1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39 
40 #include "smpboot.h"
41 
42 /**
43  * cpuhp_cpu_state - Per cpu hotplug state storage
44  * @state:	The current cpu state
45  * @target:	The target state
46  * @thread:	Pointer to the hotplug thread
47  * @should_run:	Thread should execute
48  * @rollback:	Perform a rollback
49  * @single:	Single callback invocation
50  * @bringup:	Single callback bringup or teardown selector
51  * @cb_state:	The state for a single callback (install/uninstall)
52  * @result:	Result of the operation
53  * @done_up:	Signal completion to the issuer of the task for cpu-up
54  * @done_down:	Signal completion to the issuer of the task for cpu-down
55  */
56 struct cpuhp_cpu_state {
57 	enum cpuhp_state	state;
58 	enum cpuhp_state	target;
59 	enum cpuhp_state	fail;
60 #ifdef CONFIG_SMP
61 	struct task_struct	*thread;
62 	bool			should_run;
63 	bool			rollback;
64 	bool			single;
65 	bool			bringup;
66 	struct hlist_node	*node;
67 	struct hlist_node	*last;
68 	enum cpuhp_state	cb_state;
69 	int			result;
70 	struct completion	done_up;
71 	struct completion	done_down;
72 #endif
73 };
74 
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 	.fail = CPUHP_INVALID,
77 };
78 
79 #ifdef CONFIG_SMP
80 cpumask_t cpus_booted_once_mask;
81 #endif
82 
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
88 
89 
cpuhp_lock_acquire(bool bringup)90 static inline void cpuhp_lock_acquire(bool bringup)
91 {
92 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 
cpuhp_lock_release(bool bringup)95 static inline void cpuhp_lock_release(bool bringup)
96 {
97 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
98 }
99 #else
100 
cpuhp_lock_acquire(bool bringup)101 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)102 static inline void cpuhp_lock_release(bool bringup) { }
103 
104 #endif
105 
106 /**
107  * cpuhp_step - Hotplug state machine step
108  * @name:	Name of the step
109  * @startup:	Startup function of the step
110  * @teardown:	Teardown function of the step
111  * @cant_stop:	Bringup/teardown can't be stopped at this step
112  */
113 struct cpuhp_step {
114 	const char		*name;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} startup;
120 	union {
121 		int		(*single)(unsigned int cpu);
122 		int		(*multi)(unsigned int cpu,
123 					 struct hlist_node *node);
124 	} teardown;
125 	struct hlist_head	list;
126 	bool			cant_stop;
127 	bool			multi_instance;
128 };
129 
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
132 
cpuhp_get_step(enum cpuhp_state state)133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
134 {
135 	return cpuhp_hp_states + state;
136 }
137 
138 /**
139  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140  * @cpu:	The cpu for which the callback should be invoked
141  * @state:	The state to do callbacks for
142  * @bringup:	True if the bringup callback should be invoked
143  * @node:	For multi-instance, do a single entry callback for install/remove
144  * @lastp:	For multi-instance rollback, remember how far we got
145  *
146  * Called from cpu hotplug and from the state register machinery.
147  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 				 bool bringup, struct hlist_node *node,
150 				 struct hlist_node **lastp)
151 {
152 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 	struct cpuhp_step *step = cpuhp_get_step(state);
154 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 	int (*cb)(unsigned int cpu);
156 	int ret, cnt;
157 
158 	if (st->fail == state) {
159 		st->fail = CPUHP_INVALID;
160 
161 		if (!(bringup ? step->startup.single : step->teardown.single))
162 			return 0;
163 
164 		return -EAGAIN;
165 	}
166 
167 	if (!step->multi_instance) {
168 		WARN_ON_ONCE(lastp && *lastp);
169 		cb = bringup ? step->startup.single : step->teardown.single;
170 		if (!cb)
171 			return 0;
172 		trace_cpuhp_enter(cpu, st->target, state, cb);
173 		ret = cb(cpu);
174 		trace_cpuhp_exit(cpu, st->state, state, ret);
175 		return ret;
176 	}
177 	cbm = bringup ? step->startup.multi : step->teardown.multi;
178 	if (!cbm)
179 		return 0;
180 
181 	/* Single invocation for instance add/remove */
182 	if (node) {
183 		WARN_ON_ONCE(lastp && *lastp);
184 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 		ret = cbm(cpu, node);
186 		trace_cpuhp_exit(cpu, st->state, state, ret);
187 		return ret;
188 	}
189 
190 	/* State transition. Invoke on all instances */
191 	cnt = 0;
192 	hlist_for_each(node, &step->list) {
193 		if (lastp && node == *lastp)
194 			break;
195 
196 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 		ret = cbm(cpu, node);
198 		trace_cpuhp_exit(cpu, st->state, state, ret);
199 		if (ret) {
200 			if (!lastp)
201 				goto err;
202 
203 			*lastp = node;
204 			return ret;
205 		}
206 		cnt++;
207 	}
208 	if (lastp)
209 		*lastp = NULL;
210 	return 0;
211 err:
212 	/* Rollback the instances if one failed */
213 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 	if (!cbm)
215 		return ret;
216 
217 	hlist_for_each(node, &step->list) {
218 		if (!cnt--)
219 			break;
220 
221 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 		ret = cbm(cpu, node);
223 		trace_cpuhp_exit(cpu, st->state, state, ret);
224 		/*
225 		 * Rollback must not fail,
226 		 */
227 		WARN_ON_ONCE(ret);
228 	}
229 	return ret;
230 }
231 
232 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)233 static bool cpuhp_is_ap_state(enum cpuhp_state state)
234 {
235 	/*
236 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 	 * purposes as that state is handled explicitly in cpu_down.
238 	 */
239 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
240 }
241 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 	struct completion *done = bringup ? &st->done_up : &st->done_down;
245 	wait_for_completion(done);
246 }
247 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 	struct completion *done = bringup ? &st->done_up : &st->done_down;
251 	complete(done);
252 }
253 
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
cpuhp_is_atomic_state(enum cpuhp_state state)257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261 
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266 
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
cpu_maps_update_begin(void)271 void cpu_maps_update_begin(void)
272 {
273 	mutex_lock(&cpu_add_remove_lock);
274 }
275 
cpu_maps_update_done(void)276 void cpu_maps_update_done(void)
277 {
278 	mutex_unlock(&cpu_add_remove_lock);
279 }
280 
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286 
287 #ifdef CONFIG_HOTPLUG_CPU
288 
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290 
cpus_read_lock(void)291 void cpus_read_lock(void)
292 {
293 	percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296 
cpus_read_trylock(void)297 int cpus_read_trylock(void)
298 {
299 	return percpu_down_read_trylock(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_trylock);
302 
cpus_read_unlock(void)303 void cpus_read_unlock(void)
304 {
305 	percpu_up_read(&cpu_hotplug_lock);
306 }
307 EXPORT_SYMBOL_GPL(cpus_read_unlock);
308 
cpus_write_lock(void)309 void cpus_write_lock(void)
310 {
311 	percpu_down_write(&cpu_hotplug_lock);
312 }
313 
cpus_write_unlock(void)314 void cpus_write_unlock(void)
315 {
316 	percpu_up_write(&cpu_hotplug_lock);
317 }
318 
lockdep_assert_cpus_held(void)319 void lockdep_assert_cpus_held(void)
320 {
321 	/*
322 	 * We can't have hotplug operations before userspace starts running,
323 	 * and some init codepaths will knowingly not take the hotplug lock.
324 	 * This is all valid, so mute lockdep until it makes sense to report
325 	 * unheld locks.
326 	 */
327 	if (system_state < SYSTEM_RUNNING)
328 		return;
329 
330 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
331 }
332 
lockdep_acquire_cpus_lock(void)333 static void lockdep_acquire_cpus_lock(void)
334 {
335 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
336 }
337 
lockdep_release_cpus_lock(void)338 static void lockdep_release_cpus_lock(void)
339 {
340 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
341 }
342 
343 /*
344  * Wait for currently running CPU hotplug operations to complete (if any) and
345  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347  * hotplug path before performing hotplug operations. So acquiring that lock
348  * guarantees mutual exclusion from any currently running hotplug operations.
349  */
cpu_hotplug_disable(void)350 void cpu_hotplug_disable(void)
351 {
352 	cpu_maps_update_begin();
353 	cpu_hotplug_disabled++;
354 	cpu_maps_update_done();
355 }
356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
357 
__cpu_hotplug_enable(void)358 static void __cpu_hotplug_enable(void)
359 {
360 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
361 		return;
362 	cpu_hotplug_disabled--;
363 }
364 
cpu_hotplug_enable(void)365 void cpu_hotplug_enable(void)
366 {
367 	cpu_maps_update_begin();
368 	__cpu_hotplug_enable();
369 	cpu_maps_update_done();
370 }
371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
372 
373 #else
374 
lockdep_acquire_cpus_lock(void)375 static void lockdep_acquire_cpus_lock(void)
376 {
377 }
378 
lockdep_release_cpus_lock(void)379 static void lockdep_release_cpus_lock(void)
380 {
381 }
382 
383 #endif	/* CONFIG_HOTPLUG_CPU */
384 
385 /*
386  * Architectures that need SMT-specific errata handling during SMT hotplug
387  * should override this.
388  */
arch_smt_update(void)389 void __weak arch_smt_update(void) { }
390 
391 #ifdef CONFIG_HOTPLUG_SMT
392 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
393 
cpu_smt_disable(bool force)394 void __init cpu_smt_disable(bool force)
395 {
396 	if (!cpu_smt_possible())
397 		return;
398 
399 	if (force) {
400 		pr_info("SMT: Force disabled\n");
401 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402 	} else {
403 		pr_info("SMT: disabled\n");
404 		cpu_smt_control = CPU_SMT_DISABLED;
405 	}
406 }
407 
408 /*
409  * The decision whether SMT is supported can only be done after the full
410  * CPU identification. Called from architecture code.
411  */
cpu_smt_check_topology(void)412 void __init cpu_smt_check_topology(void)
413 {
414 	if (!topology_smt_supported())
415 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
416 }
417 
smt_cmdline_disable(char * str)418 static int __init smt_cmdline_disable(char *str)
419 {
420 	cpu_smt_disable(str && !strcmp(str, "force"));
421 	return 0;
422 }
423 early_param("nosmt", smt_cmdline_disable);
424 
cpu_smt_allowed(unsigned int cpu)425 static inline bool cpu_smt_allowed(unsigned int cpu)
426 {
427 	if (cpu_smt_control == CPU_SMT_ENABLED)
428 		return true;
429 
430 	if (topology_is_primary_thread(cpu))
431 		return true;
432 
433 	/*
434 	 * On x86 it's required to boot all logical CPUs at least once so
435 	 * that the init code can get a chance to set CR4.MCE on each
436 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
437 	 * core will shutdown the machine.
438 	 */
439 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
440 }
441 
442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)443 bool cpu_smt_possible(void)
444 {
445 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
446 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
447 }
448 EXPORT_SYMBOL_GPL(cpu_smt_possible);
449 #else
cpu_smt_allowed(unsigned int cpu)450 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
451 #endif
452 
453 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)454 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
455 {
456 	enum cpuhp_state prev_state = st->state;
457 
458 	st->rollback = false;
459 	st->last = NULL;
460 
461 	st->target = target;
462 	st->single = false;
463 	st->bringup = st->state < target;
464 
465 	return prev_state;
466 }
467 
468 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)469 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
470 {
471 	st->rollback = true;
472 
473 	/*
474 	 * If we have st->last we need to undo partial multi_instance of this
475 	 * state first. Otherwise start undo at the previous state.
476 	 */
477 	if (!st->last) {
478 		if (st->bringup)
479 			st->state--;
480 		else
481 			st->state++;
482 	}
483 
484 	st->target = prev_state;
485 	st->bringup = !st->bringup;
486 }
487 
488 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
490 {
491 	if (!st->single && st->state == st->target)
492 		return;
493 
494 	st->result = 0;
495 	/*
496 	 * Make sure the above stores are visible before should_run becomes
497 	 * true. Paired with the mb() above in cpuhp_thread_fun()
498 	 */
499 	smp_mb();
500 	st->should_run = true;
501 	wake_up_process(st->thread);
502 	wait_for_ap_thread(st, st->bringup);
503 }
504 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)505 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
506 {
507 	enum cpuhp_state prev_state;
508 	int ret;
509 
510 	prev_state = cpuhp_set_state(st, target);
511 	__cpuhp_kick_ap(st);
512 	if ((ret = st->result)) {
513 		cpuhp_reset_state(st, prev_state);
514 		__cpuhp_kick_ap(st);
515 	}
516 
517 	return ret;
518 }
519 
bringup_wait_for_ap(unsigned int cpu)520 static int bringup_wait_for_ap(unsigned int cpu)
521 {
522 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523 
524 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 	wait_for_ap_thread(st, true);
526 	if (WARN_ON_ONCE((!cpu_online(cpu))))
527 		return -ECANCELED;
528 
529 	/* Unpark the hotplug thread of the target cpu */
530 	kthread_unpark(st->thread);
531 
532 	/*
533 	 * SMT soft disabling on X86 requires to bring the CPU out of the
534 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
535 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 	 * cpu_smt_allowed() check will now return false if this is not the
537 	 * primary sibling.
538 	 */
539 	if (!cpu_smt_allowed(cpu))
540 		return -ECANCELED;
541 
542 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 		return 0;
544 
545 	return cpuhp_kick_ap(st, st->target);
546 }
547 
bringup_cpu(unsigned int cpu)548 static int bringup_cpu(unsigned int cpu)
549 {
550 	struct task_struct *idle = idle_thread_get(cpu);
551 	int ret;
552 
553 	/*
554 	 * Some architectures have to walk the irq descriptors to
555 	 * setup the vector space for the cpu which comes online.
556 	 * Prevent irq alloc/free across the bringup.
557 	 */
558 	irq_lock_sparse();
559 
560 	/* Arch-specific enabling code. */
561 	ret = __cpu_up(cpu, idle);
562 	irq_unlock_sparse();
563 	if (ret)
564 		return ret;
565 	return bringup_wait_for_ap(cpu);
566 }
567 
finish_cpu(unsigned int cpu)568 static int finish_cpu(unsigned int cpu)
569 {
570 	struct task_struct *idle = idle_thread_get(cpu);
571 	struct mm_struct *mm = idle->active_mm;
572 
573 	/*
574 	 * idle_task_exit() will have switched to &init_mm, now
575 	 * clean up any remaining active_mm state.
576 	 */
577 	if (mm != &init_mm)
578 		idle->active_mm = &init_mm;
579 	mmdrop(mm);
580 	return 0;
581 }
582 
583 /*
584  * Hotplug state machine related functions
585  */
586 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)587 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
588 {
589 	for (st->state--; st->state > st->target; st->state--)
590 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
591 }
592 
can_rollback_cpu(struct cpuhp_cpu_state * st)593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
594 {
595 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
596 		return true;
597 	/*
598 	 * When CPU hotplug is disabled, then taking the CPU down is not
599 	 * possible because takedown_cpu() and the architecture and
600 	 * subsystem specific mechanisms are not available. So the CPU
601 	 * which would be completely unplugged again needs to stay around
602 	 * in the current state.
603 	 */
604 	return st->state <= CPUHP_BRINGUP_CPU;
605 }
606 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)607 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
608 			      enum cpuhp_state target)
609 {
610 	enum cpuhp_state prev_state = st->state;
611 	int ret = 0;
612 
613 	while (st->state < target) {
614 		st->state++;
615 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
616 		if (ret) {
617 			if (can_rollback_cpu(st)) {
618 				st->target = prev_state;
619 				undo_cpu_up(cpu, st);
620 			}
621 			break;
622 		}
623 	}
624 	return ret;
625 }
626 
627 /*
628  * The cpu hotplug threads manage the bringup and teardown of the cpus
629  */
cpuhp_create(unsigned int cpu)630 static void cpuhp_create(unsigned int cpu)
631 {
632 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
633 
634 	init_completion(&st->done_up);
635 	init_completion(&st->done_down);
636 }
637 
cpuhp_should_run(unsigned int cpu)638 static int cpuhp_should_run(unsigned int cpu)
639 {
640 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
641 
642 	return st->should_run;
643 }
644 
645 /*
646  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647  * callbacks when a state gets [un]installed at runtime.
648  *
649  * Each invocation of this function by the smpboot thread does a single AP
650  * state callback.
651  *
652  * It has 3 modes of operation:
653  *  - single: runs st->cb_state
654  *  - up:     runs ++st->state, while st->state < st->target
655  *  - down:   runs st->state--, while st->state > st->target
656  *
657  * When complete or on error, should_run is cleared and the completion is fired.
658  */
cpuhp_thread_fun(unsigned int cpu)659 static void cpuhp_thread_fun(unsigned int cpu)
660 {
661 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
662 	bool bringup = st->bringup;
663 	enum cpuhp_state state;
664 
665 	if (WARN_ON_ONCE(!st->should_run))
666 		return;
667 
668 	/*
669 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 	 * that if we see ->should_run we also see the rest of the state.
671 	 */
672 	smp_mb();
673 
674 	/*
675 	 * The BP holds the hotplug lock, but we're now running on the AP,
676 	 * ensure that anybody asserting the lock is held, will actually find
677 	 * it so.
678 	 */
679 	lockdep_acquire_cpus_lock();
680 	cpuhp_lock_acquire(bringup);
681 
682 	if (st->single) {
683 		state = st->cb_state;
684 		st->should_run = false;
685 	} else {
686 		if (bringup) {
687 			st->state++;
688 			state = st->state;
689 			st->should_run = (st->state < st->target);
690 			WARN_ON_ONCE(st->state > st->target);
691 		} else {
692 			state = st->state;
693 			st->state--;
694 			st->should_run = (st->state > st->target);
695 			WARN_ON_ONCE(st->state < st->target);
696 		}
697 	}
698 
699 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
700 
701 	if (cpuhp_is_atomic_state(state)) {
702 		local_irq_disable();
703 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
704 		local_irq_enable();
705 
706 		/*
707 		 * STARTING/DYING must not fail!
708 		 */
709 		WARN_ON_ONCE(st->result);
710 	} else {
711 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
712 	}
713 
714 	if (st->result) {
715 		/*
716 		 * If we fail on a rollback, we're up a creek without no
717 		 * paddle, no way forward, no way back. We loose, thanks for
718 		 * playing.
719 		 */
720 		WARN_ON_ONCE(st->rollback);
721 		st->should_run = false;
722 	}
723 
724 	cpuhp_lock_release(bringup);
725 	lockdep_release_cpus_lock();
726 
727 	if (!st->should_run)
728 		complete_ap_thread(st, bringup);
729 }
730 
731 /* Invoke a single callback on a remote cpu */
732 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)733 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
734 			 struct hlist_node *node)
735 {
736 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
737 	int ret;
738 
739 	if (!cpu_online(cpu))
740 		return 0;
741 
742 	cpuhp_lock_acquire(false);
743 	cpuhp_lock_release(false);
744 
745 	cpuhp_lock_acquire(true);
746 	cpuhp_lock_release(true);
747 
748 	/*
749 	 * If we are up and running, use the hotplug thread. For early calls
750 	 * we invoke the thread function directly.
751 	 */
752 	if (!st->thread)
753 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
754 
755 	st->rollback = false;
756 	st->last = NULL;
757 
758 	st->node = node;
759 	st->bringup = bringup;
760 	st->cb_state = state;
761 	st->single = true;
762 
763 	__cpuhp_kick_ap(st);
764 
765 	/*
766 	 * If we failed and did a partial, do a rollback.
767 	 */
768 	if ((ret = st->result) && st->last) {
769 		st->rollback = true;
770 		st->bringup = !bringup;
771 
772 		__cpuhp_kick_ap(st);
773 	}
774 
775 	/*
776 	 * Clean up the leftovers so the next hotplug operation wont use stale
777 	 * data.
778 	 */
779 	st->node = st->last = NULL;
780 	return ret;
781 }
782 
cpuhp_kick_ap_work(unsigned int cpu)783 static int cpuhp_kick_ap_work(unsigned int cpu)
784 {
785 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786 	enum cpuhp_state prev_state = st->state;
787 	int ret;
788 
789 	cpuhp_lock_acquire(false);
790 	cpuhp_lock_release(false);
791 
792 	cpuhp_lock_acquire(true);
793 	cpuhp_lock_release(true);
794 
795 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
796 	ret = cpuhp_kick_ap(st, st->target);
797 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
798 
799 	return ret;
800 }
801 
802 static struct smp_hotplug_thread cpuhp_threads = {
803 	.store			= &cpuhp_state.thread,
804 	.create			= &cpuhp_create,
805 	.thread_should_run	= cpuhp_should_run,
806 	.thread_fn		= cpuhp_thread_fun,
807 	.thread_comm		= "cpuhp/%u",
808 	.selfparking		= true,
809 };
810 
cpuhp_threads_init(void)811 void __init cpuhp_threads_init(void)
812 {
813 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
814 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
815 }
816 
817 #ifdef CONFIG_HOTPLUG_CPU
818 #ifndef arch_clear_mm_cpumask_cpu
819 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
820 #endif
821 
822 /**
823  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
824  * @cpu: a CPU id
825  *
826  * This function walks all processes, finds a valid mm struct for each one and
827  * then clears a corresponding bit in mm's cpumask.  While this all sounds
828  * trivial, there are various non-obvious corner cases, which this function
829  * tries to solve in a safe manner.
830  *
831  * Also note that the function uses a somewhat relaxed locking scheme, so it may
832  * be called only for an already offlined CPU.
833  */
clear_tasks_mm_cpumask(int cpu)834 void clear_tasks_mm_cpumask(int cpu)
835 {
836 	struct task_struct *p;
837 
838 	/*
839 	 * This function is called after the cpu is taken down and marked
840 	 * offline, so its not like new tasks will ever get this cpu set in
841 	 * their mm mask. -- Peter Zijlstra
842 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
843 	 * full-fledged tasklist_lock.
844 	 */
845 	WARN_ON(cpu_online(cpu));
846 	rcu_read_lock();
847 	for_each_process(p) {
848 		struct task_struct *t;
849 
850 		/*
851 		 * Main thread might exit, but other threads may still have
852 		 * a valid mm. Find one.
853 		 */
854 		t = find_lock_task_mm(p);
855 		if (!t)
856 			continue;
857 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
858 		task_unlock(t);
859 	}
860 	rcu_read_unlock();
861 }
862 
863 /* Take this CPU down. */
take_cpu_down(void * _param)864 static int take_cpu_down(void *_param)
865 {
866 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
867 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
868 	int err, cpu = smp_processor_id();
869 	int ret;
870 
871 	/* Ensure this CPU doesn't handle any more interrupts. */
872 	err = __cpu_disable();
873 	if (err < 0)
874 		return err;
875 
876 	/*
877 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
878 	 * do this step again.
879 	 */
880 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
881 	st->state--;
882 	/* Invoke the former CPU_DYING callbacks */
883 	for (; st->state > target; st->state--) {
884 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
885 		/*
886 		 * DYING must not fail!
887 		 */
888 		WARN_ON_ONCE(ret);
889 	}
890 
891 	/* Give up timekeeping duties */
892 	tick_handover_do_timer();
893 	/* Remove CPU from timer broadcasting */
894 	tick_offline_cpu(cpu);
895 	/* Park the stopper thread */
896 	stop_machine_park(cpu);
897 	return 0;
898 }
899 
takedown_cpu(unsigned int cpu)900 static int takedown_cpu(unsigned int cpu)
901 {
902 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
903 	int err;
904 
905 	/* Park the smpboot threads */
906 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
907 
908 	/*
909 	 * Prevent irq alloc/free while the dying cpu reorganizes the
910 	 * interrupt affinities.
911 	 */
912 	irq_lock_sparse();
913 
914 	/*
915 	 * So now all preempt/rcu users must observe !cpu_active().
916 	 */
917 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
918 	if (err) {
919 		/* CPU refused to die */
920 		irq_unlock_sparse();
921 		/* Unpark the hotplug thread so we can rollback there */
922 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
923 		return err;
924 	}
925 	BUG_ON(cpu_online(cpu));
926 
927 	/*
928 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
929 	 * all runnable tasks from the CPU, there's only the idle task left now
930 	 * that the migration thread is done doing the stop_machine thing.
931 	 *
932 	 * Wait for the stop thread to go away.
933 	 */
934 	wait_for_ap_thread(st, false);
935 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
936 
937 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
938 	irq_unlock_sparse();
939 
940 	hotplug_cpu__broadcast_tick_pull(cpu);
941 	/* This actually kills the CPU. */
942 	__cpu_die(cpu);
943 
944 	tick_cleanup_dead_cpu(cpu);
945 	rcutree_migrate_callbacks(cpu);
946 	return 0;
947 }
948 
cpuhp_complete_idle_dead(void * arg)949 static void cpuhp_complete_idle_dead(void *arg)
950 {
951 	struct cpuhp_cpu_state *st = arg;
952 
953 	complete_ap_thread(st, false);
954 }
955 
cpuhp_report_idle_dead(void)956 void cpuhp_report_idle_dead(void)
957 {
958 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
959 
960 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
961 	rcu_report_dead(smp_processor_id());
962 	st->state = CPUHP_AP_IDLE_DEAD;
963 	/*
964 	 * We cannot call complete after rcu_report_dead() so we delegate it
965 	 * to an online cpu.
966 	 */
967 	smp_call_function_single(cpumask_first(cpu_online_mask),
968 				 cpuhp_complete_idle_dead, st, 0);
969 }
970 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)971 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
972 {
973 	for (st->state++; st->state < st->target; st->state++)
974 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
975 }
976 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)977 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
978 				enum cpuhp_state target)
979 {
980 	enum cpuhp_state prev_state = st->state;
981 	int ret = 0;
982 
983 	for (; st->state > target; st->state--) {
984 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
985 		if (ret) {
986 			st->target = prev_state;
987 			if (st->state < prev_state)
988 				undo_cpu_down(cpu, st);
989 			break;
990 		}
991 	}
992 	return ret;
993 }
994 
995 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)996 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
997 			   enum cpuhp_state target)
998 {
999 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1000 	int prev_state, ret = 0;
1001 
1002 	if (num_online_cpus() == 1)
1003 		return -EBUSY;
1004 
1005 	if (!cpu_present(cpu))
1006 		return -EINVAL;
1007 
1008 	cpus_write_lock();
1009 
1010 	cpuhp_tasks_frozen = tasks_frozen;
1011 
1012 	prev_state = cpuhp_set_state(st, target);
1013 	/*
1014 	 * If the current CPU state is in the range of the AP hotplug thread,
1015 	 * then we need to kick the thread.
1016 	 */
1017 	if (st->state > CPUHP_TEARDOWN_CPU) {
1018 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1019 		ret = cpuhp_kick_ap_work(cpu);
1020 		/*
1021 		 * The AP side has done the error rollback already. Just
1022 		 * return the error code..
1023 		 */
1024 		if (ret)
1025 			goto out;
1026 
1027 		/*
1028 		 * We might have stopped still in the range of the AP hotplug
1029 		 * thread. Nothing to do anymore.
1030 		 */
1031 		if (st->state > CPUHP_TEARDOWN_CPU)
1032 			goto out;
1033 
1034 		st->target = target;
1035 	}
1036 	/*
1037 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1038 	 * to do the further cleanups.
1039 	 */
1040 	ret = cpuhp_down_callbacks(cpu, st, target);
1041 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1042 		cpuhp_reset_state(st, prev_state);
1043 		__cpuhp_kick_ap(st);
1044 	}
1045 
1046 out:
1047 	cpus_write_unlock();
1048 	/*
1049 	 * Do post unplug cleanup. This is still protected against
1050 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1051 	 */
1052 	lockup_detector_cleanup();
1053 	arch_smt_update();
1054 	return ret;
1055 }
1056 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1057 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1058 {
1059 	if (cpu_hotplug_disabled)
1060 		return -EBUSY;
1061 	return _cpu_down(cpu, 0, target);
1062 }
1063 
cpu_down(unsigned int cpu,enum cpuhp_state target)1064 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1065 {
1066 	int err;
1067 
1068 	cpu_maps_update_begin();
1069 	err = cpu_down_maps_locked(cpu, target);
1070 	cpu_maps_update_done();
1071 	return err;
1072 }
1073 
1074 /**
1075  * cpu_device_down - Bring down a cpu device
1076  * @dev: Pointer to the cpu device to offline
1077  *
1078  * This function is meant to be used by device core cpu subsystem only.
1079  *
1080  * Other subsystems should use remove_cpu() instead.
1081  */
cpu_device_down(struct device * dev)1082 int cpu_device_down(struct device *dev)
1083 {
1084 	return cpu_down(dev->id, CPUHP_OFFLINE);
1085 }
1086 
remove_cpu(unsigned int cpu)1087 int remove_cpu(unsigned int cpu)
1088 {
1089 	int ret;
1090 
1091 	lock_device_hotplug();
1092 	ret = device_offline(get_cpu_device(cpu));
1093 	unlock_device_hotplug();
1094 
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL_GPL(remove_cpu);
1098 
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1099 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1100 {
1101 	unsigned int cpu;
1102 	int error;
1103 
1104 	cpu_maps_update_begin();
1105 
1106 	/*
1107 	 * Make certain the cpu I'm about to reboot on is online.
1108 	 *
1109 	 * This is inline to what migrate_to_reboot_cpu() already do.
1110 	 */
1111 	if (!cpu_online(primary_cpu))
1112 		primary_cpu = cpumask_first(cpu_online_mask);
1113 
1114 	for_each_online_cpu(cpu) {
1115 		if (cpu == primary_cpu)
1116 			continue;
1117 
1118 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1119 		if (error) {
1120 			pr_err("Failed to offline CPU%d - error=%d",
1121 				cpu, error);
1122 			break;
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * Ensure all but the reboot CPU are offline.
1128 	 */
1129 	BUG_ON(num_online_cpus() > 1);
1130 
1131 	/*
1132 	 * Make sure the CPUs won't be enabled by someone else after this
1133 	 * point. Kexec will reboot to a new kernel shortly resetting
1134 	 * everything along the way.
1135 	 */
1136 	cpu_hotplug_disabled++;
1137 
1138 	cpu_maps_update_done();
1139 }
1140 
1141 #else
1142 #define takedown_cpu		NULL
1143 #endif /*CONFIG_HOTPLUG_CPU*/
1144 
1145 /**
1146  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1147  * @cpu: cpu that just started
1148  *
1149  * It must be called by the arch code on the new cpu, before the new cpu
1150  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1151  */
notify_cpu_starting(unsigned int cpu)1152 void notify_cpu_starting(unsigned int cpu)
1153 {
1154 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1155 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1156 	int ret;
1157 
1158 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1159 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1160 	while (st->state < target) {
1161 		st->state++;
1162 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1163 		/*
1164 		 * STARTING must not fail!
1165 		 */
1166 		WARN_ON_ONCE(ret);
1167 	}
1168 }
1169 
1170 /*
1171  * Called from the idle task. Wake up the controlling task which brings the
1172  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1173  * online bringup to the hotplug thread.
1174  */
cpuhp_online_idle(enum cpuhp_state state)1175 void cpuhp_online_idle(enum cpuhp_state state)
1176 {
1177 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1178 
1179 	/* Happens for the boot cpu */
1180 	if (state != CPUHP_AP_ONLINE_IDLE)
1181 		return;
1182 
1183 	/*
1184 	 * Unpart the stopper thread before we start the idle loop (and start
1185 	 * scheduling); this ensures the stopper task is always available.
1186 	 */
1187 	stop_machine_unpark(smp_processor_id());
1188 
1189 	st->state = CPUHP_AP_ONLINE_IDLE;
1190 	complete_ap_thread(st, true);
1191 }
1192 
1193 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1194 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1195 {
1196 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1197 	struct task_struct *idle;
1198 	int ret = 0;
1199 
1200 	cpus_write_lock();
1201 
1202 	if (!cpu_present(cpu)) {
1203 		ret = -EINVAL;
1204 		goto out;
1205 	}
1206 
1207 	/*
1208 	 * The caller of cpu_up() might have raced with another
1209 	 * caller. Nothing to do.
1210 	 */
1211 	if (st->state >= target)
1212 		goto out;
1213 
1214 	if (st->state == CPUHP_OFFLINE) {
1215 		/* Let it fail before we try to bring the cpu up */
1216 		idle = idle_thread_get(cpu);
1217 		if (IS_ERR(idle)) {
1218 			ret = PTR_ERR(idle);
1219 			goto out;
1220 		}
1221 	}
1222 
1223 	cpuhp_tasks_frozen = tasks_frozen;
1224 
1225 	cpuhp_set_state(st, target);
1226 	/*
1227 	 * If the current CPU state is in the range of the AP hotplug thread,
1228 	 * then we need to kick the thread once more.
1229 	 */
1230 	if (st->state > CPUHP_BRINGUP_CPU) {
1231 		ret = cpuhp_kick_ap_work(cpu);
1232 		/*
1233 		 * The AP side has done the error rollback already. Just
1234 		 * return the error code..
1235 		 */
1236 		if (ret)
1237 			goto out;
1238 	}
1239 
1240 	/*
1241 	 * Try to reach the target state. We max out on the BP at
1242 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1243 	 * responsible for bringing it up to the target state.
1244 	 */
1245 	target = min((int)target, CPUHP_BRINGUP_CPU);
1246 	ret = cpuhp_up_callbacks(cpu, st, target);
1247 out:
1248 	cpus_write_unlock();
1249 	arch_smt_update();
1250 	return ret;
1251 }
1252 
cpu_up(unsigned int cpu,enum cpuhp_state target)1253 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1254 {
1255 	int err = 0;
1256 
1257 	if (!cpu_possible(cpu)) {
1258 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1259 		       cpu);
1260 #if defined(CONFIG_IA64)
1261 		pr_err("please check additional_cpus= boot parameter\n");
1262 #endif
1263 		return -EINVAL;
1264 	}
1265 
1266 	err = try_online_node(cpu_to_node(cpu));
1267 	if (err)
1268 		return err;
1269 
1270 	cpu_maps_update_begin();
1271 
1272 	if (cpu_hotplug_disabled) {
1273 		err = -EBUSY;
1274 		goto out;
1275 	}
1276 	if (!cpu_smt_allowed(cpu)) {
1277 		err = -EPERM;
1278 		goto out;
1279 	}
1280 
1281 	err = _cpu_up(cpu, 0, target);
1282 out:
1283 	cpu_maps_update_done();
1284 	return err;
1285 }
1286 
1287 /**
1288  * cpu_device_up - Bring up a cpu device
1289  * @dev: Pointer to the cpu device to online
1290  *
1291  * This function is meant to be used by device core cpu subsystem only.
1292  *
1293  * Other subsystems should use add_cpu() instead.
1294  */
cpu_device_up(struct device * dev)1295 int cpu_device_up(struct device *dev)
1296 {
1297 	return cpu_up(dev->id, CPUHP_ONLINE);
1298 }
1299 
add_cpu(unsigned int cpu)1300 int add_cpu(unsigned int cpu)
1301 {
1302 	int ret;
1303 
1304 	lock_device_hotplug();
1305 	ret = device_online(get_cpu_device(cpu));
1306 	unlock_device_hotplug();
1307 
1308 	return ret;
1309 }
1310 EXPORT_SYMBOL_GPL(add_cpu);
1311 
1312 /**
1313  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1314  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1315  *
1316  * On some architectures like arm64, we can hibernate on any CPU, but on
1317  * wake up the CPU we hibernated on might be offline as a side effect of
1318  * using maxcpus= for example.
1319  */
bringup_hibernate_cpu(unsigned int sleep_cpu)1320 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1321 {
1322 	int ret;
1323 
1324 	if (!cpu_online(sleep_cpu)) {
1325 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1326 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1327 		if (ret) {
1328 			pr_err("Failed to bring hibernate-CPU up!\n");
1329 			return ret;
1330 		}
1331 	}
1332 	return 0;
1333 }
1334 
bringup_nonboot_cpus(unsigned int setup_max_cpus)1335 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1336 {
1337 	unsigned int cpu;
1338 
1339 	for_each_present_cpu(cpu) {
1340 		if (num_online_cpus() >= setup_max_cpus)
1341 			break;
1342 		if (!cpu_online(cpu))
1343 			cpu_up(cpu, CPUHP_ONLINE);
1344 	}
1345 }
1346 
1347 #ifdef CONFIG_PM_SLEEP_SMP
1348 static cpumask_var_t frozen_cpus;
1349 
freeze_secondary_cpus(int primary)1350 int freeze_secondary_cpus(int primary)
1351 {
1352 	int cpu, error = 0;
1353 
1354 	cpu_maps_update_begin();
1355 	if (primary == -1) {
1356 		primary = cpumask_first(cpu_online_mask);
1357 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1358 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1359 	} else {
1360 		if (!cpu_online(primary))
1361 			primary = cpumask_first(cpu_online_mask);
1362 	}
1363 
1364 	/*
1365 	 * We take down all of the non-boot CPUs in one shot to avoid races
1366 	 * with the userspace trying to use the CPU hotplug at the same time
1367 	 */
1368 	cpumask_clear(frozen_cpus);
1369 
1370 	pr_info("Disabling non-boot CPUs ...\n");
1371 	for_each_online_cpu(cpu) {
1372 		if (cpu == primary)
1373 			continue;
1374 
1375 		if (pm_wakeup_pending()) {
1376 			pr_info("Wakeup pending. Abort CPU freeze\n");
1377 			error = -EBUSY;
1378 			break;
1379 		}
1380 
1381 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1382 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1383 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1384 		if (!error)
1385 			cpumask_set_cpu(cpu, frozen_cpus);
1386 		else {
1387 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1388 			break;
1389 		}
1390 	}
1391 
1392 	if (!error)
1393 		BUG_ON(num_online_cpus() > 1);
1394 	else
1395 		pr_err("Non-boot CPUs are not disabled\n");
1396 
1397 	/*
1398 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1399 	 * this even in case of failure as all freeze_secondary_cpus() users are
1400 	 * supposed to do thaw_secondary_cpus() on the failure path.
1401 	 */
1402 	cpu_hotplug_disabled++;
1403 
1404 	cpu_maps_update_done();
1405 	return error;
1406 }
1407 
arch_thaw_secondary_cpus_begin(void)1408 void __weak arch_thaw_secondary_cpus_begin(void)
1409 {
1410 }
1411 
arch_thaw_secondary_cpus_end(void)1412 void __weak arch_thaw_secondary_cpus_end(void)
1413 {
1414 }
1415 
thaw_secondary_cpus(void)1416 void thaw_secondary_cpus(void)
1417 {
1418 	int cpu, error;
1419 
1420 	/* Allow everyone to use the CPU hotplug again */
1421 	cpu_maps_update_begin();
1422 	__cpu_hotplug_enable();
1423 	if (cpumask_empty(frozen_cpus))
1424 		goto out;
1425 
1426 	pr_info("Enabling non-boot CPUs ...\n");
1427 
1428 	arch_thaw_secondary_cpus_begin();
1429 
1430 	for_each_cpu(cpu, frozen_cpus) {
1431 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1432 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1433 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1434 		if (!error) {
1435 			pr_info("CPU%d is up\n", cpu);
1436 			continue;
1437 		}
1438 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1439 	}
1440 
1441 	arch_thaw_secondary_cpus_end();
1442 
1443 	cpumask_clear(frozen_cpus);
1444 out:
1445 	cpu_maps_update_done();
1446 }
1447 
alloc_frozen_cpus(void)1448 static int __init alloc_frozen_cpus(void)
1449 {
1450 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1451 		return -ENOMEM;
1452 	return 0;
1453 }
1454 core_initcall(alloc_frozen_cpus);
1455 
1456 /*
1457  * When callbacks for CPU hotplug notifications are being executed, we must
1458  * ensure that the state of the system with respect to the tasks being frozen
1459  * or not, as reported by the notification, remains unchanged *throughout the
1460  * duration* of the execution of the callbacks.
1461  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1462  *
1463  * This synchronization is implemented by mutually excluding regular CPU
1464  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1465  * Hibernate notifications.
1466  */
1467 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1468 cpu_hotplug_pm_callback(struct notifier_block *nb,
1469 			unsigned long action, void *ptr)
1470 {
1471 	switch (action) {
1472 
1473 	case PM_SUSPEND_PREPARE:
1474 	case PM_HIBERNATION_PREPARE:
1475 		cpu_hotplug_disable();
1476 		break;
1477 
1478 	case PM_POST_SUSPEND:
1479 	case PM_POST_HIBERNATION:
1480 		cpu_hotplug_enable();
1481 		break;
1482 
1483 	default:
1484 		return NOTIFY_DONE;
1485 	}
1486 
1487 	return NOTIFY_OK;
1488 }
1489 
1490 
cpu_hotplug_pm_sync_init(void)1491 static int __init cpu_hotplug_pm_sync_init(void)
1492 {
1493 	/*
1494 	 * cpu_hotplug_pm_callback has higher priority than x86
1495 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1496 	 * to disable cpu hotplug to avoid cpu hotplug race.
1497 	 */
1498 	pm_notifier(cpu_hotplug_pm_callback, 0);
1499 	return 0;
1500 }
1501 core_initcall(cpu_hotplug_pm_sync_init);
1502 
1503 #endif /* CONFIG_PM_SLEEP_SMP */
1504 
1505 int __boot_cpu_id;
1506 
1507 #endif /* CONFIG_SMP */
1508 
1509 /* Boot processor state steps */
1510 static struct cpuhp_step cpuhp_hp_states[] = {
1511 	[CPUHP_OFFLINE] = {
1512 		.name			= "offline",
1513 		.startup.single		= NULL,
1514 		.teardown.single	= NULL,
1515 	},
1516 #ifdef CONFIG_SMP
1517 	[CPUHP_CREATE_THREADS]= {
1518 		.name			= "threads:prepare",
1519 		.startup.single		= smpboot_create_threads,
1520 		.teardown.single	= NULL,
1521 		.cant_stop		= true,
1522 	},
1523 	[CPUHP_PERF_PREPARE] = {
1524 		.name			= "perf:prepare",
1525 		.startup.single		= perf_event_init_cpu,
1526 		.teardown.single	= perf_event_exit_cpu,
1527 	},
1528 	[CPUHP_WORKQUEUE_PREP] = {
1529 		.name			= "workqueue:prepare",
1530 		.startup.single		= workqueue_prepare_cpu,
1531 		.teardown.single	= NULL,
1532 	},
1533 	[CPUHP_HRTIMERS_PREPARE] = {
1534 		.name			= "hrtimers:prepare",
1535 		.startup.single		= hrtimers_prepare_cpu,
1536 		.teardown.single	= hrtimers_dead_cpu,
1537 	},
1538 	[CPUHP_SMPCFD_PREPARE] = {
1539 		.name			= "smpcfd:prepare",
1540 		.startup.single		= smpcfd_prepare_cpu,
1541 		.teardown.single	= smpcfd_dead_cpu,
1542 	},
1543 	[CPUHP_RELAY_PREPARE] = {
1544 		.name			= "relay:prepare",
1545 		.startup.single		= relay_prepare_cpu,
1546 		.teardown.single	= NULL,
1547 	},
1548 	[CPUHP_SLAB_PREPARE] = {
1549 		.name			= "slab:prepare",
1550 		.startup.single		= slab_prepare_cpu,
1551 		.teardown.single	= slab_dead_cpu,
1552 	},
1553 	[CPUHP_RCUTREE_PREP] = {
1554 		.name			= "RCU/tree:prepare",
1555 		.startup.single		= rcutree_prepare_cpu,
1556 		.teardown.single	= rcutree_dead_cpu,
1557 	},
1558 	/*
1559 	 * On the tear-down path, timers_dead_cpu() must be invoked
1560 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1561 	 * otherwise a RCU stall occurs.
1562 	 */
1563 	[CPUHP_TIMERS_PREPARE] = {
1564 		.name			= "timers:prepare",
1565 		.startup.single		= timers_prepare_cpu,
1566 		.teardown.single	= timers_dead_cpu,
1567 	},
1568 	/* Kicks the plugged cpu into life */
1569 	[CPUHP_BRINGUP_CPU] = {
1570 		.name			= "cpu:bringup",
1571 		.startup.single		= bringup_cpu,
1572 		.teardown.single	= finish_cpu,
1573 		.cant_stop		= true,
1574 	},
1575 	/* Final state before CPU kills itself */
1576 	[CPUHP_AP_IDLE_DEAD] = {
1577 		.name			= "idle:dead",
1578 	},
1579 	/*
1580 	 * Last state before CPU enters the idle loop to die. Transient state
1581 	 * for synchronization.
1582 	 */
1583 	[CPUHP_AP_OFFLINE] = {
1584 		.name			= "ap:offline",
1585 		.cant_stop		= true,
1586 	},
1587 	/* First state is scheduler control. Interrupts are disabled */
1588 	[CPUHP_AP_SCHED_STARTING] = {
1589 		.name			= "sched:starting",
1590 		.startup.single		= sched_cpu_starting,
1591 		.teardown.single	= sched_cpu_dying,
1592 	},
1593 	[CPUHP_AP_RCUTREE_DYING] = {
1594 		.name			= "RCU/tree:dying",
1595 		.startup.single		= NULL,
1596 		.teardown.single	= rcutree_dying_cpu,
1597 	},
1598 	[CPUHP_AP_SMPCFD_DYING] = {
1599 		.name			= "smpcfd:dying",
1600 		.startup.single		= NULL,
1601 		.teardown.single	= smpcfd_dying_cpu,
1602 	},
1603 	/* Entry state on starting. Interrupts enabled from here on. Transient
1604 	 * state for synchronsization */
1605 	[CPUHP_AP_ONLINE] = {
1606 		.name			= "ap:online",
1607 	},
1608 	/*
1609 	 * Handled on controll processor until the plugged processor manages
1610 	 * this itself.
1611 	 */
1612 	[CPUHP_TEARDOWN_CPU] = {
1613 		.name			= "cpu:teardown",
1614 		.startup.single		= NULL,
1615 		.teardown.single	= takedown_cpu,
1616 		.cant_stop		= true,
1617 	},
1618 	/* Handle smpboot threads park/unpark */
1619 	[CPUHP_AP_SMPBOOT_THREADS] = {
1620 		.name			= "smpboot/threads:online",
1621 		.startup.single		= smpboot_unpark_threads,
1622 		.teardown.single	= smpboot_park_threads,
1623 	},
1624 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1625 		.name			= "irq/affinity:online",
1626 		.startup.single		= irq_affinity_online_cpu,
1627 		.teardown.single	= NULL,
1628 	},
1629 	[CPUHP_AP_PERF_ONLINE] = {
1630 		.name			= "perf:online",
1631 		.startup.single		= perf_event_init_cpu,
1632 		.teardown.single	= perf_event_exit_cpu,
1633 	},
1634 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1635 		.name			= "lockup_detector:online",
1636 		.startup.single		= lockup_detector_online_cpu,
1637 		.teardown.single	= lockup_detector_offline_cpu,
1638 	},
1639 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1640 		.name			= "workqueue:online",
1641 		.startup.single		= workqueue_online_cpu,
1642 		.teardown.single	= workqueue_offline_cpu,
1643 	},
1644 	[CPUHP_AP_RCUTREE_ONLINE] = {
1645 		.name			= "RCU/tree:online",
1646 		.startup.single		= rcutree_online_cpu,
1647 		.teardown.single	= rcutree_offline_cpu,
1648 	},
1649 #endif
1650 	/*
1651 	 * The dynamically registered state space is here
1652 	 */
1653 
1654 #ifdef CONFIG_SMP
1655 	/* Last state is scheduler control setting the cpu active */
1656 	[CPUHP_AP_ACTIVE] = {
1657 		.name			= "sched:active",
1658 		.startup.single		= sched_cpu_activate,
1659 		.teardown.single	= sched_cpu_deactivate,
1660 	},
1661 #endif
1662 
1663 	/* CPU is fully up and running. */
1664 	[CPUHP_ONLINE] = {
1665 		.name			= "online",
1666 		.startup.single		= NULL,
1667 		.teardown.single	= NULL,
1668 	},
1669 };
1670 
1671 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1672 static int cpuhp_cb_check(enum cpuhp_state state)
1673 {
1674 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1675 		return -EINVAL;
1676 	return 0;
1677 }
1678 
1679 /*
1680  * Returns a free for dynamic slot assignment of the Online state. The states
1681  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1682  * by having no name assigned.
1683  */
cpuhp_reserve_state(enum cpuhp_state state)1684 static int cpuhp_reserve_state(enum cpuhp_state state)
1685 {
1686 	enum cpuhp_state i, end;
1687 	struct cpuhp_step *step;
1688 
1689 	switch (state) {
1690 	case CPUHP_AP_ONLINE_DYN:
1691 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1692 		end = CPUHP_AP_ONLINE_DYN_END;
1693 		break;
1694 	case CPUHP_BP_PREPARE_DYN:
1695 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1696 		end = CPUHP_BP_PREPARE_DYN_END;
1697 		break;
1698 	default:
1699 		return -EINVAL;
1700 	}
1701 
1702 	for (i = state; i <= end; i++, step++) {
1703 		if (!step->name)
1704 			return i;
1705 	}
1706 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1707 	return -ENOSPC;
1708 }
1709 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1710 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1711 				 int (*startup)(unsigned int cpu),
1712 				 int (*teardown)(unsigned int cpu),
1713 				 bool multi_instance)
1714 {
1715 	/* (Un)Install the callbacks for further cpu hotplug operations */
1716 	struct cpuhp_step *sp;
1717 	int ret = 0;
1718 
1719 	/*
1720 	 * If name is NULL, then the state gets removed.
1721 	 *
1722 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1723 	 * the first allocation from these dynamic ranges, so the removal
1724 	 * would trigger a new allocation and clear the wrong (already
1725 	 * empty) state, leaving the callbacks of the to be cleared state
1726 	 * dangling, which causes wreckage on the next hotplug operation.
1727 	 */
1728 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1729 		     state == CPUHP_BP_PREPARE_DYN)) {
1730 		ret = cpuhp_reserve_state(state);
1731 		if (ret < 0)
1732 			return ret;
1733 		state = ret;
1734 	}
1735 	sp = cpuhp_get_step(state);
1736 	if (name && sp->name)
1737 		return -EBUSY;
1738 
1739 	sp->startup.single = startup;
1740 	sp->teardown.single = teardown;
1741 	sp->name = name;
1742 	sp->multi_instance = multi_instance;
1743 	INIT_HLIST_HEAD(&sp->list);
1744 	return ret;
1745 }
1746 
cpuhp_get_teardown_cb(enum cpuhp_state state)1747 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1748 {
1749 	return cpuhp_get_step(state)->teardown.single;
1750 }
1751 
1752 /*
1753  * Call the startup/teardown function for a step either on the AP or
1754  * on the current CPU.
1755  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1756 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1757 			    struct hlist_node *node)
1758 {
1759 	struct cpuhp_step *sp = cpuhp_get_step(state);
1760 	int ret;
1761 
1762 	/*
1763 	 * If there's nothing to do, we done.
1764 	 * Relies on the union for multi_instance.
1765 	 */
1766 	if ((bringup && !sp->startup.single) ||
1767 	    (!bringup && !sp->teardown.single))
1768 		return 0;
1769 	/*
1770 	 * The non AP bound callbacks can fail on bringup. On teardown
1771 	 * e.g. module removal we crash for now.
1772 	 */
1773 #ifdef CONFIG_SMP
1774 	if (cpuhp_is_ap_state(state))
1775 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1776 	else
1777 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1778 #else
1779 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1780 #endif
1781 	BUG_ON(ret && !bringup);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * Called from __cpuhp_setup_state on a recoverable failure.
1787  *
1788  * Note: The teardown callbacks for rollback are not allowed to fail!
1789  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1790 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1791 				   struct hlist_node *node)
1792 {
1793 	int cpu;
1794 
1795 	/* Roll back the already executed steps on the other cpus */
1796 	for_each_present_cpu(cpu) {
1797 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1798 		int cpustate = st->state;
1799 
1800 		if (cpu >= failedcpu)
1801 			break;
1802 
1803 		/* Did we invoke the startup call on that cpu ? */
1804 		if (cpustate >= state)
1805 			cpuhp_issue_call(cpu, state, false, node);
1806 	}
1807 }
1808 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1809 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1810 					  struct hlist_node *node,
1811 					  bool invoke)
1812 {
1813 	struct cpuhp_step *sp;
1814 	int cpu;
1815 	int ret;
1816 
1817 	lockdep_assert_cpus_held();
1818 
1819 	sp = cpuhp_get_step(state);
1820 	if (sp->multi_instance == false)
1821 		return -EINVAL;
1822 
1823 	mutex_lock(&cpuhp_state_mutex);
1824 
1825 	if (!invoke || !sp->startup.multi)
1826 		goto add_node;
1827 
1828 	/*
1829 	 * Try to call the startup callback for each present cpu
1830 	 * depending on the hotplug state of the cpu.
1831 	 */
1832 	for_each_present_cpu(cpu) {
1833 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1834 		int cpustate = st->state;
1835 
1836 		if (cpustate < state)
1837 			continue;
1838 
1839 		ret = cpuhp_issue_call(cpu, state, true, node);
1840 		if (ret) {
1841 			if (sp->teardown.multi)
1842 				cpuhp_rollback_install(cpu, state, node);
1843 			goto unlock;
1844 		}
1845 	}
1846 add_node:
1847 	ret = 0;
1848 	hlist_add_head(node, &sp->list);
1849 unlock:
1850 	mutex_unlock(&cpuhp_state_mutex);
1851 	return ret;
1852 }
1853 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1854 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1855 			       bool invoke)
1856 {
1857 	int ret;
1858 
1859 	cpus_read_lock();
1860 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1861 	cpus_read_unlock();
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1865 
1866 /**
1867  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1868  * @state:		The state to setup
1869  * @invoke:		If true, the startup function is invoked for cpus where
1870  *			cpu state >= @state
1871  * @startup:		startup callback function
1872  * @teardown:		teardown callback function
1873  * @multi_instance:	State is set up for multiple instances which get
1874  *			added afterwards.
1875  *
1876  * The caller needs to hold cpus read locked while calling this function.
1877  * Returns:
1878  *   On success:
1879  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1880  *      0 for all other states
1881  *   On failure: proper (negative) error code
1882  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1883 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1884 				   const char *name, bool invoke,
1885 				   int (*startup)(unsigned int cpu),
1886 				   int (*teardown)(unsigned int cpu),
1887 				   bool multi_instance)
1888 {
1889 	int cpu, ret = 0;
1890 	bool dynstate;
1891 
1892 	lockdep_assert_cpus_held();
1893 
1894 	if (cpuhp_cb_check(state) || !name)
1895 		return -EINVAL;
1896 
1897 	mutex_lock(&cpuhp_state_mutex);
1898 
1899 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1900 				    multi_instance);
1901 
1902 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1903 	if (ret > 0 && dynstate) {
1904 		state = ret;
1905 		ret = 0;
1906 	}
1907 
1908 	if (ret || !invoke || !startup)
1909 		goto out;
1910 
1911 	/*
1912 	 * Try to call the startup callback for each present cpu
1913 	 * depending on the hotplug state of the cpu.
1914 	 */
1915 	for_each_present_cpu(cpu) {
1916 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1917 		int cpustate = st->state;
1918 
1919 		if (cpustate < state)
1920 			continue;
1921 
1922 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1923 		if (ret) {
1924 			if (teardown)
1925 				cpuhp_rollback_install(cpu, state, NULL);
1926 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1927 			goto out;
1928 		}
1929 	}
1930 out:
1931 	mutex_unlock(&cpuhp_state_mutex);
1932 	/*
1933 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1934 	 * dynamically allocated state in case of success.
1935 	 */
1936 	if (!ret && dynstate)
1937 		return state;
1938 	return ret;
1939 }
1940 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1941 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1942 int __cpuhp_setup_state(enum cpuhp_state state,
1943 			const char *name, bool invoke,
1944 			int (*startup)(unsigned int cpu),
1945 			int (*teardown)(unsigned int cpu),
1946 			bool multi_instance)
1947 {
1948 	int ret;
1949 
1950 	cpus_read_lock();
1951 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1952 					     teardown, multi_instance);
1953 	cpus_read_unlock();
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL(__cpuhp_setup_state);
1957 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1958 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1959 				  struct hlist_node *node, bool invoke)
1960 {
1961 	struct cpuhp_step *sp = cpuhp_get_step(state);
1962 	int cpu;
1963 
1964 	BUG_ON(cpuhp_cb_check(state));
1965 
1966 	if (!sp->multi_instance)
1967 		return -EINVAL;
1968 
1969 	cpus_read_lock();
1970 	mutex_lock(&cpuhp_state_mutex);
1971 
1972 	if (!invoke || !cpuhp_get_teardown_cb(state))
1973 		goto remove;
1974 	/*
1975 	 * Call the teardown callback for each present cpu depending
1976 	 * on the hotplug state of the cpu. This function is not
1977 	 * allowed to fail currently!
1978 	 */
1979 	for_each_present_cpu(cpu) {
1980 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1981 		int cpustate = st->state;
1982 
1983 		if (cpustate >= state)
1984 			cpuhp_issue_call(cpu, state, false, node);
1985 	}
1986 
1987 remove:
1988 	hlist_del(node);
1989 	mutex_unlock(&cpuhp_state_mutex);
1990 	cpus_read_unlock();
1991 
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1995 
1996 /**
1997  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1998  * @state:	The state to remove
1999  * @invoke:	If true, the teardown function is invoked for cpus where
2000  *		cpu state >= @state
2001  *
2002  * The caller needs to hold cpus read locked while calling this function.
2003  * The teardown callback is currently not allowed to fail. Think
2004  * about module removal!
2005  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2006 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2007 {
2008 	struct cpuhp_step *sp = cpuhp_get_step(state);
2009 	int cpu;
2010 
2011 	BUG_ON(cpuhp_cb_check(state));
2012 
2013 	lockdep_assert_cpus_held();
2014 
2015 	mutex_lock(&cpuhp_state_mutex);
2016 	if (sp->multi_instance) {
2017 		WARN(!hlist_empty(&sp->list),
2018 		     "Error: Removing state %d which has instances left.\n",
2019 		     state);
2020 		goto remove;
2021 	}
2022 
2023 	if (!invoke || !cpuhp_get_teardown_cb(state))
2024 		goto remove;
2025 
2026 	/*
2027 	 * Call the teardown callback for each present cpu depending
2028 	 * on the hotplug state of the cpu. This function is not
2029 	 * allowed to fail currently!
2030 	 */
2031 	for_each_present_cpu(cpu) {
2032 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2033 		int cpustate = st->state;
2034 
2035 		if (cpustate >= state)
2036 			cpuhp_issue_call(cpu, state, false, NULL);
2037 	}
2038 remove:
2039 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2040 	mutex_unlock(&cpuhp_state_mutex);
2041 }
2042 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2043 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2044 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2045 {
2046 	cpus_read_lock();
2047 	__cpuhp_remove_state_cpuslocked(state, invoke);
2048 	cpus_read_unlock();
2049 }
2050 EXPORT_SYMBOL(__cpuhp_remove_state);
2051 
2052 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2053 static void cpuhp_offline_cpu_device(unsigned int cpu)
2054 {
2055 	struct device *dev = get_cpu_device(cpu);
2056 
2057 	dev->offline = true;
2058 	/* Tell user space about the state change */
2059 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2060 }
2061 
cpuhp_online_cpu_device(unsigned int cpu)2062 static void cpuhp_online_cpu_device(unsigned int cpu)
2063 {
2064 	struct device *dev = get_cpu_device(cpu);
2065 
2066 	dev->offline = false;
2067 	/* Tell user space about the state change */
2068 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2069 }
2070 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2071 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2072 {
2073 	int cpu, ret = 0;
2074 
2075 	cpu_maps_update_begin();
2076 	for_each_online_cpu(cpu) {
2077 		if (topology_is_primary_thread(cpu))
2078 			continue;
2079 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2080 		if (ret)
2081 			break;
2082 		/*
2083 		 * As this needs to hold the cpu maps lock it's impossible
2084 		 * to call device_offline() because that ends up calling
2085 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2086 		 * needs to be held as this might race against in kernel
2087 		 * abusers of the hotplug machinery (thermal management).
2088 		 *
2089 		 * So nothing would update device:offline state. That would
2090 		 * leave the sysfs entry stale and prevent onlining after
2091 		 * smt control has been changed to 'off' again. This is
2092 		 * called under the sysfs hotplug lock, so it is properly
2093 		 * serialized against the regular offline usage.
2094 		 */
2095 		cpuhp_offline_cpu_device(cpu);
2096 	}
2097 	if (!ret)
2098 		cpu_smt_control = ctrlval;
2099 	cpu_maps_update_done();
2100 	return ret;
2101 }
2102 
cpuhp_smt_enable(void)2103 int cpuhp_smt_enable(void)
2104 {
2105 	int cpu, ret = 0;
2106 
2107 	cpu_maps_update_begin();
2108 	cpu_smt_control = CPU_SMT_ENABLED;
2109 	for_each_present_cpu(cpu) {
2110 		/* Skip online CPUs and CPUs on offline nodes */
2111 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2112 			continue;
2113 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2114 		if (ret)
2115 			break;
2116 		/* See comment in cpuhp_smt_disable() */
2117 		cpuhp_online_cpu_device(cpu);
2118 	}
2119 	cpu_maps_update_done();
2120 	return ret;
2121 }
2122 #endif
2123 
2124 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2125 static ssize_t show_cpuhp_state(struct device *dev,
2126 				struct device_attribute *attr, char *buf)
2127 {
2128 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2129 
2130 	return sprintf(buf, "%d\n", st->state);
2131 }
2132 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2133 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2134 static ssize_t write_cpuhp_target(struct device *dev,
2135 				  struct device_attribute *attr,
2136 				  const char *buf, size_t count)
2137 {
2138 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2139 	struct cpuhp_step *sp;
2140 	int target, ret;
2141 
2142 	ret = kstrtoint(buf, 10, &target);
2143 	if (ret)
2144 		return ret;
2145 
2146 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2147 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2148 		return -EINVAL;
2149 #else
2150 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2151 		return -EINVAL;
2152 #endif
2153 
2154 	ret = lock_device_hotplug_sysfs();
2155 	if (ret)
2156 		return ret;
2157 
2158 	mutex_lock(&cpuhp_state_mutex);
2159 	sp = cpuhp_get_step(target);
2160 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2161 	mutex_unlock(&cpuhp_state_mutex);
2162 	if (ret)
2163 		goto out;
2164 
2165 	if (st->state < target)
2166 		ret = cpu_up(dev->id, target);
2167 	else
2168 		ret = cpu_down(dev->id, target);
2169 out:
2170 	unlock_device_hotplug();
2171 	return ret ? ret : count;
2172 }
2173 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2174 static ssize_t show_cpuhp_target(struct device *dev,
2175 				 struct device_attribute *attr, char *buf)
2176 {
2177 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2178 
2179 	return sprintf(buf, "%d\n", st->target);
2180 }
2181 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2182 
2183 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2184 static ssize_t write_cpuhp_fail(struct device *dev,
2185 				struct device_attribute *attr,
2186 				const char *buf, size_t count)
2187 {
2188 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2189 	struct cpuhp_step *sp;
2190 	int fail, ret;
2191 
2192 	ret = kstrtoint(buf, 10, &fail);
2193 	if (ret)
2194 		return ret;
2195 
2196 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2197 		return -EINVAL;
2198 
2199 	/*
2200 	 * Cannot fail STARTING/DYING callbacks.
2201 	 */
2202 	if (cpuhp_is_atomic_state(fail))
2203 		return -EINVAL;
2204 
2205 	/*
2206 	 * Cannot fail anything that doesn't have callbacks.
2207 	 */
2208 	mutex_lock(&cpuhp_state_mutex);
2209 	sp = cpuhp_get_step(fail);
2210 	if (!sp->startup.single && !sp->teardown.single)
2211 		ret = -EINVAL;
2212 	mutex_unlock(&cpuhp_state_mutex);
2213 	if (ret)
2214 		return ret;
2215 
2216 	st->fail = fail;
2217 
2218 	return count;
2219 }
2220 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2221 static ssize_t show_cpuhp_fail(struct device *dev,
2222 			       struct device_attribute *attr, char *buf)
2223 {
2224 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2225 
2226 	return sprintf(buf, "%d\n", st->fail);
2227 }
2228 
2229 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2230 
2231 static struct attribute *cpuhp_cpu_attrs[] = {
2232 	&dev_attr_state.attr,
2233 	&dev_attr_target.attr,
2234 	&dev_attr_fail.attr,
2235 	NULL
2236 };
2237 
2238 static const struct attribute_group cpuhp_cpu_attr_group = {
2239 	.attrs = cpuhp_cpu_attrs,
2240 	.name = "hotplug",
2241 	NULL
2242 };
2243 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2244 static ssize_t show_cpuhp_states(struct device *dev,
2245 				 struct device_attribute *attr, char *buf)
2246 {
2247 	ssize_t cur, res = 0;
2248 	int i;
2249 
2250 	mutex_lock(&cpuhp_state_mutex);
2251 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2252 		struct cpuhp_step *sp = cpuhp_get_step(i);
2253 
2254 		if (sp->name) {
2255 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2256 			buf += cur;
2257 			res += cur;
2258 		}
2259 	}
2260 	mutex_unlock(&cpuhp_state_mutex);
2261 	return res;
2262 }
2263 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2264 
2265 static struct attribute *cpuhp_cpu_root_attrs[] = {
2266 	&dev_attr_states.attr,
2267 	NULL
2268 };
2269 
2270 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2271 	.attrs = cpuhp_cpu_root_attrs,
2272 	.name = "hotplug",
2273 	NULL
2274 };
2275 
2276 #ifdef CONFIG_HOTPLUG_SMT
2277 
2278 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2279 __store_smt_control(struct device *dev, struct device_attribute *attr,
2280 		    const char *buf, size_t count)
2281 {
2282 	int ctrlval, ret;
2283 
2284 	if (sysfs_streq(buf, "on"))
2285 		ctrlval = CPU_SMT_ENABLED;
2286 	else if (sysfs_streq(buf, "off"))
2287 		ctrlval = CPU_SMT_DISABLED;
2288 	else if (sysfs_streq(buf, "forceoff"))
2289 		ctrlval = CPU_SMT_FORCE_DISABLED;
2290 	else
2291 		return -EINVAL;
2292 
2293 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2294 		return -EPERM;
2295 
2296 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2297 		return -ENODEV;
2298 
2299 	ret = lock_device_hotplug_sysfs();
2300 	if (ret)
2301 		return ret;
2302 
2303 	if (ctrlval != cpu_smt_control) {
2304 		switch (ctrlval) {
2305 		case CPU_SMT_ENABLED:
2306 			ret = cpuhp_smt_enable();
2307 			break;
2308 		case CPU_SMT_DISABLED:
2309 		case CPU_SMT_FORCE_DISABLED:
2310 			ret = cpuhp_smt_disable(ctrlval);
2311 			break;
2312 		}
2313 	}
2314 
2315 	unlock_device_hotplug();
2316 	return ret ? ret : count;
2317 }
2318 
2319 #else /* !CONFIG_HOTPLUG_SMT */
2320 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2321 __store_smt_control(struct device *dev, struct device_attribute *attr,
2322 		    const char *buf, size_t count)
2323 {
2324 	return -ENODEV;
2325 }
2326 #endif /* CONFIG_HOTPLUG_SMT */
2327 
2328 static const char *smt_states[] = {
2329 	[CPU_SMT_ENABLED]		= "on",
2330 	[CPU_SMT_DISABLED]		= "off",
2331 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2332 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2333 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2334 };
2335 
2336 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2337 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2338 {
2339 	const char *state = smt_states[cpu_smt_control];
2340 
2341 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2342 }
2343 
2344 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2345 store_smt_control(struct device *dev, struct device_attribute *attr,
2346 		  const char *buf, size_t count)
2347 {
2348 	return __store_smt_control(dev, attr, buf, count);
2349 }
2350 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2351 
2352 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2353 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2354 {
2355 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2356 }
2357 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2358 
2359 static struct attribute *cpuhp_smt_attrs[] = {
2360 	&dev_attr_control.attr,
2361 	&dev_attr_active.attr,
2362 	NULL
2363 };
2364 
2365 static const struct attribute_group cpuhp_smt_attr_group = {
2366 	.attrs = cpuhp_smt_attrs,
2367 	.name = "smt",
2368 	NULL
2369 };
2370 
cpu_smt_sysfs_init(void)2371 static int __init cpu_smt_sysfs_init(void)
2372 {
2373 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2374 				  &cpuhp_smt_attr_group);
2375 }
2376 
cpuhp_sysfs_init(void)2377 static int __init cpuhp_sysfs_init(void)
2378 {
2379 	int cpu, ret;
2380 
2381 	ret = cpu_smt_sysfs_init();
2382 	if (ret)
2383 		return ret;
2384 
2385 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2386 				 &cpuhp_cpu_root_attr_group);
2387 	if (ret)
2388 		return ret;
2389 
2390 	for_each_possible_cpu(cpu) {
2391 		struct device *dev = get_cpu_device(cpu);
2392 
2393 		if (!dev)
2394 			continue;
2395 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2396 		if (ret)
2397 			return ret;
2398 	}
2399 	return 0;
2400 }
2401 device_initcall(cpuhp_sysfs_init);
2402 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2403 
2404 /*
2405  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2406  * represents all NR_CPUS bits binary values of 1<<nr.
2407  *
2408  * It is used by cpumask_of() to get a constant address to a CPU
2409  * mask value that has a single bit set only.
2410  */
2411 
2412 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2413 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2414 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2415 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2416 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2417 
2418 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2419 
2420 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2421 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2422 #if BITS_PER_LONG > 32
2423 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2424 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2425 #endif
2426 };
2427 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2428 
2429 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2430 EXPORT_SYMBOL(cpu_all_bits);
2431 
2432 #ifdef CONFIG_INIT_ALL_POSSIBLE
2433 struct cpumask __cpu_possible_mask __read_mostly
2434 	= {CPU_BITS_ALL};
2435 #else
2436 struct cpumask __cpu_possible_mask __read_mostly;
2437 #endif
2438 EXPORT_SYMBOL(__cpu_possible_mask);
2439 
2440 struct cpumask __cpu_online_mask __read_mostly;
2441 EXPORT_SYMBOL(__cpu_online_mask);
2442 
2443 struct cpumask __cpu_present_mask __read_mostly;
2444 EXPORT_SYMBOL(__cpu_present_mask);
2445 
2446 struct cpumask __cpu_active_mask __read_mostly;
2447 EXPORT_SYMBOL(__cpu_active_mask);
2448 
2449 atomic_t __num_online_cpus __read_mostly;
2450 EXPORT_SYMBOL(__num_online_cpus);
2451 
init_cpu_present(const struct cpumask * src)2452 void init_cpu_present(const struct cpumask *src)
2453 {
2454 	cpumask_copy(&__cpu_present_mask, src);
2455 }
2456 
init_cpu_possible(const struct cpumask * src)2457 void init_cpu_possible(const struct cpumask *src)
2458 {
2459 	cpumask_copy(&__cpu_possible_mask, src);
2460 }
2461 
init_cpu_online(const struct cpumask * src)2462 void init_cpu_online(const struct cpumask *src)
2463 {
2464 	cpumask_copy(&__cpu_online_mask, src);
2465 }
2466 
set_cpu_online(unsigned int cpu,bool online)2467 void set_cpu_online(unsigned int cpu, bool online)
2468 {
2469 	/*
2470 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2471 	 * function by the reboot and kexec code which invoke it from
2472 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2473 	 * regular CPU hotplug is properly serialized.
2474 	 *
2475 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2476 	 * does not protect readers which are not serialized against
2477 	 * concurrent hotplug operations.
2478 	 */
2479 	if (online) {
2480 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2481 			atomic_inc(&__num_online_cpus);
2482 	} else {
2483 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2484 			atomic_dec(&__num_online_cpus);
2485 	}
2486 }
2487 
2488 /*
2489  * Activate the first processor.
2490  */
boot_cpu_init(void)2491 void __init boot_cpu_init(void)
2492 {
2493 	int cpu = smp_processor_id();
2494 
2495 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2496 	set_cpu_online(cpu, true);
2497 	set_cpu_active(cpu, true);
2498 	set_cpu_present(cpu, true);
2499 	set_cpu_possible(cpu, true);
2500 
2501 #ifdef CONFIG_SMP
2502 	__boot_cpu_id = cpu;
2503 #endif
2504 }
2505 
2506 /*
2507  * Must be called _AFTER_ setting up the per_cpu areas
2508  */
boot_cpu_hotplug_init(void)2509 void __init boot_cpu_hotplug_init(void)
2510 {
2511 #ifdef CONFIG_SMP
2512 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2513 #endif
2514 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2515 }
2516 
2517 /*
2518  * These are used for a global "mitigations=" cmdline option for toggling
2519  * optional CPU mitigations.
2520  */
2521 enum cpu_mitigations {
2522 	CPU_MITIGATIONS_OFF,
2523 	CPU_MITIGATIONS_AUTO,
2524 	CPU_MITIGATIONS_AUTO_NOSMT,
2525 };
2526 
2527 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2528 	CPU_MITIGATIONS_AUTO;
2529 
mitigations_parse_cmdline(char * arg)2530 static int __init mitigations_parse_cmdline(char *arg)
2531 {
2532 	if (!strcmp(arg, "off"))
2533 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2534 	else if (!strcmp(arg, "auto"))
2535 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2536 	else if (!strcmp(arg, "auto,nosmt"))
2537 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2538 	else
2539 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2540 			arg);
2541 
2542 	return 0;
2543 }
2544 early_param("mitigations", mitigations_parse_cmdline);
2545 
2546 /* mitigations=off */
cpu_mitigations_off(void)2547 bool cpu_mitigations_off(void)
2548 {
2549 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2550 }
2551 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2552 
2553 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2554 bool cpu_mitigations_auto_nosmt(void)
2555 {
2556 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2557 }
2558 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2559