1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
70 
__unhash_process(struct task_struct * p,bool group_dead)71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_TGID);
77 		detach_pid(p, PIDTYPE_PGID);
78 		detach_pid(p, PIDTYPE_SID);
79 
80 		list_del_rcu(&p->tasks);
81 		list_del_init(&p->sibling);
82 		__this_cpu_dec(process_counts);
83 	}
84 	list_del_rcu(&p->thread_group);
85 	list_del_rcu(&p->thread_node);
86 }
87 
88 /*
89  * This function expects the tasklist_lock write-locked.
90  */
__exit_signal(struct task_struct * tsk)91 static void __exit_signal(struct task_struct *tsk)
92 {
93 	struct signal_struct *sig = tsk->signal;
94 	bool group_dead = thread_group_leader(tsk);
95 	struct sighand_struct *sighand;
96 	struct tty_struct *tty;
97 	u64 utime, stime;
98 
99 	sighand = rcu_dereference_check(tsk->sighand,
100 					lockdep_tasklist_lock_is_held());
101 	spin_lock(&sighand->siglock);
102 
103 #ifdef CONFIG_POSIX_TIMERS
104 	posix_cpu_timers_exit(tsk);
105 	if (group_dead)
106 		posix_cpu_timers_exit_group(tsk);
107 #endif
108 
109 	if (group_dead) {
110 		tty = sig->tty;
111 		sig->tty = NULL;
112 	} else {
113 		/*
114 		 * If there is any task waiting for the group exit
115 		 * then notify it:
116 		 */
117 		if (sig->notify_count > 0 && !--sig->notify_count)
118 			wake_up_process(sig->group_exit_task);
119 
120 		if (tsk == sig->curr_target)
121 			sig->curr_target = next_thread(tsk);
122 	}
123 
124 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
125 			      sizeof(unsigned long long));
126 
127 	/*
128 	 * Accumulate here the counters for all threads as they die. We could
129 	 * skip the group leader because it is the last user of signal_struct,
130 	 * but we want to avoid the race with thread_group_cputime() which can
131 	 * see the empty ->thread_head list.
132 	 */
133 	task_cputime(tsk, &utime, &stime);
134 	write_seqlock(&sig->stats_lock);
135 	sig->utime += utime;
136 	sig->stime += stime;
137 	sig->gtime += task_gtime(tsk);
138 	sig->min_flt += tsk->min_flt;
139 	sig->maj_flt += tsk->maj_flt;
140 	sig->nvcsw += tsk->nvcsw;
141 	sig->nivcsw += tsk->nivcsw;
142 	sig->inblock += task_io_get_inblock(tsk);
143 	sig->oublock += task_io_get_oublock(tsk);
144 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
145 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
146 	sig->nr_threads--;
147 	__unhash_process(tsk, group_dead);
148 	write_sequnlock(&sig->stats_lock);
149 
150 	/*
151 	 * Do this under ->siglock, we can race with another thread
152 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
153 	 */
154 	flush_sigqueue(&tsk->pending);
155 	tsk->sighand = NULL;
156 	spin_unlock(&sighand->siglock);
157 
158 	__cleanup_sighand(sighand);
159 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
160 	if (group_dead) {
161 		flush_sigqueue(&sig->shared_pending);
162 		tty_kref_put(tty);
163 	}
164 }
165 
delayed_put_task_struct(struct rcu_head * rhp)166 static void delayed_put_task_struct(struct rcu_head *rhp)
167 {
168 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169 
170 	perf_event_delayed_put(tsk);
171 	trace_sched_process_free(tsk);
172 	put_task_struct(tsk);
173 }
174 
put_task_struct_rcu_user(struct task_struct * task)175 void put_task_struct_rcu_user(struct task_struct *task)
176 {
177 	if (refcount_dec_and_test(&task->rcu_users))
178 		call_rcu(&task->rcu, delayed_put_task_struct);
179 }
180 
release_task(struct task_struct * p)181 void release_task(struct task_struct *p)
182 {
183 	struct task_struct *leader;
184 	struct pid *thread_pid;
185 	int zap_leader;
186 repeat:
187 	/* don't need to get the RCU readlock here - the process is dead and
188 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
189 	rcu_read_lock();
190 	atomic_dec(&__task_cred(p)->user->processes);
191 	rcu_read_unlock();
192 
193 	cgroup_release(p);
194 
195 	write_lock_irq(&tasklist_lock);
196 	ptrace_release_task(p);
197 	thread_pid = get_pid(p->thread_pid);
198 	__exit_signal(p);
199 
200 	/*
201 	 * If we are the last non-leader member of the thread
202 	 * group, and the leader is zombie, then notify the
203 	 * group leader's parent process. (if it wants notification.)
204 	 */
205 	zap_leader = 0;
206 	leader = p->group_leader;
207 	if (leader != p && thread_group_empty(leader)
208 			&& leader->exit_state == EXIT_ZOMBIE) {
209 		/*
210 		 * If we were the last child thread and the leader has
211 		 * exited already, and the leader's parent ignores SIGCHLD,
212 		 * then we are the one who should release the leader.
213 		 */
214 		zap_leader = do_notify_parent(leader, leader->exit_signal);
215 		if (zap_leader)
216 			leader->exit_state = EXIT_DEAD;
217 	}
218 
219 	write_unlock_irq(&tasklist_lock);
220 	seccomp_filter_release(p);
221 	proc_flush_pid(thread_pid);
222 	put_pid(thread_pid);
223 	release_thread(p);
224 	put_task_struct_rcu_user(p);
225 
226 	p = leader;
227 	if (unlikely(zap_leader))
228 		goto repeat;
229 }
230 
rcuwait_wake_up(struct rcuwait * w)231 int rcuwait_wake_up(struct rcuwait *w)
232 {
233 	int ret = 0;
234 	struct task_struct *task;
235 
236 	rcu_read_lock();
237 
238 	/*
239 	 * Order condition vs @task, such that everything prior to the load
240 	 * of @task is visible. This is the condition as to why the user called
241 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
242 	 * barrier (A) in rcuwait_wait_event().
243 	 *
244 	 *    WAIT                WAKE
245 	 *    [S] tsk = current	  [S] cond = true
246 	 *        MB (A)	      MB (B)
247 	 *    [L] cond		  [L] tsk
248 	 */
249 	smp_mb(); /* (B) */
250 
251 	task = rcu_dereference(w->task);
252 	if (task)
253 		ret = wake_up_process(task);
254 	rcu_read_unlock();
255 
256 	return ret;
257 }
258 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
259 
260 /*
261  * Determine if a process group is "orphaned", according to the POSIX
262  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
263  * by terminal-generated stop signals.  Newly orphaned process groups are
264  * to receive a SIGHUP and a SIGCONT.
265  *
266  * "I ask you, have you ever known what it is to be an orphan?"
267  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)268 static int will_become_orphaned_pgrp(struct pid *pgrp,
269 					struct task_struct *ignored_task)
270 {
271 	struct task_struct *p;
272 
273 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274 		if ((p == ignored_task) ||
275 		    (p->exit_state && thread_group_empty(p)) ||
276 		    is_global_init(p->real_parent))
277 			continue;
278 
279 		if (task_pgrp(p->real_parent) != pgrp &&
280 		    task_session(p->real_parent) == task_session(p))
281 			return 0;
282 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283 
284 	return 1;
285 }
286 
is_current_pgrp_orphaned(void)287 int is_current_pgrp_orphaned(void)
288 {
289 	int retval;
290 
291 	read_lock(&tasklist_lock);
292 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
293 	read_unlock(&tasklist_lock);
294 
295 	return retval;
296 }
297 
has_stopped_jobs(struct pid * pgrp)298 static bool has_stopped_jobs(struct pid *pgrp)
299 {
300 	struct task_struct *p;
301 
302 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
304 			return true;
305 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
306 
307 	return false;
308 }
309 
310 /*
311  * Check to see if any process groups have become orphaned as
312  * a result of our exiting, and if they have any stopped jobs,
313  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
314  */
315 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
317 {
318 	struct pid *pgrp = task_pgrp(tsk);
319 	struct task_struct *ignored_task = tsk;
320 
321 	if (!parent)
322 		/* exit: our father is in a different pgrp than
323 		 * we are and we were the only connection outside.
324 		 */
325 		parent = tsk->real_parent;
326 	else
327 		/* reparent: our child is in a different pgrp than
328 		 * we are, and it was the only connection outside.
329 		 */
330 		ignored_task = NULL;
331 
332 	if (task_pgrp(parent) != pgrp &&
333 	    task_session(parent) == task_session(tsk) &&
334 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
335 	    has_stopped_jobs(pgrp)) {
336 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
337 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
338 	}
339 }
340 
341 #ifdef CONFIG_MEMCG
342 /*
343  * A task is exiting.   If it owned this mm, find a new owner for the mm.
344  */
mm_update_next_owner(struct mm_struct * mm)345 void mm_update_next_owner(struct mm_struct *mm)
346 {
347 	struct task_struct *c, *g, *p = current;
348 
349 retry:
350 	/*
351 	 * If the exiting or execing task is not the owner, it's
352 	 * someone else's problem.
353 	 */
354 	if (mm->owner != p)
355 		return;
356 	/*
357 	 * The current owner is exiting/execing and there are no other
358 	 * candidates.  Do not leave the mm pointing to a possibly
359 	 * freed task structure.
360 	 */
361 	if (atomic_read(&mm->mm_users) <= 1) {
362 		WRITE_ONCE(mm->owner, NULL);
363 		return;
364 	}
365 
366 	read_lock(&tasklist_lock);
367 	/*
368 	 * Search in the children
369 	 */
370 	list_for_each_entry(c, &p->children, sibling) {
371 		if (c->mm == mm)
372 			goto assign_new_owner;
373 	}
374 
375 	/*
376 	 * Search in the siblings
377 	 */
378 	list_for_each_entry(c, &p->real_parent->children, sibling) {
379 		if (c->mm == mm)
380 			goto assign_new_owner;
381 	}
382 
383 	/*
384 	 * Search through everything else, we should not get here often.
385 	 */
386 	for_each_process(g) {
387 		if (g->flags & PF_KTHREAD)
388 			continue;
389 		for_each_thread(g, c) {
390 			if (c->mm == mm)
391 				goto assign_new_owner;
392 			if (c->mm)
393 				break;
394 		}
395 	}
396 	read_unlock(&tasklist_lock);
397 	/*
398 	 * We found no owner yet mm_users > 1: this implies that we are
399 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
400 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
401 	 */
402 	WRITE_ONCE(mm->owner, NULL);
403 	return;
404 
405 assign_new_owner:
406 	BUG_ON(c == p);
407 	get_task_struct(c);
408 	/*
409 	 * The task_lock protects c->mm from changing.
410 	 * We always want mm->owner->mm == mm
411 	 */
412 	task_lock(c);
413 	/*
414 	 * Delay read_unlock() till we have the task_lock()
415 	 * to ensure that c does not slip away underneath us
416 	 */
417 	read_unlock(&tasklist_lock);
418 	if (c->mm != mm) {
419 		task_unlock(c);
420 		put_task_struct(c);
421 		goto retry;
422 	}
423 	WRITE_ONCE(mm->owner, c);
424 	task_unlock(c);
425 	put_task_struct(c);
426 }
427 #endif /* CONFIG_MEMCG */
428 
429 /*
430  * Turn us into a lazy TLB process if we
431  * aren't already..
432  */
exit_mm(void)433 static void exit_mm(void)
434 {
435 	struct mm_struct *mm = current->mm;
436 	struct core_state *core_state;
437 
438 	exit_mm_release(current, mm);
439 	if (!mm)
440 		return;
441 	sync_mm_rss(mm);
442 	/*
443 	 * Serialize with any possible pending coredump.
444 	 * We must hold mmap_lock around checking core_state
445 	 * and clearing tsk->mm.  The core-inducing thread
446 	 * will increment ->nr_threads for each thread in the
447 	 * group with ->mm != NULL.
448 	 */
449 	mmap_read_lock(mm);
450 	core_state = mm->core_state;
451 	if (core_state) {
452 		struct core_thread self;
453 
454 		mmap_read_unlock(mm);
455 
456 		self.task = current;
457 		if (self.task->flags & PF_SIGNALED)
458 			self.next = xchg(&core_state->dumper.next, &self);
459 		else
460 			self.task = NULL;
461 		/*
462 		 * Implies mb(), the result of xchg() must be visible
463 		 * to core_state->dumper.
464 		 */
465 		if (atomic_dec_and_test(&core_state->nr_threads))
466 			complete(&core_state->startup);
467 
468 		for (;;) {
469 			set_current_state(TASK_UNINTERRUPTIBLE);
470 			if (!self.task) /* see coredump_finish() */
471 				break;
472 			freezable_schedule();
473 		}
474 		__set_current_state(TASK_RUNNING);
475 		mmap_read_lock(mm);
476 	}
477 	mmgrab(mm);
478 	BUG_ON(mm != current->active_mm);
479 	/* more a memory barrier than a real lock */
480 	task_lock(current);
481 	current->mm = NULL;
482 	mmap_read_unlock(mm);
483 	enter_lazy_tlb(mm, current);
484 	task_unlock(current);
485 	mm_update_next_owner(mm);
486 	mmput(mm);
487 	if (test_thread_flag(TIF_MEMDIE))
488 		exit_oom_victim();
489 }
490 
find_alive_thread(struct task_struct * p)491 static struct task_struct *find_alive_thread(struct task_struct *p)
492 {
493 	struct task_struct *t;
494 
495 	for_each_thread(p, t) {
496 		if (!(t->flags & PF_EXITING))
497 			return t;
498 	}
499 	return NULL;
500 }
501 
find_child_reaper(struct task_struct * father,struct list_head * dead)502 static struct task_struct *find_child_reaper(struct task_struct *father,
503 						struct list_head *dead)
504 	__releases(&tasklist_lock)
505 	__acquires(&tasklist_lock)
506 {
507 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
508 	struct task_struct *reaper = pid_ns->child_reaper;
509 	struct task_struct *p, *n;
510 
511 	if (likely(reaper != father))
512 		return reaper;
513 
514 	reaper = find_alive_thread(father);
515 	if (reaper) {
516 		pid_ns->child_reaper = reaper;
517 		return reaper;
518 	}
519 
520 	write_unlock_irq(&tasklist_lock);
521 
522 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
523 		list_del_init(&p->ptrace_entry);
524 		release_task(p);
525 	}
526 
527 	zap_pid_ns_processes(pid_ns);
528 	write_lock_irq(&tasklist_lock);
529 
530 	return father;
531 }
532 
533 /*
534  * When we die, we re-parent all our children, and try to:
535  * 1. give them to another thread in our thread group, if such a member exists
536  * 2. give it to the first ancestor process which prctl'd itself as a
537  *    child_subreaper for its children (like a service manager)
538  * 3. give it to the init process (PID 1) in our pid namespace
539  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)540 static struct task_struct *find_new_reaper(struct task_struct *father,
541 					   struct task_struct *child_reaper)
542 {
543 	struct task_struct *thread, *reaper;
544 
545 	thread = find_alive_thread(father);
546 	if (thread)
547 		return thread;
548 
549 	if (father->signal->has_child_subreaper) {
550 		unsigned int ns_level = task_pid(father)->level;
551 		/*
552 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
553 		 * We can't check reaper != child_reaper to ensure we do not
554 		 * cross the namespaces, the exiting parent could be injected
555 		 * by setns() + fork().
556 		 * We check pid->level, this is slightly more efficient than
557 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
558 		 */
559 		for (reaper = father->real_parent;
560 		     task_pid(reaper)->level == ns_level;
561 		     reaper = reaper->real_parent) {
562 			if (reaper == &init_task)
563 				break;
564 			if (!reaper->signal->is_child_subreaper)
565 				continue;
566 			thread = find_alive_thread(reaper);
567 			if (thread)
568 				return thread;
569 		}
570 	}
571 
572 	return child_reaper;
573 }
574 
575 /*
576 * Any that need to be release_task'd are put on the @dead list.
577  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)578 static void reparent_leader(struct task_struct *father, struct task_struct *p,
579 				struct list_head *dead)
580 {
581 	if (unlikely(p->exit_state == EXIT_DEAD))
582 		return;
583 
584 	/* We don't want people slaying init. */
585 	p->exit_signal = SIGCHLD;
586 
587 	/* If it has exited notify the new parent about this child's death. */
588 	if (!p->ptrace &&
589 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
590 		if (do_notify_parent(p, p->exit_signal)) {
591 			p->exit_state = EXIT_DEAD;
592 			list_add(&p->ptrace_entry, dead);
593 		}
594 	}
595 
596 	kill_orphaned_pgrp(p, father);
597 }
598 
599 /*
600  * This does two things:
601  *
602  * A.  Make init inherit all the child processes
603  * B.  Check to see if any process groups have become orphaned
604  *	as a result of our exiting, and if they have any stopped
605  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
606  */
forget_original_parent(struct task_struct * father,struct list_head * dead)607 static void forget_original_parent(struct task_struct *father,
608 					struct list_head *dead)
609 {
610 	struct task_struct *p, *t, *reaper;
611 
612 	if (unlikely(!list_empty(&father->ptraced)))
613 		exit_ptrace(father, dead);
614 
615 	/* Can drop and reacquire tasklist_lock */
616 	reaper = find_child_reaper(father, dead);
617 	if (list_empty(&father->children))
618 		return;
619 
620 	reaper = find_new_reaper(father, reaper);
621 	list_for_each_entry(p, &father->children, sibling) {
622 		for_each_thread(p, t) {
623 			RCU_INIT_POINTER(t->real_parent, reaper);
624 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
625 			if (likely(!t->ptrace))
626 				t->parent = t->real_parent;
627 			if (t->pdeath_signal)
628 				group_send_sig_info(t->pdeath_signal,
629 						    SEND_SIG_NOINFO, t,
630 						    PIDTYPE_TGID);
631 		}
632 		/*
633 		 * If this is a threaded reparent there is no need to
634 		 * notify anyone anything has happened.
635 		 */
636 		if (!same_thread_group(reaper, father))
637 			reparent_leader(father, p, dead);
638 	}
639 	list_splice_tail_init(&father->children, &reaper->children);
640 }
641 
642 /*
643  * Send signals to all our closest relatives so that they know
644  * to properly mourn us..
645  */
exit_notify(struct task_struct * tsk,int group_dead)646 static void exit_notify(struct task_struct *tsk, int group_dead)
647 {
648 	bool autoreap;
649 	struct task_struct *p, *n;
650 	LIST_HEAD(dead);
651 
652 	write_lock_irq(&tasklist_lock);
653 	forget_original_parent(tsk, &dead);
654 
655 	if (group_dead)
656 		kill_orphaned_pgrp(tsk->group_leader, NULL);
657 
658 	tsk->exit_state = EXIT_ZOMBIE;
659 	if (unlikely(tsk->ptrace)) {
660 		int sig = thread_group_leader(tsk) &&
661 				thread_group_empty(tsk) &&
662 				!ptrace_reparented(tsk) ?
663 			tsk->exit_signal : SIGCHLD;
664 		autoreap = do_notify_parent(tsk, sig);
665 	} else if (thread_group_leader(tsk)) {
666 		autoreap = thread_group_empty(tsk) &&
667 			do_notify_parent(tsk, tsk->exit_signal);
668 	} else {
669 		autoreap = true;
670 	}
671 
672 	if (autoreap) {
673 		tsk->exit_state = EXIT_DEAD;
674 		list_add(&tsk->ptrace_entry, &dead);
675 	}
676 
677 	/* mt-exec, de_thread() is waiting for group leader */
678 	if (unlikely(tsk->signal->notify_count < 0))
679 		wake_up_process(tsk->signal->group_exit_task);
680 	write_unlock_irq(&tasklist_lock);
681 
682 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
683 		list_del_init(&p->ptrace_entry);
684 		release_task(p);
685 	}
686 }
687 
688 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)689 static void check_stack_usage(void)
690 {
691 	static DEFINE_SPINLOCK(low_water_lock);
692 	static int lowest_to_date = THREAD_SIZE;
693 	unsigned long free;
694 
695 	free = stack_not_used(current);
696 
697 	if (free >= lowest_to_date)
698 		return;
699 
700 	spin_lock(&low_water_lock);
701 	if (free < lowest_to_date) {
702 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
703 			current->comm, task_pid_nr(current), free);
704 		lowest_to_date = free;
705 	}
706 	spin_unlock(&low_water_lock);
707 }
708 #else
check_stack_usage(void)709 static inline void check_stack_usage(void) {}
710 #endif
711 
do_exit(long code)712 void __noreturn do_exit(long code)
713 {
714 	struct task_struct *tsk = current;
715 	int group_dead;
716 
717 	/*
718 	 * We can get here from a kernel oops, sometimes with preemption off.
719 	 * Start by checking for critical errors.
720 	 * Then fix up important state like USER_DS and preemption.
721 	 * Then do everything else.
722 	 */
723 
724 	WARN_ON(blk_needs_flush_plug(tsk));
725 
726 	if (unlikely(in_interrupt()))
727 		panic("Aiee, killing interrupt handler!");
728 	if (unlikely(!tsk->pid))
729 		panic("Attempted to kill the idle task!");
730 
731 	/*
732 	 * If do_exit is called because this processes oopsed, it's possible
733 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
734 	 * continuing. Amongst other possible reasons, this is to prevent
735 	 * mm_release()->clear_child_tid() from writing to a user-controlled
736 	 * kernel address.
737 	 */
738 	force_uaccess_begin();
739 
740 	if (unlikely(in_atomic())) {
741 		pr_info("note: %s[%d] exited with preempt_count %d\n",
742 			current->comm, task_pid_nr(current),
743 			preempt_count());
744 		preempt_count_set(PREEMPT_ENABLED);
745 	}
746 
747 	profile_task_exit(tsk);
748 	kcov_task_exit(tsk);
749 
750 	ptrace_event(PTRACE_EVENT_EXIT, code);
751 
752 	validate_creds_for_do_exit(tsk);
753 
754 	/*
755 	 * We're taking recursive faults here in do_exit. Safest is to just
756 	 * leave this task alone and wait for reboot.
757 	 */
758 	if (unlikely(tsk->flags & PF_EXITING)) {
759 		pr_alert("Fixing recursive fault but reboot is needed!\n");
760 		futex_exit_recursive(tsk);
761 		set_current_state(TASK_UNINTERRUPTIBLE);
762 		schedule();
763 	}
764 
765 	exit_signals(tsk);  /* sets PF_EXITING */
766 
767 	/* sync mm's RSS info before statistics gathering */
768 	if (tsk->mm)
769 		sync_mm_rss(tsk->mm);
770 	acct_update_integrals(tsk);
771 	group_dead = atomic_dec_and_test(&tsk->signal->live);
772 	if (group_dead) {
773 		/*
774 		 * If the last thread of global init has exited, panic
775 		 * immediately to get a useable coredump.
776 		 */
777 		if (unlikely(is_global_init(tsk)))
778 			panic("Attempted to kill init! exitcode=0x%08x\n",
779 				tsk->signal->group_exit_code ?: (int)code);
780 
781 #ifdef CONFIG_POSIX_TIMERS
782 		hrtimer_cancel(&tsk->signal->real_timer);
783 		exit_itimers(tsk->signal);
784 #endif
785 		if (tsk->mm)
786 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
787 	}
788 	acct_collect(code, group_dead);
789 	if (group_dead)
790 		tty_audit_exit();
791 	audit_free(tsk);
792 
793 	tsk->exit_code = code;
794 	taskstats_exit(tsk, group_dead);
795 
796 	exit_mm();
797 
798 	if (group_dead)
799 		acct_process();
800 	trace_sched_process_exit(tsk);
801 
802 	exit_sem(tsk);
803 	exit_shm(tsk);
804 	exit_files(tsk);
805 	exit_fs(tsk);
806 	if (group_dead)
807 		disassociate_ctty(1);
808 	exit_task_namespaces(tsk);
809 	exit_task_work(tsk);
810 	exit_thread(tsk);
811 
812 	/*
813 	 * Flush inherited counters to the parent - before the parent
814 	 * gets woken up by child-exit notifications.
815 	 *
816 	 * because of cgroup mode, must be called before cgroup_exit()
817 	 */
818 	perf_event_exit_task(tsk);
819 
820 	sched_autogroup_exit_task(tsk);
821 	cgroup_exit(tsk);
822 
823 	/*
824 	 * FIXME: do that only when needed, using sched_exit tracepoint
825 	 */
826 	flush_ptrace_hw_breakpoint(tsk);
827 
828 	exit_tasks_rcu_start();
829 	exit_notify(tsk, group_dead);
830 	proc_exit_connector(tsk);
831 	mpol_put_task_policy(tsk);
832 #ifdef CONFIG_FUTEX
833 	if (unlikely(current->pi_state_cache))
834 		kfree(current->pi_state_cache);
835 #endif
836 	/*
837 	 * Make sure we are holding no locks:
838 	 */
839 	debug_check_no_locks_held();
840 
841 	if (tsk->io_context)
842 		exit_io_context(tsk);
843 
844 	if (tsk->splice_pipe)
845 		free_pipe_info(tsk->splice_pipe);
846 
847 	if (tsk->task_frag.page)
848 		put_page(tsk->task_frag.page);
849 
850 	validate_creds_for_do_exit(tsk);
851 
852 	check_stack_usage();
853 	preempt_disable();
854 	if (tsk->nr_dirtied)
855 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
856 	exit_rcu();
857 	exit_tasks_rcu_finish();
858 
859 	lockdep_free_task(tsk);
860 	do_task_dead();
861 }
862 EXPORT_SYMBOL_GPL(do_exit);
863 
complete_and_exit(struct completion * comp,long code)864 void complete_and_exit(struct completion *comp, long code)
865 {
866 	if (comp)
867 		complete(comp);
868 
869 	do_exit(code);
870 }
871 EXPORT_SYMBOL(complete_and_exit);
872 
SYSCALL_DEFINE1(exit,int,error_code)873 SYSCALL_DEFINE1(exit, int, error_code)
874 {
875 	do_exit((error_code&0xff)<<8);
876 }
877 
878 /*
879  * Take down every thread in the group.  This is called by fatal signals
880  * as well as by sys_exit_group (below).
881  */
882 void
do_group_exit(int exit_code)883 do_group_exit(int exit_code)
884 {
885 	struct signal_struct *sig = current->signal;
886 
887 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
888 
889 	if (signal_group_exit(sig))
890 		exit_code = sig->group_exit_code;
891 	else if (!thread_group_empty(current)) {
892 		struct sighand_struct *const sighand = current->sighand;
893 
894 		spin_lock_irq(&sighand->siglock);
895 		if (signal_group_exit(sig))
896 			/* Another thread got here before we took the lock.  */
897 			exit_code = sig->group_exit_code;
898 		else {
899 			sig->group_exit_code = exit_code;
900 			sig->flags = SIGNAL_GROUP_EXIT;
901 			zap_other_threads(current);
902 		}
903 		spin_unlock_irq(&sighand->siglock);
904 	}
905 
906 	do_exit(exit_code);
907 	/* NOTREACHED */
908 }
909 
910 /*
911  * this kills every thread in the thread group. Note that any externally
912  * wait4()-ing process will get the correct exit code - even if this
913  * thread is not the thread group leader.
914  */
SYSCALL_DEFINE1(exit_group,int,error_code)915 SYSCALL_DEFINE1(exit_group, int, error_code)
916 {
917 	do_group_exit((error_code & 0xff) << 8);
918 	/* NOTREACHED */
919 	return 0;
920 }
921 
922 struct waitid_info {
923 	pid_t pid;
924 	uid_t uid;
925 	int status;
926 	int cause;
927 };
928 
929 struct wait_opts {
930 	enum pid_type		wo_type;
931 	int			wo_flags;
932 	struct pid		*wo_pid;
933 
934 	struct waitid_info	*wo_info;
935 	int			wo_stat;
936 	struct rusage		*wo_rusage;
937 
938 	wait_queue_entry_t		child_wait;
939 	int			notask_error;
940 };
941 
eligible_pid(struct wait_opts * wo,struct task_struct * p)942 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
943 {
944 	return	wo->wo_type == PIDTYPE_MAX ||
945 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
946 }
947 
948 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)949 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
950 {
951 	if (!eligible_pid(wo, p))
952 		return 0;
953 
954 	/*
955 	 * Wait for all children (clone and not) if __WALL is set or
956 	 * if it is traced by us.
957 	 */
958 	if (ptrace || (wo->wo_flags & __WALL))
959 		return 1;
960 
961 	/*
962 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
963 	 * otherwise, wait for non-clone children *only*.
964 	 *
965 	 * Note: a "clone" child here is one that reports to its parent
966 	 * using a signal other than SIGCHLD, or a non-leader thread which
967 	 * we can only see if it is traced by us.
968 	 */
969 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
970 		return 0;
971 
972 	return 1;
973 }
974 
975 /*
976  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
977  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
978  * the lock and this task is uninteresting.  If we return nonzero, we have
979  * released the lock and the system call should return.
980  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)981 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
982 {
983 	int state, status;
984 	pid_t pid = task_pid_vnr(p);
985 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
986 	struct waitid_info *infop;
987 
988 	if (!likely(wo->wo_flags & WEXITED))
989 		return 0;
990 
991 	if (unlikely(wo->wo_flags & WNOWAIT)) {
992 		status = p->exit_code;
993 		get_task_struct(p);
994 		read_unlock(&tasklist_lock);
995 		sched_annotate_sleep();
996 		if (wo->wo_rusage)
997 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
998 		put_task_struct(p);
999 		goto out_info;
1000 	}
1001 	/*
1002 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1003 	 */
1004 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1005 		EXIT_TRACE : EXIT_DEAD;
1006 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1007 		return 0;
1008 	/*
1009 	 * We own this thread, nobody else can reap it.
1010 	 */
1011 	read_unlock(&tasklist_lock);
1012 	sched_annotate_sleep();
1013 
1014 	/*
1015 	 * Check thread_group_leader() to exclude the traced sub-threads.
1016 	 */
1017 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1018 		struct signal_struct *sig = p->signal;
1019 		struct signal_struct *psig = current->signal;
1020 		unsigned long maxrss;
1021 		u64 tgutime, tgstime;
1022 
1023 		/*
1024 		 * The resource counters for the group leader are in its
1025 		 * own task_struct.  Those for dead threads in the group
1026 		 * are in its signal_struct, as are those for the child
1027 		 * processes it has previously reaped.  All these
1028 		 * accumulate in the parent's signal_struct c* fields.
1029 		 *
1030 		 * We don't bother to take a lock here to protect these
1031 		 * p->signal fields because the whole thread group is dead
1032 		 * and nobody can change them.
1033 		 *
1034 		 * psig->stats_lock also protects us from our sub-theads
1035 		 * which can reap other children at the same time. Until
1036 		 * we change k_getrusage()-like users to rely on this lock
1037 		 * we have to take ->siglock as well.
1038 		 *
1039 		 * We use thread_group_cputime_adjusted() to get times for
1040 		 * the thread group, which consolidates times for all threads
1041 		 * in the group including the group leader.
1042 		 */
1043 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1044 		spin_lock_irq(&current->sighand->siglock);
1045 		write_seqlock(&psig->stats_lock);
1046 		psig->cutime += tgutime + sig->cutime;
1047 		psig->cstime += tgstime + sig->cstime;
1048 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1049 		psig->cmin_flt +=
1050 			p->min_flt + sig->min_flt + sig->cmin_flt;
1051 		psig->cmaj_flt +=
1052 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1053 		psig->cnvcsw +=
1054 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1055 		psig->cnivcsw +=
1056 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1057 		psig->cinblock +=
1058 			task_io_get_inblock(p) +
1059 			sig->inblock + sig->cinblock;
1060 		psig->coublock +=
1061 			task_io_get_oublock(p) +
1062 			sig->oublock + sig->coublock;
1063 		maxrss = max(sig->maxrss, sig->cmaxrss);
1064 		if (psig->cmaxrss < maxrss)
1065 			psig->cmaxrss = maxrss;
1066 		task_io_accounting_add(&psig->ioac, &p->ioac);
1067 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1068 		write_sequnlock(&psig->stats_lock);
1069 		spin_unlock_irq(&current->sighand->siglock);
1070 	}
1071 
1072 	if (wo->wo_rusage)
1073 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1074 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1075 		? p->signal->group_exit_code : p->exit_code;
1076 	wo->wo_stat = status;
1077 
1078 	if (state == EXIT_TRACE) {
1079 		write_lock_irq(&tasklist_lock);
1080 		/* We dropped tasklist, ptracer could die and untrace */
1081 		ptrace_unlink(p);
1082 
1083 		/* If parent wants a zombie, don't release it now */
1084 		state = EXIT_ZOMBIE;
1085 		if (do_notify_parent(p, p->exit_signal))
1086 			state = EXIT_DEAD;
1087 		p->exit_state = state;
1088 		write_unlock_irq(&tasklist_lock);
1089 	}
1090 	if (state == EXIT_DEAD)
1091 		release_task(p);
1092 
1093 out_info:
1094 	infop = wo->wo_info;
1095 	if (infop) {
1096 		if ((status & 0x7f) == 0) {
1097 			infop->cause = CLD_EXITED;
1098 			infop->status = status >> 8;
1099 		} else {
1100 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1101 			infop->status = status & 0x7f;
1102 		}
1103 		infop->pid = pid;
1104 		infop->uid = uid;
1105 	}
1106 
1107 	return pid;
1108 }
1109 
task_stopped_code(struct task_struct * p,bool ptrace)1110 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1111 {
1112 	if (ptrace) {
1113 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1114 			return &p->exit_code;
1115 	} else {
1116 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1117 			return &p->signal->group_exit_code;
1118 	}
1119 	return NULL;
1120 }
1121 
1122 /**
1123  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1124  * @wo: wait options
1125  * @ptrace: is the wait for ptrace
1126  * @p: task to wait for
1127  *
1128  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1129  *
1130  * CONTEXT:
1131  * read_lock(&tasklist_lock), which is released if return value is
1132  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1133  *
1134  * RETURNS:
1135  * 0 if wait condition didn't exist and search for other wait conditions
1136  * should continue.  Non-zero return, -errno on failure and @p's pid on
1137  * success, implies that tasklist_lock is released and wait condition
1138  * search should terminate.
1139  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1140 static int wait_task_stopped(struct wait_opts *wo,
1141 				int ptrace, struct task_struct *p)
1142 {
1143 	struct waitid_info *infop;
1144 	int exit_code, *p_code, why;
1145 	uid_t uid = 0; /* unneeded, required by compiler */
1146 	pid_t pid;
1147 
1148 	/*
1149 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1150 	 */
1151 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1152 		return 0;
1153 
1154 	if (!task_stopped_code(p, ptrace))
1155 		return 0;
1156 
1157 	exit_code = 0;
1158 	spin_lock_irq(&p->sighand->siglock);
1159 
1160 	p_code = task_stopped_code(p, ptrace);
1161 	if (unlikely(!p_code))
1162 		goto unlock_sig;
1163 
1164 	exit_code = *p_code;
1165 	if (!exit_code)
1166 		goto unlock_sig;
1167 
1168 	if (!unlikely(wo->wo_flags & WNOWAIT))
1169 		*p_code = 0;
1170 
1171 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1172 unlock_sig:
1173 	spin_unlock_irq(&p->sighand->siglock);
1174 	if (!exit_code)
1175 		return 0;
1176 
1177 	/*
1178 	 * Now we are pretty sure this task is interesting.
1179 	 * Make sure it doesn't get reaped out from under us while we
1180 	 * give up the lock and then examine it below.  We don't want to
1181 	 * keep holding onto the tasklist_lock while we call getrusage and
1182 	 * possibly take page faults for user memory.
1183 	 */
1184 	get_task_struct(p);
1185 	pid = task_pid_vnr(p);
1186 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1187 	read_unlock(&tasklist_lock);
1188 	sched_annotate_sleep();
1189 	if (wo->wo_rusage)
1190 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1191 	put_task_struct(p);
1192 
1193 	if (likely(!(wo->wo_flags & WNOWAIT)))
1194 		wo->wo_stat = (exit_code << 8) | 0x7f;
1195 
1196 	infop = wo->wo_info;
1197 	if (infop) {
1198 		infop->cause = why;
1199 		infop->status = exit_code;
1200 		infop->pid = pid;
1201 		infop->uid = uid;
1202 	}
1203 	return pid;
1204 }
1205 
1206 /*
1207  * Handle do_wait work for one task in a live, non-stopped state.
1208  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1209  * the lock and this task is uninteresting.  If we return nonzero, we have
1210  * released the lock and the system call should return.
1211  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1212 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1213 {
1214 	struct waitid_info *infop;
1215 	pid_t pid;
1216 	uid_t uid;
1217 
1218 	if (!unlikely(wo->wo_flags & WCONTINUED))
1219 		return 0;
1220 
1221 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1222 		return 0;
1223 
1224 	spin_lock_irq(&p->sighand->siglock);
1225 	/* Re-check with the lock held.  */
1226 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1227 		spin_unlock_irq(&p->sighand->siglock);
1228 		return 0;
1229 	}
1230 	if (!unlikely(wo->wo_flags & WNOWAIT))
1231 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1232 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1233 	spin_unlock_irq(&p->sighand->siglock);
1234 
1235 	pid = task_pid_vnr(p);
1236 	get_task_struct(p);
1237 	read_unlock(&tasklist_lock);
1238 	sched_annotate_sleep();
1239 	if (wo->wo_rusage)
1240 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1241 	put_task_struct(p);
1242 
1243 	infop = wo->wo_info;
1244 	if (!infop) {
1245 		wo->wo_stat = 0xffff;
1246 	} else {
1247 		infop->cause = CLD_CONTINUED;
1248 		infop->pid = pid;
1249 		infop->uid = uid;
1250 		infop->status = SIGCONT;
1251 	}
1252 	return pid;
1253 }
1254 
1255 /*
1256  * Consider @p for a wait by @parent.
1257  *
1258  * -ECHILD should be in ->notask_error before the first call.
1259  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1260  * Returns zero if the search for a child should continue;
1261  * then ->notask_error is 0 if @p is an eligible child,
1262  * or still -ECHILD.
1263  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1264 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1265 				struct task_struct *p)
1266 {
1267 	/*
1268 	 * We can race with wait_task_zombie() from another thread.
1269 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1270 	 * can't confuse the checks below.
1271 	 */
1272 	int exit_state = READ_ONCE(p->exit_state);
1273 	int ret;
1274 
1275 	if (unlikely(exit_state == EXIT_DEAD))
1276 		return 0;
1277 
1278 	ret = eligible_child(wo, ptrace, p);
1279 	if (!ret)
1280 		return ret;
1281 
1282 	if (unlikely(exit_state == EXIT_TRACE)) {
1283 		/*
1284 		 * ptrace == 0 means we are the natural parent. In this case
1285 		 * we should clear notask_error, debugger will notify us.
1286 		 */
1287 		if (likely(!ptrace))
1288 			wo->notask_error = 0;
1289 		return 0;
1290 	}
1291 
1292 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1293 		/*
1294 		 * If it is traced by its real parent's group, just pretend
1295 		 * the caller is ptrace_do_wait() and reap this child if it
1296 		 * is zombie.
1297 		 *
1298 		 * This also hides group stop state from real parent; otherwise
1299 		 * a single stop can be reported twice as group and ptrace stop.
1300 		 * If a ptracer wants to distinguish these two events for its
1301 		 * own children it should create a separate process which takes
1302 		 * the role of real parent.
1303 		 */
1304 		if (!ptrace_reparented(p))
1305 			ptrace = 1;
1306 	}
1307 
1308 	/* slay zombie? */
1309 	if (exit_state == EXIT_ZOMBIE) {
1310 		/* we don't reap group leaders with subthreads */
1311 		if (!delay_group_leader(p)) {
1312 			/*
1313 			 * A zombie ptracee is only visible to its ptracer.
1314 			 * Notification and reaping will be cascaded to the
1315 			 * real parent when the ptracer detaches.
1316 			 */
1317 			if (unlikely(ptrace) || likely(!p->ptrace))
1318 				return wait_task_zombie(wo, p);
1319 		}
1320 
1321 		/*
1322 		 * Allow access to stopped/continued state via zombie by
1323 		 * falling through.  Clearing of notask_error is complex.
1324 		 *
1325 		 * When !@ptrace:
1326 		 *
1327 		 * If WEXITED is set, notask_error should naturally be
1328 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1329 		 * so, if there are live subthreads, there are events to
1330 		 * wait for.  If all subthreads are dead, it's still safe
1331 		 * to clear - this function will be called again in finite
1332 		 * amount time once all the subthreads are released and
1333 		 * will then return without clearing.
1334 		 *
1335 		 * When @ptrace:
1336 		 *
1337 		 * Stopped state is per-task and thus can't change once the
1338 		 * target task dies.  Only continued and exited can happen.
1339 		 * Clear notask_error if WCONTINUED | WEXITED.
1340 		 */
1341 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1342 			wo->notask_error = 0;
1343 	} else {
1344 		/*
1345 		 * @p is alive and it's gonna stop, continue or exit, so
1346 		 * there always is something to wait for.
1347 		 */
1348 		wo->notask_error = 0;
1349 	}
1350 
1351 	/*
1352 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1353 	 * is used and the two don't interact with each other.
1354 	 */
1355 	ret = wait_task_stopped(wo, ptrace, p);
1356 	if (ret)
1357 		return ret;
1358 
1359 	/*
1360 	 * Wait for continued.  There's only one continued state and the
1361 	 * ptracer can consume it which can confuse the real parent.  Don't
1362 	 * use WCONTINUED from ptracer.  You don't need or want it.
1363 	 */
1364 	return wait_task_continued(wo, p);
1365 }
1366 
1367 /*
1368  * Do the work of do_wait() for one thread in the group, @tsk.
1369  *
1370  * -ECHILD should be in ->notask_error before the first call.
1371  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1372  * Returns zero if the search for a child should continue; then
1373  * ->notask_error is 0 if there were any eligible children,
1374  * or still -ECHILD.
1375  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1376 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1377 {
1378 	struct task_struct *p;
1379 
1380 	list_for_each_entry(p, &tsk->children, sibling) {
1381 		int ret = wait_consider_task(wo, 0, p);
1382 
1383 		if (ret)
1384 			return ret;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1390 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1391 {
1392 	struct task_struct *p;
1393 
1394 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1395 		int ret = wait_consider_task(wo, 1, p);
1396 
1397 		if (ret)
1398 			return ret;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1404 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1405 				int sync, void *key)
1406 {
1407 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1408 						child_wait);
1409 	struct task_struct *p = key;
1410 
1411 	if (!eligible_pid(wo, p))
1412 		return 0;
1413 
1414 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1415 		return 0;
1416 
1417 	return default_wake_function(wait, mode, sync, key);
1418 }
1419 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1420 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1421 {
1422 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1423 			   TASK_INTERRUPTIBLE, p);
1424 }
1425 
do_wait(struct wait_opts * wo)1426 static long do_wait(struct wait_opts *wo)
1427 {
1428 	struct task_struct *tsk;
1429 	int retval;
1430 
1431 	trace_sched_process_wait(wo->wo_pid);
1432 
1433 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1434 	wo->child_wait.private = current;
1435 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1436 repeat:
1437 	/*
1438 	 * If there is nothing that can match our criteria, just get out.
1439 	 * We will clear ->notask_error to zero if we see any child that
1440 	 * might later match our criteria, even if we are not able to reap
1441 	 * it yet.
1442 	 */
1443 	wo->notask_error = -ECHILD;
1444 	if ((wo->wo_type < PIDTYPE_MAX) &&
1445 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1446 		goto notask;
1447 
1448 	set_current_state(TASK_INTERRUPTIBLE);
1449 	read_lock(&tasklist_lock);
1450 	tsk = current;
1451 	do {
1452 		retval = do_wait_thread(wo, tsk);
1453 		if (retval)
1454 			goto end;
1455 
1456 		retval = ptrace_do_wait(wo, tsk);
1457 		if (retval)
1458 			goto end;
1459 
1460 		if (wo->wo_flags & __WNOTHREAD)
1461 			break;
1462 	} while_each_thread(current, tsk);
1463 	read_unlock(&tasklist_lock);
1464 
1465 notask:
1466 	retval = wo->notask_error;
1467 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1468 		retval = -ERESTARTSYS;
1469 		if (!signal_pending(current)) {
1470 			schedule();
1471 			goto repeat;
1472 		}
1473 	}
1474 end:
1475 	__set_current_state(TASK_RUNNING);
1476 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1477 	return retval;
1478 }
1479 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1480 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1481 			  int options, struct rusage *ru)
1482 {
1483 	struct wait_opts wo;
1484 	struct pid *pid = NULL;
1485 	enum pid_type type;
1486 	long ret;
1487 	unsigned int f_flags = 0;
1488 
1489 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1490 			__WNOTHREAD|__WCLONE|__WALL))
1491 		return -EINVAL;
1492 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1493 		return -EINVAL;
1494 
1495 	switch (which) {
1496 	case P_ALL:
1497 		type = PIDTYPE_MAX;
1498 		break;
1499 	case P_PID:
1500 		type = PIDTYPE_PID;
1501 		if (upid <= 0)
1502 			return -EINVAL;
1503 
1504 		pid = find_get_pid(upid);
1505 		break;
1506 	case P_PGID:
1507 		type = PIDTYPE_PGID;
1508 		if (upid < 0)
1509 			return -EINVAL;
1510 
1511 		if (upid)
1512 			pid = find_get_pid(upid);
1513 		else
1514 			pid = get_task_pid(current, PIDTYPE_PGID);
1515 		break;
1516 	case P_PIDFD:
1517 		type = PIDTYPE_PID;
1518 		if (upid < 0)
1519 			return -EINVAL;
1520 
1521 		pid = pidfd_get_pid(upid, &f_flags);
1522 		if (IS_ERR(pid))
1523 			return PTR_ERR(pid);
1524 
1525 		break;
1526 	default:
1527 		return -EINVAL;
1528 	}
1529 
1530 	wo.wo_type	= type;
1531 	wo.wo_pid	= pid;
1532 	wo.wo_flags	= options;
1533 	wo.wo_info	= infop;
1534 	wo.wo_rusage	= ru;
1535 	if (f_flags & O_NONBLOCK)
1536 		wo.wo_flags |= WNOHANG;
1537 
1538 	ret = do_wait(&wo);
1539 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1540 		ret = -EAGAIN;
1541 
1542 	put_pid(pid);
1543 	return ret;
1544 }
1545 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1546 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1547 		infop, int, options, struct rusage __user *, ru)
1548 {
1549 	struct rusage r;
1550 	struct waitid_info info = {.status = 0};
1551 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1552 	int signo = 0;
1553 
1554 	if (err > 0) {
1555 		signo = SIGCHLD;
1556 		err = 0;
1557 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1558 			return -EFAULT;
1559 	}
1560 	if (!infop)
1561 		return err;
1562 
1563 	if (!user_write_access_begin(infop, sizeof(*infop)))
1564 		return -EFAULT;
1565 
1566 	unsafe_put_user(signo, &infop->si_signo, Efault);
1567 	unsafe_put_user(0, &infop->si_errno, Efault);
1568 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1569 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1570 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1571 	unsafe_put_user(info.status, &infop->si_status, Efault);
1572 	user_write_access_end();
1573 	return err;
1574 Efault:
1575 	user_write_access_end();
1576 	return -EFAULT;
1577 }
1578 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1579 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1580 		  struct rusage *ru)
1581 {
1582 	struct wait_opts wo;
1583 	struct pid *pid = NULL;
1584 	enum pid_type type;
1585 	long ret;
1586 
1587 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1588 			__WNOTHREAD|__WCLONE|__WALL))
1589 		return -EINVAL;
1590 
1591 	/* -INT_MIN is not defined */
1592 	if (upid == INT_MIN)
1593 		return -ESRCH;
1594 
1595 	if (upid == -1)
1596 		type = PIDTYPE_MAX;
1597 	else if (upid < 0) {
1598 		type = PIDTYPE_PGID;
1599 		pid = find_get_pid(-upid);
1600 	} else if (upid == 0) {
1601 		type = PIDTYPE_PGID;
1602 		pid = get_task_pid(current, PIDTYPE_PGID);
1603 	} else /* upid > 0 */ {
1604 		type = PIDTYPE_PID;
1605 		pid = find_get_pid(upid);
1606 	}
1607 
1608 	wo.wo_type	= type;
1609 	wo.wo_pid	= pid;
1610 	wo.wo_flags	= options | WEXITED;
1611 	wo.wo_info	= NULL;
1612 	wo.wo_stat	= 0;
1613 	wo.wo_rusage	= ru;
1614 	ret = do_wait(&wo);
1615 	put_pid(pid);
1616 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1617 		ret = -EFAULT;
1618 
1619 	return ret;
1620 }
1621 
kernel_wait(pid_t pid,int * stat)1622 int kernel_wait(pid_t pid, int *stat)
1623 {
1624 	struct wait_opts wo = {
1625 		.wo_type	= PIDTYPE_PID,
1626 		.wo_pid		= find_get_pid(pid),
1627 		.wo_flags	= WEXITED,
1628 	};
1629 	int ret;
1630 
1631 	ret = do_wait(&wo);
1632 	if (ret > 0 && wo.wo_stat)
1633 		*stat = wo.wo_stat;
1634 	put_pid(wo.wo_pid);
1635 	return ret;
1636 }
1637 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1638 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1639 		int, options, struct rusage __user *, ru)
1640 {
1641 	struct rusage r;
1642 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1643 
1644 	if (err > 0) {
1645 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1646 			return -EFAULT;
1647 	}
1648 	return err;
1649 }
1650 
1651 #ifdef __ARCH_WANT_SYS_WAITPID
1652 
1653 /*
1654  * sys_waitpid() remains for compatibility. waitpid() should be
1655  * implemented by calling sys_wait4() from libc.a.
1656  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1657 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1658 {
1659 	return kernel_wait4(pid, stat_addr, options, NULL);
1660 }
1661 
1662 #endif
1663 
1664 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1665 COMPAT_SYSCALL_DEFINE4(wait4,
1666 	compat_pid_t, pid,
1667 	compat_uint_t __user *, stat_addr,
1668 	int, options,
1669 	struct compat_rusage __user *, ru)
1670 {
1671 	struct rusage r;
1672 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1673 	if (err > 0) {
1674 		if (ru && put_compat_rusage(&r, ru))
1675 			return -EFAULT;
1676 	}
1677 	return err;
1678 }
1679 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1680 COMPAT_SYSCALL_DEFINE5(waitid,
1681 		int, which, compat_pid_t, pid,
1682 		struct compat_siginfo __user *, infop, int, options,
1683 		struct compat_rusage __user *, uru)
1684 {
1685 	struct rusage ru;
1686 	struct waitid_info info = {.status = 0};
1687 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1688 	int signo = 0;
1689 	if (err > 0) {
1690 		signo = SIGCHLD;
1691 		err = 0;
1692 		if (uru) {
1693 			/* kernel_waitid() overwrites everything in ru */
1694 			if (COMPAT_USE_64BIT_TIME)
1695 				err = copy_to_user(uru, &ru, sizeof(ru));
1696 			else
1697 				err = put_compat_rusage(&ru, uru);
1698 			if (err)
1699 				return -EFAULT;
1700 		}
1701 	}
1702 
1703 	if (!infop)
1704 		return err;
1705 
1706 	if (!user_write_access_begin(infop, sizeof(*infop)))
1707 		return -EFAULT;
1708 
1709 	unsafe_put_user(signo, &infop->si_signo, Efault);
1710 	unsafe_put_user(0, &infop->si_errno, Efault);
1711 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1712 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1713 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1714 	unsafe_put_user(info.status, &infop->si_status, Efault);
1715 	user_write_access_end();
1716 	return err;
1717 Efault:
1718 	user_write_access_end();
1719 	return -EFAULT;
1720 }
1721 #endif
1722 
1723 /**
1724  * thread_group_exited - check that a thread group has exited
1725  * @pid: tgid of thread group to be checked.
1726  *
1727  * Test if the thread group represented by tgid has exited (all
1728  * threads are zombies, dead or completely gone).
1729  *
1730  * Return: true if the thread group has exited. false otherwise.
1731  */
thread_group_exited(struct pid * pid)1732 bool thread_group_exited(struct pid *pid)
1733 {
1734 	struct task_struct *task;
1735 	bool exited;
1736 
1737 	rcu_read_lock();
1738 	task = pid_task(pid, PIDTYPE_PID);
1739 	exited = !task ||
1740 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1741 	rcu_read_unlock();
1742 
1743 	return exited;
1744 }
1745 EXPORT_SYMBOL(thread_group_exited);
1746 
abort(void)1747 __weak void abort(void)
1748 {
1749 	BUG();
1750 
1751 	/* if that doesn't kill us, halt */
1752 	panic("Oops failed to kill thread");
1753 }
1754 EXPORT_SYMBOL(abort);
1755