes a struct as argument that is versioned by its size.
2711 *
2712 * Return: On success, a positive PID for the child process.
2713 * On error, a negative errno number.
2714 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2715 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2716 {
2717 int err;
2718
2719 struct kernel_clone_args kargs;
2720 pid_t set_tid[MAX_PID_NS_LEVEL];
2721
2722 kargs.set_tid = set_tid;
2723
2724 err = copy_clone_args_from_user(&kargs, uargs, size);
2725 if (err)
2726 return err;
2727
2728 if (!clone3_args_valid(&kargs))
2729 return -EINVAL;
2730
2731 return kernel_clone(&kargs);
2732 }
2733 #endif
2734
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2735 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2736 {
2737 struct task_struct *leader, *parent, *child;
2738 int res;
2739
2740 read_lock(&tasklist_lock);
2741 leader = top = top->group_leader;
2742 down:
2743 for_each_thread(leader, parent) {
2744 list_for_each_entry(child, &parent->children, sibling) {
2745 res = visitor(child, data);
2746 if (res) {
2747 if (res < 0)
2748 goto out;
2749 leader = child;
2750 goto down;
2751 }
2752 up:
2753 ;
2754 }
2755 }
2756
2757 if (leader != top) {
2758 child = leader;
2759 parent = child->real_parent;
2760 leader = parent->group_leader;
2761 goto up;
2762 }
2763 out:
2764 read_unlock(&tasklist_lock);
2765 }
2766
2767 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2768 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2769 #endif
2770
sighand_ctor(void * data)2771 static void sighand_ctor(void *data)
2772 {
2773 struct sighand_struct *sighand = data;
2774
2775 spin_lock_init(&sighand->siglock);
2776 init_waitqueue_head(&sighand->signalfd_wqh);
2777 }
2778
proc_caches_init(void)2779 void __init proc_caches_init(void)
2780 {
2781 unsigned int mm_size;
2782
2783 sighand_cachep = kmem_cache_create("sighand_cache",
2784 sizeof(struct sighand_struct), 0,
2785 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2786 SLAB_ACCOUNT, sighand_ctor);
2787 signal_cachep = kmem_cache_create("signal_cache",
2788 sizeof(struct signal_struct), 0,
2789 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2790 NULL);
2791 files_cachep = kmem_cache_create("files_cache",
2792 sizeof(struct files_struct), 0,
2793 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2794 NULL);
2795 fs_cachep = kmem_cache_create("fs_cache",
2796 sizeof(struct fs_struct), 0,
2797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2798 NULL);
2799
2800 /*
2801 * The mm_cpumask is located at the end of mm_struct, and is
2802 * dynamically sized based on the maximum CPU number this system
2803 * can have, taking hotplug into account (nr_cpu_ids).
2804 */
2805 mm_size = sizeof(struct mm_struct) + cpumask_size();
2806
2807 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2808 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2809 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2810 offsetof(struct mm_struct, saved_auxv),
2811 sizeof_field(struct mm_struct, saved_auxv),
2812 NULL);
2813 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2814 mmap_init();
2815 nsproxy_cache_init();
2816 }
2817
2818 /*
2819 * Check constraints on flags passed to the unshare system call.
2820 */
check_unshare_flags(unsigned long unshare_flags)2821 static int check_unshare_flags(unsigned long unshare_flags)
2822 {
2823 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2824 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2825 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2826 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2827 CLONE_NEWTIME))
2828 return -EINVAL;
2829 /*
2830 * Not implemented, but pretend it works if there is nothing
2831 * to unshare. Note that unsharing the address space or the
2832 * signal handlers also need to unshare the signal queues (aka
2833 * CLONE_THREAD).
2834 */
2835 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2836 if (!thread_group_empty(current))
2837 return -EINVAL;
2838 }
2839 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2840 if (refcount_read(¤t->sighand->count) > 1)
2841 return -EINVAL;
2842 }
2843 if (unshare_flags & CLONE_VM) {
2844 if (!current_is_single_threaded())
2845 return -EINVAL;
2846 }
2847
2848 return 0;
2849 }
2850
2851 /*
2852 * Unshare the filesystem structure if it is being shared
2853 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2854 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2855 {
2856 struct fs_struct *fs = current->fs;
2857
2858 if (!(unshare_flags & CLONE_FS) || !fs)
2859 return 0;
2860
2861 /* don't need lock here; in the worst case we'll do useless copy */
2862 if (fs->users == 1)
2863 return 0;
2864
2865 *new_fsp = copy_fs_struct(fs);
2866 if (!*new_fsp)
2867 return -ENOMEM;
2868
2869 return 0;
2870 }
2871
2872 /*
2873 * Unshare file descriptor table if it is being shared
2874 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2875 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2876 struct files_struct **new_fdp)
2877 {
2878 struct files_struct *fd = current->files;
2879 int error = 0;
2880
2881 if ((unshare_flags & CLONE_FILES) &&
2882 (fd && atomic_read(&fd->count) > 1)) {
2883 *new_fdp = dup_fd(fd, max_fds, &error);
2884 if (!*new_fdp)
2885 return error;
2886 }
2887
2888 return 0;
2889 }
2890
2891 /*
2892 * unshare allows a process to 'unshare' part of the process
2893 * context which was originally shared using clone. copy_*
2894 * functions used by kernel_clone() cannot be used here directly
2895 * because they modify an inactive task_struct that is being
2896 * constructed. Here we are modifying the current, active,
2897 * task_struct.
2898 */
ksys_unshare(unsigned long unshare_flags)2899 int ksys_unshare(unsigned long unshare_flags)
2900 {
2901 struct fs_struct *fs, *new_fs = NULL;
2902 struct files_struct *fd, *new_fd = NULL;
2903 struct cred *new_cred = NULL;
2904 struct nsproxy *new_nsproxy = NULL;
2905 int do_sysvsem = 0;
2906 int err;
2907
2908 /*
2909 * If unsharing a user namespace must also unshare the thread group
2910 * and unshare the filesystem root and working directories.
2911 */
2912 if (unshare_flags & CLONE_NEWUSER)
2913 unshare_flags |= CLONE_THREAD | CLONE_FS;
2914 /*
2915 * If unsharing vm, must also unshare signal handlers.
2916 */
2917 if (unshare_flags & CLONE_VM)
2918 unshare_flags |= CLONE_SIGHAND;
2919 /*
2920 * If unsharing a signal handlers, must also unshare the signal queues.
2921 */
2922 if (unshare_flags & CLONE_SIGHAND)
2923 unshare_flags |= CLONE_THREAD;
2924 /*
2925 * If unsharing namespace, must also unshare filesystem information.
2926 */
2927 if (unshare_flags & CLONE_NEWNS)
2928 unshare_flags |= CLONE_FS;
2929
2930 err = check_unshare_flags(unshare_flags);
2931 if (err)
2932 goto bad_unshare_out;
2933 /*
2934 * CLONE_NEWIPC must also detach from the undolist: after switching
2935 * to a new ipc namespace, the semaphore arrays from the old
2936 * namespace are unreachable.
2937 */
2938 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2939 do_sysvsem = 1;
2940 err = unshare_fs(unshare_flags, &new_fs);
2941 if (err)
2942 goto bad_unshare_out;
2943 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2944 if (err)
2945 goto bad_unshare_cleanup_fs;
2946 err = unshare_userns(unshare_flags, &new_cred);
2947 if (err)
2948 goto bad_unshare_cleanup_fd;
2949 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2950 new_cred, new_fs);
2951 if (err)
2952 goto bad_unshare_cleanup_cred;
2953
2954 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2955 if (do_sysvsem) {
2956 /*
2957 * CLONE_SYSVSEM is equivalent to sys_exit().
2958 */
2959 exit_sem(current);
2960 }
2961 if (unshare_flags & CLONE_NEWIPC) {
2962 /* Orphan segments in old ns (see sem above). */
2963 exit_shm(current);
2964 shm_init_task(current);
2965 }
2966
2967 if (new_nsproxy)
2968 switch_task_namespaces(current, new_nsproxy);
2969
2970 task_lock(current);
2971
2972 if (new_fs) {
2973 fs = current->fs;
2974 spin_lock(&fs->lock);
2975 current->fs = new_fs;
2976 if (--fs->users)
2977 new_fs = NULL;
2978 else
2979 new_fs = fs;
2980 spin_unlock(&fs->lock);
2981 }
2982
2983 if (new_fd) {
2984 fd = current->files;
2985 current->files = new_fd;
2986 new_fd = fd;
2987 }
2988
2989 task_unlock(current);
2990
2991 if (new_cred) {
2992 /* Install the new user namespace */
2993 commit_creds(new_cred);
2994 new_cred = NULL;
2995 }
2996 }
2997
2998 perf_event_namespaces(current);
2999
3000 bad_unshare_cleanup_cred:
3001 if (new_cred)
3002 put_cred(new_cred);
3003 bad_unshare_cleanup_fd:
3004 if (new_fd)
3005 put_files_struct(new_fd);
3006
3007 bad_unshare_cleanup_fs:
3008 if (new_fs)
3009 free_fs_struct(new_fs);
3010
3011 bad_unshare_out:
3012 return err;
3013 }
3014
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3015 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3016 {
3017 return ksys_unshare(unshare_flags);
3018 }
3019
3020 /*
3021 * Helper to unshare the files of the current task.
3022 * We don't want to expose copy_files internals to
3023 * the exec layer of the kernel.
3024 */
3025
unshare_files(struct files_struct ** displaced)3026 int unshare_files(struct files_struct **displaced)
3027 {
3028 struct task_struct *task = current;
3029 struct files_struct *copy = NULL;
3030 int error;
3031
3032 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3033 if (error || !copy) {
3034 *displaced = NULL;
3035 return error;
3036 }
3037 *displaced = task->files;
3038 task_lock(task);
3039 task->files = copy;
3040 task_unlock(task);
3041 return 0;
3042 }
3043
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3044 int sysctl_max_threads(struct ctl_table *table, int write,
3045 void *buffer, size_t *lenp, loff_t *ppos)
3046 {
3047 struct ctl_table t;
3048 int ret;
3049 int threads = max_threads;
3050 int min = 1;
3051 int max = MAX_THREADS;
3052
3053 t = *table;
3054 t.data = &threads;
3055 t.extra1 = &min;
3056 t.extra2 = &max;
3057
3058 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3059 if (ret || !write)
3060 return ret;
3061
3062 max_threads = threads;
3063
3064 return 0;
3065 }
3066