1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include <linux/key.h>
9 
10 #include "fscrypt_private.h"
11 
12 /**
13  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14  * @inode: the inode being opened
15  * @filp: the struct file being set up
16  *
17  * Currently, an encrypted regular file can only be opened if its encryption key
18  * is available; access to the raw encrypted contents is not supported.
19  * Therefore, we first set up the inode's encryption key (if not already done)
20  * and return an error if it's unavailable.
21  *
22  * We also verify that if the parent directory (from the path via which the file
23  * is being opened) is encrypted, then the inode being opened uses the same
24  * encryption policy.  This is needed as part of the enforcement that all files
25  * in an encrypted directory tree use the same encryption policy, as a
26  * protection against certain types of offline attacks.  Note that this check is
27  * needed even when opening an *unencrypted* file, since it's forbidden to have
28  * an unencrypted file in an encrypted directory.
29  *
30  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31  */
fscrypt_file_open(struct inode * inode,struct file * filp)32 int fscrypt_file_open(struct inode *inode, struct file *filp)
33 {
34 	int err;
35 	struct dentry *dir;
36 
37 	err = fscrypt_require_key(inode);
38 	if (err)
39 		return err;
40 
41 	dir = dget_parent(file_dentry(filp));
42 	if (IS_ENCRYPTED(d_inode(dir)) &&
43 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 		fscrypt_warn(inode,
45 			     "Inconsistent encryption context (parent directory: %lu)",
46 			     d_inode(dir)->i_ino);
47 		err = -EPERM;
48 	}
49 	dput(dir);
50 	return err;
51 }
52 EXPORT_SYMBOL_GPL(fscrypt_file_open);
53 
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)54 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 			   struct dentry *dentry)
56 {
57 	int err;
58 
59 	err = fscrypt_require_key(dir);
60 	if (err)
61 		return err;
62 
63 	/* ... in case we looked up no-key name before key was added */
64 	if (dentry->d_flags & DCACHE_NOKEY_NAME)
65 		return -ENOKEY;
66 
67 	if (!fscrypt_has_permitted_context(dir, inode))
68 		return -EXDEV;
69 
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
73 
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)74 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
75 			     struct inode *new_dir, struct dentry *new_dentry,
76 			     unsigned int flags)
77 {
78 	int err;
79 
80 	err = fscrypt_require_key(old_dir);
81 	if (err)
82 		return err;
83 
84 	err = fscrypt_require_key(new_dir);
85 	if (err)
86 		return err;
87 
88 	/* ... in case we looked up no-key name(s) before key was added */
89 	if ((old_dentry->d_flags | new_dentry->d_flags) & DCACHE_NOKEY_NAME)
90 		return -ENOKEY;
91 
92 	if (old_dir != new_dir) {
93 		if (IS_ENCRYPTED(new_dir) &&
94 		    !fscrypt_has_permitted_context(new_dir,
95 						   d_inode(old_dentry)))
96 			return -EXDEV;
97 
98 		if ((flags & RENAME_EXCHANGE) &&
99 		    IS_ENCRYPTED(old_dir) &&
100 		    !fscrypt_has_permitted_context(old_dir,
101 						   d_inode(new_dentry)))
102 			return -EXDEV;
103 	}
104 	return 0;
105 }
106 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
107 
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)108 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
109 			     struct fscrypt_name *fname)
110 {
111 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
112 
113 	if (err && err != -ENOENT)
114 		return err;
115 
116 	if (fname->is_nokey_name) {
117 		spin_lock(&dentry->d_lock);
118 		dentry->d_flags |= DCACHE_NOKEY_NAME;
119 		spin_unlock(&dentry->d_lock);
120 		d_set_d_op(dentry, &fscrypt_d_ops);
121 	}
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
125 
126 /**
127  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
128  * @inode: the inode on which flags are being changed
129  * @oldflags: the old flags
130  * @flags: the new flags
131  *
132  * The caller should be holding i_rwsem for write.
133  *
134  * Return: 0 on success; -errno if the flags change isn't allowed or if
135  *	   another error occurs.
136  */
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)137 int fscrypt_prepare_setflags(struct inode *inode,
138 			     unsigned int oldflags, unsigned int flags)
139 {
140 	struct fscrypt_info *ci;
141 	struct fscrypt_master_key *mk;
142 	int err;
143 
144 	/*
145 	 * When the CASEFOLD flag is set on an encrypted directory, we must
146 	 * derive the secret key needed for the dirhash.  This is only possible
147 	 * if the directory uses a v2 encryption policy.
148 	 */
149 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
150 		err = fscrypt_require_key(inode);
151 		if (err)
152 			return err;
153 		ci = inode->i_crypt_info;
154 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
155 			return -EINVAL;
156 		mk = ci->ci_master_key->payload.data[0];
157 		down_read(&mk->mk_secret_sem);
158 		if (is_master_key_secret_present(&mk->mk_secret))
159 			err = fscrypt_derive_dirhash_key(ci, mk);
160 		else
161 			err = -ENOKEY;
162 		up_read(&mk->mk_secret_sem);
163 		return err;
164 	}
165 	return 0;
166 }
167 
168 /**
169  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
170  * @dir: directory in which the symlink is being created
171  * @target: plaintext symlink target
172  * @len: length of @target excluding null terminator
173  * @max_len: space the filesystem has available to store the symlink target
174  * @disk_link: (out) the on-disk symlink target being prepared
175  *
176  * This function computes the size the symlink target will require on-disk,
177  * stores it in @disk_link->len, and validates it against @max_len.  An
178  * encrypted symlink may be longer than the original.
179  *
180  * Additionally, @disk_link->name is set to @target if the symlink will be
181  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
182  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
183  * on-disk target later.  (The reason for the two-step process is that some
184  * filesystems need to know the size of the symlink target before creating the
185  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
186  *
187  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
188  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
189  * occurred while setting up the encryption key.
190  */
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)191 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
192 			    unsigned int len, unsigned int max_len,
193 			    struct fscrypt_str *disk_link)
194 {
195 	const union fscrypt_policy *policy;
196 
197 	/*
198 	 * To calculate the size of the encrypted symlink target we need to know
199 	 * the amount of NUL padding, which is determined by the flags set in
200 	 * the encryption policy which will be inherited from the directory.
201 	 */
202 	policy = fscrypt_policy_to_inherit(dir);
203 	if (policy == NULL) {
204 		/* Not encrypted */
205 		disk_link->name = (unsigned char *)target;
206 		disk_link->len = len + 1;
207 		if (disk_link->len > max_len)
208 			return -ENAMETOOLONG;
209 		return 0;
210 	}
211 	if (IS_ERR(policy))
212 		return PTR_ERR(policy);
213 
214 	/*
215 	 * Calculate the size of the encrypted symlink and verify it won't
216 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
217 	 * targets are prefixed with the ciphertext length, despite this
218 	 * actually being redundant with i_size.  This decreases by 2 bytes the
219 	 * longest symlink target we can accept.
220 	 *
221 	 * We could recover 1 byte by not counting a null terminator, but
222 	 * counting it (even though it is meaningless for ciphertext) is simpler
223 	 * for now since filesystems will assume it is there and subtract it.
224 	 */
225 	if (!fscrypt_fname_encrypted_size(policy, len,
226 					  max_len - sizeof(struct fscrypt_symlink_data),
227 					  &disk_link->len))
228 		return -ENAMETOOLONG;
229 	disk_link->len += sizeof(struct fscrypt_symlink_data);
230 
231 	disk_link->name = NULL;
232 	return 0;
233 }
234 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
235 
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)236 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
237 			      unsigned int len, struct fscrypt_str *disk_link)
238 {
239 	int err;
240 	struct qstr iname = QSTR_INIT(target, len);
241 	struct fscrypt_symlink_data *sd;
242 	unsigned int ciphertext_len;
243 
244 	/*
245 	 * fscrypt_prepare_new_inode() should have already set up the new
246 	 * symlink inode's encryption key.  We don't wait until now to do it,
247 	 * since we may be in a filesystem transaction now.
248 	 */
249 	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
250 		return -ENOKEY;
251 
252 	if (disk_link->name) {
253 		/* filesystem-provided buffer */
254 		sd = (struct fscrypt_symlink_data *)disk_link->name;
255 	} else {
256 		sd = kmalloc(disk_link->len, GFP_NOFS);
257 		if (!sd)
258 			return -ENOMEM;
259 	}
260 	ciphertext_len = disk_link->len - sizeof(*sd);
261 	sd->len = cpu_to_le16(ciphertext_len);
262 
263 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
264 				    ciphertext_len);
265 	if (err)
266 		goto err_free_sd;
267 
268 	/*
269 	 * Null-terminating the ciphertext doesn't make sense, but we still
270 	 * count the null terminator in the length, so we might as well
271 	 * initialize it just in case the filesystem writes it out.
272 	 */
273 	sd->encrypted_path[ciphertext_len] = '\0';
274 
275 	/* Cache the plaintext symlink target for later use by get_link() */
276 	err = -ENOMEM;
277 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
278 	if (!inode->i_link)
279 		goto err_free_sd;
280 
281 	if (!disk_link->name)
282 		disk_link->name = (unsigned char *)sd;
283 	return 0;
284 
285 err_free_sd:
286 	if (!disk_link->name)
287 		kfree(sd);
288 	return err;
289 }
290 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
291 
292 /**
293  * fscrypt_get_symlink() - get the target of an encrypted symlink
294  * @inode: the symlink inode
295  * @caddr: the on-disk contents of the symlink
296  * @max_size: size of @caddr buffer
297  * @done: if successful, will be set up to free the returned target if needed
298  *
299  * If the symlink's encryption key is available, we decrypt its target.
300  * Otherwise, we encode its target for presentation.
301  *
302  * This may sleep, so the filesystem must have dropped out of RCU mode already.
303  *
304  * Return: the presentable symlink target or an ERR_PTR()
305  */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)306 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
307 				unsigned int max_size,
308 				struct delayed_call *done)
309 {
310 	const struct fscrypt_symlink_data *sd;
311 	struct fscrypt_str cstr, pstr;
312 	bool has_key;
313 	int err;
314 
315 	/* This is for encrypted symlinks only */
316 	if (WARN_ON(!IS_ENCRYPTED(inode)))
317 		return ERR_PTR(-EINVAL);
318 
319 	/* If the decrypted target is already cached, just return it. */
320 	pstr.name = READ_ONCE(inode->i_link);
321 	if (pstr.name)
322 		return pstr.name;
323 
324 	/*
325 	 * Try to set up the symlink's encryption key, but we can continue
326 	 * regardless of whether the key is available or not.
327 	 */
328 	err = fscrypt_get_encryption_info(inode);
329 	if (err)
330 		return ERR_PTR(err);
331 	has_key = fscrypt_has_encryption_key(inode);
332 
333 	/*
334 	 * For historical reasons, encrypted symlink targets are prefixed with
335 	 * the ciphertext length, even though this is redundant with i_size.
336 	 */
337 
338 	if (max_size < sizeof(*sd))
339 		return ERR_PTR(-EUCLEAN);
340 	sd = caddr;
341 	cstr.name = (unsigned char *)sd->encrypted_path;
342 	cstr.len = le16_to_cpu(sd->len);
343 
344 	if (cstr.len == 0)
345 		return ERR_PTR(-EUCLEAN);
346 
347 	if (cstr.len + sizeof(*sd) - 1 > max_size)
348 		return ERR_PTR(-EUCLEAN);
349 
350 	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
351 	if (err)
352 		return ERR_PTR(err);
353 
354 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
355 	if (err)
356 		goto err_kfree;
357 
358 	err = -EUCLEAN;
359 	if (pstr.name[0] == '\0')
360 		goto err_kfree;
361 
362 	pstr.name[pstr.len] = '\0';
363 
364 	/*
365 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
366 	 * symlink targets encoded without the key, since those become outdated
367 	 * once the key is added.  This pairs with the READ_ONCE() above and in
368 	 * the VFS path lookup code.
369 	 */
370 	if (!has_key ||
371 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
372 		set_delayed_call(done, kfree_link, pstr.name);
373 
374 	return pstr.name;
375 
376 err_kfree:
377 	kfree(pstr.name);
378 	return ERR_PTR(err);
379 }
380 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
381