1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34
f2fs_filemap_fault(struct vm_fault * vmf)35 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
36 {
37 struct inode *inode = file_inode(vmf->vma->vm_file);
38 vm_fault_t ret;
39
40 down_read(&F2FS_I(inode)->i_mmap_sem);
41 ret = filemap_fault(vmf);
42 up_read(&F2FS_I(inode)->i_mmap_sem);
43
44 if (!ret)
45 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46 F2FS_BLKSIZE);
47
48 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49
50 return ret;
51 }
52
f2fs_vm_page_mkwrite(struct vm_fault * vmf)53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55 struct page *page = vmf->page;
56 struct inode *inode = file_inode(vmf->vma->vm_file);
57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 struct dnode_of_data dn;
59 bool need_alloc = true;
60 int err = 0;
61
62 if (unlikely(f2fs_cp_error(sbi))) {
63 err = -EIO;
64 goto err;
65 }
66
67 if (!f2fs_is_checkpoint_ready(sbi)) {
68 err = -ENOSPC;
69 goto err;
70 }
71
72 #ifdef CONFIG_F2FS_FS_COMPRESSION
73 if (f2fs_compressed_file(inode)) {
74 int ret = f2fs_is_compressed_cluster(inode, page->index);
75
76 if (ret < 0) {
77 err = ret;
78 goto err;
79 } else if (ret) {
80 if (ret < F2FS_I(inode)->i_cluster_size) {
81 err = -EAGAIN;
82 goto err;
83 }
84 need_alloc = false;
85 }
86 }
87 #endif
88 /* should do out of any locked page */
89 if (need_alloc)
90 f2fs_balance_fs(sbi, true);
91
92 sb_start_pagefault(inode->i_sb);
93
94 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
95
96 file_update_time(vmf->vma->vm_file);
97 down_read(&F2FS_I(inode)->i_mmap_sem);
98 lock_page(page);
99 if (unlikely(page->mapping != inode->i_mapping ||
100 page_offset(page) > i_size_read(inode) ||
101 !PageUptodate(page))) {
102 unlock_page(page);
103 err = -EFAULT;
104 goto out_sem;
105 }
106
107 if (need_alloc) {
108 /* block allocation */
109 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
110 set_new_dnode(&dn, inode, NULL, NULL, 0);
111 err = f2fs_get_block(&dn, page->index);
112 f2fs_put_dnode(&dn);
113 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
114 }
115
116 #ifdef CONFIG_F2FS_FS_COMPRESSION
117 if (!need_alloc) {
118 set_new_dnode(&dn, inode, NULL, NULL, 0);
119 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
120 f2fs_put_dnode(&dn);
121 }
122 #endif
123 if (err) {
124 unlock_page(page);
125 goto out_sem;
126 }
127
128 f2fs_wait_on_page_writeback(page, DATA, false, true);
129
130 /* wait for GCed page writeback via META_MAPPING */
131 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
132
133 /*
134 * check to see if the page is mapped already (no holes)
135 */
136 if (PageMappedToDisk(page))
137 goto out_sem;
138
139 /* page is wholly or partially inside EOF */
140 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
141 i_size_read(inode)) {
142 loff_t offset;
143
144 offset = i_size_read(inode) & ~PAGE_MASK;
145 zero_user_segment(page, offset, PAGE_SIZE);
146 }
147 set_page_dirty(page);
148 if (!PageUptodate(page))
149 SetPageUptodate(page);
150
151 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
152 f2fs_update_time(sbi, REQ_TIME);
153
154 trace_f2fs_vm_page_mkwrite(page, DATA);
155 out_sem:
156 up_read(&F2FS_I(inode)->i_mmap_sem);
157
158 sb_end_pagefault(inode->i_sb);
159 err:
160 return block_page_mkwrite_return(err);
161 }
162
163 static const struct vm_operations_struct f2fs_file_vm_ops = {
164 .fault = f2fs_filemap_fault,
165 .map_pages = filemap_map_pages,
166 .page_mkwrite = f2fs_vm_page_mkwrite,
167 };
168
get_parent_ino(struct inode * inode,nid_t * pino)169 static int get_parent_ino(struct inode *inode, nid_t *pino)
170 {
171 struct dentry *dentry;
172
173 /*
174 * Make sure to get the non-deleted alias. The alias associated with
175 * the open file descriptor being fsync()'ed may be deleted already.
176 */
177 dentry = d_find_alias(inode);
178 if (!dentry)
179 return 0;
180
181 *pino = parent_ino(dentry);
182 dput(dentry);
183 return 1;
184 }
185
need_do_checkpoint(struct inode * inode)186 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
187 {
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 enum cp_reason_type cp_reason = CP_NO_NEEDED;
190
191 if (!S_ISREG(inode->i_mode))
192 cp_reason = CP_NON_REGULAR;
193 else if (f2fs_compressed_file(inode))
194 cp_reason = CP_COMPRESSED;
195 else if (inode->i_nlink != 1)
196 cp_reason = CP_HARDLINK;
197 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
198 cp_reason = CP_SB_NEED_CP;
199 else if (file_wrong_pino(inode))
200 cp_reason = CP_WRONG_PINO;
201 else if (!f2fs_space_for_roll_forward(sbi))
202 cp_reason = CP_NO_SPC_ROLL;
203 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
204 cp_reason = CP_NODE_NEED_CP;
205 else if (test_opt(sbi, FASTBOOT))
206 cp_reason = CP_FASTBOOT_MODE;
207 else if (F2FS_OPTION(sbi).active_logs == 2)
208 cp_reason = CP_SPEC_LOG_NUM;
209 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
210 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
211 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
212 TRANS_DIR_INO))
213 cp_reason = CP_RECOVER_DIR;
214
215 return cp_reason;
216 }
217
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)218 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
219 {
220 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
221 bool ret = false;
222 /* But we need to avoid that there are some inode updates */
223 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
224 ret = true;
225 f2fs_put_page(i, 0);
226 return ret;
227 }
228
try_to_fix_pino(struct inode * inode)229 static void try_to_fix_pino(struct inode *inode)
230 {
231 struct f2fs_inode_info *fi = F2FS_I(inode);
232 nid_t pino;
233
234 down_write(&fi->i_sem);
235 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
236 get_parent_ino(inode, &pino)) {
237 f2fs_i_pino_write(inode, pino);
238 file_got_pino(inode);
239 }
240 up_write(&fi->i_sem);
241 }
242
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)243 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
244 int datasync, bool atomic)
245 {
246 struct inode *inode = file->f_mapping->host;
247 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
248 nid_t ino = inode->i_ino;
249 int ret = 0;
250 enum cp_reason_type cp_reason = 0;
251 struct writeback_control wbc = {
252 .sync_mode = WB_SYNC_ALL,
253 .nr_to_write = LONG_MAX,
254 .for_reclaim = 0,
255 };
256 unsigned int seq_id = 0;
257
258 if (unlikely(f2fs_readonly(inode->i_sb) ||
259 is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
260 return 0;
261
262 trace_f2fs_sync_file_enter(inode);
263
264 if (S_ISDIR(inode->i_mode))
265 goto go_write;
266
267 /* if fdatasync is triggered, let's do in-place-update */
268 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
269 set_inode_flag(inode, FI_NEED_IPU);
270 ret = file_write_and_wait_range(file, start, end);
271 clear_inode_flag(inode, FI_NEED_IPU);
272
273 if (ret) {
274 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
275 return ret;
276 }
277
278 /* if the inode is dirty, let's recover all the time */
279 if (!f2fs_skip_inode_update(inode, datasync)) {
280 f2fs_write_inode(inode, NULL);
281 goto go_write;
282 }
283
284 /*
285 * if there is no written data, don't waste time to write recovery info.
286 */
287 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
288 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
289
290 /* it may call write_inode just prior to fsync */
291 if (need_inode_page_update(sbi, ino))
292 goto go_write;
293
294 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
295 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
296 goto flush_out;
297 goto out;
298 }
299 go_write:
300 /*
301 * Both of fdatasync() and fsync() are able to be recovered from
302 * sudden-power-off.
303 */
304 down_read(&F2FS_I(inode)->i_sem);
305 cp_reason = need_do_checkpoint(inode);
306 up_read(&F2FS_I(inode)->i_sem);
307
308 if (cp_reason) {
309 /* all the dirty node pages should be flushed for POR */
310 ret = f2fs_sync_fs(inode->i_sb, 1);
311
312 /*
313 * We've secured consistency through sync_fs. Following pino
314 * will be used only for fsynced inodes after checkpoint.
315 */
316 try_to_fix_pino(inode);
317 clear_inode_flag(inode, FI_APPEND_WRITE);
318 clear_inode_flag(inode, FI_UPDATE_WRITE);
319 goto out;
320 }
321 sync_nodes:
322 atomic_inc(&sbi->wb_sync_req[NODE]);
323 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
324 atomic_dec(&sbi->wb_sync_req[NODE]);
325 if (ret)
326 goto out;
327
328 /* if cp_error was enabled, we should avoid infinite loop */
329 if (unlikely(f2fs_cp_error(sbi))) {
330 ret = -EIO;
331 goto out;
332 }
333
334 if (f2fs_need_inode_block_update(sbi, ino)) {
335 f2fs_mark_inode_dirty_sync(inode, true);
336 f2fs_write_inode(inode, NULL);
337 goto sync_nodes;
338 }
339
340 /*
341 * If it's atomic_write, it's just fine to keep write ordering. So
342 * here we don't need to wait for node write completion, since we use
343 * node chain which serializes node blocks. If one of node writes are
344 * reordered, we can see simply broken chain, resulting in stopping
345 * roll-forward recovery. It means we'll recover all or none node blocks
346 * given fsync mark.
347 */
348 if (!atomic) {
349 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
350 if (ret)
351 goto out;
352 }
353
354 /* once recovery info is written, don't need to tack this */
355 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
356 clear_inode_flag(inode, FI_APPEND_WRITE);
357 flush_out:
358 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
359 ret = f2fs_issue_flush(sbi, inode->i_ino);
360 if (!ret) {
361 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
362 clear_inode_flag(inode, FI_UPDATE_WRITE);
363 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
364 }
365 f2fs_update_time(sbi, REQ_TIME);
366 out:
367 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
368 f2fs_trace_ios(NULL, 1);
369 return ret;
370 }
371
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)372 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
373 {
374 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
375 return -EIO;
376 return f2fs_do_sync_file(file, start, end, datasync, false);
377 }
378
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)379 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
380 pgoff_t index, int whence)
381 {
382 switch (whence) {
383 case SEEK_DATA:
384 if (__is_valid_data_blkaddr(blkaddr))
385 return true;
386 if (blkaddr == NEW_ADDR &&
387 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
388 return true;
389 break;
390 case SEEK_HOLE:
391 if (blkaddr == NULL_ADDR)
392 return true;
393 break;
394 }
395 return false;
396 }
397
f2fs_seek_block(struct file * file,loff_t offset,int whence)398 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
399 {
400 struct inode *inode = file->f_mapping->host;
401 loff_t maxbytes = inode->i_sb->s_maxbytes;
402 struct dnode_of_data dn;
403 pgoff_t pgofs, end_offset;
404 loff_t data_ofs = offset;
405 loff_t isize;
406 int err = 0;
407
408 inode_lock(inode);
409
410 isize = i_size_read(inode);
411 if (offset >= isize)
412 goto fail;
413
414 /* handle inline data case */
415 if (f2fs_has_inline_data(inode) && whence == SEEK_HOLE) {
416 data_ofs = isize;
417 goto found;
418 }
419
420 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
421
422 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
423 set_new_dnode(&dn, inode, NULL, NULL, 0);
424 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
425 if (err && err != -ENOENT) {
426 goto fail;
427 } else if (err == -ENOENT) {
428 /* direct node does not exists */
429 if (whence == SEEK_DATA) {
430 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
431 continue;
432 } else {
433 goto found;
434 }
435 }
436
437 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
438
439 /* find data/hole in dnode block */
440 for (; dn.ofs_in_node < end_offset;
441 dn.ofs_in_node++, pgofs++,
442 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443 block_t blkaddr;
444
445 blkaddr = f2fs_data_blkaddr(&dn);
446
447 if (__is_valid_data_blkaddr(blkaddr) &&
448 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
449 blkaddr, DATA_GENERIC_ENHANCE)) {
450 f2fs_put_dnode(&dn);
451 goto fail;
452 }
453
454 if (__found_offset(file->f_mapping, blkaddr,
455 pgofs, whence)) {
456 f2fs_put_dnode(&dn);
457 goto found;
458 }
459 }
460 f2fs_put_dnode(&dn);
461 }
462
463 if (whence == SEEK_DATA)
464 goto fail;
465 found:
466 if (whence == SEEK_HOLE && data_ofs > isize)
467 data_ofs = isize;
468 inode_unlock(inode);
469 return vfs_setpos(file, data_ofs, maxbytes);
470 fail:
471 inode_unlock(inode);
472 return -ENXIO;
473 }
474
f2fs_llseek(struct file * file,loff_t offset,int whence)475 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
476 {
477 struct inode *inode = file->f_mapping->host;
478 loff_t maxbytes = inode->i_sb->s_maxbytes;
479
480 switch (whence) {
481 case SEEK_SET:
482 case SEEK_CUR:
483 case SEEK_END:
484 return generic_file_llseek_size(file, offset, whence,
485 maxbytes, i_size_read(inode));
486 case SEEK_DATA:
487 case SEEK_HOLE:
488 if (offset < 0)
489 return -ENXIO;
490 return f2fs_seek_block(file, offset, whence);
491 }
492
493 return -EINVAL;
494 }
495
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)496 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
497 {
498 struct inode *inode = file_inode(file);
499 int err;
500
501 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
502 return -EIO;
503
504 if (!f2fs_is_compress_backend_ready(inode))
505 return -EOPNOTSUPP;
506
507 /* we don't need to use inline_data strictly */
508 err = f2fs_convert_inline_inode(inode);
509 if (err)
510 return err;
511
512 file_accessed(file);
513 vma->vm_ops = &f2fs_file_vm_ops;
514 set_inode_flag(inode, FI_MMAP_FILE);
515 return 0;
516 }
517
f2fs_file_open(struct inode * inode,struct file * filp)518 static int f2fs_file_open(struct inode *inode, struct file *filp)
519 {
520 int err = fscrypt_file_open(inode, filp);
521
522 if (err)
523 return err;
524
525 if (!f2fs_is_compress_backend_ready(inode))
526 return -EOPNOTSUPP;
527
528 err = fsverity_file_open(inode, filp);
529 if (err)
530 return err;
531
532 filp->f_mode |= FMODE_NOWAIT;
533
534 return dquot_file_open(inode, filp);
535 }
536
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)537 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
538 {
539 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
540 struct f2fs_node *raw_node;
541 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
542 __le32 *addr;
543 int base = 0;
544 bool compressed_cluster = false;
545 int cluster_index = 0, valid_blocks = 0;
546 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
547 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
548
549 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
550 base = get_extra_isize(dn->inode);
551
552 raw_node = F2FS_NODE(dn->node_page);
553 addr = blkaddr_in_node(raw_node) + base + ofs;
554
555 /* Assumption: truncateion starts with cluster */
556 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
557 block_t blkaddr = le32_to_cpu(*addr);
558
559 if (f2fs_compressed_file(dn->inode) &&
560 !(cluster_index & (cluster_size - 1))) {
561 if (compressed_cluster)
562 f2fs_i_compr_blocks_update(dn->inode,
563 valid_blocks, false);
564 compressed_cluster = (blkaddr == COMPRESS_ADDR);
565 valid_blocks = 0;
566 }
567
568 if (blkaddr == NULL_ADDR)
569 continue;
570
571 dn->data_blkaddr = NULL_ADDR;
572 f2fs_set_data_blkaddr(dn);
573
574 if (__is_valid_data_blkaddr(blkaddr)) {
575 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
576 DATA_GENERIC_ENHANCE))
577 continue;
578 if (compressed_cluster)
579 valid_blocks++;
580 }
581
582 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
583 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
584
585 f2fs_invalidate_blocks(sbi, blkaddr);
586
587 if (!released || blkaddr != COMPRESS_ADDR)
588 nr_free++;
589 }
590
591 if (compressed_cluster)
592 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
593
594 if (nr_free) {
595 pgoff_t fofs;
596 /*
597 * once we invalidate valid blkaddr in range [ofs, ofs + count],
598 * we will invalidate all blkaddr in the whole range.
599 */
600 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
601 dn->inode) + ofs;
602 f2fs_update_extent_cache_range(dn, fofs, 0, len);
603 dec_valid_block_count(sbi, dn->inode, nr_free);
604 }
605 dn->ofs_in_node = ofs;
606
607 f2fs_update_time(sbi, REQ_TIME);
608 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
609 dn->ofs_in_node, nr_free);
610 }
611
f2fs_truncate_data_blocks(struct dnode_of_data * dn)612 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
613 {
614 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
615 }
616
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)617 static int truncate_partial_data_page(struct inode *inode, u64 from,
618 bool cache_only)
619 {
620 loff_t offset = from & (PAGE_SIZE - 1);
621 pgoff_t index = from >> PAGE_SHIFT;
622 struct address_space *mapping = inode->i_mapping;
623 struct page *page;
624
625 if (!offset && !cache_only)
626 return 0;
627
628 if (cache_only) {
629 page = find_lock_page(mapping, index);
630 if (page && PageUptodate(page))
631 goto truncate_out;
632 f2fs_put_page(page, 1);
633 return 0;
634 }
635
636 page = f2fs_get_lock_data_page(inode, index, true);
637 if (IS_ERR(page))
638 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
639 truncate_out:
640 f2fs_wait_on_page_writeback(page, DATA, true, true);
641 zero_user(page, offset, PAGE_SIZE - offset);
642
643 /* An encrypted inode should have a key and truncate the last page. */
644 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
645 if (!cache_only)
646 set_page_dirty(page);
647 f2fs_put_page(page, 1);
648 return 0;
649 }
650
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)651 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
652 {
653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654 struct dnode_of_data dn;
655 pgoff_t free_from;
656 int count = 0, err = 0;
657 struct page *ipage;
658 bool truncate_page = false;
659
660 trace_f2fs_truncate_blocks_enter(inode, from);
661
662 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
663
664 if (free_from >= sbi->max_file_blocks)
665 goto free_partial;
666
667 if (lock)
668 f2fs_lock_op(sbi);
669
670 ipage = f2fs_get_node_page(sbi, inode->i_ino);
671 if (IS_ERR(ipage)) {
672 err = PTR_ERR(ipage);
673 goto out;
674 }
675
676 if (f2fs_has_inline_data(inode)) {
677 f2fs_truncate_inline_inode(inode, ipage, from);
678 f2fs_put_page(ipage, 1);
679 truncate_page = true;
680 goto out;
681 }
682
683 set_new_dnode(&dn, inode, ipage, NULL, 0);
684 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
685 if (err) {
686 if (err == -ENOENT)
687 goto free_next;
688 goto out;
689 }
690
691 count = ADDRS_PER_PAGE(dn.node_page, inode);
692
693 count -= dn.ofs_in_node;
694 f2fs_bug_on(sbi, count < 0);
695
696 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
697 f2fs_truncate_data_blocks_range(&dn, count);
698 free_from += count;
699 }
700
701 f2fs_put_dnode(&dn);
702 free_next:
703 err = f2fs_truncate_inode_blocks(inode, free_from);
704 out:
705 if (lock)
706 f2fs_unlock_op(sbi);
707 free_partial:
708 /* lastly zero out the first data page */
709 if (!err)
710 err = truncate_partial_data_page(inode, from, truncate_page);
711
712 trace_f2fs_truncate_blocks_exit(inode, err);
713 return err;
714 }
715
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)716 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
717 {
718 u64 free_from = from;
719 int err;
720
721 #ifdef CONFIG_F2FS_FS_COMPRESSION
722 /*
723 * for compressed file, only support cluster size
724 * aligned truncation.
725 */
726 if (f2fs_compressed_file(inode))
727 free_from = round_up(from,
728 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
729 #endif
730
731 err = f2fs_do_truncate_blocks(inode, free_from, lock);
732 if (err)
733 return err;
734
735 #ifdef CONFIG_F2FS_FS_COMPRESSION
736 if (from != free_from) {
737 err = f2fs_truncate_partial_cluster(inode, from, lock);
738 if (err)
739 return err;
740 }
741 #endif
742
743 return 0;
744 }
745
f2fs_truncate(struct inode * inode)746 int f2fs_truncate(struct inode *inode)
747 {
748 int err;
749
750 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
751 return -EIO;
752
753 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
754 S_ISLNK(inode->i_mode)))
755 return 0;
756
757 trace_f2fs_truncate(inode);
758
759 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
760 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
761 return -EIO;
762 }
763
764 /* we should check inline_data size */
765 if (!f2fs_may_inline_data(inode)) {
766 err = f2fs_convert_inline_inode(inode);
767 if (err)
768 return err;
769 }
770
771 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
772 if (err)
773 return err;
774
775 inode->i_mtime = inode->i_ctime = current_time(inode);
776 f2fs_mark_inode_dirty_sync(inode, false);
777 return 0;
778 }
779
f2fs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)780 int f2fs_getattr(const struct path *path, struct kstat *stat,
781 u32 request_mask, unsigned int query_flags)
782 {
783 struct inode *inode = d_inode(path->dentry);
784 struct f2fs_inode_info *fi = F2FS_I(inode);
785 struct f2fs_inode *ri;
786 unsigned int flags;
787
788 if (f2fs_has_extra_attr(inode) &&
789 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
790 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
791 stat->result_mask |= STATX_BTIME;
792 stat->btime.tv_sec = fi->i_crtime.tv_sec;
793 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
794 }
795
796 flags = fi->i_flags;
797 if (flags & F2FS_COMPR_FL)
798 stat->attributes |= STATX_ATTR_COMPRESSED;
799 if (flags & F2FS_APPEND_FL)
800 stat->attributes |= STATX_ATTR_APPEND;
801 if (IS_ENCRYPTED(inode))
802 stat->attributes |= STATX_ATTR_ENCRYPTED;
803 if (flags & F2FS_IMMUTABLE_FL)
804 stat->attributes |= STATX_ATTR_IMMUTABLE;
805 if (flags & F2FS_NODUMP_FL)
806 stat->attributes |= STATX_ATTR_NODUMP;
807 if (IS_VERITY(inode))
808 stat->attributes |= STATX_ATTR_VERITY;
809
810 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
811 STATX_ATTR_APPEND |
812 STATX_ATTR_ENCRYPTED |
813 STATX_ATTR_IMMUTABLE |
814 STATX_ATTR_NODUMP |
815 STATX_ATTR_VERITY);
816
817 generic_fillattr(inode, stat);
818
819 /* we need to show initial sectors used for inline_data/dentries */
820 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
821 f2fs_has_inline_dentry(inode))
822 stat->blocks += (stat->size + 511) >> 9;
823
824 return 0;
825 }
826
827 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)828 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
829 {
830 unsigned int ia_valid = attr->ia_valid;
831
832 if (ia_valid & ATTR_UID)
833 inode->i_uid = attr->ia_uid;
834 if (ia_valid & ATTR_GID)
835 inode->i_gid = attr->ia_gid;
836 if (ia_valid & ATTR_ATIME)
837 inode->i_atime = attr->ia_atime;
838 if (ia_valid & ATTR_MTIME)
839 inode->i_mtime = attr->ia_mtime;
840 if (ia_valid & ATTR_CTIME)
841 inode->i_ctime = attr->ia_ctime;
842 if (ia_valid & ATTR_MODE) {
843 umode_t mode = attr->ia_mode;
844
845 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
846 mode &= ~S_ISGID;
847 set_acl_inode(inode, mode);
848 }
849 }
850 #else
851 #define __setattr_copy setattr_copy
852 #endif
853
f2fs_setattr(struct dentry * dentry,struct iattr * attr)854 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
855 {
856 struct inode *inode = d_inode(dentry);
857 int err;
858
859 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
860 return -EIO;
861
862 if ((attr->ia_valid & ATTR_SIZE) &&
863 !f2fs_is_compress_backend_ready(inode))
864 return -EOPNOTSUPP;
865
866 err = setattr_prepare(dentry, attr);
867 if (err)
868 return err;
869
870 err = fscrypt_prepare_setattr(dentry, attr);
871 if (err)
872 return err;
873
874 err = fsverity_prepare_setattr(dentry, attr);
875 if (err)
876 return err;
877
878 if (is_quota_modification(inode, attr)) {
879 err = dquot_initialize(inode);
880 if (err)
881 return err;
882 }
883 if ((attr->ia_valid & ATTR_UID &&
884 !uid_eq(attr->ia_uid, inode->i_uid)) ||
885 (attr->ia_valid & ATTR_GID &&
886 !gid_eq(attr->ia_gid, inode->i_gid))) {
887 f2fs_lock_op(F2FS_I_SB(inode));
888 err = dquot_transfer(inode, attr);
889 if (err) {
890 set_sbi_flag(F2FS_I_SB(inode),
891 SBI_QUOTA_NEED_REPAIR);
892 f2fs_unlock_op(F2FS_I_SB(inode));
893 return err;
894 }
895 /*
896 * update uid/gid under lock_op(), so that dquot and inode can
897 * be updated atomically.
898 */
899 if (attr->ia_valid & ATTR_UID)
900 inode->i_uid = attr->ia_uid;
901 if (attr->ia_valid & ATTR_GID)
902 inode->i_gid = attr->ia_gid;
903 f2fs_mark_inode_dirty_sync(inode, true);
904 f2fs_unlock_op(F2FS_I_SB(inode));
905 }
906
907 if (attr->ia_valid & ATTR_SIZE) {
908 loff_t old_size = i_size_read(inode);
909
910 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
911 /*
912 * should convert inline inode before i_size_write to
913 * keep smaller than inline_data size with inline flag.
914 */
915 err = f2fs_convert_inline_inode(inode);
916 if (err)
917 return err;
918 }
919
920 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
921 down_write(&F2FS_I(inode)->i_mmap_sem);
922
923 truncate_setsize(inode, attr->ia_size);
924
925 if (attr->ia_size <= old_size)
926 err = f2fs_truncate(inode);
927 /*
928 * do not trim all blocks after i_size if target size is
929 * larger than i_size.
930 */
931 up_write(&F2FS_I(inode)->i_mmap_sem);
932 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
933 if (err)
934 return err;
935
936 spin_lock(&F2FS_I(inode)->i_size_lock);
937 inode->i_mtime = inode->i_ctime = current_time(inode);
938 F2FS_I(inode)->last_disk_size = i_size_read(inode);
939 spin_unlock(&F2FS_I(inode)->i_size_lock);
940 }
941
942 __setattr_copy(inode, attr);
943
944 if (attr->ia_valid & ATTR_MODE) {
945 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
946 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
947 inode->i_mode = F2FS_I(inode)->i_acl_mode;
948 clear_inode_flag(inode, FI_ACL_MODE);
949 }
950 }
951
952 /* file size may changed here */
953 f2fs_mark_inode_dirty_sync(inode, true);
954
955 /* inode change will produce dirty node pages flushed by checkpoint */
956 f2fs_balance_fs(F2FS_I_SB(inode), true);
957
958 return err;
959 }
960
961 const struct inode_operations f2fs_file_inode_operations = {
962 .getattr = f2fs_getattr,
963 .setattr = f2fs_setattr,
964 .get_acl = f2fs_get_acl,
965 .set_acl = f2fs_set_acl,
966 .listxattr = f2fs_listxattr,
967 .fiemap = f2fs_fiemap,
968 };
969
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)970 static int fill_zero(struct inode *inode, pgoff_t index,
971 loff_t start, loff_t len)
972 {
973 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
974 struct page *page;
975
976 if (!len)
977 return 0;
978
979 f2fs_balance_fs(sbi, true);
980
981 f2fs_lock_op(sbi);
982 page = f2fs_get_new_data_page(inode, NULL, index, false);
983 f2fs_unlock_op(sbi);
984
985 if (IS_ERR(page))
986 return PTR_ERR(page);
987
988 f2fs_wait_on_page_writeback(page, DATA, true, true);
989 zero_user(page, start, len);
990 set_page_dirty(page);
991 f2fs_put_page(page, 1);
992 return 0;
993 }
994
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)995 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
996 {
997 int err;
998
999 while (pg_start < pg_end) {
1000 struct dnode_of_data dn;
1001 pgoff_t end_offset, count;
1002
1003 set_new_dnode(&dn, inode, NULL, NULL, 0);
1004 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1005 if (err) {
1006 if (err == -ENOENT) {
1007 pg_start = f2fs_get_next_page_offset(&dn,
1008 pg_start);
1009 continue;
1010 }
1011 return err;
1012 }
1013
1014 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1015 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1016
1017 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1018
1019 f2fs_truncate_data_blocks_range(&dn, count);
1020 f2fs_put_dnode(&dn);
1021
1022 pg_start += count;
1023 }
1024 return 0;
1025 }
1026
punch_hole(struct inode * inode,loff_t offset,loff_t len)1027 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1028 {
1029 pgoff_t pg_start, pg_end;
1030 loff_t off_start, off_end;
1031 int ret;
1032
1033 ret = f2fs_convert_inline_inode(inode);
1034 if (ret)
1035 return ret;
1036
1037 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1038 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1039
1040 off_start = offset & (PAGE_SIZE - 1);
1041 off_end = (offset + len) & (PAGE_SIZE - 1);
1042
1043 if (pg_start == pg_end) {
1044 ret = fill_zero(inode, pg_start, off_start,
1045 off_end - off_start);
1046 if (ret)
1047 return ret;
1048 } else {
1049 if (off_start) {
1050 ret = fill_zero(inode, pg_start++, off_start,
1051 PAGE_SIZE - off_start);
1052 if (ret)
1053 return ret;
1054 }
1055 if (off_end) {
1056 ret = fill_zero(inode, pg_end, 0, off_end);
1057 if (ret)
1058 return ret;
1059 }
1060
1061 if (pg_start < pg_end) {
1062 struct address_space *mapping = inode->i_mapping;
1063 loff_t blk_start, blk_end;
1064 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1065
1066 f2fs_balance_fs(sbi, true);
1067
1068 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1069 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1070
1071 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1072 down_write(&F2FS_I(inode)->i_mmap_sem);
1073
1074 truncate_inode_pages_range(mapping, blk_start,
1075 blk_end - 1);
1076
1077 f2fs_lock_op(sbi);
1078 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1079 f2fs_unlock_op(sbi);
1080
1081 up_write(&F2FS_I(inode)->i_mmap_sem);
1082 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1083 }
1084 }
1085
1086 return ret;
1087 }
1088
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1089 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1090 int *do_replace, pgoff_t off, pgoff_t len)
1091 {
1092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093 struct dnode_of_data dn;
1094 int ret, done, i;
1095
1096 next_dnode:
1097 set_new_dnode(&dn, inode, NULL, NULL, 0);
1098 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1099 if (ret && ret != -ENOENT) {
1100 return ret;
1101 } else if (ret == -ENOENT) {
1102 if (dn.max_level == 0)
1103 return -ENOENT;
1104 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1105 dn.ofs_in_node, len);
1106 blkaddr += done;
1107 do_replace += done;
1108 goto next;
1109 }
1110
1111 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1112 dn.ofs_in_node, len);
1113 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1114 *blkaddr = f2fs_data_blkaddr(&dn);
1115
1116 if (__is_valid_data_blkaddr(*blkaddr) &&
1117 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1118 DATA_GENERIC_ENHANCE)) {
1119 f2fs_put_dnode(&dn);
1120 return -EFSCORRUPTED;
1121 }
1122
1123 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1124
1125 if (f2fs_lfs_mode(sbi)) {
1126 f2fs_put_dnode(&dn);
1127 return -EOPNOTSUPP;
1128 }
1129
1130 /* do not invalidate this block address */
1131 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1132 *do_replace = 1;
1133 }
1134 }
1135 f2fs_put_dnode(&dn);
1136 next:
1137 len -= done;
1138 off += done;
1139 if (len)
1140 goto next_dnode;
1141 return 0;
1142 }
1143
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1144 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1145 int *do_replace, pgoff_t off, int len)
1146 {
1147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1148 struct dnode_of_data dn;
1149 int ret, i;
1150
1151 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1152 if (*do_replace == 0)
1153 continue;
1154
1155 set_new_dnode(&dn, inode, NULL, NULL, 0);
1156 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1157 if (ret) {
1158 dec_valid_block_count(sbi, inode, 1);
1159 f2fs_invalidate_blocks(sbi, *blkaddr);
1160 } else {
1161 f2fs_update_data_blkaddr(&dn, *blkaddr);
1162 }
1163 f2fs_put_dnode(&dn);
1164 }
1165 return 0;
1166 }
1167
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1168 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1169 block_t *blkaddr, int *do_replace,
1170 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1171 {
1172 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1173 pgoff_t i = 0;
1174 int ret;
1175
1176 while (i < len) {
1177 if (blkaddr[i] == NULL_ADDR && !full) {
1178 i++;
1179 continue;
1180 }
1181
1182 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1183 struct dnode_of_data dn;
1184 struct node_info ni;
1185 size_t new_size;
1186 pgoff_t ilen;
1187
1188 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1189 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1190 if (ret)
1191 return ret;
1192
1193 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1194 if (ret) {
1195 f2fs_put_dnode(&dn);
1196 return ret;
1197 }
1198
1199 ilen = min((pgoff_t)
1200 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1201 dn.ofs_in_node, len - i);
1202 do {
1203 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1204 f2fs_truncate_data_blocks_range(&dn, 1);
1205
1206 if (do_replace[i]) {
1207 f2fs_i_blocks_write(src_inode,
1208 1, false, false);
1209 f2fs_i_blocks_write(dst_inode,
1210 1, true, false);
1211 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1212 blkaddr[i], ni.version, true, false);
1213
1214 do_replace[i] = 0;
1215 }
1216 dn.ofs_in_node++;
1217 i++;
1218 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1219 if (dst_inode->i_size < new_size)
1220 f2fs_i_size_write(dst_inode, new_size);
1221 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1222
1223 f2fs_put_dnode(&dn);
1224 } else {
1225 struct page *psrc, *pdst;
1226
1227 psrc = f2fs_get_lock_data_page(src_inode,
1228 src + i, true);
1229 if (IS_ERR(psrc))
1230 return PTR_ERR(psrc);
1231 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1232 true);
1233 if (IS_ERR(pdst)) {
1234 f2fs_put_page(psrc, 1);
1235 return PTR_ERR(pdst);
1236 }
1237 f2fs_copy_page(psrc, pdst);
1238 set_page_dirty(pdst);
1239 f2fs_put_page(pdst, 1);
1240 f2fs_put_page(psrc, 1);
1241
1242 ret = f2fs_truncate_hole(src_inode,
1243 src + i, src + i + 1);
1244 if (ret)
1245 return ret;
1246 i++;
1247 }
1248 }
1249 return 0;
1250 }
1251
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1252 static int __exchange_data_block(struct inode *src_inode,
1253 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1254 pgoff_t len, bool full)
1255 {
1256 block_t *src_blkaddr;
1257 int *do_replace;
1258 pgoff_t olen;
1259 int ret;
1260
1261 while (len) {
1262 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1263
1264 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1265 array_size(olen, sizeof(block_t)),
1266 GFP_NOFS);
1267 if (!src_blkaddr)
1268 return -ENOMEM;
1269
1270 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1271 array_size(olen, sizeof(int)),
1272 GFP_NOFS);
1273 if (!do_replace) {
1274 kvfree(src_blkaddr);
1275 return -ENOMEM;
1276 }
1277
1278 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1279 do_replace, src, olen);
1280 if (ret)
1281 goto roll_back;
1282
1283 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1284 do_replace, src, dst, olen, full);
1285 if (ret)
1286 goto roll_back;
1287
1288 src += olen;
1289 dst += olen;
1290 len -= olen;
1291
1292 kvfree(src_blkaddr);
1293 kvfree(do_replace);
1294 }
1295 return 0;
1296
1297 roll_back:
1298 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1299 kvfree(src_blkaddr);
1300 kvfree(do_replace);
1301 return ret;
1302 }
1303
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1304 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1305 {
1306 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1307 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1308 pgoff_t start = offset >> PAGE_SHIFT;
1309 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1310 int ret;
1311
1312 f2fs_balance_fs(sbi, true);
1313
1314 /* avoid gc operation during block exchange */
1315 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1316 down_write(&F2FS_I(inode)->i_mmap_sem);
1317
1318 f2fs_lock_op(sbi);
1319 f2fs_drop_extent_tree(inode);
1320 truncate_pagecache(inode, offset);
1321 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1322 f2fs_unlock_op(sbi);
1323
1324 up_write(&F2FS_I(inode)->i_mmap_sem);
1325 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1326 return ret;
1327 }
1328
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1329 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1330 {
1331 loff_t new_size;
1332 int ret;
1333
1334 if (offset + len >= i_size_read(inode))
1335 return -EINVAL;
1336
1337 /* collapse range should be aligned to block size of f2fs. */
1338 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1339 return -EINVAL;
1340
1341 ret = f2fs_convert_inline_inode(inode);
1342 if (ret)
1343 return ret;
1344
1345 /* write out all dirty pages from offset */
1346 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1347 if (ret)
1348 return ret;
1349
1350 ret = f2fs_do_collapse(inode, offset, len);
1351 if (ret)
1352 return ret;
1353
1354 /* write out all moved pages, if possible */
1355 down_write(&F2FS_I(inode)->i_mmap_sem);
1356 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1357 truncate_pagecache(inode, offset);
1358
1359 new_size = i_size_read(inode) - len;
1360 ret = f2fs_truncate_blocks(inode, new_size, true);
1361 up_write(&F2FS_I(inode)->i_mmap_sem);
1362 if (!ret)
1363 f2fs_i_size_write(inode, new_size);
1364 return ret;
1365 }
1366
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1367 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1368 pgoff_t end)
1369 {
1370 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1371 pgoff_t index = start;
1372 unsigned int ofs_in_node = dn->ofs_in_node;
1373 blkcnt_t count = 0;
1374 int ret;
1375
1376 for (; index < end; index++, dn->ofs_in_node++) {
1377 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1378 count++;
1379 }
1380
1381 dn->ofs_in_node = ofs_in_node;
1382 ret = f2fs_reserve_new_blocks(dn, count);
1383 if (ret)
1384 return ret;
1385
1386 dn->ofs_in_node = ofs_in_node;
1387 for (index = start; index < end; index++, dn->ofs_in_node++) {
1388 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1389 /*
1390 * f2fs_reserve_new_blocks will not guarantee entire block
1391 * allocation.
1392 */
1393 if (dn->data_blkaddr == NULL_ADDR) {
1394 ret = -ENOSPC;
1395 break;
1396 }
1397 if (dn->data_blkaddr != NEW_ADDR) {
1398 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1399 dn->data_blkaddr = NEW_ADDR;
1400 f2fs_set_data_blkaddr(dn);
1401 }
1402 }
1403
1404 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1405
1406 return ret;
1407 }
1408
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1409 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1410 int mode)
1411 {
1412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1413 struct address_space *mapping = inode->i_mapping;
1414 pgoff_t index, pg_start, pg_end;
1415 loff_t new_size = i_size_read(inode);
1416 loff_t off_start, off_end;
1417 int ret = 0;
1418
1419 ret = inode_newsize_ok(inode, (len + offset));
1420 if (ret)
1421 return ret;
1422
1423 ret = f2fs_convert_inline_inode(inode);
1424 if (ret)
1425 return ret;
1426
1427 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1428 if (ret)
1429 return ret;
1430
1431 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1432 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1433
1434 off_start = offset & (PAGE_SIZE - 1);
1435 off_end = (offset + len) & (PAGE_SIZE - 1);
1436
1437 if (pg_start == pg_end) {
1438 ret = fill_zero(inode, pg_start, off_start,
1439 off_end - off_start);
1440 if (ret)
1441 return ret;
1442
1443 new_size = max_t(loff_t, new_size, offset + len);
1444 } else {
1445 if (off_start) {
1446 ret = fill_zero(inode, pg_start++, off_start,
1447 PAGE_SIZE - off_start);
1448 if (ret)
1449 return ret;
1450
1451 new_size = max_t(loff_t, new_size,
1452 (loff_t)pg_start << PAGE_SHIFT);
1453 }
1454
1455 for (index = pg_start; index < pg_end;) {
1456 struct dnode_of_data dn;
1457 unsigned int end_offset;
1458 pgoff_t end;
1459
1460 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1461 down_write(&F2FS_I(inode)->i_mmap_sem);
1462
1463 truncate_pagecache_range(inode,
1464 (loff_t)index << PAGE_SHIFT,
1465 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1466
1467 f2fs_lock_op(sbi);
1468
1469 set_new_dnode(&dn, inode, NULL, NULL, 0);
1470 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1471 if (ret) {
1472 f2fs_unlock_op(sbi);
1473 up_write(&F2FS_I(inode)->i_mmap_sem);
1474 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1475 goto out;
1476 }
1477
1478 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1479 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1480
1481 ret = f2fs_do_zero_range(&dn, index, end);
1482 f2fs_put_dnode(&dn);
1483
1484 f2fs_unlock_op(sbi);
1485 up_write(&F2FS_I(inode)->i_mmap_sem);
1486 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1487
1488 f2fs_balance_fs(sbi, dn.node_changed);
1489
1490 if (ret)
1491 goto out;
1492
1493 index = end;
1494 new_size = max_t(loff_t, new_size,
1495 (loff_t)index << PAGE_SHIFT);
1496 }
1497
1498 if (off_end) {
1499 ret = fill_zero(inode, pg_end, 0, off_end);
1500 if (ret)
1501 goto out;
1502
1503 new_size = max_t(loff_t, new_size, offset + len);
1504 }
1505 }
1506
1507 out:
1508 if (new_size > i_size_read(inode)) {
1509 if (mode & FALLOC_FL_KEEP_SIZE)
1510 file_set_keep_isize(inode);
1511 else
1512 f2fs_i_size_write(inode, new_size);
1513 }
1514 return ret;
1515 }
1516
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1517 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1518 {
1519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1520 pgoff_t nr, pg_start, pg_end, delta, idx;
1521 loff_t new_size;
1522 int ret = 0;
1523
1524 new_size = i_size_read(inode) + len;
1525 ret = inode_newsize_ok(inode, new_size);
1526 if (ret)
1527 return ret;
1528
1529 if (offset >= i_size_read(inode))
1530 return -EINVAL;
1531
1532 /* insert range should be aligned to block size of f2fs. */
1533 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1534 return -EINVAL;
1535
1536 ret = f2fs_convert_inline_inode(inode);
1537 if (ret)
1538 return ret;
1539
1540 f2fs_balance_fs(sbi, true);
1541
1542 down_write(&F2FS_I(inode)->i_mmap_sem);
1543 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1544 up_write(&F2FS_I(inode)->i_mmap_sem);
1545 if (ret)
1546 return ret;
1547
1548 /* write out all dirty pages from offset */
1549 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1550 if (ret)
1551 return ret;
1552
1553 pg_start = offset >> PAGE_SHIFT;
1554 pg_end = (offset + len) >> PAGE_SHIFT;
1555 delta = pg_end - pg_start;
1556 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1557
1558 /* avoid gc operation during block exchange */
1559 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1560 down_write(&F2FS_I(inode)->i_mmap_sem);
1561 truncate_pagecache(inode, offset);
1562
1563 while (!ret && idx > pg_start) {
1564 nr = idx - pg_start;
1565 if (nr > delta)
1566 nr = delta;
1567 idx -= nr;
1568
1569 f2fs_lock_op(sbi);
1570 f2fs_drop_extent_tree(inode);
1571
1572 ret = __exchange_data_block(inode, inode, idx,
1573 idx + delta, nr, false);
1574 f2fs_unlock_op(sbi);
1575 }
1576 up_write(&F2FS_I(inode)->i_mmap_sem);
1577 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1578
1579 /* write out all moved pages, if possible */
1580 down_write(&F2FS_I(inode)->i_mmap_sem);
1581 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1582 truncate_pagecache(inode, offset);
1583 up_write(&F2FS_I(inode)->i_mmap_sem);
1584
1585 if (!ret)
1586 f2fs_i_size_write(inode, new_size);
1587 return ret;
1588 }
1589
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1590 static int expand_inode_data(struct inode *inode, loff_t offset,
1591 loff_t len, int mode)
1592 {
1593 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1594 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1595 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1596 .m_may_create = true };
1597 pgoff_t pg_end;
1598 loff_t new_size = i_size_read(inode);
1599 loff_t off_end;
1600 int err;
1601
1602 err = inode_newsize_ok(inode, (len + offset));
1603 if (err)
1604 return err;
1605
1606 err = f2fs_convert_inline_inode(inode);
1607 if (err)
1608 return err;
1609
1610 f2fs_balance_fs(sbi, true);
1611
1612 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1613 off_end = (offset + len) & (PAGE_SIZE - 1);
1614
1615 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1616 map.m_len = pg_end - map.m_lblk;
1617 if (off_end)
1618 map.m_len++;
1619
1620 if (!map.m_len)
1621 return 0;
1622
1623 if (f2fs_is_pinned_file(inode)) {
1624 block_t len = (map.m_len >> sbi->log_blocks_per_seg) <<
1625 sbi->log_blocks_per_seg;
1626 block_t done = 0;
1627
1628 if (map.m_len % sbi->blocks_per_seg)
1629 len += sbi->blocks_per_seg;
1630
1631 map.m_len = sbi->blocks_per_seg;
1632 next_alloc:
1633 if (has_not_enough_free_secs(sbi, 0,
1634 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1635 down_write(&sbi->gc_lock);
1636 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1637 if (err && err != -ENODATA && err != -EAGAIN)
1638 goto out_err;
1639 }
1640
1641 down_write(&sbi->pin_sem);
1642
1643 f2fs_lock_op(sbi);
1644 f2fs_allocate_new_segment(sbi, CURSEG_COLD_DATA_PINNED);
1645 f2fs_unlock_op(sbi);
1646
1647 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1648 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1649
1650 up_write(&sbi->pin_sem);
1651
1652 done += map.m_len;
1653 len -= map.m_len;
1654 map.m_lblk += map.m_len;
1655 if (!err && len)
1656 goto next_alloc;
1657
1658 map.m_len = done;
1659 } else {
1660 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1661 }
1662 out_err:
1663 if (err) {
1664 pgoff_t last_off;
1665
1666 if (!map.m_len)
1667 return err;
1668
1669 last_off = map.m_lblk + map.m_len - 1;
1670
1671 /* update new size to the failed position */
1672 new_size = (last_off == pg_end) ? offset + len :
1673 (loff_t)(last_off + 1) << PAGE_SHIFT;
1674 } else {
1675 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1676 }
1677
1678 if (new_size > i_size_read(inode)) {
1679 if (mode & FALLOC_FL_KEEP_SIZE)
1680 file_set_keep_isize(inode);
1681 else
1682 f2fs_i_size_write(inode, new_size);
1683 }
1684
1685 return err;
1686 }
1687
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1688 static long f2fs_fallocate(struct file *file, int mode,
1689 loff_t offset, loff_t len)
1690 {
1691 struct inode *inode = file_inode(file);
1692 long ret = 0;
1693
1694 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1695 return -EIO;
1696 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1697 return -ENOSPC;
1698 if (!f2fs_is_compress_backend_ready(inode))
1699 return -EOPNOTSUPP;
1700
1701 /* f2fs only support ->fallocate for regular file */
1702 if (!S_ISREG(inode->i_mode))
1703 return -EINVAL;
1704
1705 if (IS_ENCRYPTED(inode) &&
1706 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1707 return -EOPNOTSUPP;
1708
1709 if (f2fs_compressed_file(inode) &&
1710 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1711 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1712 return -EOPNOTSUPP;
1713
1714 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1715 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1716 FALLOC_FL_INSERT_RANGE))
1717 return -EOPNOTSUPP;
1718
1719 inode_lock(inode);
1720
1721 if (mode & FALLOC_FL_PUNCH_HOLE) {
1722 if (offset >= inode->i_size)
1723 goto out;
1724
1725 ret = punch_hole(inode, offset, len);
1726 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1727 ret = f2fs_collapse_range(inode, offset, len);
1728 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1729 ret = f2fs_zero_range(inode, offset, len, mode);
1730 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1731 ret = f2fs_insert_range(inode, offset, len);
1732 } else {
1733 ret = expand_inode_data(inode, offset, len, mode);
1734 }
1735
1736 if (!ret) {
1737 inode->i_mtime = inode->i_ctime = current_time(inode);
1738 f2fs_mark_inode_dirty_sync(inode, false);
1739 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1740 }
1741
1742 out:
1743 inode_unlock(inode);
1744
1745 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1746 return ret;
1747 }
1748
f2fs_release_file(struct inode * inode,struct file * filp)1749 static int f2fs_release_file(struct inode *inode, struct file *filp)
1750 {
1751 /*
1752 * f2fs_relase_file is called at every close calls. So we should
1753 * not drop any inmemory pages by close called by other process.
1754 */
1755 if (!(filp->f_mode & FMODE_WRITE) ||
1756 atomic_read(&inode->i_writecount) != 1)
1757 return 0;
1758
1759 /* some remained atomic pages should discarded */
1760 if (f2fs_is_atomic_file(inode))
1761 f2fs_drop_inmem_pages(inode);
1762 if (f2fs_is_volatile_file(inode)) {
1763 set_inode_flag(inode, FI_DROP_CACHE);
1764 filemap_fdatawrite(inode->i_mapping);
1765 clear_inode_flag(inode, FI_DROP_CACHE);
1766 clear_inode_flag(inode, FI_VOLATILE_FILE);
1767 stat_dec_volatile_write(inode);
1768 }
1769 return 0;
1770 }
1771
f2fs_file_flush(struct file * file,fl_owner_t id)1772 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1773 {
1774 struct inode *inode = file_inode(file);
1775
1776 /*
1777 * If the process doing a transaction is crashed, we should do
1778 * roll-back. Otherwise, other reader/write can see corrupted database
1779 * until all the writers close its file. Since this should be done
1780 * before dropping file lock, it needs to do in ->flush.
1781 */
1782 if (f2fs_is_atomic_file(inode) &&
1783 F2FS_I(inode)->inmem_task == current)
1784 f2fs_drop_inmem_pages(inode);
1785 return 0;
1786 }
1787
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1788 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1789 {
1790 struct f2fs_inode_info *fi = F2FS_I(inode);
1791 u32 masked_flags = fi->i_flags & mask;
1792
1793 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1794
1795 /* Is it quota file? Do not allow user to mess with it */
1796 if (IS_NOQUOTA(inode))
1797 return -EPERM;
1798
1799 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1800 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1801 return -EOPNOTSUPP;
1802 if (!f2fs_empty_dir(inode))
1803 return -ENOTEMPTY;
1804 }
1805
1806 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1807 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1808 return -EOPNOTSUPP;
1809 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1810 return -EINVAL;
1811 }
1812
1813 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1814 if (masked_flags & F2FS_COMPR_FL) {
1815 if (!f2fs_disable_compressed_file(inode))
1816 return -EINVAL;
1817 }
1818 if (iflags & F2FS_NOCOMP_FL)
1819 return -EINVAL;
1820 if (iflags & F2FS_COMPR_FL) {
1821 if (!f2fs_may_compress(inode))
1822 return -EINVAL;
1823 if (S_ISREG(inode->i_mode) && inode->i_size)
1824 return -EINVAL;
1825
1826 set_compress_context(inode);
1827 }
1828 }
1829 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1830 if (masked_flags & F2FS_COMPR_FL)
1831 return -EINVAL;
1832 }
1833
1834 fi->i_flags = iflags | (fi->i_flags & ~mask);
1835 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1836 (fi->i_flags & F2FS_NOCOMP_FL));
1837
1838 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1839 set_inode_flag(inode, FI_PROJ_INHERIT);
1840 else
1841 clear_inode_flag(inode, FI_PROJ_INHERIT);
1842
1843 inode->i_ctime = current_time(inode);
1844 f2fs_set_inode_flags(inode);
1845 f2fs_mark_inode_dirty_sync(inode, true);
1846 return 0;
1847 }
1848
1849 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1850
1851 /*
1852 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1853 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1854 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1855 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1856 */
1857
1858 static const struct {
1859 u32 iflag;
1860 u32 fsflag;
1861 } f2fs_fsflags_map[] = {
1862 { F2FS_COMPR_FL, FS_COMPR_FL },
1863 { F2FS_SYNC_FL, FS_SYNC_FL },
1864 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1865 { F2FS_APPEND_FL, FS_APPEND_FL },
1866 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1867 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1868 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1869 { F2FS_INDEX_FL, FS_INDEX_FL },
1870 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1871 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1872 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1873 };
1874
1875 #define F2FS_GETTABLE_FS_FL ( \
1876 FS_COMPR_FL | \
1877 FS_SYNC_FL | \
1878 FS_IMMUTABLE_FL | \
1879 FS_APPEND_FL | \
1880 FS_NODUMP_FL | \
1881 FS_NOATIME_FL | \
1882 FS_NOCOMP_FL | \
1883 FS_INDEX_FL | \
1884 FS_DIRSYNC_FL | \
1885 FS_PROJINHERIT_FL | \
1886 FS_ENCRYPT_FL | \
1887 FS_INLINE_DATA_FL | \
1888 FS_NOCOW_FL | \
1889 FS_VERITY_FL | \
1890 FS_CASEFOLD_FL)
1891
1892 #define F2FS_SETTABLE_FS_FL ( \
1893 FS_COMPR_FL | \
1894 FS_SYNC_FL | \
1895 FS_IMMUTABLE_FL | \
1896 FS_APPEND_FL | \
1897 FS_NODUMP_FL | \
1898 FS_NOATIME_FL | \
1899 FS_NOCOMP_FL | \
1900 FS_DIRSYNC_FL | \
1901 FS_PROJINHERIT_FL | \
1902 FS_CASEFOLD_FL)
1903
1904 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)1905 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1906 {
1907 u32 fsflags = 0;
1908 int i;
1909
1910 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1911 if (iflags & f2fs_fsflags_map[i].iflag)
1912 fsflags |= f2fs_fsflags_map[i].fsflag;
1913
1914 return fsflags;
1915 }
1916
1917 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)1918 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1919 {
1920 u32 iflags = 0;
1921 int i;
1922
1923 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1924 if (fsflags & f2fs_fsflags_map[i].fsflag)
1925 iflags |= f2fs_fsflags_map[i].iflag;
1926
1927 return iflags;
1928 }
1929
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1930 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1931 {
1932 struct inode *inode = file_inode(filp);
1933 struct f2fs_inode_info *fi = F2FS_I(inode);
1934 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1935
1936 if (IS_ENCRYPTED(inode))
1937 fsflags |= FS_ENCRYPT_FL;
1938 if (IS_VERITY(inode))
1939 fsflags |= FS_VERITY_FL;
1940 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1941 fsflags |= FS_INLINE_DATA_FL;
1942 if (is_inode_flag_set(inode, FI_PIN_FILE))
1943 fsflags |= FS_NOCOW_FL;
1944
1945 fsflags &= F2FS_GETTABLE_FS_FL;
1946
1947 return put_user(fsflags, (int __user *)arg);
1948 }
1949
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1950 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1951 {
1952 struct inode *inode = file_inode(filp);
1953 struct f2fs_inode_info *fi = F2FS_I(inode);
1954 u32 fsflags, old_fsflags;
1955 u32 iflags;
1956 int ret;
1957
1958 if (!inode_owner_or_capable(inode))
1959 return -EACCES;
1960
1961 if (get_user(fsflags, (int __user *)arg))
1962 return -EFAULT;
1963
1964 if (fsflags & ~F2FS_GETTABLE_FS_FL)
1965 return -EOPNOTSUPP;
1966 fsflags &= F2FS_SETTABLE_FS_FL;
1967
1968 iflags = f2fs_fsflags_to_iflags(fsflags);
1969 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1970 return -EOPNOTSUPP;
1971
1972 ret = mnt_want_write_file(filp);
1973 if (ret)
1974 return ret;
1975
1976 inode_lock(inode);
1977
1978 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1979 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1980 if (ret)
1981 goto out;
1982
1983 ret = f2fs_setflags_common(inode, iflags,
1984 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1985 out:
1986 inode_unlock(inode);
1987 mnt_drop_write_file(filp);
1988 return ret;
1989 }
1990
f2fs_ioc_getversion(struct file * filp,unsigned long arg)1991 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1992 {
1993 struct inode *inode = file_inode(filp);
1994
1995 return put_user(inode->i_generation, (int __user *)arg);
1996 }
1997
f2fs_ioc_start_atomic_write(struct file * filp)1998 static int f2fs_ioc_start_atomic_write(struct file *filp)
1999 {
2000 struct inode *inode = file_inode(filp);
2001 struct f2fs_inode_info *fi = F2FS_I(inode);
2002 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2003 int ret;
2004
2005 if (!inode_owner_or_capable(inode))
2006 return -EACCES;
2007
2008 if (!S_ISREG(inode->i_mode))
2009 return -EINVAL;
2010
2011 if (filp->f_flags & O_DIRECT)
2012 return -EINVAL;
2013
2014 ret = mnt_want_write_file(filp);
2015 if (ret)
2016 return ret;
2017
2018 inode_lock(inode);
2019
2020 f2fs_disable_compressed_file(inode);
2021
2022 if (f2fs_is_atomic_file(inode)) {
2023 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2024 ret = -EINVAL;
2025 goto out;
2026 }
2027
2028 ret = f2fs_convert_inline_inode(inode);
2029 if (ret)
2030 goto out;
2031
2032 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2033
2034 /*
2035 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2036 * f2fs_is_atomic_file.
2037 */
2038 if (get_dirty_pages(inode))
2039 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2040 inode->i_ino, get_dirty_pages(inode));
2041 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2042 if (ret) {
2043 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2044 goto out;
2045 }
2046
2047 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2048 if (list_empty(&fi->inmem_ilist))
2049 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2050 sbi->atomic_files++;
2051 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2052
2053 /* add inode in inmem_list first and set atomic_file */
2054 set_inode_flag(inode, FI_ATOMIC_FILE);
2055 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2056 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2057
2058 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2059 F2FS_I(inode)->inmem_task = current;
2060 stat_update_max_atomic_write(inode);
2061 out:
2062 inode_unlock(inode);
2063 mnt_drop_write_file(filp);
2064 return ret;
2065 }
2066
f2fs_ioc_commit_atomic_write(struct file * filp)2067 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2068 {
2069 struct inode *inode = file_inode(filp);
2070 int ret;
2071
2072 if (!inode_owner_or_capable(inode))
2073 return -EACCES;
2074
2075 ret = mnt_want_write_file(filp);
2076 if (ret)
2077 return ret;
2078
2079 f2fs_balance_fs(F2FS_I_SB(inode), true);
2080
2081 inode_lock(inode);
2082
2083 if (f2fs_is_volatile_file(inode)) {
2084 ret = -EINVAL;
2085 goto err_out;
2086 }
2087
2088 if (f2fs_is_atomic_file(inode)) {
2089 ret = f2fs_commit_inmem_pages(inode);
2090 if (ret)
2091 goto err_out;
2092
2093 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2094 if (!ret)
2095 f2fs_drop_inmem_pages(inode);
2096 } else {
2097 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2098 }
2099 err_out:
2100 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2101 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2102 ret = -EINVAL;
2103 }
2104 inode_unlock(inode);
2105 mnt_drop_write_file(filp);
2106 return ret;
2107 }
2108
f2fs_ioc_start_volatile_write(struct file * filp)2109 static int f2fs_ioc_start_volatile_write(struct file *filp)
2110 {
2111 struct inode *inode = file_inode(filp);
2112 int ret;
2113
2114 if (!inode_owner_or_capable(inode))
2115 return -EACCES;
2116
2117 if (!S_ISREG(inode->i_mode))
2118 return -EINVAL;
2119
2120 ret = mnt_want_write_file(filp);
2121 if (ret)
2122 return ret;
2123
2124 inode_lock(inode);
2125
2126 if (f2fs_is_volatile_file(inode))
2127 goto out;
2128
2129 ret = f2fs_convert_inline_inode(inode);
2130 if (ret)
2131 goto out;
2132
2133 stat_inc_volatile_write(inode);
2134 stat_update_max_volatile_write(inode);
2135
2136 set_inode_flag(inode, FI_VOLATILE_FILE);
2137 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2138 out:
2139 inode_unlock(inode);
2140 mnt_drop_write_file(filp);
2141 return ret;
2142 }
2143
f2fs_ioc_release_volatile_write(struct file * filp)2144 static int f2fs_ioc_release_volatile_write(struct file *filp)
2145 {
2146 struct inode *inode = file_inode(filp);
2147 int ret;
2148
2149 if (!inode_owner_or_capable(inode))
2150 return -EACCES;
2151
2152 ret = mnt_want_write_file(filp);
2153 if (ret)
2154 return ret;
2155
2156 inode_lock(inode);
2157
2158 if (!f2fs_is_volatile_file(inode))
2159 goto out;
2160
2161 if (!f2fs_is_first_block_written(inode)) {
2162 ret = truncate_partial_data_page(inode, 0, true);
2163 goto out;
2164 }
2165
2166 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2167 out:
2168 inode_unlock(inode);
2169 mnt_drop_write_file(filp);
2170 return ret;
2171 }
2172
f2fs_ioc_abort_volatile_write(struct file * filp)2173 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2174 {
2175 struct inode *inode = file_inode(filp);
2176 int ret;
2177
2178 if (!inode_owner_or_capable(inode))
2179 return -EACCES;
2180
2181 ret = mnt_want_write_file(filp);
2182 if (ret)
2183 return ret;
2184
2185 inode_lock(inode);
2186
2187 if (f2fs_is_atomic_file(inode))
2188 f2fs_drop_inmem_pages(inode);
2189 if (f2fs_is_volatile_file(inode)) {
2190 clear_inode_flag(inode, FI_VOLATILE_FILE);
2191 stat_dec_volatile_write(inode);
2192 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2193 }
2194
2195 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2196
2197 inode_unlock(inode);
2198
2199 mnt_drop_write_file(filp);
2200 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2201 return ret;
2202 }
2203
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2204 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2205 {
2206 struct inode *inode = file_inode(filp);
2207 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2208 struct super_block *sb = sbi->sb;
2209 __u32 in;
2210 int ret = 0;
2211
2212 if (!capable(CAP_SYS_ADMIN))
2213 return -EPERM;
2214
2215 if (get_user(in, (__u32 __user *)arg))
2216 return -EFAULT;
2217
2218 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2219 ret = mnt_want_write_file(filp);
2220 if (ret) {
2221 if (ret == -EROFS) {
2222 ret = 0;
2223 f2fs_stop_checkpoint(sbi, false);
2224 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2225 trace_f2fs_shutdown(sbi, in, ret);
2226 }
2227 return ret;
2228 }
2229 }
2230
2231 switch (in) {
2232 case F2FS_GOING_DOWN_FULLSYNC:
2233 sb = freeze_bdev(sb->s_bdev);
2234 if (IS_ERR(sb)) {
2235 ret = PTR_ERR(sb);
2236 goto out;
2237 }
2238 if (sb) {
2239 f2fs_stop_checkpoint(sbi, false);
2240 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2241 thaw_bdev(sb->s_bdev, sb);
2242 }
2243 break;
2244 case F2FS_GOING_DOWN_METASYNC:
2245 /* do checkpoint only */
2246 ret = f2fs_sync_fs(sb, 1);
2247 if (ret)
2248 goto out;
2249 f2fs_stop_checkpoint(sbi, false);
2250 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2251 break;
2252 case F2FS_GOING_DOWN_NOSYNC:
2253 f2fs_stop_checkpoint(sbi, false);
2254 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2255 break;
2256 case F2FS_GOING_DOWN_METAFLUSH:
2257 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2258 f2fs_stop_checkpoint(sbi, false);
2259 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2260 break;
2261 case F2FS_GOING_DOWN_NEED_FSCK:
2262 set_sbi_flag(sbi, SBI_NEED_FSCK);
2263 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2264 set_sbi_flag(sbi, SBI_IS_DIRTY);
2265 /* do checkpoint only */
2266 ret = f2fs_sync_fs(sb, 1);
2267 goto out;
2268 default:
2269 ret = -EINVAL;
2270 goto out;
2271 }
2272
2273 f2fs_stop_gc_thread(sbi);
2274 f2fs_stop_discard_thread(sbi);
2275
2276 f2fs_drop_discard_cmd(sbi);
2277 clear_opt(sbi, DISCARD);
2278
2279 f2fs_update_time(sbi, REQ_TIME);
2280 out:
2281 if (in != F2FS_GOING_DOWN_FULLSYNC)
2282 mnt_drop_write_file(filp);
2283
2284 trace_f2fs_shutdown(sbi, in, ret);
2285
2286 return ret;
2287 }
2288
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2289 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2290 {
2291 struct inode *inode = file_inode(filp);
2292 struct super_block *sb = inode->i_sb;
2293 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2294 struct fstrim_range range;
2295 int ret;
2296
2297 if (!capable(CAP_SYS_ADMIN))
2298 return -EPERM;
2299
2300 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2301 return -EOPNOTSUPP;
2302
2303 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2304 sizeof(range)))
2305 return -EFAULT;
2306
2307 ret = mnt_want_write_file(filp);
2308 if (ret)
2309 return ret;
2310
2311 range.minlen = max((unsigned int)range.minlen,
2312 q->limits.discard_granularity);
2313 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2314 mnt_drop_write_file(filp);
2315 if (ret < 0)
2316 return ret;
2317
2318 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2319 sizeof(range)))
2320 return -EFAULT;
2321 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2322 return 0;
2323 }
2324
uuid_is_nonzero(__u8 u[16])2325 static bool uuid_is_nonzero(__u8 u[16])
2326 {
2327 int i;
2328
2329 for (i = 0; i < 16; i++)
2330 if (u[i])
2331 return true;
2332 return false;
2333 }
2334
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2335 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2336 {
2337 struct inode *inode = file_inode(filp);
2338
2339 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2340 return -EOPNOTSUPP;
2341
2342 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2343
2344 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2345 }
2346
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2347 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2348 {
2349 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2350 return -EOPNOTSUPP;
2351 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2352 }
2353
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2354 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2355 {
2356 struct inode *inode = file_inode(filp);
2357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358 int err;
2359
2360 if (!f2fs_sb_has_encrypt(sbi))
2361 return -EOPNOTSUPP;
2362
2363 err = mnt_want_write_file(filp);
2364 if (err)
2365 return err;
2366
2367 down_write(&sbi->sb_lock);
2368
2369 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2370 goto got_it;
2371
2372 /* update superblock with uuid */
2373 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2374
2375 err = f2fs_commit_super(sbi, false);
2376 if (err) {
2377 /* undo new data */
2378 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2379 goto out_err;
2380 }
2381 got_it:
2382 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2383 16))
2384 err = -EFAULT;
2385 out_err:
2386 up_write(&sbi->sb_lock);
2387 mnt_drop_write_file(filp);
2388 return err;
2389 }
2390
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2391 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2392 unsigned long arg)
2393 {
2394 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2395 return -EOPNOTSUPP;
2396
2397 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2398 }
2399
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2400 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2401 {
2402 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2403 return -EOPNOTSUPP;
2404
2405 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2406 }
2407
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2408 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2409 {
2410 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2411 return -EOPNOTSUPP;
2412
2413 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2414 }
2415
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2416 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2417 unsigned long arg)
2418 {
2419 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2420 return -EOPNOTSUPP;
2421
2422 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2423 }
2424
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2425 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2426 unsigned long arg)
2427 {
2428 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2429 return -EOPNOTSUPP;
2430
2431 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2432 }
2433
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2434 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2435 {
2436 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2437 return -EOPNOTSUPP;
2438
2439 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2440 }
2441
f2fs_ioc_gc(struct file * filp,unsigned long arg)2442 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2443 {
2444 struct inode *inode = file_inode(filp);
2445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2446 __u32 sync;
2447 int ret;
2448
2449 if (!capable(CAP_SYS_ADMIN))
2450 return -EPERM;
2451
2452 if (get_user(sync, (__u32 __user *)arg))
2453 return -EFAULT;
2454
2455 if (f2fs_readonly(sbi->sb))
2456 return -EROFS;
2457
2458 ret = mnt_want_write_file(filp);
2459 if (ret)
2460 return ret;
2461
2462 if (!sync) {
2463 if (!down_write_trylock(&sbi->gc_lock)) {
2464 ret = -EBUSY;
2465 goto out;
2466 }
2467 } else {
2468 down_write(&sbi->gc_lock);
2469 }
2470
2471 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2472 out:
2473 mnt_drop_write_file(filp);
2474 return ret;
2475 }
2476
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2477 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2478 {
2479 struct inode *inode = file_inode(filp);
2480 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2481 struct f2fs_gc_range range;
2482 u64 end;
2483 int ret;
2484
2485 if (!capable(CAP_SYS_ADMIN))
2486 return -EPERM;
2487
2488 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2489 sizeof(range)))
2490 return -EFAULT;
2491
2492 if (f2fs_readonly(sbi->sb))
2493 return -EROFS;
2494
2495 end = range.start + range.len;
2496 if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2497 end >= MAX_BLKADDR(sbi))
2498 return -EINVAL;
2499
2500 ret = mnt_want_write_file(filp);
2501 if (ret)
2502 return ret;
2503
2504 do_more:
2505 if (!range.sync) {
2506 if (!down_write_trylock(&sbi->gc_lock)) {
2507 ret = -EBUSY;
2508 goto out;
2509 }
2510 } else {
2511 down_write(&sbi->gc_lock);
2512 }
2513
2514 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2515 if (ret) {
2516 if (ret == -EBUSY)
2517 ret = -EAGAIN;
2518 goto out;
2519 }
2520 range.start += BLKS_PER_SEC(sbi);
2521 if (range.start <= end)
2522 goto do_more;
2523 out:
2524 mnt_drop_write_file(filp);
2525 return ret;
2526 }
2527
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2528 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2529 {
2530 struct inode *inode = file_inode(filp);
2531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2532 int ret;
2533
2534 if (!capable(CAP_SYS_ADMIN))
2535 return -EPERM;
2536
2537 if (f2fs_readonly(sbi->sb))
2538 return -EROFS;
2539
2540 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2541 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2542 return -EINVAL;
2543 }
2544
2545 ret = mnt_want_write_file(filp);
2546 if (ret)
2547 return ret;
2548
2549 ret = f2fs_sync_fs(sbi->sb, 1);
2550
2551 mnt_drop_write_file(filp);
2552 return ret;
2553 }
2554
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2555 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2556 struct file *filp,
2557 struct f2fs_defragment *range)
2558 {
2559 struct inode *inode = file_inode(filp);
2560 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2561 .m_seg_type = NO_CHECK_TYPE ,
2562 .m_may_create = false };
2563 struct extent_info ei = {0, 0, 0};
2564 pgoff_t pg_start, pg_end, next_pgofs;
2565 unsigned int blk_per_seg = sbi->blocks_per_seg;
2566 unsigned int total = 0, sec_num;
2567 block_t blk_end = 0;
2568 bool fragmented = false;
2569 int err;
2570
2571 /* if in-place-update policy is enabled, don't waste time here */
2572 if (f2fs_should_update_inplace(inode, NULL))
2573 return -EINVAL;
2574
2575 pg_start = range->start >> PAGE_SHIFT;
2576 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2577
2578 f2fs_balance_fs(sbi, true);
2579
2580 inode_lock(inode);
2581
2582 /* writeback all dirty pages in the range */
2583 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2584 range->start + range->len - 1);
2585 if (err)
2586 goto out;
2587
2588 /*
2589 * lookup mapping info in extent cache, skip defragmenting if physical
2590 * block addresses are continuous.
2591 */
2592 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2593 if (ei.fofs + ei.len >= pg_end)
2594 goto out;
2595 }
2596
2597 map.m_lblk = pg_start;
2598 map.m_next_pgofs = &next_pgofs;
2599
2600 /*
2601 * lookup mapping info in dnode page cache, skip defragmenting if all
2602 * physical block addresses are continuous even if there are hole(s)
2603 * in logical blocks.
2604 */
2605 while (map.m_lblk < pg_end) {
2606 map.m_len = pg_end - map.m_lblk;
2607 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2608 if (err)
2609 goto out;
2610
2611 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2612 map.m_lblk = next_pgofs;
2613 continue;
2614 }
2615
2616 if (blk_end && blk_end != map.m_pblk)
2617 fragmented = true;
2618
2619 /* record total count of block that we're going to move */
2620 total += map.m_len;
2621
2622 blk_end = map.m_pblk + map.m_len;
2623
2624 map.m_lblk += map.m_len;
2625 }
2626
2627 if (!fragmented) {
2628 total = 0;
2629 goto out;
2630 }
2631
2632 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2633
2634 /*
2635 * make sure there are enough free section for LFS allocation, this can
2636 * avoid defragment running in SSR mode when free section are allocated
2637 * intensively
2638 */
2639 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2640 err = -EAGAIN;
2641 goto out;
2642 }
2643
2644 map.m_lblk = pg_start;
2645 map.m_len = pg_end - pg_start;
2646 total = 0;
2647
2648 while (map.m_lblk < pg_end) {
2649 pgoff_t idx;
2650 int cnt = 0;
2651
2652 do_map:
2653 map.m_len = pg_end - map.m_lblk;
2654 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2655 if (err)
2656 goto clear_out;
2657
2658 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2659 map.m_lblk = next_pgofs;
2660 goto check;
2661 }
2662
2663 set_inode_flag(inode, FI_DO_DEFRAG);
2664
2665 idx = map.m_lblk;
2666 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2667 struct page *page;
2668
2669 page = f2fs_get_lock_data_page(inode, idx, true);
2670 if (IS_ERR(page)) {
2671 err = PTR_ERR(page);
2672 goto clear_out;
2673 }
2674
2675 set_page_dirty(page);
2676 f2fs_put_page(page, 1);
2677
2678 idx++;
2679 cnt++;
2680 total++;
2681 }
2682
2683 map.m_lblk = idx;
2684 check:
2685 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2686 goto do_map;
2687
2688 clear_inode_flag(inode, FI_DO_DEFRAG);
2689
2690 err = filemap_fdatawrite(inode->i_mapping);
2691 if (err)
2692 goto out;
2693 }
2694 clear_out:
2695 clear_inode_flag(inode, FI_DO_DEFRAG);
2696 out:
2697 inode_unlock(inode);
2698 if (!err)
2699 range->len = (u64)total << PAGE_SHIFT;
2700 return err;
2701 }
2702
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2703 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2704 {
2705 struct inode *inode = file_inode(filp);
2706 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2707 struct f2fs_defragment range;
2708 int err;
2709
2710 if (!capable(CAP_SYS_ADMIN))
2711 return -EPERM;
2712
2713 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2714 return -EINVAL;
2715
2716 if (f2fs_readonly(sbi->sb))
2717 return -EROFS;
2718
2719 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2720 sizeof(range)))
2721 return -EFAULT;
2722
2723 /* verify alignment of offset & size */
2724 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2725 return -EINVAL;
2726
2727 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2728 sbi->max_file_blocks))
2729 return -EINVAL;
2730
2731 err = mnt_want_write_file(filp);
2732 if (err)
2733 return err;
2734
2735 err = f2fs_defragment_range(sbi, filp, &range);
2736 mnt_drop_write_file(filp);
2737
2738 f2fs_update_time(sbi, REQ_TIME);
2739 if (err < 0)
2740 return err;
2741
2742 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2743 sizeof(range)))
2744 return -EFAULT;
2745
2746 return 0;
2747 }
2748
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2749 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2750 struct file *file_out, loff_t pos_out, size_t len)
2751 {
2752 struct inode *src = file_inode(file_in);
2753 struct inode *dst = file_inode(file_out);
2754 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2755 size_t olen = len, dst_max_i_size = 0;
2756 size_t dst_osize;
2757 int ret;
2758
2759 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2760 src->i_sb != dst->i_sb)
2761 return -EXDEV;
2762
2763 if (unlikely(f2fs_readonly(src->i_sb)))
2764 return -EROFS;
2765
2766 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2767 return -EINVAL;
2768
2769 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2770 return -EOPNOTSUPP;
2771
2772 if (pos_out < 0 || pos_in < 0)
2773 return -EINVAL;
2774
2775 if (src == dst) {
2776 if (pos_in == pos_out)
2777 return 0;
2778 if (pos_out > pos_in && pos_out < pos_in + len)
2779 return -EINVAL;
2780 }
2781
2782 inode_lock(src);
2783 if (src != dst) {
2784 ret = -EBUSY;
2785 if (!inode_trylock(dst))
2786 goto out;
2787 }
2788
2789 ret = -EINVAL;
2790 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2791 goto out_unlock;
2792 if (len == 0)
2793 olen = len = src->i_size - pos_in;
2794 if (pos_in + len == src->i_size)
2795 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2796 if (len == 0) {
2797 ret = 0;
2798 goto out_unlock;
2799 }
2800
2801 dst_osize = dst->i_size;
2802 if (pos_out + olen > dst->i_size)
2803 dst_max_i_size = pos_out + olen;
2804
2805 /* verify the end result is block aligned */
2806 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2807 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2808 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2809 goto out_unlock;
2810
2811 ret = f2fs_convert_inline_inode(src);
2812 if (ret)
2813 goto out_unlock;
2814
2815 ret = f2fs_convert_inline_inode(dst);
2816 if (ret)
2817 goto out_unlock;
2818
2819 /* write out all dirty pages from offset */
2820 ret = filemap_write_and_wait_range(src->i_mapping,
2821 pos_in, pos_in + len);
2822 if (ret)
2823 goto out_unlock;
2824
2825 ret = filemap_write_and_wait_range(dst->i_mapping,
2826 pos_out, pos_out + len);
2827 if (ret)
2828 goto out_unlock;
2829
2830 f2fs_balance_fs(sbi, true);
2831
2832 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2833 if (src != dst) {
2834 ret = -EBUSY;
2835 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2836 goto out_src;
2837 }
2838
2839 f2fs_lock_op(sbi);
2840 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2841 pos_out >> F2FS_BLKSIZE_BITS,
2842 len >> F2FS_BLKSIZE_BITS, false);
2843
2844 if (!ret) {
2845 if (dst_max_i_size)
2846 f2fs_i_size_write(dst, dst_max_i_size);
2847 else if (dst_osize != dst->i_size)
2848 f2fs_i_size_write(dst, dst_osize);
2849 }
2850 f2fs_unlock_op(sbi);
2851
2852 if (src != dst)
2853 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2854 out_src:
2855 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2856 out_unlock:
2857 if (src != dst)
2858 inode_unlock(dst);
2859 out:
2860 inode_unlock(src);
2861 return ret;
2862 }
2863
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2864 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2865 {
2866 struct f2fs_move_range range;
2867 struct fd dst;
2868 int err;
2869
2870 if (!(filp->f_mode & FMODE_READ) ||
2871 !(filp->f_mode & FMODE_WRITE))
2872 return -EBADF;
2873
2874 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2875 sizeof(range)))
2876 return -EFAULT;
2877
2878 dst = fdget(range.dst_fd);
2879 if (!dst.file)
2880 return -EBADF;
2881
2882 if (!(dst.file->f_mode & FMODE_WRITE)) {
2883 err = -EBADF;
2884 goto err_out;
2885 }
2886
2887 err = mnt_want_write_file(filp);
2888 if (err)
2889 goto err_out;
2890
2891 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2892 range.pos_out, range.len);
2893
2894 mnt_drop_write_file(filp);
2895 if (err)
2896 goto err_out;
2897
2898 if (copy_to_user((struct f2fs_move_range __user *)arg,
2899 &range, sizeof(range)))
2900 err = -EFAULT;
2901 err_out:
2902 fdput(dst);
2903 return err;
2904 }
2905
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2906 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2907 {
2908 struct inode *inode = file_inode(filp);
2909 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2910 struct sit_info *sm = SIT_I(sbi);
2911 unsigned int start_segno = 0, end_segno = 0;
2912 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2913 struct f2fs_flush_device range;
2914 int ret;
2915
2916 if (!capable(CAP_SYS_ADMIN))
2917 return -EPERM;
2918
2919 if (f2fs_readonly(sbi->sb))
2920 return -EROFS;
2921
2922 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2923 return -EINVAL;
2924
2925 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2926 sizeof(range)))
2927 return -EFAULT;
2928
2929 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2930 __is_large_section(sbi)) {
2931 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2932 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2933 return -EINVAL;
2934 }
2935
2936 ret = mnt_want_write_file(filp);
2937 if (ret)
2938 return ret;
2939
2940 if (range.dev_num != 0)
2941 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2942 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2943
2944 start_segno = sm->last_victim[FLUSH_DEVICE];
2945 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2946 start_segno = dev_start_segno;
2947 end_segno = min(start_segno + range.segments, dev_end_segno);
2948
2949 while (start_segno < end_segno) {
2950 if (!down_write_trylock(&sbi->gc_lock)) {
2951 ret = -EBUSY;
2952 goto out;
2953 }
2954 sm->last_victim[GC_CB] = end_segno + 1;
2955 sm->last_victim[GC_GREEDY] = end_segno + 1;
2956 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2957 ret = f2fs_gc(sbi, true, true, start_segno);
2958 if (ret == -EAGAIN)
2959 ret = 0;
2960 else if (ret < 0)
2961 break;
2962 start_segno++;
2963 }
2964 out:
2965 mnt_drop_write_file(filp);
2966 return ret;
2967 }
2968
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2969 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2970 {
2971 struct inode *inode = file_inode(filp);
2972 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2973
2974 /* Must validate to set it with SQLite behavior in Android. */
2975 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2976
2977 return put_user(sb_feature, (u32 __user *)arg);
2978 }
2979
2980 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)2981 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2982 {
2983 struct dquot *transfer_to[MAXQUOTAS] = {};
2984 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2985 struct super_block *sb = sbi->sb;
2986 int err = 0;
2987
2988 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2989 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2990 err = __dquot_transfer(inode, transfer_to);
2991 if (err)
2992 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2993 dqput(transfer_to[PRJQUOTA]);
2994 }
2995 return err;
2996 }
2997
f2fs_ioc_setproject(struct file * filp,__u32 projid)2998 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2999 {
3000 struct inode *inode = file_inode(filp);
3001 struct f2fs_inode_info *fi = F2FS_I(inode);
3002 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3003 struct page *ipage;
3004 kprojid_t kprojid;
3005 int err;
3006
3007 if (!f2fs_sb_has_project_quota(sbi)) {
3008 if (projid != F2FS_DEF_PROJID)
3009 return -EOPNOTSUPP;
3010 else
3011 return 0;
3012 }
3013
3014 if (!f2fs_has_extra_attr(inode))
3015 return -EOPNOTSUPP;
3016
3017 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3018
3019 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3020 return 0;
3021
3022 err = -EPERM;
3023 /* Is it quota file? Do not allow user to mess with it */
3024 if (IS_NOQUOTA(inode))
3025 return err;
3026
3027 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3028 if (IS_ERR(ipage))
3029 return PTR_ERR(ipage);
3030
3031 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3032 i_projid)) {
3033 err = -EOVERFLOW;
3034 f2fs_put_page(ipage, 1);
3035 return err;
3036 }
3037 f2fs_put_page(ipage, 1);
3038
3039 err = dquot_initialize(inode);
3040 if (err)
3041 return err;
3042
3043 f2fs_lock_op(sbi);
3044 err = f2fs_transfer_project_quota(inode, kprojid);
3045 if (err)
3046 goto out_unlock;
3047
3048 F2FS_I(inode)->i_projid = kprojid;
3049 inode->i_ctime = current_time(inode);
3050 f2fs_mark_inode_dirty_sync(inode, true);
3051 out_unlock:
3052 f2fs_unlock_op(sbi);
3053 return err;
3054 }
3055 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3056 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3057 {
3058 return 0;
3059 }
3060
f2fs_ioc_setproject(struct file * filp,__u32 projid)3061 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3062 {
3063 if (projid != F2FS_DEF_PROJID)
3064 return -EOPNOTSUPP;
3065 return 0;
3066 }
3067 #endif
3068
3069 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3070
3071 /*
3072 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3073 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3074 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3075 */
3076
3077 static const struct {
3078 u32 iflag;
3079 u32 xflag;
3080 } f2fs_xflags_map[] = {
3081 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3082 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3083 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3084 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3085 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3086 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3087 };
3088
3089 #define F2FS_SUPPORTED_XFLAGS ( \
3090 FS_XFLAG_SYNC | \
3091 FS_XFLAG_IMMUTABLE | \
3092 FS_XFLAG_APPEND | \
3093 FS_XFLAG_NODUMP | \
3094 FS_XFLAG_NOATIME | \
3095 FS_XFLAG_PROJINHERIT)
3096
3097 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
f2fs_iflags_to_xflags(u32 iflags)3098 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3099 {
3100 u32 xflags = 0;
3101 int i;
3102
3103 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3104 if (iflags & f2fs_xflags_map[i].iflag)
3105 xflags |= f2fs_xflags_map[i].xflag;
3106
3107 return xflags;
3108 }
3109
3110 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
f2fs_xflags_to_iflags(u32 xflags)3111 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3112 {
3113 u32 iflags = 0;
3114 int i;
3115
3116 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3117 if (xflags & f2fs_xflags_map[i].xflag)
3118 iflags |= f2fs_xflags_map[i].iflag;
3119
3120 return iflags;
3121 }
3122
f2fs_fill_fsxattr(struct inode * inode,struct fsxattr * fa)3123 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3124 {
3125 struct f2fs_inode_info *fi = F2FS_I(inode);
3126
3127 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3128
3129 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3130 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3131 }
3132
f2fs_ioc_fsgetxattr(struct file * filp,unsigned long arg)3133 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3134 {
3135 struct inode *inode = file_inode(filp);
3136 struct fsxattr fa;
3137
3138 f2fs_fill_fsxattr(inode, &fa);
3139
3140 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3141 return -EFAULT;
3142 return 0;
3143 }
3144
f2fs_ioc_fssetxattr(struct file * filp,unsigned long arg)3145 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3146 {
3147 struct inode *inode = file_inode(filp);
3148 struct fsxattr fa, old_fa;
3149 u32 iflags;
3150 int err;
3151
3152 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3153 return -EFAULT;
3154
3155 /* Make sure caller has proper permission */
3156 if (!inode_owner_or_capable(inode))
3157 return -EACCES;
3158
3159 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3160 return -EOPNOTSUPP;
3161
3162 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3163 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3164 return -EOPNOTSUPP;
3165
3166 err = mnt_want_write_file(filp);
3167 if (err)
3168 return err;
3169
3170 inode_lock(inode);
3171
3172 f2fs_fill_fsxattr(inode, &old_fa);
3173 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3174 if (err)
3175 goto out;
3176
3177 err = f2fs_setflags_common(inode, iflags,
3178 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3179 if (err)
3180 goto out;
3181
3182 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3183 out:
3184 inode_unlock(inode);
3185 mnt_drop_write_file(filp);
3186 return err;
3187 }
3188
f2fs_pin_file_control(struct inode * inode,bool inc)3189 int f2fs_pin_file_control(struct inode *inode, bool inc)
3190 {
3191 struct f2fs_inode_info *fi = F2FS_I(inode);
3192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3193
3194 /* Use i_gc_failures for normal file as a risk signal. */
3195 if (inc)
3196 f2fs_i_gc_failures_write(inode,
3197 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3198
3199 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3200 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3201 __func__, inode->i_ino,
3202 fi->i_gc_failures[GC_FAILURE_PIN]);
3203 clear_inode_flag(inode, FI_PIN_FILE);
3204 return -EAGAIN;
3205 }
3206 return 0;
3207 }
3208
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3209 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3210 {
3211 struct inode *inode = file_inode(filp);
3212 __u32 pin;
3213 int ret = 0;
3214
3215 if (get_user(pin, (__u32 __user *)arg))
3216 return -EFAULT;
3217
3218 if (!S_ISREG(inode->i_mode))
3219 return -EINVAL;
3220
3221 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3222 return -EROFS;
3223
3224 ret = mnt_want_write_file(filp);
3225 if (ret)
3226 return ret;
3227
3228 inode_lock(inode);
3229
3230 if (f2fs_should_update_outplace(inode, NULL)) {
3231 ret = -EINVAL;
3232 goto out;
3233 }
3234
3235 if (!pin) {
3236 clear_inode_flag(inode, FI_PIN_FILE);
3237 f2fs_i_gc_failures_write(inode, 0);
3238 goto done;
3239 }
3240
3241 if (f2fs_pin_file_control(inode, false)) {
3242 ret = -EAGAIN;
3243 goto out;
3244 }
3245
3246 ret = f2fs_convert_inline_inode(inode);
3247 if (ret)
3248 goto out;
3249
3250 if (!f2fs_disable_compressed_file(inode)) {
3251 ret = -EOPNOTSUPP;
3252 goto out;
3253 }
3254
3255 set_inode_flag(inode, FI_PIN_FILE);
3256 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3257 done:
3258 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3259 out:
3260 inode_unlock(inode);
3261 mnt_drop_write_file(filp);
3262 return ret;
3263 }
3264
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3265 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3266 {
3267 struct inode *inode = file_inode(filp);
3268 __u32 pin = 0;
3269
3270 if (is_inode_flag_set(inode, FI_PIN_FILE))
3271 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3272 return put_user(pin, (u32 __user *)arg);
3273 }
3274
f2fs_precache_extents(struct inode * inode)3275 int f2fs_precache_extents(struct inode *inode)
3276 {
3277 struct f2fs_inode_info *fi = F2FS_I(inode);
3278 struct f2fs_map_blocks map;
3279 pgoff_t m_next_extent;
3280 loff_t end;
3281 int err;
3282
3283 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3284 return -EOPNOTSUPP;
3285
3286 map.m_lblk = 0;
3287 map.m_next_pgofs = NULL;
3288 map.m_next_extent = &m_next_extent;
3289 map.m_seg_type = NO_CHECK_TYPE;
3290 map.m_may_create = false;
3291 end = F2FS_I_SB(inode)->max_file_blocks;
3292
3293 while (map.m_lblk < end) {
3294 map.m_len = end - map.m_lblk;
3295
3296 down_write(&fi->i_gc_rwsem[WRITE]);
3297 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3298 up_write(&fi->i_gc_rwsem[WRITE]);
3299 if (err)
3300 return err;
3301
3302 map.m_lblk = m_next_extent;
3303 }
3304
3305 return err;
3306 }
3307
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3308 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3309 {
3310 return f2fs_precache_extents(file_inode(filp));
3311 }
3312
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3313 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3314 {
3315 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3316 __u64 block_count;
3317
3318 if (!capable(CAP_SYS_ADMIN))
3319 return -EPERM;
3320
3321 if (f2fs_readonly(sbi->sb))
3322 return -EROFS;
3323
3324 if (copy_from_user(&block_count, (void __user *)arg,
3325 sizeof(block_count)))
3326 return -EFAULT;
3327
3328 return f2fs_resize_fs(sbi, block_count);
3329 }
3330
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3331 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3332 {
3333 struct inode *inode = file_inode(filp);
3334
3335 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3336
3337 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3338 f2fs_warn(F2FS_I_SB(inode),
3339 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3340 inode->i_ino);
3341 return -EOPNOTSUPP;
3342 }
3343
3344 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3345 }
3346
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3347 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3348 {
3349 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3350 return -EOPNOTSUPP;
3351
3352 return fsverity_ioctl_measure(filp, (void __user *)arg);
3353 }
3354
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3355 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3356 {
3357 struct inode *inode = file_inode(filp);
3358 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3359 char *vbuf;
3360 int count;
3361 int err = 0;
3362
3363 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3364 if (!vbuf)
3365 return -ENOMEM;
3366
3367 down_read(&sbi->sb_lock);
3368 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3369 ARRAY_SIZE(sbi->raw_super->volume_name),
3370 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3371 up_read(&sbi->sb_lock);
3372
3373 if (copy_to_user((char __user *)arg, vbuf,
3374 min(FSLABEL_MAX, count)))
3375 err = -EFAULT;
3376
3377 kfree(vbuf);
3378 return err;
3379 }
3380
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3381 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3382 {
3383 struct inode *inode = file_inode(filp);
3384 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3385 char *vbuf;
3386 int err = 0;
3387
3388 if (!capable(CAP_SYS_ADMIN))
3389 return -EPERM;
3390
3391 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3392 if (IS_ERR(vbuf))
3393 return PTR_ERR(vbuf);
3394
3395 err = mnt_want_write_file(filp);
3396 if (err)
3397 goto out;
3398
3399 down_write(&sbi->sb_lock);
3400
3401 memset(sbi->raw_super->volume_name, 0,
3402 sizeof(sbi->raw_super->volume_name));
3403 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3404 sbi->raw_super->volume_name,
3405 ARRAY_SIZE(sbi->raw_super->volume_name));
3406
3407 err = f2fs_commit_super(sbi, false);
3408
3409 up_write(&sbi->sb_lock);
3410
3411 mnt_drop_write_file(filp);
3412 out:
3413 kfree(vbuf);
3414 return err;
3415 }
3416
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3417 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3418 {
3419 struct inode *inode = file_inode(filp);
3420 __u64 blocks;
3421
3422 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3423 return -EOPNOTSUPP;
3424
3425 if (!f2fs_compressed_file(inode))
3426 return -EINVAL;
3427
3428 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3429 return put_user(blocks, (u64 __user *)arg);
3430 }
3431
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3432 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3433 {
3434 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3435 unsigned int released_blocks = 0;
3436 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3437 block_t blkaddr;
3438 int i;
3439
3440 for (i = 0; i < count; i++) {
3441 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3442 dn->ofs_in_node + i);
3443
3444 if (!__is_valid_data_blkaddr(blkaddr))
3445 continue;
3446 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3447 DATA_GENERIC_ENHANCE)))
3448 return -EFSCORRUPTED;
3449 }
3450
3451 while (count) {
3452 int compr_blocks = 0;
3453
3454 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3455 blkaddr = f2fs_data_blkaddr(dn);
3456
3457 if (i == 0) {
3458 if (blkaddr == COMPRESS_ADDR)
3459 continue;
3460 dn->ofs_in_node += cluster_size;
3461 goto next;
3462 }
3463
3464 if (__is_valid_data_blkaddr(blkaddr))
3465 compr_blocks++;
3466
3467 if (blkaddr != NEW_ADDR)
3468 continue;
3469
3470 dn->data_blkaddr = NULL_ADDR;
3471 f2fs_set_data_blkaddr(dn);
3472 }
3473
3474 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3475 dec_valid_block_count(sbi, dn->inode,
3476 cluster_size - compr_blocks);
3477
3478 released_blocks += cluster_size - compr_blocks;
3479 next:
3480 count -= cluster_size;
3481 }
3482
3483 return released_blocks;
3484 }
3485
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3486 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3487 {
3488 struct inode *inode = file_inode(filp);
3489 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3490 pgoff_t page_idx = 0, last_idx;
3491 unsigned int released_blocks = 0;
3492 int ret;
3493 int writecount;
3494
3495 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3496 return -EOPNOTSUPP;
3497
3498 if (!f2fs_compressed_file(inode))
3499 return -EINVAL;
3500
3501 if (f2fs_readonly(sbi->sb))
3502 return -EROFS;
3503
3504 ret = mnt_want_write_file(filp);
3505 if (ret)
3506 return ret;
3507
3508 f2fs_balance_fs(F2FS_I_SB(inode), true);
3509
3510 inode_lock(inode);
3511
3512 writecount = atomic_read(&inode->i_writecount);
3513 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3514 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3515 ret = -EBUSY;
3516 goto out;
3517 }
3518
3519 if (IS_IMMUTABLE(inode)) {
3520 ret = -EINVAL;
3521 goto out;
3522 }
3523
3524 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3525 if (ret)
3526 goto out;
3527
3528 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL;
3529 f2fs_set_inode_flags(inode);
3530 inode->i_ctime = current_time(inode);
3531 f2fs_mark_inode_dirty_sync(inode, true);
3532
3533 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3534 goto out;
3535
3536 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3537 down_write(&F2FS_I(inode)->i_mmap_sem);
3538
3539 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3540
3541 while (page_idx < last_idx) {
3542 struct dnode_of_data dn;
3543 pgoff_t end_offset, count;
3544
3545 set_new_dnode(&dn, inode, NULL, NULL, 0);
3546 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3547 if (ret) {
3548 if (ret == -ENOENT) {
3549 page_idx = f2fs_get_next_page_offset(&dn,
3550 page_idx);
3551 ret = 0;
3552 continue;
3553 }
3554 break;
3555 }
3556
3557 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3558 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3559 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3560
3561 ret = release_compress_blocks(&dn, count);
3562
3563 f2fs_put_dnode(&dn);
3564
3565 if (ret < 0)
3566 break;
3567
3568 page_idx += count;
3569 released_blocks += ret;
3570 }
3571
3572 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3573 up_write(&F2FS_I(inode)->i_mmap_sem);
3574 out:
3575 inode_unlock(inode);
3576
3577 mnt_drop_write_file(filp);
3578
3579 if (ret >= 0) {
3580 ret = put_user(released_blocks, (u64 __user *)arg);
3581 } else if (released_blocks &&
3582 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3583 set_sbi_flag(sbi, SBI_NEED_FSCK);
3584 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3585 "iblocks=%llu, released=%u, compr_blocks=%u, "
3586 "run fsck to fix.",
3587 __func__, inode->i_ino, inode->i_blocks,
3588 released_blocks,
3589 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3590 }
3591
3592 return ret;
3593 }
3594
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3595 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3596 {
3597 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3598 unsigned int reserved_blocks = 0;
3599 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3600 block_t blkaddr;
3601 int i;
3602
3603 for (i = 0; i < count; i++) {
3604 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3605 dn->ofs_in_node + i);
3606
3607 if (!__is_valid_data_blkaddr(blkaddr))
3608 continue;
3609 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3610 DATA_GENERIC_ENHANCE)))
3611 return -EFSCORRUPTED;
3612 }
3613
3614 while (count) {
3615 int compr_blocks = 0;
3616 blkcnt_t reserved;
3617 int ret;
3618
3619 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3620 blkaddr = f2fs_data_blkaddr(dn);
3621
3622 if (i == 0) {
3623 if (blkaddr == COMPRESS_ADDR)
3624 continue;
3625 dn->ofs_in_node += cluster_size;
3626 goto next;
3627 }
3628
3629 if (__is_valid_data_blkaddr(blkaddr)) {
3630 compr_blocks++;
3631 continue;
3632 }
3633
3634 dn->data_blkaddr = NEW_ADDR;
3635 f2fs_set_data_blkaddr(dn);
3636 }
3637
3638 reserved = cluster_size - compr_blocks;
3639 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3640 if (ret)
3641 return ret;
3642
3643 if (reserved != cluster_size - compr_blocks)
3644 return -ENOSPC;
3645
3646 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3647
3648 reserved_blocks += reserved;
3649 next:
3650 count -= cluster_size;
3651 }
3652
3653 return reserved_blocks;
3654 }
3655
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3656 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3657 {
3658 struct inode *inode = file_inode(filp);
3659 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3660 pgoff_t page_idx = 0, last_idx;
3661 unsigned int reserved_blocks = 0;
3662 int ret;
3663
3664 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3665 return -EOPNOTSUPP;
3666
3667 if (!f2fs_compressed_file(inode))
3668 return -EINVAL;
3669
3670 if (f2fs_readonly(sbi->sb))
3671 return -EROFS;
3672
3673 ret = mnt_want_write_file(filp);
3674 if (ret)
3675 return ret;
3676
3677 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3678 goto out;
3679
3680 f2fs_balance_fs(F2FS_I_SB(inode), true);
3681
3682 inode_lock(inode);
3683
3684 if (!IS_IMMUTABLE(inode)) {
3685 ret = -EINVAL;
3686 goto unlock_inode;
3687 }
3688
3689 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3690 down_write(&F2FS_I(inode)->i_mmap_sem);
3691
3692 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3693
3694 while (page_idx < last_idx) {
3695 struct dnode_of_data dn;
3696 pgoff_t end_offset, count;
3697
3698 set_new_dnode(&dn, inode, NULL, NULL, 0);
3699 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3700 if (ret) {
3701 if (ret == -ENOENT) {
3702 page_idx = f2fs_get_next_page_offset(&dn,
3703 page_idx);
3704 ret = 0;
3705 continue;
3706 }
3707 break;
3708 }
3709
3710 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3711 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3712 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3713
3714 ret = reserve_compress_blocks(&dn, count);
3715
3716 f2fs_put_dnode(&dn);
3717
3718 if (ret < 0)
3719 break;
3720
3721 page_idx += count;
3722 reserved_blocks += ret;
3723 }
3724
3725 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3726 up_write(&F2FS_I(inode)->i_mmap_sem);
3727
3728 if (ret >= 0) {
3729 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL;
3730 f2fs_set_inode_flags(inode);
3731 inode->i_ctime = current_time(inode);
3732 f2fs_mark_inode_dirty_sync(inode, true);
3733 }
3734 unlock_inode:
3735 inode_unlock(inode);
3736 out:
3737 mnt_drop_write_file(filp);
3738
3739 if (ret >= 0) {
3740 ret = put_user(reserved_blocks, (u64 __user *)arg);
3741 } else if (reserved_blocks &&
3742 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3743 set_sbi_flag(sbi, SBI_NEED_FSCK);
3744 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3745 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3746 "run fsck to fix.",
3747 __func__, inode->i_ino, inode->i_blocks,
3748 reserved_blocks,
3749 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3750 }
3751
3752 return ret;
3753 }
3754
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3755 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3756 pgoff_t off, block_t block, block_t len, u32 flags)
3757 {
3758 struct request_queue *q = bdev_get_queue(bdev);
3759 sector_t sector = SECTOR_FROM_BLOCK(block);
3760 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3761 int ret = 0;
3762
3763 if (!q)
3764 return -ENXIO;
3765
3766 if (flags & F2FS_TRIM_FILE_DISCARD)
3767 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3768 blk_queue_secure_erase(q) ?
3769 BLKDEV_DISCARD_SECURE : 0);
3770
3771 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3772 if (IS_ENCRYPTED(inode))
3773 ret = fscrypt_zeroout_range(inode, off, block, len);
3774 else
3775 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3776 GFP_NOFS, 0);
3777 }
3778
3779 return ret;
3780 }
3781
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3782 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3783 {
3784 struct inode *inode = file_inode(filp);
3785 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3786 struct address_space *mapping = inode->i_mapping;
3787 struct block_device *prev_bdev = NULL;
3788 struct f2fs_sectrim_range range;
3789 pgoff_t index, pg_end, prev_index = 0;
3790 block_t prev_block = 0, len = 0;
3791 loff_t end_addr;
3792 bool to_end = false;
3793 int ret = 0;
3794
3795 if (!(filp->f_mode & FMODE_WRITE))
3796 return -EBADF;
3797
3798 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3799 sizeof(range)))
3800 return -EFAULT;
3801
3802 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3803 !S_ISREG(inode->i_mode))
3804 return -EINVAL;
3805
3806 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3807 !f2fs_hw_support_discard(sbi)) ||
3808 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3809 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3810 return -EOPNOTSUPP;
3811
3812 file_start_write(filp);
3813 inode_lock(inode);
3814
3815 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3816 range.start >= inode->i_size) {
3817 ret = -EINVAL;
3818 goto err;
3819 }
3820
3821 if (range.len == 0)
3822 goto err;
3823
3824 if (inode->i_size - range.start > range.len) {
3825 end_addr = range.start + range.len;
3826 } else {
3827 end_addr = range.len == (u64)-1 ?
3828 sbi->sb->s_maxbytes : inode->i_size;
3829 to_end = true;
3830 }
3831
3832 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3833 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3834 ret = -EINVAL;
3835 goto err;
3836 }
3837
3838 index = F2FS_BYTES_TO_BLK(range.start);
3839 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3840
3841 ret = f2fs_convert_inline_inode(inode);
3842 if (ret)
3843 goto err;
3844
3845 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3846 down_write(&F2FS_I(inode)->i_mmap_sem);
3847
3848 ret = filemap_write_and_wait_range(mapping, range.start,
3849 to_end ? LLONG_MAX : end_addr - 1);
3850 if (ret)
3851 goto out;
3852
3853 truncate_inode_pages_range(mapping, range.start,
3854 to_end ? -1 : end_addr - 1);
3855
3856 while (index < pg_end) {
3857 struct dnode_of_data dn;
3858 pgoff_t end_offset, count;
3859 int i;
3860
3861 set_new_dnode(&dn, inode, NULL, NULL, 0);
3862 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3863 if (ret) {
3864 if (ret == -ENOENT) {
3865 index = f2fs_get_next_page_offset(&dn, index);
3866 continue;
3867 }
3868 goto out;
3869 }
3870
3871 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3872 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3873 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3874 struct block_device *cur_bdev;
3875 block_t blkaddr = f2fs_data_blkaddr(&dn);
3876
3877 if (!__is_valid_data_blkaddr(blkaddr))
3878 continue;
3879
3880 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3881 DATA_GENERIC_ENHANCE)) {
3882 ret = -EFSCORRUPTED;
3883 f2fs_put_dnode(&dn);
3884 goto out;
3885 }
3886
3887 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3888 if (f2fs_is_multi_device(sbi)) {
3889 int di = f2fs_target_device_index(sbi, blkaddr);
3890
3891 blkaddr -= FDEV(di).start_blk;
3892 }
3893
3894 if (len) {
3895 if (prev_bdev == cur_bdev &&
3896 index == prev_index + len &&
3897 blkaddr == prev_block + len) {
3898 len++;
3899 } else {
3900 ret = f2fs_secure_erase(prev_bdev,
3901 inode, prev_index, prev_block,
3902 len, range.flags);
3903 if (ret) {
3904 f2fs_put_dnode(&dn);
3905 goto out;
3906 }
3907
3908 len = 0;
3909 }
3910 }
3911
3912 if (!len) {
3913 prev_bdev = cur_bdev;
3914 prev_index = index;
3915 prev_block = blkaddr;
3916 len = 1;
3917 }
3918 }
3919
3920 f2fs_put_dnode(&dn);
3921
3922 if (fatal_signal_pending(current)) {
3923 ret = -EINTR;
3924 goto out;
3925 }
3926 cond_resched();
3927 }
3928
3929 if (len)
3930 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3931 prev_block, len, range.flags);
3932 out:
3933 up_write(&F2FS_I(inode)->i_mmap_sem);
3934 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3935 err:
3936 inode_unlock(inode);
3937 file_end_write(filp);
3938
3939 return ret;
3940 }
3941
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)3942 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3943 {
3944 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3945 return -EIO;
3946 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3947 return -ENOSPC;
3948
3949 switch (cmd) {
3950 case FS_IOC_GETFLAGS:
3951 return f2fs_ioc_getflags(filp, arg);
3952 case FS_IOC_SETFLAGS:
3953 return f2fs_ioc_setflags(filp, arg);
3954 case FS_IOC_GETVERSION:
3955 return f2fs_ioc_getversion(filp, arg);
3956 case F2FS_IOC_START_ATOMIC_WRITE:
3957 return f2fs_ioc_start_atomic_write(filp);
3958 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3959 return f2fs_ioc_commit_atomic_write(filp);
3960 case F2FS_IOC_START_VOLATILE_WRITE:
3961 return f2fs_ioc_start_volatile_write(filp);
3962 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3963 return f2fs_ioc_release_volatile_write(filp);
3964 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3965 return f2fs_ioc_abort_volatile_write(filp);
3966 case F2FS_IOC_SHUTDOWN:
3967 return f2fs_ioc_shutdown(filp, arg);
3968 case FITRIM:
3969 return f2fs_ioc_fitrim(filp, arg);
3970 case FS_IOC_SET_ENCRYPTION_POLICY:
3971 return f2fs_ioc_set_encryption_policy(filp, arg);
3972 case FS_IOC_GET_ENCRYPTION_POLICY:
3973 return f2fs_ioc_get_encryption_policy(filp, arg);
3974 case FS_IOC_GET_ENCRYPTION_PWSALT:
3975 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3976 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3977 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3978 case FS_IOC_ADD_ENCRYPTION_KEY:
3979 return f2fs_ioc_add_encryption_key(filp, arg);
3980 case FS_IOC_REMOVE_ENCRYPTION_KEY:
3981 return f2fs_ioc_remove_encryption_key(filp, arg);
3982 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3983 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3984 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3985 return f2fs_ioc_get_encryption_key_status(filp, arg);
3986 case FS_IOC_GET_ENCRYPTION_NONCE:
3987 return f2fs_ioc_get_encryption_nonce(filp, arg);
3988 case F2FS_IOC_GARBAGE_COLLECT:
3989 return f2fs_ioc_gc(filp, arg);
3990 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3991 return f2fs_ioc_gc_range(filp, arg);
3992 case F2FS_IOC_WRITE_CHECKPOINT:
3993 return f2fs_ioc_write_checkpoint(filp, arg);
3994 case F2FS_IOC_DEFRAGMENT:
3995 return f2fs_ioc_defragment(filp, arg);
3996 case F2FS_IOC_MOVE_RANGE:
3997 return f2fs_ioc_move_range(filp, arg);
3998 case F2FS_IOC_FLUSH_DEVICE:
3999 return f2fs_ioc_flush_device(filp, arg);
4000 case F2FS_IOC_GET_FEATURES:
4001 return f2fs_ioc_get_features(filp, arg);
4002 case FS_IOC_FSGETXATTR:
4003 return f2fs_ioc_fsgetxattr(filp, arg);
4004 case FS_IOC_FSSETXATTR:
4005 return f2fs_ioc_fssetxattr(filp, arg);
4006 case F2FS_IOC_GET_PIN_FILE:
4007 return f2fs_ioc_get_pin_file(filp, arg);
4008 case F2FS_IOC_SET_PIN_FILE:
4009 return f2fs_ioc_set_pin_file(filp, arg);
4010 case F2FS_IOC_PRECACHE_EXTENTS:
4011 return f2fs_ioc_precache_extents(filp, arg);
4012 case F2FS_IOC_RESIZE_FS:
4013 return f2fs_ioc_resize_fs(filp, arg);
4014 case FS_IOC_ENABLE_VERITY:
4015 return f2fs_ioc_enable_verity(filp, arg);
4016 case FS_IOC_MEASURE_VERITY:
4017 return f2fs_ioc_measure_verity(filp, arg);
4018 case FS_IOC_GETFSLABEL:
4019 return f2fs_ioc_getfslabel(filp, arg);
4020 case FS_IOC_SETFSLABEL:
4021 return f2fs_ioc_setfslabel(filp, arg);
4022 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4023 return f2fs_get_compress_blocks(filp, arg);
4024 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4025 return f2fs_release_compress_blocks(filp, arg);
4026 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4027 return f2fs_reserve_compress_blocks(filp, arg);
4028 case F2FS_IOC_SEC_TRIM_FILE:
4029 return f2fs_sec_trim_file(filp, arg);
4030 default:
4031 return -ENOTTY;
4032 }
4033 }
4034
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)4035 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4036 {
4037 struct file *file = iocb->ki_filp;
4038 struct inode *inode = file_inode(file);
4039 int ret;
4040
4041 if (!f2fs_is_compress_backend_ready(inode))
4042 return -EOPNOTSUPP;
4043
4044 ret = generic_file_read_iter(iocb, iter);
4045
4046 if (ret > 0)
4047 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4048
4049 return ret;
4050 }
4051
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4052 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4053 {
4054 struct file *file = iocb->ki_filp;
4055 struct inode *inode = file_inode(file);
4056 ssize_t ret;
4057
4058 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4059 ret = -EIO;
4060 goto out;
4061 }
4062
4063 if (!f2fs_is_compress_backend_ready(inode)) {
4064 ret = -EOPNOTSUPP;
4065 goto out;
4066 }
4067
4068 if (iocb->ki_flags & IOCB_NOWAIT) {
4069 if (!inode_trylock(inode)) {
4070 ret = -EAGAIN;
4071 goto out;
4072 }
4073 } else {
4074 inode_lock(inode);
4075 }
4076
4077 ret = generic_write_checks(iocb, from);
4078 if (ret > 0) {
4079 bool preallocated = false;
4080 size_t target_size = 0;
4081 int err;
4082
4083 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4084 set_inode_flag(inode, FI_NO_PREALLOC);
4085
4086 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4087 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4088 iov_iter_count(from)) ||
4089 f2fs_has_inline_data(inode) ||
4090 f2fs_force_buffered_io(inode, iocb, from)) {
4091 clear_inode_flag(inode, FI_NO_PREALLOC);
4092 inode_unlock(inode);
4093 ret = -EAGAIN;
4094 goto out;
4095 }
4096 goto write;
4097 }
4098
4099 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4100 goto write;
4101
4102 if (iocb->ki_flags & IOCB_DIRECT) {
4103 /*
4104 * Convert inline data for Direct I/O before entering
4105 * f2fs_direct_IO().
4106 */
4107 err = f2fs_convert_inline_inode(inode);
4108 if (err)
4109 goto out_err;
4110 /*
4111 * If force_buffere_io() is true, we have to allocate
4112 * blocks all the time, since f2fs_direct_IO will fall
4113 * back to buffered IO.
4114 */
4115 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4116 allow_outplace_dio(inode, iocb, from))
4117 goto write;
4118 }
4119 preallocated = true;
4120 target_size = iocb->ki_pos + iov_iter_count(from);
4121
4122 err = f2fs_preallocate_blocks(iocb, from);
4123 if (err) {
4124 out_err:
4125 clear_inode_flag(inode, FI_NO_PREALLOC);
4126 inode_unlock(inode);
4127 ret = err;
4128 goto out;
4129 }
4130 write:
4131 ret = __generic_file_write_iter(iocb, from);
4132 clear_inode_flag(inode, FI_NO_PREALLOC);
4133
4134 /* if we couldn't write data, we should deallocate blocks. */
4135 if (preallocated && i_size_read(inode) < target_size)
4136 f2fs_truncate(inode);
4137
4138 if (ret > 0)
4139 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4140 }
4141 inode_unlock(inode);
4142 out:
4143 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4144 iov_iter_count(from), ret);
4145 if (ret > 0)
4146 ret = generic_write_sync(iocb, ret);
4147 return ret;
4148 }
4149
4150 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4151 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4152 {
4153 switch (cmd) {
4154 case FS_IOC32_GETFLAGS:
4155 cmd = FS_IOC_GETFLAGS;
4156 break;
4157 case FS_IOC32_SETFLAGS:
4158 cmd = FS_IOC_SETFLAGS;
4159 break;
4160 case FS_IOC32_GETVERSION:
4161 cmd = FS_IOC_GETVERSION;
4162 break;
4163 case F2FS_IOC_START_ATOMIC_WRITE:
4164 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4165 case F2FS_IOC_START_VOLATILE_WRITE:
4166 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4167 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4168 case F2FS_IOC_SHUTDOWN:
4169 case FITRIM:
4170 case FS_IOC_SET_ENCRYPTION_POLICY:
4171 case FS_IOC_GET_ENCRYPTION_PWSALT:
4172 case FS_IOC_GET_ENCRYPTION_POLICY:
4173 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4174 case FS_IOC_ADD_ENCRYPTION_KEY:
4175 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4176 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4177 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4178 case FS_IOC_GET_ENCRYPTION_NONCE:
4179 case F2FS_IOC_GARBAGE_COLLECT:
4180 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4181 case F2FS_IOC_WRITE_CHECKPOINT:
4182 case F2FS_IOC_DEFRAGMENT:
4183 case F2FS_IOC_MOVE_RANGE:
4184 case F2FS_IOC_FLUSH_DEVICE:
4185 case F2FS_IOC_GET_FEATURES:
4186 case FS_IOC_FSGETXATTR:
4187 case FS_IOC_FSSETXATTR:
4188 case F2FS_IOC_GET_PIN_FILE:
4189 case F2FS_IOC_SET_PIN_FILE:
4190 case F2FS_IOC_PRECACHE_EXTENTS:
4191 case F2FS_IOC_RESIZE_FS:
4192 case FS_IOC_ENABLE_VERITY:
4193 case FS_IOC_MEASURE_VERITY:
4194 case FS_IOC_GETFSLABEL:
4195 case FS_IOC_SETFSLABEL:
4196 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4197 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4198 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4199 case F2FS_IOC_SEC_TRIM_FILE:
4200 break;
4201 default:
4202 return -ENOIOCTLCMD;
4203 }
4204 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4205 }
4206 #endif
4207
4208 const struct file_operations f2fs_file_operations = {
4209 .llseek = f2fs_llseek,
4210 .read_iter = f2fs_file_read_iter,
4211 .write_iter = f2fs_file_write_iter,
4212 .open = f2fs_file_open,
4213 .release = f2fs_release_file,
4214 .mmap = f2fs_file_mmap,
4215 .flush = f2fs_file_flush,
4216 .fsync = f2fs_sync_file,
4217 .fallocate = f2fs_fallocate,
4218 .unlocked_ioctl = f2fs_ioctl,
4219 #ifdef CONFIG_COMPAT
4220 .compat_ioctl = f2fs_compat_ioctl,
4221 #endif
4222 .splice_read = generic_file_splice_read,
4223 .splice_write = iter_file_splice_write,
4224 };
4225