1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79
80 #include "audit.h"
81
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86
87 /* no execve audit message should be longer than this (userspace limits),
88 * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93
94 /* number of audit rules */
95 int audit_n_rules;
96
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99
100 struct audit_aux_data {
101 struct audit_aux_data *next;
102 int type;
103 };
104
105 #define AUDIT_AUX_IPCPERM 0
106
107 /* Number of target pids per aux struct. */
108 #define AUDIT_AUX_PIDS 16
109
110 struct audit_aux_data_pids {
111 struct audit_aux_data d;
112 pid_t target_pid[AUDIT_AUX_PIDS];
113 kuid_t target_auid[AUDIT_AUX_PIDS];
114 kuid_t target_uid[AUDIT_AUX_PIDS];
115 unsigned int target_sessionid[AUDIT_AUX_PIDS];
116 u32 target_sid[AUDIT_AUX_PIDS];
117 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
118 int pid_count;
119 };
120
121 struct audit_aux_data_bprm_fcaps {
122 struct audit_aux_data d;
123 struct audit_cap_data fcap;
124 unsigned int fcap_ver;
125 struct audit_cap_data old_pcap;
126 struct audit_cap_data new_pcap;
127 };
128
129 struct audit_tree_refs {
130 struct audit_tree_refs *next;
131 struct audit_chunk *c[31];
132 };
133
134 struct audit_nfcfgop_tab {
135 enum audit_nfcfgop op;
136 const char *s;
137 };
138
139 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
140 { AUDIT_XT_OP_REGISTER, "xt_register" },
141 { AUDIT_XT_OP_REPLACE, "xt_replace" },
142 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
143 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
144 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
145 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
146 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
147 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
148 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
149 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
150 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
151 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
152 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
153 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
154 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
155 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
156 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
157 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
158 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
159 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
160 };
161
audit_match_perm(struct audit_context * ctx,int mask)162 static int audit_match_perm(struct audit_context *ctx, int mask)
163 {
164 unsigned n;
165 if (unlikely(!ctx))
166 return 0;
167 n = ctx->major;
168
169 switch (audit_classify_syscall(ctx->arch, n)) {
170 case 0: /* native */
171 if ((mask & AUDIT_PERM_WRITE) &&
172 audit_match_class(AUDIT_CLASS_WRITE, n))
173 return 1;
174 if ((mask & AUDIT_PERM_READ) &&
175 audit_match_class(AUDIT_CLASS_READ, n))
176 return 1;
177 if ((mask & AUDIT_PERM_ATTR) &&
178 audit_match_class(AUDIT_CLASS_CHATTR, n))
179 return 1;
180 return 0;
181 case 1: /* 32bit on biarch */
182 if ((mask & AUDIT_PERM_WRITE) &&
183 audit_match_class(AUDIT_CLASS_WRITE_32, n))
184 return 1;
185 if ((mask & AUDIT_PERM_READ) &&
186 audit_match_class(AUDIT_CLASS_READ_32, n))
187 return 1;
188 if ((mask & AUDIT_PERM_ATTR) &&
189 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
190 return 1;
191 return 0;
192 case 2: /* open */
193 return mask & ACC_MODE(ctx->argv[1]);
194 case 3: /* openat */
195 return mask & ACC_MODE(ctx->argv[2]);
196 case 4: /* socketcall */
197 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
198 case 5: /* execve */
199 return mask & AUDIT_PERM_EXEC;
200 default:
201 return 0;
202 }
203 }
204
audit_match_filetype(struct audit_context * ctx,int val)205 static int audit_match_filetype(struct audit_context *ctx, int val)
206 {
207 struct audit_names *n;
208 umode_t mode = (umode_t)val;
209
210 if (unlikely(!ctx))
211 return 0;
212
213 list_for_each_entry(n, &ctx->names_list, list) {
214 if ((n->ino != AUDIT_INO_UNSET) &&
215 ((n->mode & S_IFMT) == mode))
216 return 1;
217 }
218
219 return 0;
220 }
221
222 /*
223 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
224 * ->first_trees points to its beginning, ->trees - to the current end of data.
225 * ->tree_count is the number of free entries in array pointed to by ->trees.
226 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
227 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
228 * it's going to remain 1-element for almost any setup) until we free context itself.
229 * References in it _are_ dropped - at the same time we free/drop aux stuff.
230 */
231
audit_set_auditable(struct audit_context * ctx)232 static void audit_set_auditable(struct audit_context *ctx)
233 {
234 if (!ctx->prio) {
235 ctx->prio = 1;
236 ctx->current_state = AUDIT_RECORD_CONTEXT;
237 }
238 }
239
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)240 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
241 {
242 struct audit_tree_refs *p = ctx->trees;
243 int left = ctx->tree_count;
244 if (likely(left)) {
245 p->c[--left] = chunk;
246 ctx->tree_count = left;
247 return 1;
248 }
249 if (!p)
250 return 0;
251 p = p->next;
252 if (p) {
253 p->c[30] = chunk;
254 ctx->trees = p;
255 ctx->tree_count = 30;
256 return 1;
257 }
258 return 0;
259 }
260
grow_tree_refs(struct audit_context * ctx)261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 struct audit_tree_refs *p = ctx->trees;
264 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
265 if (!ctx->trees) {
266 ctx->trees = p;
267 return 0;
268 }
269 if (p)
270 p->next = ctx->trees;
271 else
272 ctx->first_trees = ctx->trees;
273 ctx->tree_count = 31;
274 return 1;
275 }
276
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)277 static void unroll_tree_refs(struct audit_context *ctx,
278 struct audit_tree_refs *p, int count)
279 {
280 struct audit_tree_refs *q;
281 int n;
282 if (!p) {
283 /* we started with empty chain */
284 p = ctx->first_trees;
285 count = 31;
286 /* if the very first allocation has failed, nothing to do */
287 if (!p)
288 return;
289 }
290 n = count;
291 for (q = p; q != ctx->trees; q = q->next, n = 31) {
292 while (n--) {
293 audit_put_chunk(q->c[n]);
294 q->c[n] = NULL;
295 }
296 }
297 while (n-- > ctx->tree_count) {
298 audit_put_chunk(q->c[n]);
299 q->c[n] = NULL;
300 }
301 ctx->trees = p;
302 ctx->tree_count = count;
303 }
304
free_tree_refs(struct audit_context * ctx)305 static void free_tree_refs(struct audit_context *ctx)
306 {
307 struct audit_tree_refs *p, *q;
308 for (p = ctx->first_trees; p; p = q) {
309 q = p->next;
310 kfree(p);
311 }
312 }
313
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)314 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
315 {
316 struct audit_tree_refs *p;
317 int n;
318 if (!tree)
319 return 0;
320 /* full ones */
321 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
322 for (n = 0; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326 /* partial */
327 if (p) {
328 for (n = ctx->tree_count; n < 31; n++)
329 if (audit_tree_match(p->c[n], tree))
330 return 1;
331 }
332 return 0;
333 }
334
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)335 static int audit_compare_uid(kuid_t uid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339 {
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_uid_comparator(uid, f->op, name->uid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_uid_comparator(uid, f->op, n->uid);
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357 }
358
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)359 static int audit_compare_gid(kgid_t gid,
360 struct audit_names *name,
361 struct audit_field *f,
362 struct audit_context *ctx)
363 {
364 struct audit_names *n;
365 int rc;
366
367 if (name) {
368 rc = audit_gid_comparator(gid, f->op, name->gid);
369 if (rc)
370 return rc;
371 }
372
373 if (ctx) {
374 list_for_each_entry(n, &ctx->names_list, list) {
375 rc = audit_gid_comparator(gid, f->op, n->gid);
376 if (rc)
377 return rc;
378 }
379 }
380 return 0;
381 }
382
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)383 static int audit_field_compare(struct task_struct *tsk,
384 const struct cred *cred,
385 struct audit_field *f,
386 struct audit_context *ctx,
387 struct audit_names *name)
388 {
389 switch (f->val) {
390 /* process to file object comparisons */
391 case AUDIT_COMPARE_UID_TO_OBJ_UID:
392 return audit_compare_uid(cred->uid, name, f, ctx);
393 case AUDIT_COMPARE_GID_TO_OBJ_GID:
394 return audit_compare_gid(cred->gid, name, f, ctx);
395 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->euid, name, f, ctx);
397 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->egid, name, f, ctx);
399 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
400 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
401 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
402 return audit_compare_uid(cred->suid, name, f, ctx);
403 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
404 return audit_compare_gid(cred->sgid, name, f, ctx);
405 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
406 return audit_compare_uid(cred->fsuid, name, f, ctx);
407 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
408 return audit_compare_gid(cred->fsgid, name, f, ctx);
409 /* uid comparisons */
410 case AUDIT_COMPARE_UID_TO_AUID:
411 return audit_uid_comparator(cred->uid, f->op,
412 audit_get_loginuid(tsk));
413 case AUDIT_COMPARE_UID_TO_EUID:
414 return audit_uid_comparator(cred->uid, f->op, cred->euid);
415 case AUDIT_COMPARE_UID_TO_SUID:
416 return audit_uid_comparator(cred->uid, f->op, cred->suid);
417 case AUDIT_COMPARE_UID_TO_FSUID:
418 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
419 /* auid comparisons */
420 case AUDIT_COMPARE_AUID_TO_EUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->euid);
423 case AUDIT_COMPARE_AUID_TO_SUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 cred->suid);
426 case AUDIT_COMPARE_AUID_TO_FSUID:
427 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
428 cred->fsuid);
429 /* euid comparisons */
430 case AUDIT_COMPARE_EUID_TO_SUID:
431 return audit_uid_comparator(cred->euid, f->op, cred->suid);
432 case AUDIT_COMPARE_EUID_TO_FSUID:
433 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
434 /* suid comparisons */
435 case AUDIT_COMPARE_SUID_TO_FSUID:
436 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
437 /* gid comparisons */
438 case AUDIT_COMPARE_GID_TO_EGID:
439 return audit_gid_comparator(cred->gid, f->op, cred->egid);
440 case AUDIT_COMPARE_GID_TO_SGID:
441 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
442 case AUDIT_COMPARE_GID_TO_FSGID:
443 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
444 /* egid comparisons */
445 case AUDIT_COMPARE_EGID_TO_SGID:
446 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
447 case AUDIT_COMPARE_EGID_TO_FSGID:
448 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
449 /* sgid comparison */
450 case AUDIT_COMPARE_SGID_TO_FSGID:
451 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
452 default:
453 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
454 return 0;
455 }
456 return 0;
457 }
458
459 /* Determine if any context name data matches a rule's watch data */
460 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
461 * otherwise.
462 *
463 * If task_creation is true, this is an explicit indication that we are
464 * filtering a task rule at task creation time. This and tsk == current are
465 * the only situations where tsk->cred may be accessed without an rcu read lock.
466 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)467 static int audit_filter_rules(struct task_struct *tsk,
468 struct audit_krule *rule,
469 struct audit_context *ctx,
470 struct audit_names *name,
471 enum audit_state *state,
472 bool task_creation)
473 {
474 const struct cred *cred;
475 int i, need_sid = 1;
476 u32 sid;
477 unsigned int sessionid;
478
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
484 int result = 0;
485 pid_t pid;
486
487 switch (f->type) {
488 case AUDIT_PID:
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
491 break;
492 case AUDIT_PPID:
493 if (ctx) {
494 if (!ctx->ppid)
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
497 }
498 break;
499 case AUDIT_EXE:
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
502 result = !result;
503 break;
504 case AUDIT_UID:
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 break;
507 case AUDIT_EUID:
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 break;
510 case AUDIT_SUID:
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 break;
513 case AUDIT_FSUID:
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 break;
516 case AUDIT_GID:
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
519 if (!result)
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
522 if (result)
523 result = !groups_search(cred->group_info, f->gid);
524 }
525 break;
526 case AUDIT_EGID:
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
529 if (!result)
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
532 if (result)
533 result = !groups_search(cred->group_info, f->gid);
534 }
535 break;
536 case AUDIT_SGID:
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 break;
539 case AUDIT_FSGID:
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541 break;
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
545 break;
546 case AUDIT_PERS:
547 result = audit_comparator(tsk->personality, f->op, f->val);
548 break;
549 case AUDIT_ARCH:
550 if (ctx)
551 result = audit_comparator(ctx->arch, f->op, f->val);
552 break;
553
554 case AUDIT_EXIT:
555 if (ctx && ctx->return_valid)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
557 break;
558 case AUDIT_SUCCESS:
559 if (ctx && ctx->return_valid) {
560 if (f->val)
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562 else
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564 }
565 break;
566 case AUDIT_DEVMAJOR:
567 if (name) {
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 ++result;
571 } else if (ctx) {
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_DEVMINOR:
582 if (name) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 ++result;
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
596 case AUDIT_INODE:
597 if (name)
598 result = audit_comparator(name->ino, f->op, f->val);
599 else if (ctx) {
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
602 ++result;
603 break;
604 }
605 }
606 }
607 break;
608 case AUDIT_OBJ_UID:
609 if (name) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
611 } else if (ctx) {
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614 ++result;
615 break;
616 }
617 }
618 }
619 break;
620 case AUDIT_OBJ_GID:
621 if (name) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
623 } else if (ctx) {
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626 ++result;
627 break;
628 }
629 }
630 }
631 break;
632 case AUDIT_WATCH:
633 if (name) {
634 result = audit_watch_compare(rule->watch,
635 name->ino,
636 name->dev);
637 if (f->op == Audit_not_equal)
638 result = !result;
639 }
640 break;
641 case AUDIT_DIR:
642 if (ctx) {
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
645 result = !result;
646 }
647 break;
648 case AUDIT_LOGINUID:
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 f->op, f->uid);
651 break;
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 break;
655 case AUDIT_SADDR_FAM:
656 if (ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
658 f->op, f->val);
659 break;
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
663 case AUDIT_SUBJ_SEN:
664 case AUDIT_SUBJ_CLR:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
669 logged upon error */
670 if (f->lsm_rule) {
671 if (need_sid) {
672 security_task_getsecid(tsk, &sid);
673 need_sid = 0;
674 }
675 result = security_audit_rule_match(sid, f->type,
676 f->op,
677 f->lsm_rule);
678 }
679 break;
680 case AUDIT_OBJ_USER:
681 case AUDIT_OBJ_ROLE:
682 case AUDIT_OBJ_TYPE:
683 case AUDIT_OBJ_LEV_LOW:
684 case AUDIT_OBJ_LEV_HIGH:
685 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
686 also applies here */
687 if (f->lsm_rule) {
688 /* Find files that match */
689 if (name) {
690 result = security_audit_rule_match(
691 name->osid,
692 f->type,
693 f->op,
694 f->lsm_rule);
695 } else if (ctx) {
696 list_for_each_entry(n, &ctx->names_list, list) {
697 if (security_audit_rule_match(
698 n->osid,
699 f->type,
700 f->op,
701 f->lsm_rule)) {
702 ++result;
703 break;
704 }
705 }
706 }
707 /* Find ipc objects that match */
708 if (!ctx || ctx->type != AUDIT_IPC)
709 break;
710 if (security_audit_rule_match(ctx->ipc.osid,
711 f->type, f->op,
712 f->lsm_rule))
713 ++result;
714 }
715 break;
716 case AUDIT_ARG0:
717 case AUDIT_ARG1:
718 case AUDIT_ARG2:
719 case AUDIT_ARG3:
720 if (ctx)
721 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
722 break;
723 case AUDIT_FILTERKEY:
724 /* ignore this field for filtering */
725 result = 1;
726 break;
727 case AUDIT_PERM:
728 result = audit_match_perm(ctx, f->val);
729 if (f->op == Audit_not_equal)
730 result = !result;
731 break;
732 case AUDIT_FILETYPE:
733 result = audit_match_filetype(ctx, f->val);
734 if (f->op == Audit_not_equal)
735 result = !result;
736 break;
737 case AUDIT_FIELD_COMPARE:
738 result = audit_field_compare(tsk, cred, f, ctx, name);
739 break;
740 }
741 if (!result)
742 return 0;
743 }
744
745 if (ctx) {
746 if (rule->prio <= ctx->prio)
747 return 0;
748 if (rule->filterkey) {
749 kfree(ctx->filterkey);
750 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
751 }
752 ctx->prio = rule->prio;
753 }
754 switch (rule->action) {
755 case AUDIT_NEVER:
756 *state = AUDIT_DISABLED;
757 break;
758 case AUDIT_ALWAYS:
759 *state = AUDIT_RECORD_CONTEXT;
760 break;
761 }
762 return 1;
763 }
764
765 /* At process creation time, we can determine if system-call auditing is
766 * completely disabled for this task. Since we only have the task
767 * structure at this point, we can only check uid and gid.
768 */
audit_filter_task(struct task_struct * tsk,char ** key)769 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
770 {
771 struct audit_entry *e;
772 enum audit_state state;
773
774 rcu_read_lock();
775 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
776 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
777 &state, true)) {
778 if (state == AUDIT_RECORD_CONTEXT)
779 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
780 rcu_read_unlock();
781 return state;
782 }
783 }
784 rcu_read_unlock();
785 return AUDIT_BUILD_CONTEXT;
786 }
787
audit_in_mask(const struct audit_krule * rule,unsigned long val)788 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
789 {
790 int word, bit;
791
792 if (val > 0xffffffff)
793 return false;
794
795 word = AUDIT_WORD(val);
796 if (word >= AUDIT_BITMASK_SIZE)
797 return false;
798
799 bit = AUDIT_BIT(val);
800
801 return rule->mask[word] & bit;
802 }
803
804 /* At syscall entry and exit time, this filter is called if the
805 * audit_state is not low enough that auditing cannot take place, but is
806 * also not high enough that we already know we have to write an audit
807 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
808 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list)809 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
810 struct audit_context *ctx,
811 struct list_head *list)
812 {
813 struct audit_entry *e;
814 enum audit_state state;
815
816 if (auditd_test_task(tsk))
817 return AUDIT_DISABLED;
818
819 rcu_read_lock();
820 list_for_each_entry_rcu(e, list, list) {
821 if (audit_in_mask(&e->rule, ctx->major) &&
822 audit_filter_rules(tsk, &e->rule, ctx, NULL,
823 &state, false)) {
824 rcu_read_unlock();
825 ctx->current_state = state;
826 return state;
827 }
828 }
829 rcu_read_unlock();
830 return AUDIT_BUILD_CONTEXT;
831 }
832
833 /*
834 * Given an audit_name check the inode hash table to see if they match.
835 * Called holding the rcu read lock to protect the use of audit_inode_hash
836 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)837 static int audit_filter_inode_name(struct task_struct *tsk,
838 struct audit_names *n,
839 struct audit_context *ctx) {
840 int h = audit_hash_ino((u32)n->ino);
841 struct list_head *list = &audit_inode_hash[h];
842 struct audit_entry *e;
843 enum audit_state state;
844
845 list_for_each_entry_rcu(e, list, list) {
846 if (audit_in_mask(&e->rule, ctx->major) &&
847 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
848 ctx->current_state = state;
849 return 1;
850 }
851 }
852 return 0;
853 }
854
855 /* At syscall exit time, this filter is called if any audit_names have been
856 * collected during syscall processing. We only check rules in sublists at hash
857 * buckets applicable to the inode numbers in audit_names.
858 * Regarding audit_state, same rules apply as for audit_filter_syscall().
859 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)860 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
861 {
862 struct audit_names *n;
863
864 if (auditd_test_task(tsk))
865 return;
866
867 rcu_read_lock();
868
869 list_for_each_entry(n, &ctx->names_list, list) {
870 if (audit_filter_inode_name(tsk, n, ctx))
871 break;
872 }
873 rcu_read_unlock();
874 }
875
audit_proctitle_free(struct audit_context * context)876 static inline void audit_proctitle_free(struct audit_context *context)
877 {
878 kfree(context->proctitle.value);
879 context->proctitle.value = NULL;
880 context->proctitle.len = 0;
881 }
882
audit_free_module(struct audit_context * context)883 static inline void audit_free_module(struct audit_context *context)
884 {
885 if (context->type == AUDIT_KERN_MODULE) {
886 kfree(context->module.name);
887 context->module.name = NULL;
888 }
889 }
audit_free_names(struct audit_context * context)890 static inline void audit_free_names(struct audit_context *context)
891 {
892 struct audit_names *n, *next;
893
894 list_for_each_entry_safe(n, next, &context->names_list, list) {
895 list_del(&n->list);
896 if (n->name)
897 putname(n->name);
898 if (n->should_free)
899 kfree(n);
900 }
901 context->name_count = 0;
902 path_put(&context->pwd);
903 context->pwd.dentry = NULL;
904 context->pwd.mnt = NULL;
905 }
906
audit_free_aux(struct audit_context * context)907 static inline void audit_free_aux(struct audit_context *context)
908 {
909 struct audit_aux_data *aux;
910
911 while ((aux = context->aux)) {
912 context->aux = aux->next;
913 kfree(aux);
914 }
915 while ((aux = context->aux_pids)) {
916 context->aux_pids = aux->next;
917 kfree(aux);
918 }
919 }
920
audit_alloc_context(enum audit_state state)921 static inline struct audit_context *audit_alloc_context(enum audit_state state)
922 {
923 struct audit_context *context;
924
925 context = kzalloc(sizeof(*context), GFP_KERNEL);
926 if (!context)
927 return NULL;
928 context->state = state;
929 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
930 INIT_LIST_HEAD(&context->killed_trees);
931 INIT_LIST_HEAD(&context->names_list);
932 return context;
933 }
934
935 /**
936 * audit_alloc - allocate an audit context block for a task
937 * @tsk: task
938 *
939 * Filter on the task information and allocate a per-task audit context
940 * if necessary. Doing so turns on system call auditing for the
941 * specified task. This is called from copy_process, so no lock is
942 * needed.
943 */
audit_alloc(struct task_struct * tsk)944 int audit_alloc(struct task_struct *tsk)
945 {
946 struct audit_context *context;
947 enum audit_state state;
948 char *key = NULL;
949
950 if (likely(!audit_ever_enabled))
951 return 0; /* Return if not auditing. */
952
953 state = audit_filter_task(tsk, &key);
954 if (state == AUDIT_DISABLED) {
955 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
956 return 0;
957 }
958
959 if (!(context = audit_alloc_context(state))) {
960 kfree(key);
961 audit_log_lost("out of memory in audit_alloc");
962 return -ENOMEM;
963 }
964 context->filterkey = key;
965
966 audit_set_context(tsk, context);
967 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
968 return 0;
969 }
970
audit_free_context(struct audit_context * context)971 static inline void audit_free_context(struct audit_context *context)
972 {
973 audit_free_module(context);
974 audit_free_names(context);
975 unroll_tree_refs(context, NULL, 0);
976 free_tree_refs(context);
977 audit_free_aux(context);
978 kfree(context->filterkey);
979 kfree(context->sockaddr);
980 audit_proctitle_free(context);
981 kfree(context);
982 }
983
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)984 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
985 kuid_t auid, kuid_t uid, unsigned int sessionid,
986 u32 sid, char *comm)
987 {
988 struct audit_buffer *ab;
989 char *ctx = NULL;
990 u32 len;
991 int rc = 0;
992
993 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 if (!ab)
995 return rc;
996
997 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
998 from_kuid(&init_user_ns, auid),
999 from_kuid(&init_user_ns, uid), sessionid);
1000 if (sid) {
1001 if (security_secid_to_secctx(sid, &ctx, &len)) {
1002 audit_log_format(ab, " obj=(none)");
1003 rc = 1;
1004 } else {
1005 audit_log_format(ab, " obj=%s", ctx);
1006 security_release_secctx(ctx, len);
1007 }
1008 }
1009 audit_log_format(ab, " ocomm=");
1010 audit_log_untrustedstring(ab, comm);
1011 audit_log_end(ab);
1012
1013 return rc;
1014 }
1015
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1016 static void audit_log_execve_info(struct audit_context *context,
1017 struct audit_buffer **ab)
1018 {
1019 long len_max;
1020 long len_rem;
1021 long len_full;
1022 long len_buf;
1023 long len_abuf = 0;
1024 long len_tmp;
1025 bool require_data;
1026 bool encode;
1027 unsigned int iter;
1028 unsigned int arg;
1029 char *buf_head;
1030 char *buf;
1031 const char __user *p = (const char __user *)current->mm->arg_start;
1032
1033 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1034 * data we put in the audit record for this argument (see the
1035 * code below) ... at this point in time 96 is plenty */
1036 char abuf[96];
1037
1038 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039 * current value of 7500 is not as important as the fact that it
1040 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1041 * room if we go over a little bit in the logging below */
1042 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043 len_max = MAX_EXECVE_AUDIT_LEN;
1044
1045 /* scratch buffer to hold the userspace args */
1046 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 if (!buf_head) {
1048 audit_panic("out of memory for argv string");
1049 return;
1050 }
1051 buf = buf_head;
1052
1053 audit_log_format(*ab, "argc=%d", context->execve.argc);
1054
1055 len_rem = len_max;
1056 len_buf = 0;
1057 len_full = 0;
1058 require_data = true;
1059 encode = false;
1060 iter = 0;
1061 arg = 0;
1062 do {
1063 /* NOTE: we don't ever want to trust this value for anything
1064 * serious, but the audit record format insists we
1065 * provide an argument length for really long arguments,
1066 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067 * to use strncpy_from_user() to obtain this value for
1068 * recording in the log, although we don't use it
1069 * anywhere here to avoid a double-fetch problem */
1070 if (len_full == 0)
1071 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072
1073 /* read more data from userspace */
1074 if (require_data) {
1075 /* can we make more room in the buffer? */
1076 if (buf != buf_head) {
1077 memmove(buf_head, buf, len_buf);
1078 buf = buf_head;
1079 }
1080
1081 /* fetch as much as we can of the argument */
1082 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 len_max - len_buf);
1084 if (len_tmp == -EFAULT) {
1085 /* unable to copy from userspace */
1086 send_sig(SIGKILL, current, 0);
1087 goto out;
1088 } else if (len_tmp == (len_max - len_buf)) {
1089 /* buffer is not large enough */
1090 require_data = true;
1091 /* NOTE: if we are going to span multiple
1092 * buffers force the encoding so we stand
1093 * a chance at a sane len_full value and
1094 * consistent record encoding */
1095 encode = true;
1096 len_full = len_full * 2;
1097 p += len_tmp;
1098 } else {
1099 require_data = false;
1100 if (!encode)
1101 encode = audit_string_contains_control(
1102 buf, len_tmp);
1103 /* try to use a trusted value for len_full */
1104 if (len_full < len_max)
1105 len_full = (encode ?
1106 len_tmp * 2 : len_tmp);
1107 p += len_tmp + 1;
1108 }
1109 len_buf += len_tmp;
1110 buf_head[len_buf] = '\0';
1111
1112 /* length of the buffer in the audit record? */
1113 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114 }
1115
1116 /* write as much as we can to the audit log */
1117 if (len_buf >= 0) {
1118 /* NOTE: some magic numbers here - basically if we
1119 * can't fit a reasonable amount of data into the
1120 * existing audit buffer, flush it and start with
1121 * a new buffer */
1122 if ((sizeof(abuf) + 8) > len_rem) {
1123 len_rem = len_max;
1124 audit_log_end(*ab);
1125 *ab = audit_log_start(context,
1126 GFP_KERNEL, AUDIT_EXECVE);
1127 if (!*ab)
1128 goto out;
1129 }
1130
1131 /* create the non-arg portion of the arg record */
1132 len_tmp = 0;
1133 if (require_data || (iter > 0) ||
1134 ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 if (iter == 0) {
1136 len_tmp += snprintf(&abuf[len_tmp],
1137 sizeof(abuf) - len_tmp,
1138 " a%d_len=%lu",
1139 arg, len_full);
1140 }
1141 len_tmp += snprintf(&abuf[len_tmp],
1142 sizeof(abuf) - len_tmp,
1143 " a%d[%d]=", arg, iter++);
1144 } else
1145 len_tmp += snprintf(&abuf[len_tmp],
1146 sizeof(abuf) - len_tmp,
1147 " a%d=", arg);
1148 WARN_ON(len_tmp >= sizeof(abuf));
1149 abuf[sizeof(abuf) - 1] = '\0';
1150
1151 /* log the arg in the audit record */
1152 audit_log_format(*ab, "%s", abuf);
1153 len_rem -= len_tmp;
1154 len_tmp = len_buf;
1155 if (encode) {
1156 if (len_abuf > len_rem)
1157 len_tmp = len_rem / 2; /* encoding */
1158 audit_log_n_hex(*ab, buf, len_tmp);
1159 len_rem -= len_tmp * 2;
1160 len_abuf -= len_tmp * 2;
1161 } else {
1162 if (len_abuf > len_rem)
1163 len_tmp = len_rem - 2; /* quotes */
1164 audit_log_n_string(*ab, buf, len_tmp);
1165 len_rem -= len_tmp + 2;
1166 /* don't subtract the "2" because we still need
1167 * to add quotes to the remaining string */
1168 len_abuf -= len_tmp;
1169 }
1170 len_buf -= len_tmp;
1171 buf += len_tmp;
1172 }
1173
1174 /* ready to move to the next argument? */
1175 if ((len_buf == 0) && !require_data) {
1176 arg++;
1177 iter = 0;
1178 len_full = 0;
1179 require_data = true;
1180 encode = false;
1181 }
1182 } while (arg < context->execve.argc);
1183
1184 /* NOTE: the caller handles the final audit_log_end() call */
1185
1186 out:
1187 kfree(buf_head);
1188 }
1189
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191 kernel_cap_t *cap)
1192 {
1193 int i;
1194
1195 if (cap_isclear(*cap)) {
1196 audit_log_format(ab, " %s=0", prefix);
1197 return;
1198 }
1199 audit_log_format(ab, " %s=", prefix);
1200 CAP_FOR_EACH_U32(i)
1201 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202 }
1203
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 {
1206 if (name->fcap_ver == -1) {
1207 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208 return;
1209 }
1210 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 name->fcap.fE, name->fcap_ver,
1214 from_kuid(&init_user_ns, name->fcap.rootid));
1215 }
1216
show_special(struct audit_context * context,int * call_panic)1217 static void show_special(struct audit_context *context, int *call_panic)
1218 {
1219 struct audit_buffer *ab;
1220 int i;
1221
1222 ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 if (!ab)
1224 return;
1225
1226 switch (context->type) {
1227 case AUDIT_SOCKETCALL: {
1228 int nargs = context->socketcall.nargs;
1229 audit_log_format(ab, "nargs=%d", nargs);
1230 for (i = 0; i < nargs; i++)
1231 audit_log_format(ab, " a%d=%lx", i,
1232 context->socketcall.args[i]);
1233 break; }
1234 case AUDIT_IPC: {
1235 u32 osid = context->ipc.osid;
1236
1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238 from_kuid(&init_user_ns, context->ipc.uid),
1239 from_kgid(&init_user_ns, context->ipc.gid),
1240 context->ipc.mode);
1241 if (osid) {
1242 char *ctx = NULL;
1243 u32 len;
1244 if (security_secid_to_secctx(osid, &ctx, &len)) {
1245 audit_log_format(ab, " osid=%u", osid);
1246 *call_panic = 1;
1247 } else {
1248 audit_log_format(ab, " obj=%s", ctx);
1249 security_release_secctx(ctx, len);
1250 }
1251 }
1252 if (context->ipc.has_perm) {
1253 audit_log_end(ab);
1254 ab = audit_log_start(context, GFP_KERNEL,
1255 AUDIT_IPC_SET_PERM);
1256 if (unlikely(!ab))
1257 return;
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 }
1265 break; }
1266 case AUDIT_MQ_OPEN:
1267 audit_log_format(ab,
1268 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269 "mq_msgsize=%ld mq_curmsgs=%ld",
1270 context->mq_open.oflag, context->mq_open.mode,
1271 context->mq_open.attr.mq_flags,
1272 context->mq_open.attr.mq_maxmsg,
1273 context->mq_open.attr.mq_msgsize,
1274 context->mq_open.attr.mq_curmsgs);
1275 break;
1276 case AUDIT_MQ_SENDRECV:
1277 audit_log_format(ab,
1278 "mqdes=%d msg_len=%zd msg_prio=%u "
1279 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280 context->mq_sendrecv.mqdes,
1281 context->mq_sendrecv.msg_len,
1282 context->mq_sendrecv.msg_prio,
1283 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284 context->mq_sendrecv.abs_timeout.tv_nsec);
1285 break;
1286 case AUDIT_MQ_NOTIFY:
1287 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288 context->mq_notify.mqdes,
1289 context->mq_notify.sigev_signo);
1290 break;
1291 case AUDIT_MQ_GETSETATTR: {
1292 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293 audit_log_format(ab,
1294 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295 "mq_curmsgs=%ld ",
1296 context->mq_getsetattr.mqdes,
1297 attr->mq_flags, attr->mq_maxmsg,
1298 attr->mq_msgsize, attr->mq_curmsgs);
1299 break; }
1300 case AUDIT_CAPSET:
1301 audit_log_format(ab, "pid=%d", context->capset.pid);
1302 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306 break;
1307 case AUDIT_MMAP:
1308 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309 context->mmap.flags);
1310 break;
1311 case AUDIT_EXECVE:
1312 audit_log_execve_info(context, &ab);
1313 break;
1314 case AUDIT_KERN_MODULE:
1315 audit_log_format(ab, "name=");
1316 if (context->module.name) {
1317 audit_log_untrustedstring(ab, context->module.name);
1318 } else
1319 audit_log_format(ab, "(null)");
1320
1321 break;
1322 }
1323 audit_log_end(ab);
1324 }
1325
audit_proctitle_rtrim(char * proctitle,int len)1326 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327 {
1328 char *end = proctitle + len - 1;
1329 while (end > proctitle && !isprint(*end))
1330 end--;
1331
1332 /* catch the case where proctitle is only 1 non-print character */
1333 len = end - proctitle + 1;
1334 len -= isprint(proctitle[len-1]) == 0;
1335 return len;
1336 }
1337
1338 /*
1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340 * @context: audit_context for the task
1341 * @n: audit_names structure with reportable details
1342 * @path: optional path to report instead of audit_names->name
1343 * @record_num: record number to report when handling a list of names
1344 * @call_panic: optional pointer to int that will be updated if secid fails
1345 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1346 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347 const struct path *path, int record_num, int *call_panic)
1348 {
1349 struct audit_buffer *ab;
1350
1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352 if (!ab)
1353 return;
1354
1355 audit_log_format(ab, "item=%d", record_num);
1356
1357 if (path)
1358 audit_log_d_path(ab, " name=", path);
1359 else if (n->name) {
1360 switch (n->name_len) {
1361 case AUDIT_NAME_FULL:
1362 /* log the full path */
1363 audit_log_format(ab, " name=");
1364 audit_log_untrustedstring(ab, n->name->name);
1365 break;
1366 case 0:
1367 /* name was specified as a relative path and the
1368 * directory component is the cwd
1369 */
1370 audit_log_d_path(ab, " name=", &context->pwd);
1371 break;
1372 default:
1373 /* log the name's directory component */
1374 audit_log_format(ab, " name=");
1375 audit_log_n_untrustedstring(ab, n->name->name,
1376 n->name_len);
1377 }
1378 } else
1379 audit_log_format(ab, " name=(null)");
1380
1381 if (n->ino != AUDIT_INO_UNSET)
1382 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1383 n->ino,
1384 MAJOR(n->dev),
1385 MINOR(n->dev),
1386 n->mode,
1387 from_kuid(&init_user_ns, n->uid),
1388 from_kgid(&init_user_ns, n->gid),
1389 MAJOR(n->rdev),
1390 MINOR(n->rdev));
1391 if (n->osid != 0) {
1392 char *ctx = NULL;
1393 u32 len;
1394
1395 if (security_secid_to_secctx(
1396 n->osid, &ctx, &len)) {
1397 audit_log_format(ab, " osid=%u", n->osid);
1398 if (call_panic)
1399 *call_panic = 2;
1400 } else {
1401 audit_log_format(ab, " obj=%s", ctx);
1402 security_release_secctx(ctx, len);
1403 }
1404 }
1405
1406 /* log the audit_names record type */
1407 switch (n->type) {
1408 case AUDIT_TYPE_NORMAL:
1409 audit_log_format(ab, " nametype=NORMAL");
1410 break;
1411 case AUDIT_TYPE_PARENT:
1412 audit_log_format(ab, " nametype=PARENT");
1413 break;
1414 case AUDIT_TYPE_CHILD_DELETE:
1415 audit_log_format(ab, " nametype=DELETE");
1416 break;
1417 case AUDIT_TYPE_CHILD_CREATE:
1418 audit_log_format(ab, " nametype=CREATE");
1419 break;
1420 default:
1421 audit_log_format(ab, " nametype=UNKNOWN");
1422 break;
1423 }
1424
1425 audit_log_fcaps(ab, n);
1426 audit_log_end(ab);
1427 }
1428
audit_log_proctitle(void)1429 static void audit_log_proctitle(void)
1430 {
1431 int res;
1432 char *buf;
1433 char *msg = "(null)";
1434 int len = strlen(msg);
1435 struct audit_context *context = audit_context();
1436 struct audit_buffer *ab;
1437
1438 if (!context || context->dummy)
1439 return;
1440
1441 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442 if (!ab)
1443 return; /* audit_panic or being filtered */
1444
1445 audit_log_format(ab, "proctitle=");
1446
1447 /* Not cached */
1448 if (!context->proctitle.value) {
1449 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450 if (!buf)
1451 goto out;
1452 /* Historically called this from procfs naming */
1453 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454 if (res == 0) {
1455 kfree(buf);
1456 goto out;
1457 }
1458 res = audit_proctitle_rtrim(buf, res);
1459 if (res == 0) {
1460 kfree(buf);
1461 goto out;
1462 }
1463 context->proctitle.value = buf;
1464 context->proctitle.len = res;
1465 }
1466 msg = context->proctitle.value;
1467 len = context->proctitle.len;
1468 out:
1469 audit_log_n_untrustedstring(ab, msg, len);
1470 audit_log_end(ab);
1471 }
1472
audit_log_exit(void)1473 static void audit_log_exit(void)
1474 {
1475 int i, call_panic = 0;
1476 struct audit_context *context = audit_context();
1477 struct audit_buffer *ab;
1478 struct audit_aux_data *aux;
1479 struct audit_names *n;
1480
1481 context->personality = current->personality;
1482
1483 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484 if (!ab)
1485 return; /* audit_panic has been called */
1486 audit_log_format(ab, "arch=%x syscall=%d",
1487 context->arch, context->major);
1488 if (context->personality != PER_LINUX)
1489 audit_log_format(ab, " per=%lx", context->personality);
1490 if (context->return_valid)
1491 audit_log_format(ab, " success=%s exit=%ld",
1492 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493 context->return_code);
1494
1495 audit_log_format(ab,
1496 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497 context->argv[0],
1498 context->argv[1],
1499 context->argv[2],
1500 context->argv[3],
1501 context->name_count);
1502
1503 audit_log_task_info(ab);
1504 audit_log_key(ab, context->filterkey);
1505 audit_log_end(ab);
1506
1507 for (aux = context->aux; aux; aux = aux->next) {
1508
1509 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510 if (!ab)
1511 continue; /* audit_panic has been called */
1512
1513 switch (aux->type) {
1514
1515 case AUDIT_BPRM_FCAPS: {
1516 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529 audit_log_format(ab, " frootid=%d",
1530 from_kuid(&init_user_ns,
1531 axs->fcap.rootid));
1532 break; }
1533
1534 }
1535 audit_log_end(ab);
1536 }
1537
1538 if (context->type)
1539 show_special(context, &call_panic);
1540
1541 if (context->fds[0] >= 0) {
1542 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543 if (ab) {
1544 audit_log_format(ab, "fd0=%d fd1=%d",
1545 context->fds[0], context->fds[1]);
1546 audit_log_end(ab);
1547 }
1548 }
1549
1550 if (context->sockaddr_len) {
1551 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552 if (ab) {
1553 audit_log_format(ab, "saddr=");
1554 audit_log_n_hex(ab, (void *)context->sockaddr,
1555 context->sockaddr_len);
1556 audit_log_end(ab);
1557 }
1558 }
1559
1560 for (aux = context->aux_pids; aux; aux = aux->next) {
1561 struct audit_aux_data_pids *axs = (void *)aux;
1562
1563 for (i = 0; i < axs->pid_count; i++)
1564 if (audit_log_pid_context(context, axs->target_pid[i],
1565 axs->target_auid[i],
1566 axs->target_uid[i],
1567 axs->target_sessionid[i],
1568 axs->target_sid[i],
1569 axs->target_comm[i]))
1570 call_panic = 1;
1571 }
1572
1573 if (context->target_pid &&
1574 audit_log_pid_context(context, context->target_pid,
1575 context->target_auid, context->target_uid,
1576 context->target_sessionid,
1577 context->target_sid, context->target_comm))
1578 call_panic = 1;
1579
1580 if (context->pwd.dentry && context->pwd.mnt) {
1581 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582 if (ab) {
1583 audit_log_d_path(ab, "cwd=", &context->pwd);
1584 audit_log_end(ab);
1585 }
1586 }
1587
1588 i = 0;
1589 list_for_each_entry(n, &context->names_list, list) {
1590 if (n->hidden)
1591 continue;
1592 audit_log_name(context, n, NULL, i++, &call_panic);
1593 }
1594
1595 audit_log_proctitle();
1596
1597 /* Send end of event record to help user space know we are finished */
1598 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599 if (ab)
1600 audit_log_end(ab);
1601 if (call_panic)
1602 audit_panic("error converting sid to string");
1603 }
1604
1605 /**
1606 * __audit_free - free a per-task audit context
1607 * @tsk: task whose audit context block to free
1608 *
1609 * Called from copy_process and do_exit
1610 */
__audit_free(struct task_struct * tsk)1611 void __audit_free(struct task_struct *tsk)
1612 {
1613 struct audit_context *context = tsk->audit_context;
1614
1615 if (!context)
1616 return;
1617
1618 if (!list_empty(&context->killed_trees))
1619 audit_kill_trees(context);
1620
1621 /* We are called either by do_exit() or the fork() error handling code;
1622 * in the former case tsk == current and in the latter tsk is a
1623 * random task_struct that doesn't doesn't have any meaningful data we
1624 * need to log via audit_log_exit().
1625 */
1626 if (tsk == current && !context->dummy && context->in_syscall) {
1627 context->return_valid = 0;
1628 context->return_code = 0;
1629
1630 audit_filter_syscall(tsk, context,
1631 &audit_filter_list[AUDIT_FILTER_EXIT]);
1632 audit_filter_inodes(tsk, context);
1633 if (context->current_state == AUDIT_RECORD_CONTEXT)
1634 audit_log_exit();
1635 }
1636
1637 audit_set_context(tsk, NULL);
1638 audit_free_context(context);
1639 }
1640
1641 /**
1642 * __audit_syscall_entry - fill in an audit record at syscall entry
1643 * @major: major syscall type (function)
1644 * @a1: additional syscall register 1
1645 * @a2: additional syscall register 2
1646 * @a3: additional syscall register 3
1647 * @a4: additional syscall register 4
1648 *
1649 * Fill in audit context at syscall entry. This only happens if the
1650 * audit context was created when the task was created and the state or
1651 * filters demand the audit context be built. If the state from the
1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653 * then the record will be written at syscall exit time (otherwise, it
1654 * will only be written if another part of the kernel requests that it
1655 * be written).
1656 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1657 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658 unsigned long a3, unsigned long a4)
1659 {
1660 struct audit_context *context = audit_context();
1661 enum audit_state state;
1662
1663 if (!audit_enabled || !context)
1664 return;
1665
1666 BUG_ON(context->in_syscall || context->name_count);
1667
1668 state = context->state;
1669 if (state == AUDIT_DISABLED)
1670 return;
1671
1672 context->dummy = !audit_n_rules;
1673 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674 context->prio = 0;
1675 if (auditd_test_task(current))
1676 return;
1677 }
1678
1679 context->arch = syscall_get_arch(current);
1680 context->major = major;
1681 context->argv[0] = a1;
1682 context->argv[1] = a2;
1683 context->argv[2] = a3;
1684 context->argv[3] = a4;
1685 context->serial = 0;
1686 context->in_syscall = 1;
1687 context->current_state = state;
1688 context->ppid = 0;
1689 ktime_get_coarse_real_ts64(&context->ctime);
1690 }
1691
1692 /**
1693 * __audit_syscall_exit - deallocate audit context after a system call
1694 * @success: success value of the syscall
1695 * @return_code: return value of the syscall
1696 *
1697 * Tear down after system call. If the audit context has been marked as
1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699 * filtering, or because some other part of the kernel wrote an audit
1700 * message), then write out the syscall information. In call cases,
1701 * free the names stored from getname().
1702 */
__audit_syscall_exit(int success,long return_code)1703 void __audit_syscall_exit(int success, long return_code)
1704 {
1705 struct audit_context *context;
1706
1707 context = audit_context();
1708 if (!context)
1709 return;
1710
1711 if (!list_empty(&context->killed_trees))
1712 audit_kill_trees(context);
1713
1714 if (!context->dummy && context->in_syscall) {
1715 if (success)
1716 context->return_valid = AUDITSC_SUCCESS;
1717 else
1718 context->return_valid = AUDITSC_FAILURE;
1719
1720 /*
1721 * we need to fix up the return code in the audit logs if the
1722 * actual return codes are later going to be fixed up by the
1723 * arch specific signal handlers
1724 *
1725 * This is actually a test for:
1726 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728 *
1729 * but is faster than a bunch of ||
1730 */
1731 if (unlikely(return_code <= -ERESTARTSYS) &&
1732 (return_code >= -ERESTART_RESTARTBLOCK) &&
1733 (return_code != -ENOIOCTLCMD))
1734 context->return_code = -EINTR;
1735 else
1736 context->return_code = return_code;
1737
1738 audit_filter_syscall(current, context,
1739 &audit_filter_list[AUDIT_FILTER_EXIT]);
1740 audit_filter_inodes(current, context);
1741 if (context->current_state == AUDIT_RECORD_CONTEXT)
1742 audit_log_exit();
1743 }
1744
1745 context->in_syscall = 0;
1746 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747
1748 audit_free_module(context);
1749 audit_free_names(context);
1750 unroll_tree_refs(context, NULL, 0);
1751 audit_free_aux(context);
1752 context->aux = NULL;
1753 context->aux_pids = NULL;
1754 context->target_pid = 0;
1755 context->target_sid = 0;
1756 context->sockaddr_len = 0;
1757 context->type = 0;
1758 context->fds[0] = -1;
1759 if (context->state != AUDIT_RECORD_CONTEXT) {
1760 kfree(context->filterkey);
1761 context->filterkey = NULL;
1762 }
1763 }
1764
handle_one(const struct inode * inode)1765 static inline void handle_one(const struct inode *inode)
1766 {
1767 struct audit_context *context;
1768 struct audit_tree_refs *p;
1769 struct audit_chunk *chunk;
1770 int count;
1771 if (likely(!inode->i_fsnotify_marks))
1772 return;
1773 context = audit_context();
1774 p = context->trees;
1775 count = context->tree_count;
1776 rcu_read_lock();
1777 chunk = audit_tree_lookup(inode);
1778 rcu_read_unlock();
1779 if (!chunk)
1780 return;
1781 if (likely(put_tree_ref(context, chunk)))
1782 return;
1783 if (unlikely(!grow_tree_refs(context))) {
1784 pr_warn("out of memory, audit has lost a tree reference\n");
1785 audit_set_auditable(context);
1786 audit_put_chunk(chunk);
1787 unroll_tree_refs(context, p, count);
1788 return;
1789 }
1790 put_tree_ref(context, chunk);
1791 }
1792
handle_path(const struct dentry * dentry)1793 static void handle_path(const struct dentry *dentry)
1794 {
1795 struct audit_context *context;
1796 struct audit_tree_refs *p;
1797 const struct dentry *d, *parent;
1798 struct audit_chunk *drop;
1799 unsigned long seq;
1800 int count;
1801
1802 context = audit_context();
1803 p = context->trees;
1804 count = context->tree_count;
1805 retry:
1806 drop = NULL;
1807 d = dentry;
1808 rcu_read_lock();
1809 seq = read_seqbegin(&rename_lock);
1810 for(;;) {
1811 struct inode *inode = d_backing_inode(d);
1812 if (inode && unlikely(inode->i_fsnotify_marks)) {
1813 struct audit_chunk *chunk;
1814 chunk = audit_tree_lookup(inode);
1815 if (chunk) {
1816 if (unlikely(!put_tree_ref(context, chunk))) {
1817 drop = chunk;
1818 break;
1819 }
1820 }
1821 }
1822 parent = d->d_parent;
1823 if (parent == d)
1824 break;
1825 d = parent;
1826 }
1827 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1828 rcu_read_unlock();
1829 if (!drop) {
1830 /* just a race with rename */
1831 unroll_tree_refs(context, p, count);
1832 goto retry;
1833 }
1834 audit_put_chunk(drop);
1835 if (grow_tree_refs(context)) {
1836 /* OK, got more space */
1837 unroll_tree_refs(context, p, count);
1838 goto retry;
1839 }
1840 /* too bad */
1841 pr_warn("out of memory, audit has lost a tree reference\n");
1842 unroll_tree_refs(context, p, count);
1843 audit_set_auditable(context);
1844 return;
1845 }
1846 rcu_read_unlock();
1847 }
1848
audit_alloc_name(struct audit_context * context,unsigned char type)1849 static struct audit_names *audit_alloc_name(struct audit_context *context,
1850 unsigned char type)
1851 {
1852 struct audit_names *aname;
1853
1854 if (context->name_count < AUDIT_NAMES) {
1855 aname = &context->preallocated_names[context->name_count];
1856 memset(aname, 0, sizeof(*aname));
1857 } else {
1858 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859 if (!aname)
1860 return NULL;
1861 aname->should_free = true;
1862 }
1863
1864 aname->ino = AUDIT_INO_UNSET;
1865 aname->type = type;
1866 list_add_tail(&aname->list, &context->names_list);
1867
1868 context->name_count++;
1869 return aname;
1870 }
1871
1872 /**
1873 * __audit_reusename - fill out filename with info from existing entry
1874 * @uptr: userland ptr to pathname
1875 *
1876 * Search the audit_names list for the current audit context. If there is an
1877 * existing entry with a matching "uptr" then return the filename
1878 * associated with that audit_name. If not, return NULL.
1879 */
1880 struct filename *
__audit_reusename(const __user char * uptr)1881 __audit_reusename(const __user char *uptr)
1882 {
1883 struct audit_context *context = audit_context();
1884 struct audit_names *n;
1885
1886 list_for_each_entry(n, &context->names_list, list) {
1887 if (!n->name)
1888 continue;
1889 if (n->name->uptr == uptr) {
1890 n->name->refcnt++;
1891 return n->name;
1892 }
1893 }
1894 return NULL;
1895 }
1896
_audit_getcwd(struct audit_context * context)1897 inline void _audit_getcwd(struct audit_context *context)
1898 {
1899 if (!context->pwd.dentry)
1900 get_fs_pwd(current->fs, &context->pwd);
1901 }
1902
__audit_getcwd(void)1903 void __audit_getcwd(void)
1904 {
1905 struct audit_context *context = audit_context();
1906
1907 if (context->in_syscall)
1908 _audit_getcwd(context);
1909 }
1910
1911 /**
1912 * __audit_getname - add a name to the list
1913 * @name: name to add
1914 *
1915 * Add a name to the list of audit names for this context.
1916 * Called from fs/namei.c:getname().
1917 */
__audit_getname(struct filename * name)1918 void __audit_getname(struct filename *name)
1919 {
1920 struct audit_context *context = audit_context();
1921 struct audit_names *n;
1922
1923 if (!context->in_syscall)
1924 return;
1925
1926 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1927 if (!n)
1928 return;
1929
1930 n->name = name;
1931 n->name_len = AUDIT_NAME_FULL;
1932 name->aname = n;
1933 name->refcnt++;
1934
1935 _audit_getcwd(context);
1936 }
1937
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)1938 static inline int audit_copy_fcaps(struct audit_names *name,
1939 const struct dentry *dentry)
1940 {
1941 struct cpu_vfs_cap_data caps;
1942 int rc;
1943
1944 if (!dentry)
1945 return 0;
1946
1947 rc = get_vfs_caps_from_disk(dentry, &caps);
1948 if (rc)
1949 return rc;
1950
1951 name->fcap.permitted = caps.permitted;
1952 name->fcap.inheritable = caps.inheritable;
1953 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1954 name->fcap.rootid = caps.rootid;
1955 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1956 VFS_CAP_REVISION_SHIFT;
1957
1958 return 0;
1959 }
1960
1961 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)1962 static void audit_copy_inode(struct audit_names *name,
1963 const struct dentry *dentry,
1964 struct inode *inode, unsigned int flags)
1965 {
1966 name->ino = inode->i_ino;
1967 name->dev = inode->i_sb->s_dev;
1968 name->mode = inode->i_mode;
1969 name->uid = inode->i_uid;
1970 name->gid = inode->i_gid;
1971 name->rdev = inode->i_rdev;
1972 security_inode_getsecid(inode, &name->osid);
1973 if (flags & AUDIT_INODE_NOEVAL) {
1974 name->fcap_ver = -1;
1975 return;
1976 }
1977 audit_copy_fcaps(name, dentry);
1978 }
1979
1980 /**
1981 * __audit_inode - store the inode and device from a lookup
1982 * @name: name being audited
1983 * @dentry: dentry being audited
1984 * @flags: attributes for this particular entry
1985 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)1986 void __audit_inode(struct filename *name, const struct dentry *dentry,
1987 unsigned int flags)
1988 {
1989 struct audit_context *context = audit_context();
1990 struct inode *inode = d_backing_inode(dentry);
1991 struct audit_names *n;
1992 bool parent = flags & AUDIT_INODE_PARENT;
1993 struct audit_entry *e;
1994 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1995 int i;
1996
1997 if (!context->in_syscall)
1998 return;
1999
2000 rcu_read_lock();
2001 list_for_each_entry_rcu(e, list, list) {
2002 for (i = 0; i < e->rule.field_count; i++) {
2003 struct audit_field *f = &e->rule.fields[i];
2004
2005 if (f->type == AUDIT_FSTYPE
2006 && audit_comparator(inode->i_sb->s_magic,
2007 f->op, f->val)
2008 && e->rule.action == AUDIT_NEVER) {
2009 rcu_read_unlock();
2010 return;
2011 }
2012 }
2013 }
2014 rcu_read_unlock();
2015
2016 if (!name)
2017 goto out_alloc;
2018
2019 /*
2020 * If we have a pointer to an audit_names entry already, then we can
2021 * just use it directly if the type is correct.
2022 */
2023 n = name->aname;
2024 if (n) {
2025 if (parent) {
2026 if (n->type == AUDIT_TYPE_PARENT ||
2027 n->type == AUDIT_TYPE_UNKNOWN)
2028 goto out;
2029 } else {
2030 if (n->type != AUDIT_TYPE_PARENT)
2031 goto out;
2032 }
2033 }
2034
2035 list_for_each_entry_reverse(n, &context->names_list, list) {
2036 if (n->ino) {
2037 /* valid inode number, use that for the comparison */
2038 if (n->ino != inode->i_ino ||
2039 n->dev != inode->i_sb->s_dev)
2040 continue;
2041 } else if (n->name) {
2042 /* inode number has not been set, check the name */
2043 if (strcmp(n->name->name, name->name))
2044 continue;
2045 } else
2046 /* no inode and no name (?!) ... this is odd ... */
2047 continue;
2048
2049 /* match the correct record type */
2050 if (parent) {
2051 if (n->type == AUDIT_TYPE_PARENT ||
2052 n->type == AUDIT_TYPE_UNKNOWN)
2053 goto out;
2054 } else {
2055 if (n->type != AUDIT_TYPE_PARENT)
2056 goto out;
2057 }
2058 }
2059
2060 out_alloc:
2061 /* unable to find an entry with both a matching name and type */
2062 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2063 if (!n)
2064 return;
2065 if (name) {
2066 n->name = name;
2067 name->refcnt++;
2068 }
2069
2070 out:
2071 if (parent) {
2072 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2073 n->type = AUDIT_TYPE_PARENT;
2074 if (flags & AUDIT_INODE_HIDDEN)
2075 n->hidden = true;
2076 } else {
2077 n->name_len = AUDIT_NAME_FULL;
2078 n->type = AUDIT_TYPE_NORMAL;
2079 }
2080 handle_path(dentry);
2081 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2082 }
2083
__audit_file(const struct file * file)2084 void __audit_file(const struct file *file)
2085 {
2086 __audit_inode(NULL, file->f_path.dentry, 0);
2087 }
2088
2089 /**
2090 * __audit_inode_child - collect inode info for created/removed objects
2091 * @parent: inode of dentry parent
2092 * @dentry: dentry being audited
2093 * @type: AUDIT_TYPE_* value that we're looking for
2094 *
2095 * For syscalls that create or remove filesystem objects, audit_inode
2096 * can only collect information for the filesystem object's parent.
2097 * This call updates the audit context with the child's information.
2098 * Syscalls that create a new filesystem object must be hooked after
2099 * the object is created. Syscalls that remove a filesystem object
2100 * must be hooked prior, in order to capture the target inode during
2101 * unsuccessful attempts.
2102 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2103 void __audit_inode_child(struct inode *parent,
2104 const struct dentry *dentry,
2105 const unsigned char type)
2106 {
2107 struct audit_context *context = audit_context();
2108 struct inode *inode = d_backing_inode(dentry);
2109 const struct qstr *dname = &dentry->d_name;
2110 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2111 struct audit_entry *e;
2112 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2113 int i;
2114
2115 if (!context->in_syscall)
2116 return;
2117
2118 rcu_read_lock();
2119 list_for_each_entry_rcu(e, list, list) {
2120 for (i = 0; i < e->rule.field_count; i++) {
2121 struct audit_field *f = &e->rule.fields[i];
2122
2123 if (f->type == AUDIT_FSTYPE
2124 && audit_comparator(parent->i_sb->s_magic,
2125 f->op, f->val)
2126 && e->rule.action == AUDIT_NEVER) {
2127 rcu_read_unlock();
2128 return;
2129 }
2130 }
2131 }
2132 rcu_read_unlock();
2133
2134 if (inode)
2135 handle_one(inode);
2136
2137 /* look for a parent entry first */
2138 list_for_each_entry(n, &context->names_list, list) {
2139 if (!n->name ||
2140 (n->type != AUDIT_TYPE_PARENT &&
2141 n->type != AUDIT_TYPE_UNKNOWN))
2142 continue;
2143
2144 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2145 !audit_compare_dname_path(dname,
2146 n->name->name, n->name_len)) {
2147 if (n->type == AUDIT_TYPE_UNKNOWN)
2148 n->type = AUDIT_TYPE_PARENT;
2149 found_parent = n;
2150 break;
2151 }
2152 }
2153
2154 /* is there a matching child entry? */
2155 list_for_each_entry(n, &context->names_list, list) {
2156 /* can only match entries that have a name */
2157 if (!n->name ||
2158 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2159 continue;
2160
2161 if (!strcmp(dname->name, n->name->name) ||
2162 !audit_compare_dname_path(dname, n->name->name,
2163 found_parent ?
2164 found_parent->name_len :
2165 AUDIT_NAME_FULL)) {
2166 if (n->type == AUDIT_TYPE_UNKNOWN)
2167 n->type = type;
2168 found_child = n;
2169 break;
2170 }
2171 }
2172
2173 if (!found_parent) {
2174 /* create a new, "anonymous" parent record */
2175 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2176 if (!n)
2177 return;
2178 audit_copy_inode(n, NULL, parent, 0);
2179 }
2180
2181 if (!found_child) {
2182 found_child = audit_alloc_name(context, type);
2183 if (!found_child)
2184 return;
2185
2186 /* Re-use the name belonging to the slot for a matching parent
2187 * directory. All names for this context are relinquished in
2188 * audit_free_names() */
2189 if (found_parent) {
2190 found_child->name = found_parent->name;
2191 found_child->name_len = AUDIT_NAME_FULL;
2192 found_child->name->refcnt++;
2193 }
2194 }
2195
2196 if (inode)
2197 audit_copy_inode(found_child, dentry, inode, 0);
2198 else
2199 found_child->ino = AUDIT_INO_UNSET;
2200 }
2201 EXPORT_SYMBOL_GPL(__audit_inode_child);
2202
2203 /**
2204 * auditsc_get_stamp - get local copies of audit_context values
2205 * @ctx: audit_context for the task
2206 * @t: timespec64 to store time recorded in the audit_context
2207 * @serial: serial value that is recorded in the audit_context
2208 *
2209 * Also sets the context as auditable.
2210 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2211 int auditsc_get_stamp(struct audit_context *ctx,
2212 struct timespec64 *t, unsigned int *serial)
2213 {
2214 if (!ctx->in_syscall)
2215 return 0;
2216 if (!ctx->serial)
2217 ctx->serial = audit_serial();
2218 t->tv_sec = ctx->ctime.tv_sec;
2219 t->tv_nsec = ctx->ctime.tv_nsec;
2220 *serial = ctx->serial;
2221 if (!ctx->prio) {
2222 ctx->prio = 1;
2223 ctx->current_state = AUDIT_RECORD_CONTEXT;
2224 }
2225 return 1;
2226 }
2227
2228 /**
2229 * __audit_mq_open - record audit data for a POSIX MQ open
2230 * @oflag: open flag
2231 * @mode: mode bits
2232 * @attr: queue attributes
2233 *
2234 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2235 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2236 {
2237 struct audit_context *context = audit_context();
2238
2239 if (attr)
2240 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2241 else
2242 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2243
2244 context->mq_open.oflag = oflag;
2245 context->mq_open.mode = mode;
2246
2247 context->type = AUDIT_MQ_OPEN;
2248 }
2249
2250 /**
2251 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2252 * @mqdes: MQ descriptor
2253 * @msg_len: Message length
2254 * @msg_prio: Message priority
2255 * @abs_timeout: Message timeout in absolute time
2256 *
2257 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2258 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2259 const struct timespec64 *abs_timeout)
2260 {
2261 struct audit_context *context = audit_context();
2262 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2263
2264 if (abs_timeout)
2265 memcpy(p, abs_timeout, sizeof(*p));
2266 else
2267 memset(p, 0, sizeof(*p));
2268
2269 context->mq_sendrecv.mqdes = mqdes;
2270 context->mq_sendrecv.msg_len = msg_len;
2271 context->mq_sendrecv.msg_prio = msg_prio;
2272
2273 context->type = AUDIT_MQ_SENDRECV;
2274 }
2275
2276 /**
2277 * __audit_mq_notify - record audit data for a POSIX MQ notify
2278 * @mqdes: MQ descriptor
2279 * @notification: Notification event
2280 *
2281 */
2282
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2283 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2284 {
2285 struct audit_context *context = audit_context();
2286
2287 if (notification)
2288 context->mq_notify.sigev_signo = notification->sigev_signo;
2289 else
2290 context->mq_notify.sigev_signo = 0;
2291
2292 context->mq_notify.mqdes = mqdes;
2293 context->type = AUDIT_MQ_NOTIFY;
2294 }
2295
2296 /**
2297 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2298 * @mqdes: MQ descriptor
2299 * @mqstat: MQ flags
2300 *
2301 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2302 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2303 {
2304 struct audit_context *context = audit_context();
2305 context->mq_getsetattr.mqdes = mqdes;
2306 context->mq_getsetattr.mqstat = *mqstat;
2307 context->type = AUDIT_MQ_GETSETATTR;
2308 }
2309
2310 /**
2311 * __audit_ipc_obj - record audit data for ipc object
2312 * @ipcp: ipc permissions
2313 *
2314 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2315 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2316 {
2317 struct audit_context *context = audit_context();
2318 context->ipc.uid = ipcp->uid;
2319 context->ipc.gid = ipcp->gid;
2320 context->ipc.mode = ipcp->mode;
2321 context->ipc.has_perm = 0;
2322 security_ipc_getsecid(ipcp, &context->ipc.osid);
2323 context->type = AUDIT_IPC;
2324 }
2325
2326 /**
2327 * __audit_ipc_set_perm - record audit data for new ipc permissions
2328 * @qbytes: msgq bytes
2329 * @uid: msgq user id
2330 * @gid: msgq group id
2331 * @mode: msgq mode (permissions)
2332 *
2333 * Called only after audit_ipc_obj().
2334 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2335 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2336 {
2337 struct audit_context *context = audit_context();
2338
2339 context->ipc.qbytes = qbytes;
2340 context->ipc.perm_uid = uid;
2341 context->ipc.perm_gid = gid;
2342 context->ipc.perm_mode = mode;
2343 context->ipc.has_perm = 1;
2344 }
2345
__audit_bprm(struct linux_binprm * bprm)2346 void __audit_bprm(struct linux_binprm *bprm)
2347 {
2348 struct audit_context *context = audit_context();
2349
2350 context->type = AUDIT_EXECVE;
2351 context->execve.argc = bprm->argc;
2352 }
2353
2354
2355 /**
2356 * __audit_socketcall - record audit data for sys_socketcall
2357 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2358 * @args: args array
2359 *
2360 */
__audit_socketcall(int nargs,unsigned long * args)2361 int __audit_socketcall(int nargs, unsigned long *args)
2362 {
2363 struct audit_context *context = audit_context();
2364
2365 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2366 return -EINVAL;
2367 context->type = AUDIT_SOCKETCALL;
2368 context->socketcall.nargs = nargs;
2369 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2370 return 0;
2371 }
2372
2373 /**
2374 * __audit_fd_pair - record audit data for pipe and socketpair
2375 * @fd1: the first file descriptor
2376 * @fd2: the second file descriptor
2377 *
2378 */
__audit_fd_pair(int fd1,int fd2)2379 void __audit_fd_pair(int fd1, int fd2)
2380 {
2381 struct audit_context *context = audit_context();
2382 context->fds[0] = fd1;
2383 context->fds[1] = fd2;
2384 }
2385
2386 /**
2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388 * @len: data length in user space
2389 * @a: data address in kernel space
2390 *
2391 * Returns 0 for success or NULL context or < 0 on error.
2392 */
__audit_sockaddr(int len,void * a)2393 int __audit_sockaddr(int len, void *a)
2394 {
2395 struct audit_context *context = audit_context();
2396
2397 if (!context->sockaddr) {
2398 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399 if (!p)
2400 return -ENOMEM;
2401 context->sockaddr = p;
2402 }
2403
2404 context->sockaddr_len = len;
2405 memcpy(context->sockaddr, a, len);
2406 return 0;
2407 }
2408
__audit_ptrace(struct task_struct * t)2409 void __audit_ptrace(struct task_struct *t)
2410 {
2411 struct audit_context *context = audit_context();
2412
2413 context->target_pid = task_tgid_nr(t);
2414 context->target_auid = audit_get_loginuid(t);
2415 context->target_uid = task_uid(t);
2416 context->target_sessionid = audit_get_sessionid(t);
2417 security_task_getsecid(t, &context->target_sid);
2418 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2419 }
2420
2421 /**
2422 * audit_signal_info_syscall - record signal info for syscalls
2423 * @t: task being signaled
2424 *
2425 * If the audit subsystem is being terminated, record the task (pid)
2426 * and uid that is doing that.
2427 */
audit_signal_info_syscall(struct task_struct * t)2428 int audit_signal_info_syscall(struct task_struct *t)
2429 {
2430 struct audit_aux_data_pids *axp;
2431 struct audit_context *ctx = audit_context();
2432 kuid_t t_uid = task_uid(t);
2433
2434 if (!audit_signals || audit_dummy_context())
2435 return 0;
2436
2437 /* optimize the common case by putting first signal recipient directly
2438 * in audit_context */
2439 if (!ctx->target_pid) {
2440 ctx->target_pid = task_tgid_nr(t);
2441 ctx->target_auid = audit_get_loginuid(t);
2442 ctx->target_uid = t_uid;
2443 ctx->target_sessionid = audit_get_sessionid(t);
2444 security_task_getsecid(t, &ctx->target_sid);
2445 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2446 return 0;
2447 }
2448
2449 axp = (void *)ctx->aux_pids;
2450 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2451 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2452 if (!axp)
2453 return -ENOMEM;
2454
2455 axp->d.type = AUDIT_OBJ_PID;
2456 axp->d.next = ctx->aux_pids;
2457 ctx->aux_pids = (void *)axp;
2458 }
2459 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2460
2461 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2462 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2463 axp->target_uid[axp->pid_count] = t_uid;
2464 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2465 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2466 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2467 axp->pid_count++;
2468
2469 return 0;
2470 }
2471
2472 /**
2473 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2474 * @bprm: pointer to the bprm being processed
2475 * @new: the proposed new credentials
2476 * @old: the old credentials
2477 *
2478 * Simply check if the proc already has the caps given by the file and if not
2479 * store the priv escalation info for later auditing at the end of the syscall
2480 *
2481 * -Eric
2482 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2483 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2484 const struct cred *new, const struct cred *old)
2485 {
2486 struct audit_aux_data_bprm_fcaps *ax;
2487 struct audit_context *context = audit_context();
2488 struct cpu_vfs_cap_data vcaps;
2489
2490 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2491 if (!ax)
2492 return -ENOMEM;
2493
2494 ax->d.type = AUDIT_BPRM_FCAPS;
2495 ax->d.next = context->aux;
2496 context->aux = (void *)ax;
2497
2498 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2499
2500 ax->fcap.permitted = vcaps.permitted;
2501 ax->fcap.inheritable = vcaps.inheritable;
2502 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2503 ax->fcap.rootid = vcaps.rootid;
2504 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2505
2506 ax->old_pcap.permitted = old->cap_permitted;
2507 ax->old_pcap.inheritable = old->cap_inheritable;
2508 ax->old_pcap.effective = old->cap_effective;
2509 ax->old_pcap.ambient = old->cap_ambient;
2510
2511 ax->new_pcap.permitted = new->cap_permitted;
2512 ax->new_pcap.inheritable = new->cap_inheritable;
2513 ax->new_pcap.effective = new->cap_effective;
2514 ax->new_pcap.ambient = new->cap_ambient;
2515 return 0;
2516 }
2517
2518 /**
2519 * __audit_log_capset - store information about the arguments to the capset syscall
2520 * @new: the new credentials
2521 * @old: the old (current) credentials
2522 *
2523 * Record the arguments userspace sent to sys_capset for later printing by the
2524 * audit system if applicable
2525 */
__audit_log_capset(const struct cred * new,const struct cred * old)2526 void __audit_log_capset(const struct cred *new, const struct cred *old)
2527 {
2528 struct audit_context *context = audit_context();
2529 context->capset.pid = task_tgid_nr(current);
2530 context->capset.cap.effective = new->cap_effective;
2531 context->capset.cap.inheritable = new->cap_effective;
2532 context->capset.cap.permitted = new->cap_permitted;
2533 context->capset.cap.ambient = new->cap_ambient;
2534 context->type = AUDIT_CAPSET;
2535 }
2536
__audit_mmap_fd(int fd,int flags)2537 void __audit_mmap_fd(int fd, int flags)
2538 {
2539 struct audit_context *context = audit_context();
2540 context->mmap.fd = fd;
2541 context->mmap.flags = flags;
2542 context->type = AUDIT_MMAP;
2543 }
2544
__audit_log_kern_module(char * name)2545 void __audit_log_kern_module(char *name)
2546 {
2547 struct audit_context *context = audit_context();
2548
2549 context->module.name = kstrdup(name, GFP_KERNEL);
2550 if (!context->module.name)
2551 audit_log_lost("out of memory in __audit_log_kern_module");
2552 context->type = AUDIT_KERN_MODULE;
2553 }
2554
__audit_fanotify(unsigned int response)2555 void __audit_fanotify(unsigned int response)
2556 {
2557 audit_log(audit_context(), GFP_KERNEL,
2558 AUDIT_FANOTIFY, "resp=%u", response);
2559 }
2560
__audit_tk_injoffset(struct timespec64 offset)2561 void __audit_tk_injoffset(struct timespec64 offset)
2562 {
2563 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2564 "sec=%lli nsec=%li",
2565 (long long)offset.tv_sec, offset.tv_nsec);
2566 }
2567
audit_log_ntp_val(const struct audit_ntp_data * ad,const char * op,enum audit_ntp_type type)2568 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2569 const char *op, enum audit_ntp_type type)
2570 {
2571 const struct audit_ntp_val *val = &ad->vals[type];
2572
2573 if (val->newval == val->oldval)
2574 return;
2575
2576 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2577 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2578 }
2579
__audit_ntp_log(const struct audit_ntp_data * ad)2580 void __audit_ntp_log(const struct audit_ntp_data *ad)
2581 {
2582 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2583 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2584 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2585 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2586 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2587 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2588 }
2589
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2590 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2591 enum audit_nfcfgop op, gfp_t gfp)
2592 {
2593 struct audit_buffer *ab;
2594 char comm[sizeof(current->comm)];
2595
2596 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2597 if (!ab)
2598 return;
2599 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2600 name, af, nentries, audit_nfcfgs[op].s);
2601
2602 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2603 audit_log_task_context(ab); /* subj= */
2604 audit_log_format(ab, " comm=");
2605 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2606 audit_log_end(ab);
2607 }
2608 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2609
audit_log_task(struct audit_buffer * ab)2610 static void audit_log_task(struct audit_buffer *ab)
2611 {
2612 kuid_t auid, uid;
2613 kgid_t gid;
2614 unsigned int sessionid;
2615 char comm[sizeof(current->comm)];
2616
2617 auid = audit_get_loginuid(current);
2618 sessionid = audit_get_sessionid(current);
2619 current_uid_gid(&uid, &gid);
2620
2621 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2622 from_kuid(&init_user_ns, auid),
2623 from_kuid(&init_user_ns, uid),
2624 from_kgid(&init_user_ns, gid),
2625 sessionid);
2626 audit_log_task_context(ab);
2627 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2628 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2629 audit_log_d_path_exe(ab, current->mm);
2630 }
2631
2632 /**
2633 * audit_core_dumps - record information about processes that end abnormally
2634 * @signr: signal value
2635 *
2636 * If a process ends with a core dump, something fishy is going on and we
2637 * should record the event for investigation.
2638 */
audit_core_dumps(long signr)2639 void audit_core_dumps(long signr)
2640 {
2641 struct audit_buffer *ab;
2642
2643 if (!audit_enabled)
2644 return;
2645
2646 if (signr == SIGQUIT) /* don't care for those */
2647 return;
2648
2649 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2650 if (unlikely(!ab))
2651 return;
2652 audit_log_task(ab);
2653 audit_log_format(ab, " sig=%ld res=1", signr);
2654 audit_log_end(ab);
2655 }
2656
2657 /**
2658 * audit_seccomp - record information about a seccomp action
2659 * @syscall: syscall number
2660 * @signr: signal value
2661 * @code: the seccomp action
2662 *
2663 * Record the information associated with a seccomp action. Event filtering for
2664 * seccomp actions that are not to be logged is done in seccomp_log().
2665 * Therefore, this function forces auditing independent of the audit_enabled
2666 * and dummy context state because seccomp actions should be logged even when
2667 * audit is not in use.
2668 */
audit_seccomp(unsigned long syscall,long signr,int code)2669 void audit_seccomp(unsigned long syscall, long signr, int code)
2670 {
2671 struct audit_buffer *ab;
2672
2673 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2674 if (unlikely(!ab))
2675 return;
2676 audit_log_task(ab);
2677 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2678 signr, syscall_get_arch(current), syscall,
2679 in_compat_syscall(), KSTK_EIP(current), code);
2680 audit_log_end(ab);
2681 }
2682
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2683 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2684 int res)
2685 {
2686 struct audit_buffer *ab;
2687
2688 if (!audit_enabled)
2689 return;
2690
2691 ab = audit_log_start(audit_context(), GFP_KERNEL,
2692 AUDIT_CONFIG_CHANGE);
2693 if (unlikely(!ab))
2694 return;
2695
2696 audit_log_format(ab,
2697 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2698 names, old_names, res);
2699 audit_log_end(ab);
2700 }
2701
audit_killed_trees(void)2702 struct list_head *audit_killed_trees(void)
2703 {
2704 struct audit_context *ctx = audit_context();
2705 if (likely(!ctx || !ctx->in_syscall))
2706 return NULL;
2707 return &ctx->killed_trees;
2708 }
2709