1 // SPDX-License-Identifier: GPL-2.0-only
2 /* tnum: tracked (or tristate) numbers
3 *
4 * A tnum tracks knowledge about the bits of a value. Each bit can be either
5 * known (0 or 1), or unknown (x). Arithmetic operations on tnums will
6 * propagate the unknown bits such that the tnum result represents all the
7 * possible results for possible values of the operands.
8 */
9 #include <linux/kernel.h>
10 #include <linux/tnum.h>
11
12 #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
13 /* A completely unknown value */
14 const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
15
tnum_const(u64 value)16 struct tnum tnum_const(u64 value)
17 {
18 return TNUM(value, 0);
19 }
20
tnum_range(u64 min,u64 max)21 struct tnum tnum_range(u64 min, u64 max)
22 {
23 u64 chi = min ^ max, delta;
24 u8 bits = fls64(chi);
25
26 /* special case, needed because 1ULL << 64 is undefined */
27 if (bits > 63)
28 return tnum_unknown;
29 /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
30 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
31 * constant min (since min == max).
32 */
33 delta = (1ULL << bits) - 1;
34 return TNUM(min & ~delta, delta);
35 }
36
tnum_lshift(struct tnum a,u8 shift)37 struct tnum tnum_lshift(struct tnum a, u8 shift)
38 {
39 return TNUM(a.value << shift, a.mask << shift);
40 }
41
tnum_rshift(struct tnum a,u8 shift)42 struct tnum tnum_rshift(struct tnum a, u8 shift)
43 {
44 return TNUM(a.value >> shift, a.mask >> shift);
45 }
46
tnum_arshift(struct tnum a,u8 min_shift,u8 insn_bitness)47 struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
48 {
49 /* if a.value is negative, arithmetic shifting by minimum shift
50 * will have larger negative offset compared to more shifting.
51 * If a.value is nonnegative, arithmetic shifting by minimum shift
52 * will have larger positive offset compare to more shifting.
53 */
54 if (insn_bitness == 32)
55 return TNUM((u32)(((s32)a.value) >> min_shift),
56 (u32)(((s32)a.mask) >> min_shift));
57 else
58 return TNUM((s64)a.value >> min_shift,
59 (s64)a.mask >> min_shift);
60 }
61
tnum_add(struct tnum a,struct tnum b)62 struct tnum tnum_add(struct tnum a, struct tnum b)
63 {
64 u64 sm, sv, sigma, chi, mu;
65
66 sm = a.mask + b.mask;
67 sv = a.value + b.value;
68 sigma = sm + sv;
69 chi = sigma ^ sv;
70 mu = chi | a.mask | b.mask;
71 return TNUM(sv & ~mu, mu);
72 }
73
tnum_sub(struct tnum a,struct tnum b)74 struct tnum tnum_sub(struct tnum a, struct tnum b)
75 {
76 u64 dv, alpha, beta, chi, mu;
77
78 dv = a.value - b.value;
79 alpha = dv + a.mask;
80 beta = dv - b.mask;
81 chi = alpha ^ beta;
82 mu = chi | a.mask | b.mask;
83 return TNUM(dv & ~mu, mu);
84 }
85
tnum_and(struct tnum a,struct tnum b)86 struct tnum tnum_and(struct tnum a, struct tnum b)
87 {
88 u64 alpha, beta, v;
89
90 alpha = a.value | a.mask;
91 beta = b.value | b.mask;
92 v = a.value & b.value;
93 return TNUM(v, alpha & beta & ~v);
94 }
95
tnum_or(struct tnum a,struct tnum b)96 struct tnum tnum_or(struct tnum a, struct tnum b)
97 {
98 u64 v, mu;
99
100 v = a.value | b.value;
101 mu = a.mask | b.mask;
102 return TNUM(v, mu & ~v);
103 }
104
tnum_xor(struct tnum a,struct tnum b)105 struct tnum tnum_xor(struct tnum a, struct tnum b)
106 {
107 u64 v, mu;
108
109 v = a.value ^ b.value;
110 mu = a.mask | b.mask;
111 return TNUM(v & ~mu, mu);
112 }
113
114 /* half-multiply add: acc += (unknown * mask * value).
115 * An intermediate step in the multiply algorithm.
116 */
hma(struct tnum acc,u64 value,u64 mask)117 static struct tnum hma(struct tnum acc, u64 value, u64 mask)
118 {
119 while (mask) {
120 if (mask & 1)
121 acc = tnum_add(acc, TNUM(0, value));
122 mask >>= 1;
123 value <<= 1;
124 }
125 return acc;
126 }
127
tnum_mul(struct tnum a,struct tnum b)128 struct tnum tnum_mul(struct tnum a, struct tnum b)
129 {
130 struct tnum acc;
131 u64 pi;
132
133 pi = a.value * b.value;
134 acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value);
135 return hma(acc, b.mask, a.value);
136 }
137
138 /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
139 * a 'known 0' - this will return a 'known 1' for that bit.
140 */
tnum_intersect(struct tnum a,struct tnum b)141 struct tnum tnum_intersect(struct tnum a, struct tnum b)
142 {
143 u64 v, mu;
144
145 v = a.value | b.value;
146 mu = a.mask & b.mask;
147 return TNUM(v & ~mu, mu);
148 }
149
tnum_cast(struct tnum a,u8 size)150 struct tnum tnum_cast(struct tnum a, u8 size)
151 {
152 a.value &= (1ULL << (size * 8)) - 1;
153 a.mask &= (1ULL << (size * 8)) - 1;
154 return a;
155 }
156
tnum_is_aligned(struct tnum a,u64 size)157 bool tnum_is_aligned(struct tnum a, u64 size)
158 {
159 if (!size)
160 return true;
161 return !((a.value | a.mask) & (size - 1));
162 }
163
tnum_in(struct tnum a,struct tnum b)164 bool tnum_in(struct tnum a, struct tnum b)
165 {
166 if (b.mask & ~a.mask)
167 return false;
168 b.value &= ~a.mask;
169 return a.value == b.value;
170 }
171
tnum_strn(char * str,size_t size,struct tnum a)172 int tnum_strn(char *str, size_t size, struct tnum a)
173 {
174 return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
175 }
176 EXPORT_SYMBOL_GPL(tnum_strn);
177
tnum_sbin(char * str,size_t size,struct tnum a)178 int tnum_sbin(char *str, size_t size, struct tnum a)
179 {
180 size_t n;
181
182 for (n = 64; n; n--) {
183 if (n < size) {
184 if (a.mask & 1)
185 str[n - 1] = 'x';
186 else if (a.value & 1)
187 str[n - 1] = '1';
188 else
189 str[n - 1] = '0';
190 }
191 a.mask >>= 1;
192 a.value >>= 1;
193 }
194 str[min(size - 1, (size_t)64)] = 0;
195 return 64;
196 }
197
tnum_subreg(struct tnum a)198 struct tnum tnum_subreg(struct tnum a)
199 {
200 return tnum_cast(a, 4);
201 }
202
tnum_clear_subreg(struct tnum a)203 struct tnum tnum_clear_subreg(struct tnum a)
204 {
205 return tnum_lshift(tnum_rshift(a, 32), 32);
206 }
207
tnum_const_subreg(struct tnum a,u32 value)208 struct tnum tnum_const_subreg(struct tnum a, u32 value)
209 {
210 return tnum_or(tnum_clear_subreg(a), tnum_const(value));
211 }
212