1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "tests/btrfs-tests.h"
48 #include "block-group.h"
49 #include "discard.h"
50 
51 #include "qgroup.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/btrfs.h>
54 
55 static const struct super_operations btrfs_super_ops;
56 
57 /*
58  * Types for mounting the default subvolume and a subvolume explicitly
59  * requested by subvol=/path. That way the callchain is straightforward and we
60  * don't have to play tricks with the mount options and recursive calls to
61  * btrfs_mount.
62  *
63  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
64  */
65 static struct file_system_type btrfs_fs_type;
66 static struct file_system_type btrfs_root_fs_type;
67 
68 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
69 
70 /*
71  * Generally the error codes correspond to their respective errors, but there
72  * are a few special cases.
73  *
74  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
75  *          instance will return EUCLEAN if any of the blocks are corrupted in
76  *          a way that is problematic.  We want to reserve EUCLEAN for these
77  *          sort of corruptions.
78  *
79  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
80  *        need to use EROFS for this case.  We will have no idea of the
81  *        original failure, that will have been reported at the time we tripped
82  *        over the error.  Each subsequent error that doesn't have any context
83  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
84  */
btrfs_decode_error(int errno)85 const char * __attribute_const__ btrfs_decode_error(int errno)
86 {
87 	char *errstr = "unknown";
88 
89 	switch (errno) {
90 	case -ENOENT:		/* -2 */
91 		errstr = "No such entry";
92 		break;
93 	case -EIO:		/* -5 */
94 		errstr = "IO failure";
95 		break;
96 	case -ENOMEM:		/* -12*/
97 		errstr = "Out of memory";
98 		break;
99 	case -EEXIST:		/* -17 */
100 		errstr = "Object already exists";
101 		break;
102 	case -ENOSPC:		/* -28 */
103 		errstr = "No space left";
104 		break;
105 	case -EROFS:		/* -30 */
106 		errstr = "Readonly filesystem";
107 		break;
108 	case -EOPNOTSUPP:	/* -95 */
109 		errstr = "Operation not supported";
110 		break;
111 	case -EUCLEAN:		/* -117 */
112 		errstr = "Filesystem corrupted";
113 		break;
114 	case -EDQUOT:		/* -122 */
115 		errstr = "Quota exceeded";
116 		break;
117 	}
118 
119 	return errstr;
120 }
121 
122 /*
123  * __btrfs_handle_fs_error decodes expected errors from the caller and
124  * invokes the appropriate error response.
125  */
126 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)127 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
128 		       unsigned int line, int errno, const char *fmt, ...)
129 {
130 	struct super_block *sb = fs_info->sb;
131 #ifdef CONFIG_PRINTK
132 	const char *errstr;
133 #endif
134 
135 	/*
136 	 * Special case: if the error is EROFS, and we're already
137 	 * under SB_RDONLY, then it is safe here.
138 	 */
139 	if (errno == -EROFS && sb_rdonly(sb))
140   		return;
141 
142 #ifdef CONFIG_PRINTK
143 	errstr = btrfs_decode_error(errno);
144 	if (fmt) {
145 		struct va_format vaf;
146 		va_list args;
147 
148 		va_start(args, fmt);
149 		vaf.fmt = fmt;
150 		vaf.va = &args;
151 
152 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
153 			sb->s_id, function, line, errno, errstr, &vaf);
154 		va_end(args);
155 	} else {
156 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
157 			sb->s_id, function, line, errno, errstr);
158 	}
159 #endif
160 
161 	/*
162 	 * Today we only save the error info to memory.  Long term we'll
163 	 * also send it down to the disk
164 	 */
165 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
166 
167 	/* Don't go through full error handling during mount */
168 	if (!(sb->s_flags & SB_BORN))
169 		return;
170 
171 	if (sb_rdonly(sb))
172 		return;
173 
174 	btrfs_discard_stop(fs_info);
175 
176 	/* btrfs handle error by forcing the filesystem readonly */
177 	sb->s_flags |= SB_RDONLY;
178 	btrfs_info(fs_info, "forced readonly");
179 	/*
180 	 * Note that a running device replace operation is not canceled here
181 	 * although there is no way to update the progress. It would add the
182 	 * risk of a deadlock, therefore the canceling is omitted. The only
183 	 * penalty is that some I/O remains active until the procedure
184 	 * completes. The next time when the filesystem is mounted writable
185 	 * again, the device replace operation continues.
186 	 */
187 }
188 
189 #ifdef CONFIG_PRINTK
190 static const char * const logtypes[] = {
191 	"emergency",
192 	"alert",
193 	"critical",
194 	"error",
195 	"warning",
196 	"notice",
197 	"info",
198 	"debug",
199 };
200 
201 
202 /*
203  * Use one ratelimit state per log level so that a flood of less important
204  * messages doesn't cause more important ones to be dropped.
205  */
206 static struct ratelimit_state printk_limits[] = {
207 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
210 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
211 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
212 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
213 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
214 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
215 };
216 
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)217 void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
218 {
219 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
220 	struct va_format vaf;
221 	va_list args;
222 	int kern_level;
223 	const char *type = logtypes[4];
224 	struct ratelimit_state *ratelimit = &printk_limits[4];
225 
226 	va_start(args, fmt);
227 
228 	while ((kern_level = printk_get_level(fmt)) != 0) {
229 		size_t size = printk_skip_level(fmt) - fmt;
230 
231 		if (kern_level >= '0' && kern_level <= '7') {
232 			memcpy(lvl, fmt,  size);
233 			lvl[size] = '\0';
234 			type = logtypes[kern_level - '0'];
235 			ratelimit = &printk_limits[kern_level - '0'];
236 		}
237 		fmt += size;
238 	}
239 
240 	vaf.fmt = fmt;
241 	vaf.va = &args;
242 
243 	if (__ratelimit(ratelimit))
244 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
245 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
246 
247 	va_end(args);
248 }
249 #endif
250 
251 /*
252  * We only mark the transaction aborted and then set the file system read-only.
253  * This will prevent new transactions from starting or trying to join this
254  * one.
255  *
256  * This means that error recovery at the call site is limited to freeing
257  * any local memory allocations and passing the error code up without
258  * further cleanup. The transaction should complete as it normally would
259  * in the call path but will return -EIO.
260  *
261  * We'll complete the cleanup in btrfs_end_transaction and
262  * btrfs_commit_transaction.
263  */
264 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)265 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
266 			       const char *function,
267 			       unsigned int line, int errno)
268 {
269 	struct btrfs_fs_info *fs_info = trans->fs_info;
270 
271 	WRITE_ONCE(trans->aborted, errno);
272 	/* Nothing used. The other threads that have joined this
273 	 * transaction may be able to continue. */
274 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
275 		const char *errstr;
276 
277 		errstr = btrfs_decode_error(errno);
278 		btrfs_warn(fs_info,
279 		           "%s:%d: Aborting unused transaction(%s).",
280 		           function, line, errstr);
281 		return;
282 	}
283 	WRITE_ONCE(trans->transaction->aborted, errno);
284 	/* Wake up anybody who may be waiting on this transaction */
285 	wake_up(&fs_info->transaction_wait);
286 	wake_up(&fs_info->transaction_blocked_wait);
287 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
288 }
289 /*
290  * __btrfs_panic decodes unexpected, fatal errors from the caller,
291  * issues an alert, and either panics or BUGs, depending on mount options.
292  */
293 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)294 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
295 		   unsigned int line, int errno, const char *fmt, ...)
296 {
297 	char *s_id = "<unknown>";
298 	const char *errstr;
299 	struct va_format vaf = { .fmt = fmt };
300 	va_list args;
301 
302 	if (fs_info)
303 		s_id = fs_info->sb->s_id;
304 
305 	va_start(args, fmt);
306 	vaf.va = &args;
307 
308 	errstr = btrfs_decode_error(errno);
309 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
310 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
311 			s_id, function, line, &vaf, errno, errstr);
312 
313 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
314 		   function, line, &vaf, errno, errstr);
315 	va_end(args);
316 	/* Caller calls BUG() */
317 }
318 
btrfs_put_super(struct super_block * sb)319 static void btrfs_put_super(struct super_block *sb)
320 {
321 	close_ctree(btrfs_sb(sb));
322 }
323 
324 enum {
325 	Opt_acl, Opt_noacl,
326 	Opt_clear_cache,
327 	Opt_commit_interval,
328 	Opt_compress,
329 	Opt_compress_force,
330 	Opt_compress_force_type,
331 	Opt_compress_type,
332 	Opt_degraded,
333 	Opt_device,
334 	Opt_fatal_errors,
335 	Opt_flushoncommit, Opt_noflushoncommit,
336 	Opt_inode_cache, Opt_noinode_cache,
337 	Opt_max_inline,
338 	Opt_barrier, Opt_nobarrier,
339 	Opt_datacow, Opt_nodatacow,
340 	Opt_datasum, Opt_nodatasum,
341 	Opt_defrag, Opt_nodefrag,
342 	Opt_discard, Opt_nodiscard,
343 	Opt_discard_mode,
344 	Opt_norecovery,
345 	Opt_ratio,
346 	Opt_rescan_uuid_tree,
347 	Opt_skip_balance,
348 	Opt_space_cache, Opt_no_space_cache,
349 	Opt_space_cache_version,
350 	Opt_ssd, Opt_nossd,
351 	Opt_ssd_spread, Opt_nossd_spread,
352 	Opt_subvol,
353 	Opt_subvol_empty,
354 	Opt_subvolid,
355 	Opt_thread_pool,
356 	Opt_treelog, Opt_notreelog,
357 	Opt_user_subvol_rm_allowed,
358 
359 	/* Rescue options */
360 	Opt_rescue,
361 	Opt_usebackuproot,
362 	Opt_nologreplay,
363 
364 	/* Deprecated options */
365 	Opt_recovery,
366 
367 	/* Debugging options */
368 	Opt_check_integrity,
369 	Opt_check_integrity_including_extent_data,
370 	Opt_check_integrity_print_mask,
371 	Opt_enospc_debug, Opt_noenospc_debug,
372 #ifdef CONFIG_BTRFS_DEBUG
373 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
374 #endif
375 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
376 	Opt_ref_verify,
377 #endif
378 	Opt_err,
379 };
380 
381 static const match_table_t tokens = {
382 	{Opt_acl, "acl"},
383 	{Opt_noacl, "noacl"},
384 	{Opt_clear_cache, "clear_cache"},
385 	{Opt_commit_interval, "commit=%u"},
386 	{Opt_compress, "compress"},
387 	{Opt_compress_type, "compress=%s"},
388 	{Opt_compress_force, "compress-force"},
389 	{Opt_compress_force_type, "compress-force=%s"},
390 	{Opt_degraded, "degraded"},
391 	{Opt_device, "device=%s"},
392 	{Opt_fatal_errors, "fatal_errors=%s"},
393 	{Opt_flushoncommit, "flushoncommit"},
394 	{Opt_noflushoncommit, "noflushoncommit"},
395 	{Opt_inode_cache, "inode_cache"},
396 	{Opt_noinode_cache, "noinode_cache"},
397 	{Opt_max_inline, "max_inline=%s"},
398 	{Opt_barrier, "barrier"},
399 	{Opt_nobarrier, "nobarrier"},
400 	{Opt_datacow, "datacow"},
401 	{Opt_nodatacow, "nodatacow"},
402 	{Opt_datasum, "datasum"},
403 	{Opt_nodatasum, "nodatasum"},
404 	{Opt_defrag, "autodefrag"},
405 	{Opt_nodefrag, "noautodefrag"},
406 	{Opt_discard, "discard"},
407 	{Opt_discard_mode, "discard=%s"},
408 	{Opt_nodiscard, "nodiscard"},
409 	{Opt_norecovery, "norecovery"},
410 	{Opt_ratio, "metadata_ratio=%u"},
411 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
412 	{Opt_skip_balance, "skip_balance"},
413 	{Opt_space_cache, "space_cache"},
414 	{Opt_no_space_cache, "nospace_cache"},
415 	{Opt_space_cache_version, "space_cache=%s"},
416 	{Opt_ssd, "ssd"},
417 	{Opt_nossd, "nossd"},
418 	{Opt_ssd_spread, "ssd_spread"},
419 	{Opt_nossd_spread, "nossd_spread"},
420 	{Opt_subvol, "subvol=%s"},
421 	{Opt_subvol_empty, "subvol="},
422 	{Opt_subvolid, "subvolid=%s"},
423 	{Opt_thread_pool, "thread_pool=%u"},
424 	{Opt_treelog, "treelog"},
425 	{Opt_notreelog, "notreelog"},
426 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
427 
428 	/* Rescue options */
429 	{Opt_rescue, "rescue=%s"},
430 	/* Deprecated, with alias rescue=nologreplay */
431 	{Opt_nologreplay, "nologreplay"},
432 	/* Deprecated, with alias rescue=usebackuproot */
433 	{Opt_usebackuproot, "usebackuproot"},
434 
435 	/* Deprecated options */
436 	{Opt_recovery, "recovery"},
437 
438 	/* Debugging options */
439 	{Opt_check_integrity, "check_int"},
440 	{Opt_check_integrity_including_extent_data, "check_int_data"},
441 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
442 	{Opt_enospc_debug, "enospc_debug"},
443 	{Opt_noenospc_debug, "noenospc_debug"},
444 #ifdef CONFIG_BTRFS_DEBUG
445 	{Opt_fragment_data, "fragment=data"},
446 	{Opt_fragment_metadata, "fragment=metadata"},
447 	{Opt_fragment_all, "fragment=all"},
448 #endif
449 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
450 	{Opt_ref_verify, "ref_verify"},
451 #endif
452 	{Opt_err, NULL},
453 };
454 
455 static const match_table_t rescue_tokens = {
456 	{Opt_usebackuproot, "usebackuproot"},
457 	{Opt_nologreplay, "nologreplay"},
458 	{Opt_err, NULL},
459 };
460 
parse_rescue_options(struct btrfs_fs_info * info,const char * options)461 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
462 {
463 	char *opts;
464 	char *orig;
465 	char *p;
466 	substring_t args[MAX_OPT_ARGS];
467 	int ret = 0;
468 
469 	opts = kstrdup(options, GFP_KERNEL);
470 	if (!opts)
471 		return -ENOMEM;
472 	orig = opts;
473 
474 	while ((p = strsep(&opts, ":")) != NULL) {
475 		int token;
476 
477 		if (!*p)
478 			continue;
479 		token = match_token(p, rescue_tokens, args);
480 		switch (token){
481 		case Opt_usebackuproot:
482 			btrfs_info(info,
483 				   "trying to use backup root at mount time");
484 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
485 			break;
486 		case Opt_nologreplay:
487 			btrfs_set_and_info(info, NOLOGREPLAY,
488 					   "disabling log replay at mount time");
489 			break;
490 		case Opt_err:
491 			btrfs_info(info, "unrecognized rescue option '%s'", p);
492 			ret = -EINVAL;
493 			goto out;
494 		default:
495 			break;
496 		}
497 
498 	}
499 out:
500 	kfree(orig);
501 	return ret;
502 }
503 
504 /*
505  * Regular mount options parser.  Everything that is needed only when
506  * reading in a new superblock is parsed here.
507  * XXX JDM: This needs to be cleaned up for remount.
508  */
btrfs_parse_options(struct btrfs_fs_info * info,char * options,unsigned long new_flags)509 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
510 			unsigned long new_flags)
511 {
512 	substring_t args[MAX_OPT_ARGS];
513 	char *p, *num;
514 	u64 cache_gen;
515 	int intarg;
516 	int ret = 0;
517 	char *compress_type;
518 	bool compress_force = false;
519 	enum btrfs_compression_type saved_compress_type;
520 	int saved_compress_level;
521 	bool saved_compress_force;
522 	int no_compress = 0;
523 
524 	cache_gen = btrfs_super_cache_generation(info->super_copy);
525 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
526 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
527 	else if (cache_gen)
528 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
529 
530 	/*
531 	 * Even the options are empty, we still need to do extra check
532 	 * against new flags
533 	 */
534 	if (!options)
535 		goto check;
536 
537 	while ((p = strsep(&options, ",")) != NULL) {
538 		int token;
539 		if (!*p)
540 			continue;
541 
542 		token = match_token(p, tokens, args);
543 		switch (token) {
544 		case Opt_degraded:
545 			btrfs_info(info, "allowing degraded mounts");
546 			btrfs_set_opt(info->mount_opt, DEGRADED);
547 			break;
548 		case Opt_subvol:
549 		case Opt_subvol_empty:
550 		case Opt_subvolid:
551 		case Opt_device:
552 			/*
553 			 * These are parsed by btrfs_parse_subvol_options or
554 			 * btrfs_parse_device_options and can be ignored here.
555 			 */
556 			break;
557 		case Opt_nodatasum:
558 			btrfs_set_and_info(info, NODATASUM,
559 					   "setting nodatasum");
560 			break;
561 		case Opt_datasum:
562 			if (btrfs_test_opt(info, NODATASUM)) {
563 				if (btrfs_test_opt(info, NODATACOW))
564 					btrfs_info(info,
565 						   "setting datasum, datacow enabled");
566 				else
567 					btrfs_info(info, "setting datasum");
568 			}
569 			btrfs_clear_opt(info->mount_opt, NODATACOW);
570 			btrfs_clear_opt(info->mount_opt, NODATASUM);
571 			break;
572 		case Opt_nodatacow:
573 			if (!btrfs_test_opt(info, NODATACOW)) {
574 				if (!btrfs_test_opt(info, COMPRESS) ||
575 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
576 					btrfs_info(info,
577 						   "setting nodatacow, compression disabled");
578 				} else {
579 					btrfs_info(info, "setting nodatacow");
580 				}
581 			}
582 			btrfs_clear_opt(info->mount_opt, COMPRESS);
583 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
584 			btrfs_set_opt(info->mount_opt, NODATACOW);
585 			btrfs_set_opt(info->mount_opt, NODATASUM);
586 			break;
587 		case Opt_datacow:
588 			btrfs_clear_and_info(info, NODATACOW,
589 					     "setting datacow");
590 			break;
591 		case Opt_compress_force:
592 		case Opt_compress_force_type:
593 			compress_force = true;
594 			fallthrough;
595 		case Opt_compress:
596 		case Opt_compress_type:
597 			saved_compress_type = btrfs_test_opt(info,
598 							     COMPRESS) ?
599 				info->compress_type : BTRFS_COMPRESS_NONE;
600 			saved_compress_force =
601 				btrfs_test_opt(info, FORCE_COMPRESS);
602 			saved_compress_level = info->compress_level;
603 			if (token == Opt_compress ||
604 			    token == Opt_compress_force ||
605 			    strncmp(args[0].from, "zlib", 4) == 0) {
606 				compress_type = "zlib";
607 
608 				info->compress_type = BTRFS_COMPRESS_ZLIB;
609 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
610 				/*
611 				 * args[0] contains uninitialized data since
612 				 * for these tokens we don't expect any
613 				 * parameter.
614 				 */
615 				if (token != Opt_compress &&
616 				    token != Opt_compress_force)
617 					info->compress_level =
618 					  btrfs_compress_str2level(
619 							BTRFS_COMPRESS_ZLIB,
620 							args[0].from + 4);
621 				btrfs_set_opt(info->mount_opt, COMPRESS);
622 				btrfs_clear_opt(info->mount_opt, NODATACOW);
623 				btrfs_clear_opt(info->mount_opt, NODATASUM);
624 				no_compress = 0;
625 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
626 				compress_type = "lzo";
627 				info->compress_type = BTRFS_COMPRESS_LZO;
628 				info->compress_level = 0;
629 				btrfs_set_opt(info->mount_opt, COMPRESS);
630 				btrfs_clear_opt(info->mount_opt, NODATACOW);
631 				btrfs_clear_opt(info->mount_opt, NODATASUM);
632 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
633 				no_compress = 0;
634 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
635 				compress_type = "zstd";
636 				info->compress_type = BTRFS_COMPRESS_ZSTD;
637 				info->compress_level =
638 					btrfs_compress_str2level(
639 							 BTRFS_COMPRESS_ZSTD,
640 							 args[0].from + 4);
641 				btrfs_set_opt(info->mount_opt, COMPRESS);
642 				btrfs_clear_opt(info->mount_opt, NODATACOW);
643 				btrfs_clear_opt(info->mount_opt, NODATASUM);
644 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
645 				no_compress = 0;
646 			} else if (strncmp(args[0].from, "no", 2) == 0) {
647 				compress_type = "no";
648 				info->compress_level = 0;
649 				info->compress_type = 0;
650 				btrfs_clear_opt(info->mount_opt, COMPRESS);
651 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
652 				compress_force = false;
653 				no_compress++;
654 			} else {
655 				ret = -EINVAL;
656 				goto out;
657 			}
658 
659 			if (compress_force) {
660 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
661 			} else {
662 				/*
663 				 * If we remount from compress-force=xxx to
664 				 * compress=xxx, we need clear FORCE_COMPRESS
665 				 * flag, otherwise, there is no way for users
666 				 * to disable forcible compression separately.
667 				 */
668 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
669 			}
670 			if (no_compress == 1) {
671 				btrfs_info(info, "use no compression");
672 			} else if ((info->compress_type != saved_compress_type) ||
673 				   (compress_force != saved_compress_force) ||
674 				   (info->compress_level != saved_compress_level)) {
675 				btrfs_info(info, "%s %s compression, level %d",
676 					   (compress_force) ? "force" : "use",
677 					   compress_type, info->compress_level);
678 			}
679 			compress_force = false;
680 			break;
681 		case Opt_ssd:
682 			btrfs_set_and_info(info, SSD,
683 					   "enabling ssd optimizations");
684 			btrfs_clear_opt(info->mount_opt, NOSSD);
685 			break;
686 		case Opt_ssd_spread:
687 			btrfs_set_and_info(info, SSD,
688 					   "enabling ssd optimizations");
689 			btrfs_set_and_info(info, SSD_SPREAD,
690 					   "using spread ssd allocation scheme");
691 			btrfs_clear_opt(info->mount_opt, NOSSD);
692 			break;
693 		case Opt_nossd:
694 			btrfs_set_opt(info->mount_opt, NOSSD);
695 			btrfs_clear_and_info(info, SSD,
696 					     "not using ssd optimizations");
697 			fallthrough;
698 		case Opt_nossd_spread:
699 			btrfs_clear_and_info(info, SSD_SPREAD,
700 					     "not using spread ssd allocation scheme");
701 			break;
702 		case Opt_barrier:
703 			btrfs_clear_and_info(info, NOBARRIER,
704 					     "turning on barriers");
705 			break;
706 		case Opt_nobarrier:
707 			btrfs_set_and_info(info, NOBARRIER,
708 					   "turning off barriers");
709 			break;
710 		case Opt_thread_pool:
711 			ret = match_int(&args[0], &intarg);
712 			if (ret) {
713 				goto out;
714 			} else if (intarg == 0) {
715 				ret = -EINVAL;
716 				goto out;
717 			}
718 			info->thread_pool_size = intarg;
719 			break;
720 		case Opt_max_inline:
721 			num = match_strdup(&args[0]);
722 			if (num) {
723 				info->max_inline = memparse(num, NULL);
724 				kfree(num);
725 
726 				if (info->max_inline) {
727 					info->max_inline = min_t(u64,
728 						info->max_inline,
729 						info->sectorsize);
730 				}
731 				btrfs_info(info, "max_inline at %llu",
732 					   info->max_inline);
733 			} else {
734 				ret = -ENOMEM;
735 				goto out;
736 			}
737 			break;
738 		case Opt_acl:
739 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
740 			info->sb->s_flags |= SB_POSIXACL;
741 			break;
742 #else
743 			btrfs_err(info, "support for ACL not compiled in!");
744 			ret = -EINVAL;
745 			goto out;
746 #endif
747 		case Opt_noacl:
748 			info->sb->s_flags &= ~SB_POSIXACL;
749 			break;
750 		case Opt_notreelog:
751 			btrfs_set_and_info(info, NOTREELOG,
752 					   "disabling tree log");
753 			break;
754 		case Opt_treelog:
755 			btrfs_clear_and_info(info, NOTREELOG,
756 					     "enabling tree log");
757 			break;
758 		case Opt_norecovery:
759 		case Opt_nologreplay:
760 			btrfs_warn(info,
761 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
762 			btrfs_set_and_info(info, NOLOGREPLAY,
763 					   "disabling log replay at mount time");
764 			break;
765 		case Opt_flushoncommit:
766 			btrfs_set_and_info(info, FLUSHONCOMMIT,
767 					   "turning on flush-on-commit");
768 			break;
769 		case Opt_noflushoncommit:
770 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
771 					     "turning off flush-on-commit");
772 			break;
773 		case Opt_ratio:
774 			ret = match_int(&args[0], &intarg);
775 			if (ret)
776 				goto out;
777 			info->metadata_ratio = intarg;
778 			btrfs_info(info, "metadata ratio %u",
779 				   info->metadata_ratio);
780 			break;
781 		case Opt_discard:
782 		case Opt_discard_mode:
783 			if (token == Opt_discard ||
784 			    strcmp(args[0].from, "sync") == 0) {
785 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
786 				btrfs_set_and_info(info, DISCARD_SYNC,
787 						   "turning on sync discard");
788 			} else if (strcmp(args[0].from, "async") == 0) {
789 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
790 				btrfs_set_and_info(info, DISCARD_ASYNC,
791 						   "turning on async discard");
792 			} else {
793 				ret = -EINVAL;
794 				goto out;
795 			}
796 			break;
797 		case Opt_nodiscard:
798 			btrfs_clear_and_info(info, DISCARD_SYNC,
799 					     "turning off discard");
800 			btrfs_clear_and_info(info, DISCARD_ASYNC,
801 					     "turning off async discard");
802 			break;
803 		case Opt_space_cache:
804 		case Opt_space_cache_version:
805 			if (token == Opt_space_cache ||
806 			    strcmp(args[0].from, "v1") == 0) {
807 				btrfs_clear_opt(info->mount_opt,
808 						FREE_SPACE_TREE);
809 				btrfs_set_and_info(info, SPACE_CACHE,
810 					   "enabling disk space caching");
811 			} else if (strcmp(args[0].from, "v2") == 0) {
812 				btrfs_clear_opt(info->mount_opt,
813 						SPACE_CACHE);
814 				btrfs_set_and_info(info, FREE_SPACE_TREE,
815 						   "enabling free space tree");
816 			} else {
817 				ret = -EINVAL;
818 				goto out;
819 			}
820 			break;
821 		case Opt_rescan_uuid_tree:
822 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
823 			break;
824 		case Opt_no_space_cache:
825 			if (btrfs_test_opt(info, SPACE_CACHE)) {
826 				btrfs_clear_and_info(info, SPACE_CACHE,
827 					     "disabling disk space caching");
828 			}
829 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
830 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
831 					     "disabling free space tree");
832 			}
833 			break;
834 		case Opt_inode_cache:
835 			btrfs_warn(info,
836 	"the 'inode_cache' option is deprecated and will have no effect from 5.11");
837 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
838 					   "enabling inode map caching");
839 			break;
840 		case Opt_noinode_cache:
841 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
842 					     "disabling inode map caching");
843 			break;
844 		case Opt_clear_cache:
845 			btrfs_set_and_info(info, CLEAR_CACHE,
846 					   "force clearing of disk cache");
847 			break;
848 		case Opt_user_subvol_rm_allowed:
849 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
850 			break;
851 		case Opt_enospc_debug:
852 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
853 			break;
854 		case Opt_noenospc_debug:
855 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
856 			break;
857 		case Opt_defrag:
858 			btrfs_set_and_info(info, AUTO_DEFRAG,
859 					   "enabling auto defrag");
860 			break;
861 		case Opt_nodefrag:
862 			btrfs_clear_and_info(info, AUTO_DEFRAG,
863 					     "disabling auto defrag");
864 			break;
865 		case Opt_recovery:
866 		case Opt_usebackuproot:
867 			btrfs_warn(info,
868 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
869 				   token == Opt_recovery ? "recovery" :
870 				   "usebackuproot");
871 			btrfs_info(info,
872 				   "trying to use backup root at mount time");
873 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
874 			break;
875 		case Opt_skip_balance:
876 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
877 			break;
878 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
879 		case Opt_check_integrity_including_extent_data:
880 			btrfs_info(info,
881 				   "enabling check integrity including extent data");
882 			btrfs_set_opt(info->mount_opt,
883 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
884 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
885 			break;
886 		case Opt_check_integrity:
887 			btrfs_info(info, "enabling check integrity");
888 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
889 			break;
890 		case Opt_check_integrity_print_mask:
891 			ret = match_int(&args[0], &intarg);
892 			if (ret)
893 				goto out;
894 			info->check_integrity_print_mask = intarg;
895 			btrfs_info(info, "check_integrity_print_mask 0x%x",
896 				   info->check_integrity_print_mask);
897 			break;
898 #else
899 		case Opt_check_integrity_including_extent_data:
900 		case Opt_check_integrity:
901 		case Opt_check_integrity_print_mask:
902 			btrfs_err(info,
903 				  "support for check_integrity* not compiled in!");
904 			ret = -EINVAL;
905 			goto out;
906 #endif
907 		case Opt_fatal_errors:
908 			if (strcmp(args[0].from, "panic") == 0)
909 				btrfs_set_opt(info->mount_opt,
910 					      PANIC_ON_FATAL_ERROR);
911 			else if (strcmp(args[0].from, "bug") == 0)
912 				btrfs_clear_opt(info->mount_opt,
913 					      PANIC_ON_FATAL_ERROR);
914 			else {
915 				ret = -EINVAL;
916 				goto out;
917 			}
918 			break;
919 		case Opt_commit_interval:
920 			intarg = 0;
921 			ret = match_int(&args[0], &intarg);
922 			if (ret)
923 				goto out;
924 			if (intarg == 0) {
925 				btrfs_info(info,
926 					   "using default commit interval %us",
927 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
928 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
929 			} else if (intarg > 300) {
930 				btrfs_warn(info, "excessive commit interval %d",
931 					   intarg);
932 			}
933 			info->commit_interval = intarg;
934 			break;
935 		case Opt_rescue:
936 			ret = parse_rescue_options(info, args[0].from);
937 			if (ret < 0)
938 				goto out;
939 			break;
940 #ifdef CONFIG_BTRFS_DEBUG
941 		case Opt_fragment_all:
942 			btrfs_info(info, "fragmenting all space");
943 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
944 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
945 			break;
946 		case Opt_fragment_metadata:
947 			btrfs_info(info, "fragmenting metadata");
948 			btrfs_set_opt(info->mount_opt,
949 				      FRAGMENT_METADATA);
950 			break;
951 		case Opt_fragment_data:
952 			btrfs_info(info, "fragmenting data");
953 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
954 			break;
955 #endif
956 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
957 		case Opt_ref_verify:
958 			btrfs_info(info, "doing ref verification");
959 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
960 			break;
961 #endif
962 		case Opt_err:
963 			btrfs_err(info, "unrecognized mount option '%s'", p);
964 			ret = -EINVAL;
965 			goto out;
966 		default:
967 			break;
968 		}
969 	}
970 check:
971 	/*
972 	 * Extra check for current option against current flag
973 	 */
974 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
975 		btrfs_err(info,
976 			  "nologreplay must be used with ro mount option");
977 		ret = -EINVAL;
978 	}
979 out:
980 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
981 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
982 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
983 		btrfs_err(info, "cannot disable free space tree");
984 		ret = -EINVAL;
985 
986 	}
987 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
988 		btrfs_info(info, "disk space caching is enabled");
989 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
990 		btrfs_info(info, "using free space tree");
991 	return ret;
992 }
993 
994 /*
995  * Parse mount options that are required early in the mount process.
996  *
997  * All other options will be parsed on much later in the mount process and
998  * only when we need to allocate a new super block.
999  */
btrfs_parse_device_options(const char * options,fmode_t flags,void * holder)1000 static int btrfs_parse_device_options(const char *options, fmode_t flags,
1001 				      void *holder)
1002 {
1003 	substring_t args[MAX_OPT_ARGS];
1004 	char *device_name, *opts, *orig, *p;
1005 	struct btrfs_device *device = NULL;
1006 	int error = 0;
1007 
1008 	lockdep_assert_held(&uuid_mutex);
1009 
1010 	if (!options)
1011 		return 0;
1012 
1013 	/*
1014 	 * strsep changes the string, duplicate it because btrfs_parse_options
1015 	 * gets called later
1016 	 */
1017 	opts = kstrdup(options, GFP_KERNEL);
1018 	if (!opts)
1019 		return -ENOMEM;
1020 	orig = opts;
1021 
1022 	while ((p = strsep(&opts, ",")) != NULL) {
1023 		int token;
1024 
1025 		if (!*p)
1026 			continue;
1027 
1028 		token = match_token(p, tokens, args);
1029 		if (token == Opt_device) {
1030 			device_name = match_strdup(&args[0]);
1031 			if (!device_name) {
1032 				error = -ENOMEM;
1033 				goto out;
1034 			}
1035 			device = btrfs_scan_one_device(device_name, flags,
1036 					holder);
1037 			kfree(device_name);
1038 			if (IS_ERR(device)) {
1039 				error = PTR_ERR(device);
1040 				goto out;
1041 			}
1042 		}
1043 	}
1044 
1045 out:
1046 	kfree(orig);
1047 	return error;
1048 }
1049 
1050 /*
1051  * Parse mount options that are related to subvolume id
1052  *
1053  * The value is later passed to mount_subvol()
1054  */
btrfs_parse_subvol_options(const char * options,char ** subvol_name,u64 * subvol_objectid)1055 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1056 		u64 *subvol_objectid)
1057 {
1058 	substring_t args[MAX_OPT_ARGS];
1059 	char *opts, *orig, *p;
1060 	int error = 0;
1061 	u64 subvolid;
1062 
1063 	if (!options)
1064 		return 0;
1065 
1066 	/*
1067 	 * strsep changes the string, duplicate it because
1068 	 * btrfs_parse_device_options gets called later
1069 	 */
1070 	opts = kstrdup(options, GFP_KERNEL);
1071 	if (!opts)
1072 		return -ENOMEM;
1073 	orig = opts;
1074 
1075 	while ((p = strsep(&opts, ",")) != NULL) {
1076 		int token;
1077 		if (!*p)
1078 			continue;
1079 
1080 		token = match_token(p, tokens, args);
1081 		switch (token) {
1082 		case Opt_subvol:
1083 			kfree(*subvol_name);
1084 			*subvol_name = match_strdup(&args[0]);
1085 			if (!*subvol_name) {
1086 				error = -ENOMEM;
1087 				goto out;
1088 			}
1089 			break;
1090 		case Opt_subvolid:
1091 			error = match_u64(&args[0], &subvolid);
1092 			if (error)
1093 				goto out;
1094 
1095 			/* we want the original fs_tree */
1096 			if (subvolid == 0)
1097 				subvolid = BTRFS_FS_TREE_OBJECTID;
1098 
1099 			*subvol_objectid = subvolid;
1100 			break;
1101 		default:
1102 			break;
1103 		}
1104 	}
1105 
1106 out:
1107 	kfree(orig);
1108 	return error;
1109 }
1110 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)1111 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1112 					  u64 subvol_objectid)
1113 {
1114 	struct btrfs_root *root = fs_info->tree_root;
1115 	struct btrfs_root *fs_root = NULL;
1116 	struct btrfs_root_ref *root_ref;
1117 	struct btrfs_inode_ref *inode_ref;
1118 	struct btrfs_key key;
1119 	struct btrfs_path *path = NULL;
1120 	char *name = NULL, *ptr;
1121 	u64 dirid;
1122 	int len;
1123 	int ret;
1124 
1125 	path = btrfs_alloc_path();
1126 	if (!path) {
1127 		ret = -ENOMEM;
1128 		goto err;
1129 	}
1130 	path->leave_spinning = 1;
1131 
1132 	name = kmalloc(PATH_MAX, GFP_KERNEL);
1133 	if (!name) {
1134 		ret = -ENOMEM;
1135 		goto err;
1136 	}
1137 	ptr = name + PATH_MAX - 1;
1138 	ptr[0] = '\0';
1139 
1140 	/*
1141 	 * Walk up the subvolume trees in the tree of tree roots by root
1142 	 * backrefs until we hit the top-level subvolume.
1143 	 */
1144 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1145 		key.objectid = subvol_objectid;
1146 		key.type = BTRFS_ROOT_BACKREF_KEY;
1147 		key.offset = (u64)-1;
1148 
1149 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1150 		if (ret < 0) {
1151 			goto err;
1152 		} else if (ret > 0) {
1153 			ret = btrfs_previous_item(root, path, subvol_objectid,
1154 						  BTRFS_ROOT_BACKREF_KEY);
1155 			if (ret < 0) {
1156 				goto err;
1157 			} else if (ret > 0) {
1158 				ret = -ENOENT;
1159 				goto err;
1160 			}
1161 		}
1162 
1163 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1164 		subvol_objectid = key.offset;
1165 
1166 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1167 					  struct btrfs_root_ref);
1168 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1169 		ptr -= len + 1;
1170 		if (ptr < name) {
1171 			ret = -ENAMETOOLONG;
1172 			goto err;
1173 		}
1174 		read_extent_buffer(path->nodes[0], ptr + 1,
1175 				   (unsigned long)(root_ref + 1), len);
1176 		ptr[0] = '/';
1177 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1178 		btrfs_release_path(path);
1179 
1180 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1181 		if (IS_ERR(fs_root)) {
1182 			ret = PTR_ERR(fs_root);
1183 			fs_root = NULL;
1184 			goto err;
1185 		}
1186 
1187 		/*
1188 		 * Walk up the filesystem tree by inode refs until we hit the
1189 		 * root directory.
1190 		 */
1191 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1192 			key.objectid = dirid;
1193 			key.type = BTRFS_INODE_REF_KEY;
1194 			key.offset = (u64)-1;
1195 
1196 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1197 			if (ret < 0) {
1198 				goto err;
1199 			} else if (ret > 0) {
1200 				ret = btrfs_previous_item(fs_root, path, dirid,
1201 							  BTRFS_INODE_REF_KEY);
1202 				if (ret < 0) {
1203 					goto err;
1204 				} else if (ret > 0) {
1205 					ret = -ENOENT;
1206 					goto err;
1207 				}
1208 			}
1209 
1210 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1211 			dirid = key.offset;
1212 
1213 			inode_ref = btrfs_item_ptr(path->nodes[0],
1214 						   path->slots[0],
1215 						   struct btrfs_inode_ref);
1216 			len = btrfs_inode_ref_name_len(path->nodes[0],
1217 						       inode_ref);
1218 			ptr -= len + 1;
1219 			if (ptr < name) {
1220 				ret = -ENAMETOOLONG;
1221 				goto err;
1222 			}
1223 			read_extent_buffer(path->nodes[0], ptr + 1,
1224 					   (unsigned long)(inode_ref + 1), len);
1225 			ptr[0] = '/';
1226 			btrfs_release_path(path);
1227 		}
1228 		btrfs_put_root(fs_root);
1229 		fs_root = NULL;
1230 	}
1231 
1232 	btrfs_free_path(path);
1233 	if (ptr == name + PATH_MAX - 1) {
1234 		name[0] = '/';
1235 		name[1] = '\0';
1236 	} else {
1237 		memmove(name, ptr, name + PATH_MAX - ptr);
1238 	}
1239 	return name;
1240 
1241 err:
1242 	btrfs_put_root(fs_root);
1243 	btrfs_free_path(path);
1244 	kfree(name);
1245 	return ERR_PTR(ret);
1246 }
1247 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1248 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1249 {
1250 	struct btrfs_root *root = fs_info->tree_root;
1251 	struct btrfs_dir_item *di;
1252 	struct btrfs_path *path;
1253 	struct btrfs_key location;
1254 	u64 dir_id;
1255 
1256 	path = btrfs_alloc_path();
1257 	if (!path)
1258 		return -ENOMEM;
1259 	path->leave_spinning = 1;
1260 
1261 	/*
1262 	 * Find the "default" dir item which points to the root item that we
1263 	 * will mount by default if we haven't been given a specific subvolume
1264 	 * to mount.
1265 	 */
1266 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1267 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1268 	if (IS_ERR(di)) {
1269 		btrfs_free_path(path);
1270 		return PTR_ERR(di);
1271 	}
1272 	if (!di) {
1273 		/*
1274 		 * Ok the default dir item isn't there.  This is weird since
1275 		 * it's always been there, but don't freak out, just try and
1276 		 * mount the top-level subvolume.
1277 		 */
1278 		btrfs_free_path(path);
1279 		*objectid = BTRFS_FS_TREE_OBJECTID;
1280 		return 0;
1281 	}
1282 
1283 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1284 	btrfs_free_path(path);
1285 	*objectid = location.objectid;
1286 	return 0;
1287 }
1288 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data)1289 static int btrfs_fill_super(struct super_block *sb,
1290 			    struct btrfs_fs_devices *fs_devices,
1291 			    void *data)
1292 {
1293 	struct inode *inode;
1294 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1295 	int err;
1296 
1297 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1298 	sb->s_magic = BTRFS_SUPER_MAGIC;
1299 	sb->s_op = &btrfs_super_ops;
1300 	sb->s_d_op = &btrfs_dentry_operations;
1301 	sb->s_export_op = &btrfs_export_ops;
1302 	sb->s_xattr = btrfs_xattr_handlers;
1303 	sb->s_time_gran = 1;
1304 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1305 	sb->s_flags |= SB_POSIXACL;
1306 #endif
1307 	sb->s_flags |= SB_I_VERSION;
1308 	sb->s_iflags |= SB_I_CGROUPWB;
1309 
1310 	err = super_setup_bdi(sb);
1311 	if (err) {
1312 		btrfs_err(fs_info, "super_setup_bdi failed");
1313 		return err;
1314 	}
1315 
1316 	err = open_ctree(sb, fs_devices, (char *)data);
1317 	if (err) {
1318 		btrfs_err(fs_info, "open_ctree failed");
1319 		return err;
1320 	}
1321 
1322 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1323 	if (IS_ERR(inode)) {
1324 		err = PTR_ERR(inode);
1325 		goto fail_close;
1326 	}
1327 
1328 	sb->s_root = d_make_root(inode);
1329 	if (!sb->s_root) {
1330 		err = -ENOMEM;
1331 		goto fail_close;
1332 	}
1333 
1334 	cleancache_init_fs(sb);
1335 	sb->s_flags |= SB_ACTIVE;
1336 	return 0;
1337 
1338 fail_close:
1339 	close_ctree(fs_info);
1340 	return err;
1341 }
1342 
btrfs_sync_fs(struct super_block * sb,int wait)1343 int btrfs_sync_fs(struct super_block *sb, int wait)
1344 {
1345 	struct btrfs_trans_handle *trans;
1346 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1347 	struct btrfs_root *root = fs_info->tree_root;
1348 
1349 	trace_btrfs_sync_fs(fs_info, wait);
1350 
1351 	if (!wait) {
1352 		filemap_flush(fs_info->btree_inode->i_mapping);
1353 		return 0;
1354 	}
1355 
1356 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1357 
1358 	trans = btrfs_attach_transaction_barrier(root);
1359 	if (IS_ERR(trans)) {
1360 		/* no transaction, don't bother */
1361 		if (PTR_ERR(trans) == -ENOENT) {
1362 			/*
1363 			 * Exit unless we have some pending changes
1364 			 * that need to go through commit
1365 			 */
1366 			if (fs_info->pending_changes == 0)
1367 				return 0;
1368 			/*
1369 			 * A non-blocking test if the fs is frozen. We must not
1370 			 * start a new transaction here otherwise a deadlock
1371 			 * happens. The pending operations are delayed to the
1372 			 * next commit after thawing.
1373 			 */
1374 			if (sb_start_write_trylock(sb))
1375 				sb_end_write(sb);
1376 			else
1377 				return 0;
1378 			trans = btrfs_start_transaction(root, 0);
1379 		}
1380 		if (IS_ERR(trans))
1381 			return PTR_ERR(trans);
1382 	}
1383 	return btrfs_commit_transaction(trans);
1384 }
1385 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1386 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1387 {
1388 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1389 	const char *compress_type;
1390 	const char *subvol_name;
1391 
1392 	if (btrfs_test_opt(info, DEGRADED))
1393 		seq_puts(seq, ",degraded");
1394 	if (btrfs_test_opt(info, NODATASUM))
1395 		seq_puts(seq, ",nodatasum");
1396 	if (btrfs_test_opt(info, NODATACOW))
1397 		seq_puts(seq, ",nodatacow");
1398 	if (btrfs_test_opt(info, NOBARRIER))
1399 		seq_puts(seq, ",nobarrier");
1400 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1401 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1402 	if (info->thread_pool_size !=  min_t(unsigned long,
1403 					     num_online_cpus() + 2, 8))
1404 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1405 	if (btrfs_test_opt(info, COMPRESS)) {
1406 		compress_type = btrfs_compress_type2str(info->compress_type);
1407 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1408 			seq_printf(seq, ",compress-force=%s", compress_type);
1409 		else
1410 			seq_printf(seq, ",compress=%s", compress_type);
1411 		if (info->compress_level)
1412 			seq_printf(seq, ":%d", info->compress_level);
1413 	}
1414 	if (btrfs_test_opt(info, NOSSD))
1415 		seq_puts(seq, ",nossd");
1416 	if (btrfs_test_opt(info, SSD_SPREAD))
1417 		seq_puts(seq, ",ssd_spread");
1418 	else if (btrfs_test_opt(info, SSD))
1419 		seq_puts(seq, ",ssd");
1420 	if (btrfs_test_opt(info, NOTREELOG))
1421 		seq_puts(seq, ",notreelog");
1422 	if (btrfs_test_opt(info, NOLOGREPLAY))
1423 		seq_puts(seq, ",rescue=nologreplay");
1424 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1425 		seq_puts(seq, ",flushoncommit");
1426 	if (btrfs_test_opt(info, DISCARD_SYNC))
1427 		seq_puts(seq, ",discard");
1428 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1429 		seq_puts(seq, ",discard=async");
1430 	if (!(info->sb->s_flags & SB_POSIXACL))
1431 		seq_puts(seq, ",noacl");
1432 	if (btrfs_test_opt(info, SPACE_CACHE))
1433 		seq_puts(seq, ",space_cache");
1434 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1435 		seq_puts(seq, ",space_cache=v2");
1436 	else
1437 		seq_puts(seq, ",nospace_cache");
1438 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1439 		seq_puts(seq, ",rescan_uuid_tree");
1440 	if (btrfs_test_opt(info, CLEAR_CACHE))
1441 		seq_puts(seq, ",clear_cache");
1442 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1443 		seq_puts(seq, ",user_subvol_rm_allowed");
1444 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1445 		seq_puts(seq, ",enospc_debug");
1446 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1447 		seq_puts(seq, ",autodefrag");
1448 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1449 		seq_puts(seq, ",inode_cache");
1450 	if (btrfs_test_opt(info, SKIP_BALANCE))
1451 		seq_puts(seq, ",skip_balance");
1452 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1453 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1454 		seq_puts(seq, ",check_int_data");
1455 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1456 		seq_puts(seq, ",check_int");
1457 	if (info->check_integrity_print_mask)
1458 		seq_printf(seq, ",check_int_print_mask=%d",
1459 				info->check_integrity_print_mask);
1460 #endif
1461 	if (info->metadata_ratio)
1462 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1463 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1464 		seq_puts(seq, ",fatal_errors=panic");
1465 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1466 		seq_printf(seq, ",commit=%u", info->commit_interval);
1467 #ifdef CONFIG_BTRFS_DEBUG
1468 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1469 		seq_puts(seq, ",fragment=data");
1470 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1471 		seq_puts(seq, ",fragment=metadata");
1472 #endif
1473 	if (btrfs_test_opt(info, REF_VERIFY))
1474 		seq_puts(seq, ",ref_verify");
1475 	seq_printf(seq, ",subvolid=%llu",
1476 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1477 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1478 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1479 	if (!IS_ERR(subvol_name)) {
1480 		seq_puts(seq, ",subvol=");
1481 		seq_escape(seq, subvol_name, " \t\n\\");
1482 		kfree(subvol_name);
1483 	}
1484 	return 0;
1485 }
1486 
btrfs_test_super(struct super_block * s,void * data)1487 static int btrfs_test_super(struct super_block *s, void *data)
1488 {
1489 	struct btrfs_fs_info *p = data;
1490 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1491 
1492 	return fs_info->fs_devices == p->fs_devices;
1493 }
1494 
btrfs_set_super(struct super_block * s,void * data)1495 static int btrfs_set_super(struct super_block *s, void *data)
1496 {
1497 	int err = set_anon_super(s, data);
1498 	if (!err)
1499 		s->s_fs_info = data;
1500 	return err;
1501 }
1502 
1503 /*
1504  * subvolumes are identified by ino 256
1505  */
is_subvolume_inode(struct inode * inode)1506 static inline int is_subvolume_inode(struct inode *inode)
1507 {
1508 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1509 		return 1;
1510 	return 0;
1511 }
1512 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1513 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1514 				   struct vfsmount *mnt)
1515 {
1516 	struct dentry *root;
1517 	int ret;
1518 
1519 	if (!subvol_name) {
1520 		if (!subvol_objectid) {
1521 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1522 							  &subvol_objectid);
1523 			if (ret) {
1524 				root = ERR_PTR(ret);
1525 				goto out;
1526 			}
1527 		}
1528 		subvol_name = btrfs_get_subvol_name_from_objectid(
1529 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1530 		if (IS_ERR(subvol_name)) {
1531 			root = ERR_CAST(subvol_name);
1532 			subvol_name = NULL;
1533 			goto out;
1534 		}
1535 
1536 	}
1537 
1538 	root = mount_subtree(mnt, subvol_name);
1539 	/* mount_subtree() drops our reference on the vfsmount. */
1540 	mnt = NULL;
1541 
1542 	if (!IS_ERR(root)) {
1543 		struct super_block *s = root->d_sb;
1544 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1545 		struct inode *root_inode = d_inode(root);
1546 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1547 
1548 		ret = 0;
1549 		if (!is_subvolume_inode(root_inode)) {
1550 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1551 			       subvol_name);
1552 			ret = -EINVAL;
1553 		}
1554 		if (subvol_objectid && root_objectid != subvol_objectid) {
1555 			/*
1556 			 * This will also catch a race condition where a
1557 			 * subvolume which was passed by ID is renamed and
1558 			 * another subvolume is renamed over the old location.
1559 			 */
1560 			btrfs_err(fs_info,
1561 				  "subvol '%s' does not match subvolid %llu",
1562 				  subvol_name, subvol_objectid);
1563 			ret = -EINVAL;
1564 		}
1565 		if (ret) {
1566 			dput(root);
1567 			root = ERR_PTR(ret);
1568 			deactivate_locked_super(s);
1569 		}
1570 	}
1571 
1572 out:
1573 	mntput(mnt);
1574 	kfree(subvol_name);
1575 	return root;
1576 }
1577 
1578 /*
1579  * Find a superblock for the given device / mount point.
1580  *
1581  * Note: This is based on mount_bdev from fs/super.c with a few additions
1582  *       for multiple device setup.  Make sure to keep it in sync.
1583  */
btrfs_mount_root(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1584 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1585 		int flags, const char *device_name, void *data)
1586 {
1587 	struct block_device *bdev = NULL;
1588 	struct super_block *s;
1589 	struct btrfs_device *device = NULL;
1590 	struct btrfs_fs_devices *fs_devices = NULL;
1591 	struct btrfs_fs_info *fs_info = NULL;
1592 	void *new_sec_opts = NULL;
1593 	fmode_t mode = FMODE_READ;
1594 	int error = 0;
1595 
1596 	if (!(flags & SB_RDONLY))
1597 		mode |= FMODE_WRITE;
1598 
1599 	if (data) {
1600 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1601 		if (error)
1602 			return ERR_PTR(error);
1603 	}
1604 
1605 	/*
1606 	 * Setup a dummy root and fs_info for test/set super.  This is because
1607 	 * we don't actually fill this stuff out until open_ctree, but we need
1608 	 * then open_ctree will properly initialize the file system specific
1609 	 * settings later.  btrfs_init_fs_info initializes the static elements
1610 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1611 	 * superblock with our given fs_devices later on at sget() time.
1612 	 */
1613 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1614 	if (!fs_info) {
1615 		error = -ENOMEM;
1616 		goto error_sec_opts;
1617 	}
1618 	btrfs_init_fs_info(fs_info);
1619 
1620 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1621 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1622 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1623 		error = -ENOMEM;
1624 		goto error_fs_info;
1625 	}
1626 
1627 	mutex_lock(&uuid_mutex);
1628 	error = btrfs_parse_device_options(data, mode, fs_type);
1629 	if (error) {
1630 		mutex_unlock(&uuid_mutex);
1631 		goto error_fs_info;
1632 	}
1633 
1634 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1635 	if (IS_ERR(device)) {
1636 		mutex_unlock(&uuid_mutex);
1637 		error = PTR_ERR(device);
1638 		goto error_fs_info;
1639 	}
1640 
1641 	fs_devices = device->fs_devices;
1642 	fs_info->fs_devices = fs_devices;
1643 
1644 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1645 	mutex_unlock(&uuid_mutex);
1646 	if (error)
1647 		goto error_fs_info;
1648 
1649 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1650 		error = -EACCES;
1651 		goto error_close_devices;
1652 	}
1653 
1654 	bdev = fs_devices->latest_bdev;
1655 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1656 		 fs_info);
1657 	if (IS_ERR(s)) {
1658 		error = PTR_ERR(s);
1659 		goto error_close_devices;
1660 	}
1661 
1662 	if (s->s_root) {
1663 		btrfs_close_devices(fs_devices);
1664 		btrfs_free_fs_info(fs_info);
1665 		if ((flags ^ s->s_flags) & SB_RDONLY)
1666 			error = -EBUSY;
1667 	} else {
1668 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1669 		btrfs_sb(s)->bdev_holder = fs_type;
1670 		if (!strstr(crc32c_impl(), "generic"))
1671 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1672 		error = btrfs_fill_super(s, fs_devices, data);
1673 	}
1674 	if (!error)
1675 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1676 	security_free_mnt_opts(&new_sec_opts);
1677 	if (error) {
1678 		deactivate_locked_super(s);
1679 		return ERR_PTR(error);
1680 	}
1681 
1682 	return dget(s->s_root);
1683 
1684 error_close_devices:
1685 	btrfs_close_devices(fs_devices);
1686 error_fs_info:
1687 	btrfs_free_fs_info(fs_info);
1688 error_sec_opts:
1689 	security_free_mnt_opts(&new_sec_opts);
1690 	return ERR_PTR(error);
1691 }
1692 
1693 /*
1694  * Mount function which is called by VFS layer.
1695  *
1696  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1697  * which needs vfsmount* of device's root (/).  This means device's root has to
1698  * be mounted internally in any case.
1699  *
1700  * Operation flow:
1701  *   1. Parse subvol id related options for later use in mount_subvol().
1702  *
1703  *   2. Mount device's root (/) by calling vfs_kern_mount().
1704  *
1705  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1706  *      first place. In order to avoid calling btrfs_mount() again, we use
1707  *      different file_system_type which is not registered to VFS by
1708  *      register_filesystem() (btrfs_root_fs_type). As a result,
1709  *      btrfs_mount_root() is called. The return value will be used by
1710  *      mount_subtree() in mount_subvol().
1711  *
1712  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1713  *      "btrfs subvolume set-default", mount_subvol() is called always.
1714  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1715 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1716 		const char *device_name, void *data)
1717 {
1718 	struct vfsmount *mnt_root;
1719 	struct dentry *root;
1720 	char *subvol_name = NULL;
1721 	u64 subvol_objectid = 0;
1722 	int error = 0;
1723 
1724 	error = btrfs_parse_subvol_options(data, &subvol_name,
1725 					&subvol_objectid);
1726 	if (error) {
1727 		kfree(subvol_name);
1728 		return ERR_PTR(error);
1729 	}
1730 
1731 	/* mount device's root (/) */
1732 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1733 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1734 		if (flags & SB_RDONLY) {
1735 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1736 				flags & ~SB_RDONLY, device_name, data);
1737 		} else {
1738 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1739 				flags | SB_RDONLY, device_name, data);
1740 			if (IS_ERR(mnt_root)) {
1741 				root = ERR_CAST(mnt_root);
1742 				kfree(subvol_name);
1743 				goto out;
1744 			}
1745 
1746 			down_write(&mnt_root->mnt_sb->s_umount);
1747 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1748 			up_write(&mnt_root->mnt_sb->s_umount);
1749 			if (error < 0) {
1750 				root = ERR_PTR(error);
1751 				mntput(mnt_root);
1752 				kfree(subvol_name);
1753 				goto out;
1754 			}
1755 		}
1756 	}
1757 	if (IS_ERR(mnt_root)) {
1758 		root = ERR_CAST(mnt_root);
1759 		kfree(subvol_name);
1760 		goto out;
1761 	}
1762 
1763 	/* mount_subvol() will free subvol_name and mnt_root */
1764 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1765 
1766 out:
1767 	return root;
1768 }
1769 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1770 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1771 				     u32 new_pool_size, u32 old_pool_size)
1772 {
1773 	if (new_pool_size == old_pool_size)
1774 		return;
1775 
1776 	fs_info->thread_pool_size = new_pool_size;
1777 
1778 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1779 	       old_pool_size, new_pool_size);
1780 
1781 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1782 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1783 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1784 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1785 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1786 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1787 				new_pool_size);
1788 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1789 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1790 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1791 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1792 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1793 				new_pool_size);
1794 }
1795 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1796 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1797 				       unsigned long old_opts, int flags)
1798 {
1799 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1800 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1801 	     (flags & SB_RDONLY))) {
1802 		/* wait for any defraggers to finish */
1803 		wait_event(fs_info->transaction_wait,
1804 			   (atomic_read(&fs_info->defrag_running) == 0));
1805 		if (flags & SB_RDONLY)
1806 			sync_filesystem(fs_info->sb);
1807 	}
1808 }
1809 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1810 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1811 					 unsigned long old_opts)
1812 {
1813 	/*
1814 	 * We need to cleanup all defragable inodes if the autodefragment is
1815 	 * close or the filesystem is read only.
1816 	 */
1817 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1818 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1819 		btrfs_cleanup_defrag_inodes(fs_info);
1820 	}
1821 
1822 	/* If we toggled discard async */
1823 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1824 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1825 		btrfs_discard_resume(fs_info);
1826 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1827 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1828 		btrfs_discard_cleanup(fs_info);
1829 }
1830 
btrfs_remount(struct super_block * sb,int * flags,char * data)1831 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1832 {
1833 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1834 	struct btrfs_root *root = fs_info->tree_root;
1835 	unsigned old_flags = sb->s_flags;
1836 	unsigned long old_opts = fs_info->mount_opt;
1837 	unsigned long old_compress_type = fs_info->compress_type;
1838 	u64 old_max_inline = fs_info->max_inline;
1839 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1840 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1841 	int ret;
1842 
1843 	sync_filesystem(sb);
1844 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1845 
1846 	if (data) {
1847 		void *new_sec_opts = NULL;
1848 
1849 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1850 		if (!ret)
1851 			ret = security_sb_remount(sb, new_sec_opts);
1852 		security_free_mnt_opts(&new_sec_opts);
1853 		if (ret)
1854 			goto restore;
1855 	}
1856 
1857 	ret = btrfs_parse_options(fs_info, data, *flags);
1858 	if (ret)
1859 		goto restore;
1860 
1861 	btrfs_remount_begin(fs_info, old_opts, *flags);
1862 	btrfs_resize_thread_pool(fs_info,
1863 		fs_info->thread_pool_size, old_thread_pool_size);
1864 
1865 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1866 		goto out;
1867 
1868 	if (*flags & SB_RDONLY) {
1869 		/*
1870 		 * this also happens on 'umount -rf' or on shutdown, when
1871 		 * the filesystem is busy.
1872 		 */
1873 		cancel_work_sync(&fs_info->async_reclaim_work);
1874 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1875 
1876 		btrfs_discard_cleanup(fs_info);
1877 
1878 		/* wait for the uuid_scan task to finish */
1879 		down(&fs_info->uuid_tree_rescan_sem);
1880 		/* avoid complains from lockdep et al. */
1881 		up(&fs_info->uuid_tree_rescan_sem);
1882 
1883 		sb->s_flags |= SB_RDONLY;
1884 
1885 		/*
1886 		 * Setting SB_RDONLY will put the cleaner thread to
1887 		 * sleep at the next loop if it's already active.
1888 		 * If it's already asleep, we'll leave unused block
1889 		 * groups on disk until we're mounted read-write again
1890 		 * unless we clean them up here.
1891 		 */
1892 		btrfs_delete_unused_bgs(fs_info);
1893 
1894 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1895 		btrfs_scrub_cancel(fs_info);
1896 		btrfs_pause_balance(fs_info);
1897 
1898 		ret = btrfs_commit_super(fs_info);
1899 		if (ret)
1900 			goto restore;
1901 	} else {
1902 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1903 			btrfs_err(fs_info,
1904 				"Remounting read-write after error is not allowed");
1905 			ret = -EINVAL;
1906 			goto restore;
1907 		}
1908 		if (fs_info->fs_devices->rw_devices == 0) {
1909 			ret = -EACCES;
1910 			goto restore;
1911 		}
1912 
1913 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1914 			btrfs_warn(fs_info,
1915 		"too many missing devices, writable remount is not allowed");
1916 			ret = -EACCES;
1917 			goto restore;
1918 		}
1919 
1920 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1921 			btrfs_warn(fs_info,
1922 		"mount required to replay tree-log, cannot remount read-write");
1923 			ret = -EINVAL;
1924 			goto restore;
1925 		}
1926 
1927 		ret = btrfs_cleanup_fs_roots(fs_info);
1928 		if (ret)
1929 			goto restore;
1930 
1931 		/* recover relocation */
1932 		mutex_lock(&fs_info->cleaner_mutex);
1933 		ret = btrfs_recover_relocation(root);
1934 		mutex_unlock(&fs_info->cleaner_mutex);
1935 		if (ret)
1936 			goto restore;
1937 
1938 		ret = btrfs_resume_balance_async(fs_info);
1939 		if (ret)
1940 			goto restore;
1941 
1942 		ret = btrfs_resume_dev_replace_async(fs_info);
1943 		if (ret) {
1944 			btrfs_warn(fs_info, "failed to resume dev_replace");
1945 			goto restore;
1946 		}
1947 
1948 		btrfs_qgroup_rescan_resume(fs_info);
1949 
1950 		if (!fs_info->uuid_root) {
1951 			btrfs_info(fs_info, "creating UUID tree");
1952 			ret = btrfs_create_uuid_tree(fs_info);
1953 			if (ret) {
1954 				btrfs_warn(fs_info,
1955 					   "failed to create the UUID tree %d",
1956 					   ret);
1957 				goto restore;
1958 			}
1959 		}
1960 		sb->s_flags &= ~SB_RDONLY;
1961 
1962 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1963 	}
1964 out:
1965 	/*
1966 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1967 	 * since the absence of the flag means it can be toggled off by remount.
1968 	 */
1969 	*flags |= SB_I_VERSION;
1970 
1971 	wake_up_process(fs_info->transaction_kthread);
1972 	btrfs_remount_cleanup(fs_info, old_opts);
1973 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1974 
1975 	return 0;
1976 
1977 restore:
1978 	/* We've hit an error - don't reset SB_RDONLY */
1979 	if (sb_rdonly(sb))
1980 		old_flags |= SB_RDONLY;
1981 	sb->s_flags = old_flags;
1982 	fs_info->mount_opt = old_opts;
1983 	fs_info->compress_type = old_compress_type;
1984 	fs_info->max_inline = old_max_inline;
1985 	btrfs_resize_thread_pool(fs_info,
1986 		old_thread_pool_size, fs_info->thread_pool_size);
1987 	fs_info->metadata_ratio = old_metadata_ratio;
1988 	btrfs_remount_cleanup(fs_info, old_opts);
1989 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1990 
1991 	return ret;
1992 }
1993 
1994 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)1995 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1996 				       const void *dev_info2)
1997 {
1998 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1999 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
2000 		return -1;
2001 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2002 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2003 		return 1;
2004 	else
2005 	return 0;
2006 }
2007 
2008 /*
2009  * sort the devices by max_avail, in which max free extent size of each device
2010  * is stored.(Descending Sort)
2011  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)2012 static inline void btrfs_descending_sort_devices(
2013 					struct btrfs_device_info *devices,
2014 					size_t nr_devices)
2015 {
2016 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2017 	     btrfs_cmp_device_free_bytes, NULL);
2018 }
2019 
2020 /*
2021  * The helper to calc the free space on the devices that can be used to store
2022  * file data.
2023  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)2024 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2025 					      u64 *free_bytes)
2026 {
2027 	struct btrfs_device_info *devices_info;
2028 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2029 	struct btrfs_device *device;
2030 	u64 type;
2031 	u64 avail_space;
2032 	u64 min_stripe_size;
2033 	int num_stripes = 1;
2034 	int i = 0, nr_devices;
2035 	const struct btrfs_raid_attr *rattr;
2036 
2037 	/*
2038 	 * We aren't under the device list lock, so this is racy-ish, but good
2039 	 * enough for our purposes.
2040 	 */
2041 	nr_devices = fs_info->fs_devices->open_devices;
2042 	if (!nr_devices) {
2043 		smp_mb();
2044 		nr_devices = fs_info->fs_devices->open_devices;
2045 		ASSERT(nr_devices);
2046 		if (!nr_devices) {
2047 			*free_bytes = 0;
2048 			return 0;
2049 		}
2050 	}
2051 
2052 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2053 			       GFP_KERNEL);
2054 	if (!devices_info)
2055 		return -ENOMEM;
2056 
2057 	/* calc min stripe number for data space allocation */
2058 	type = btrfs_data_alloc_profile(fs_info);
2059 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2060 
2061 	if (type & BTRFS_BLOCK_GROUP_RAID0)
2062 		num_stripes = nr_devices;
2063 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2064 		num_stripes = 2;
2065 	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2066 		num_stripes = 3;
2067 	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2068 		num_stripes = 4;
2069 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2070 		num_stripes = 4;
2071 
2072 	/* Adjust for more than 1 stripe per device */
2073 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2074 
2075 	rcu_read_lock();
2076 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2077 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2078 						&device->dev_state) ||
2079 		    !device->bdev ||
2080 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2081 			continue;
2082 
2083 		if (i >= nr_devices)
2084 			break;
2085 
2086 		avail_space = device->total_bytes - device->bytes_used;
2087 
2088 		/* align with stripe_len */
2089 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2090 
2091 		/*
2092 		 * In order to avoid overwriting the superblock on the drive,
2093 		 * btrfs starts at an offset of at least 1MB when doing chunk
2094 		 * allocation.
2095 		 *
2096 		 * This ensures we have at least min_stripe_size free space
2097 		 * after excluding 1MB.
2098 		 */
2099 		if (avail_space <= SZ_1M + min_stripe_size)
2100 			continue;
2101 
2102 		avail_space -= SZ_1M;
2103 
2104 		devices_info[i].dev = device;
2105 		devices_info[i].max_avail = avail_space;
2106 
2107 		i++;
2108 	}
2109 	rcu_read_unlock();
2110 
2111 	nr_devices = i;
2112 
2113 	btrfs_descending_sort_devices(devices_info, nr_devices);
2114 
2115 	i = nr_devices - 1;
2116 	avail_space = 0;
2117 	while (nr_devices >= rattr->devs_min) {
2118 		num_stripes = min(num_stripes, nr_devices);
2119 
2120 		if (devices_info[i].max_avail >= min_stripe_size) {
2121 			int j;
2122 			u64 alloc_size;
2123 
2124 			avail_space += devices_info[i].max_avail * num_stripes;
2125 			alloc_size = devices_info[i].max_avail;
2126 			for (j = i + 1 - num_stripes; j <= i; j++)
2127 				devices_info[j].max_avail -= alloc_size;
2128 		}
2129 		i--;
2130 		nr_devices--;
2131 	}
2132 
2133 	kfree(devices_info);
2134 	*free_bytes = avail_space;
2135 	return 0;
2136 }
2137 
2138 /*
2139  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2140  *
2141  * If there's a redundant raid level at DATA block groups, use the respective
2142  * multiplier to scale the sizes.
2143  *
2144  * Unused device space usage is based on simulating the chunk allocator
2145  * algorithm that respects the device sizes and order of allocations.  This is
2146  * a close approximation of the actual use but there are other factors that may
2147  * change the result (like a new metadata chunk).
2148  *
2149  * If metadata is exhausted, f_bavail will be 0.
2150  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2151 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2152 {
2153 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2154 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2155 	struct btrfs_space_info *found;
2156 	u64 total_used = 0;
2157 	u64 total_free_data = 0;
2158 	u64 total_free_meta = 0;
2159 	int bits = dentry->d_sb->s_blocksize_bits;
2160 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2161 	unsigned factor = 1;
2162 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2163 	int ret;
2164 	u64 thresh = 0;
2165 	int mixed = 0;
2166 
2167 	list_for_each_entry(found, &fs_info->space_info, list) {
2168 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2169 			int i;
2170 
2171 			total_free_data += found->disk_total - found->disk_used;
2172 			total_free_data -=
2173 				btrfs_account_ro_block_groups_free_space(found);
2174 
2175 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2176 				if (!list_empty(&found->block_groups[i]))
2177 					factor = btrfs_bg_type_to_factor(
2178 						btrfs_raid_array[i].bg_flag);
2179 			}
2180 		}
2181 
2182 		/*
2183 		 * Metadata in mixed block goup profiles are accounted in data
2184 		 */
2185 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2186 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2187 				mixed = 1;
2188 			else
2189 				total_free_meta += found->disk_total -
2190 					found->disk_used;
2191 		}
2192 
2193 		total_used += found->disk_used;
2194 	}
2195 
2196 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2197 	buf->f_blocks >>= bits;
2198 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2199 
2200 	/* Account global block reserve as used, it's in logical size already */
2201 	spin_lock(&block_rsv->lock);
2202 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2203 	if (buf->f_bfree >= block_rsv->size >> bits)
2204 		buf->f_bfree -= block_rsv->size >> bits;
2205 	else
2206 		buf->f_bfree = 0;
2207 	spin_unlock(&block_rsv->lock);
2208 
2209 	buf->f_bavail = div_u64(total_free_data, factor);
2210 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2211 	if (ret)
2212 		return ret;
2213 	buf->f_bavail += div_u64(total_free_data, factor);
2214 	buf->f_bavail = buf->f_bavail >> bits;
2215 
2216 	/*
2217 	 * We calculate the remaining metadata space minus global reserve. If
2218 	 * this is (supposedly) smaller than zero, there's no space. But this
2219 	 * does not hold in practice, the exhausted state happens where's still
2220 	 * some positive delta. So we apply some guesswork and compare the
2221 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2222 	 *
2223 	 * We probably cannot calculate the exact threshold value because this
2224 	 * depends on the internal reservations requested by various
2225 	 * operations, so some operations that consume a few metadata will
2226 	 * succeed even if the Avail is zero. But this is better than the other
2227 	 * way around.
2228 	 */
2229 	thresh = SZ_4M;
2230 
2231 	/*
2232 	 * We only want to claim there's no available space if we can no longer
2233 	 * allocate chunks for our metadata profile and our global reserve will
2234 	 * not fit in the free metadata space.  If we aren't ->full then we
2235 	 * still can allocate chunks and thus are fine using the currently
2236 	 * calculated f_bavail.
2237 	 */
2238 	if (!mixed && block_rsv->space_info->full &&
2239 	    total_free_meta - thresh < block_rsv->size)
2240 		buf->f_bavail = 0;
2241 
2242 	buf->f_type = BTRFS_SUPER_MAGIC;
2243 	buf->f_bsize = dentry->d_sb->s_blocksize;
2244 	buf->f_namelen = BTRFS_NAME_LEN;
2245 
2246 	/* We treat it as constant endianness (it doesn't matter _which_)
2247 	   because we want the fsid to come out the same whether mounted
2248 	   on a big-endian or little-endian host */
2249 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2250 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2251 	/* Mask in the root object ID too, to disambiguate subvols */
2252 	buf->f_fsid.val[0] ^=
2253 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2254 	buf->f_fsid.val[1] ^=
2255 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2256 
2257 	return 0;
2258 }
2259 
btrfs_kill_super(struct super_block * sb)2260 static void btrfs_kill_super(struct super_block *sb)
2261 {
2262 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2263 	kill_anon_super(sb);
2264 	btrfs_free_fs_info(fs_info);
2265 }
2266 
2267 static struct file_system_type btrfs_fs_type = {
2268 	.owner		= THIS_MODULE,
2269 	.name		= "btrfs",
2270 	.mount		= btrfs_mount,
2271 	.kill_sb	= btrfs_kill_super,
2272 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2273 };
2274 
2275 static struct file_system_type btrfs_root_fs_type = {
2276 	.owner		= THIS_MODULE,
2277 	.name		= "btrfs",
2278 	.mount		= btrfs_mount_root,
2279 	.kill_sb	= btrfs_kill_super,
2280 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2281 };
2282 
2283 MODULE_ALIAS_FS("btrfs");
2284 
btrfs_control_open(struct inode * inode,struct file * file)2285 static int btrfs_control_open(struct inode *inode, struct file *file)
2286 {
2287 	/*
2288 	 * The control file's private_data is used to hold the
2289 	 * transaction when it is started and is used to keep
2290 	 * track of whether a transaction is already in progress.
2291 	 */
2292 	file->private_data = NULL;
2293 	return 0;
2294 }
2295 
2296 /*
2297  * Used by /dev/btrfs-control for devices ioctls.
2298  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2299 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2300 				unsigned long arg)
2301 {
2302 	struct btrfs_ioctl_vol_args *vol;
2303 	struct btrfs_device *device = NULL;
2304 	int ret = -ENOTTY;
2305 
2306 	if (!capable(CAP_SYS_ADMIN))
2307 		return -EPERM;
2308 
2309 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2310 	if (IS_ERR(vol))
2311 		return PTR_ERR(vol);
2312 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2313 
2314 	switch (cmd) {
2315 	case BTRFS_IOC_SCAN_DEV:
2316 		mutex_lock(&uuid_mutex);
2317 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2318 					       &btrfs_root_fs_type);
2319 		ret = PTR_ERR_OR_ZERO(device);
2320 		mutex_unlock(&uuid_mutex);
2321 		break;
2322 	case BTRFS_IOC_FORGET_DEV:
2323 		ret = btrfs_forget_devices(vol->name);
2324 		break;
2325 	case BTRFS_IOC_DEVICES_READY:
2326 		mutex_lock(&uuid_mutex);
2327 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2328 					       &btrfs_root_fs_type);
2329 		if (IS_ERR(device)) {
2330 			mutex_unlock(&uuid_mutex);
2331 			ret = PTR_ERR(device);
2332 			break;
2333 		}
2334 		ret = !(device->fs_devices->num_devices ==
2335 			device->fs_devices->total_devices);
2336 		mutex_unlock(&uuid_mutex);
2337 		break;
2338 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2339 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2340 		break;
2341 	}
2342 
2343 	kfree(vol);
2344 	return ret;
2345 }
2346 
btrfs_freeze(struct super_block * sb)2347 static int btrfs_freeze(struct super_block *sb)
2348 {
2349 	struct btrfs_trans_handle *trans;
2350 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2351 	struct btrfs_root *root = fs_info->tree_root;
2352 
2353 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2354 	/*
2355 	 * We don't need a barrier here, we'll wait for any transaction that
2356 	 * could be in progress on other threads (and do delayed iputs that
2357 	 * we want to avoid on a frozen filesystem), or do the commit
2358 	 * ourselves.
2359 	 */
2360 	trans = btrfs_attach_transaction_barrier(root);
2361 	if (IS_ERR(trans)) {
2362 		/* no transaction, don't bother */
2363 		if (PTR_ERR(trans) == -ENOENT)
2364 			return 0;
2365 		return PTR_ERR(trans);
2366 	}
2367 	return btrfs_commit_transaction(trans);
2368 }
2369 
btrfs_unfreeze(struct super_block * sb)2370 static int btrfs_unfreeze(struct super_block *sb)
2371 {
2372 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2373 
2374 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2375 	return 0;
2376 }
2377 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2378 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2379 {
2380 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2381 	struct btrfs_device *dev, *first_dev = NULL;
2382 
2383 	/*
2384 	 * Lightweight locking of the devices. We should not need
2385 	 * device_list_mutex here as we only read the device data and the list
2386 	 * is protected by RCU.  Even if a device is deleted during the list
2387 	 * traversals, we'll get valid data, the freeing callback will wait at
2388 	 * least until the rcu_read_unlock.
2389 	 */
2390 	rcu_read_lock();
2391 	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2392 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2393 			continue;
2394 		if (!dev->name)
2395 			continue;
2396 		if (!first_dev || dev->devid < first_dev->devid)
2397 			first_dev = dev;
2398 	}
2399 
2400 	if (first_dev)
2401 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2402 	else
2403 		WARN_ON(1);
2404 	rcu_read_unlock();
2405 	return 0;
2406 }
2407 
2408 static const struct super_operations btrfs_super_ops = {
2409 	.drop_inode	= btrfs_drop_inode,
2410 	.evict_inode	= btrfs_evict_inode,
2411 	.put_super	= btrfs_put_super,
2412 	.sync_fs	= btrfs_sync_fs,
2413 	.show_options	= btrfs_show_options,
2414 	.show_devname	= btrfs_show_devname,
2415 	.alloc_inode	= btrfs_alloc_inode,
2416 	.destroy_inode	= btrfs_destroy_inode,
2417 	.free_inode	= btrfs_free_inode,
2418 	.statfs		= btrfs_statfs,
2419 	.remount_fs	= btrfs_remount,
2420 	.freeze_fs	= btrfs_freeze,
2421 	.unfreeze_fs	= btrfs_unfreeze,
2422 };
2423 
2424 static const struct file_operations btrfs_ctl_fops = {
2425 	.open = btrfs_control_open,
2426 	.unlocked_ioctl	 = btrfs_control_ioctl,
2427 	.compat_ioctl = compat_ptr_ioctl,
2428 	.owner	 = THIS_MODULE,
2429 	.llseek = noop_llseek,
2430 };
2431 
2432 static struct miscdevice btrfs_misc = {
2433 	.minor		= BTRFS_MINOR,
2434 	.name		= "btrfs-control",
2435 	.fops		= &btrfs_ctl_fops
2436 };
2437 
2438 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2439 MODULE_ALIAS("devname:btrfs-control");
2440 
btrfs_interface_init(void)2441 static int __init btrfs_interface_init(void)
2442 {
2443 	return misc_register(&btrfs_misc);
2444 }
2445 
btrfs_interface_exit(void)2446 static __cold void btrfs_interface_exit(void)
2447 {
2448 	misc_deregister(&btrfs_misc);
2449 }
2450 
btrfs_print_mod_info(void)2451 static void __init btrfs_print_mod_info(void)
2452 {
2453 	static const char options[] = ""
2454 #ifdef CONFIG_BTRFS_DEBUG
2455 			", debug=on"
2456 #endif
2457 #ifdef CONFIG_BTRFS_ASSERT
2458 			", assert=on"
2459 #endif
2460 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2461 			", integrity-checker=on"
2462 #endif
2463 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2464 			", ref-verify=on"
2465 #endif
2466 			;
2467 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2468 }
2469 
init_btrfs_fs(void)2470 static int __init init_btrfs_fs(void)
2471 {
2472 	int err;
2473 
2474 	btrfs_props_init();
2475 
2476 	err = btrfs_init_sysfs();
2477 	if (err)
2478 		return err;
2479 
2480 	btrfs_init_compress();
2481 
2482 	err = btrfs_init_cachep();
2483 	if (err)
2484 		goto free_compress;
2485 
2486 	err = extent_io_init();
2487 	if (err)
2488 		goto free_cachep;
2489 
2490 	err = extent_state_cache_init();
2491 	if (err)
2492 		goto free_extent_io;
2493 
2494 	err = extent_map_init();
2495 	if (err)
2496 		goto free_extent_state_cache;
2497 
2498 	err = ordered_data_init();
2499 	if (err)
2500 		goto free_extent_map;
2501 
2502 	err = btrfs_delayed_inode_init();
2503 	if (err)
2504 		goto free_ordered_data;
2505 
2506 	err = btrfs_auto_defrag_init();
2507 	if (err)
2508 		goto free_delayed_inode;
2509 
2510 	err = btrfs_delayed_ref_init();
2511 	if (err)
2512 		goto free_auto_defrag;
2513 
2514 	err = btrfs_prelim_ref_init();
2515 	if (err)
2516 		goto free_delayed_ref;
2517 
2518 	err = btrfs_end_io_wq_init();
2519 	if (err)
2520 		goto free_prelim_ref;
2521 
2522 	err = btrfs_interface_init();
2523 	if (err)
2524 		goto free_end_io_wq;
2525 
2526 	btrfs_init_lockdep();
2527 
2528 	btrfs_print_mod_info();
2529 
2530 	err = btrfs_run_sanity_tests();
2531 	if (err)
2532 		goto unregister_ioctl;
2533 
2534 	err = register_filesystem(&btrfs_fs_type);
2535 	if (err)
2536 		goto unregister_ioctl;
2537 
2538 	return 0;
2539 
2540 unregister_ioctl:
2541 	btrfs_interface_exit();
2542 free_end_io_wq:
2543 	btrfs_end_io_wq_exit();
2544 free_prelim_ref:
2545 	btrfs_prelim_ref_exit();
2546 free_delayed_ref:
2547 	btrfs_delayed_ref_exit();
2548 free_auto_defrag:
2549 	btrfs_auto_defrag_exit();
2550 free_delayed_inode:
2551 	btrfs_delayed_inode_exit();
2552 free_ordered_data:
2553 	ordered_data_exit();
2554 free_extent_map:
2555 	extent_map_exit();
2556 free_extent_state_cache:
2557 	extent_state_cache_exit();
2558 free_extent_io:
2559 	extent_io_exit();
2560 free_cachep:
2561 	btrfs_destroy_cachep();
2562 free_compress:
2563 	btrfs_exit_compress();
2564 	btrfs_exit_sysfs();
2565 
2566 	return err;
2567 }
2568 
exit_btrfs_fs(void)2569 static void __exit exit_btrfs_fs(void)
2570 {
2571 	btrfs_destroy_cachep();
2572 	btrfs_delayed_ref_exit();
2573 	btrfs_auto_defrag_exit();
2574 	btrfs_delayed_inode_exit();
2575 	btrfs_prelim_ref_exit();
2576 	ordered_data_exit();
2577 	extent_map_exit();
2578 	extent_state_cache_exit();
2579 	extent_io_exit();
2580 	btrfs_interface_exit();
2581 	btrfs_end_io_wq_exit();
2582 	unregister_filesystem(&btrfs_fs_type);
2583 	btrfs_exit_sysfs();
2584 	btrfs_cleanup_fs_uuids();
2585 	btrfs_exit_compress();
2586 }
2587 
2588 late_initcall(init_btrfs_fs);
2589 module_exit(exit_btrfs_fs)
2590 
2591 MODULE_LICENSE("GPL");
2592 MODULE_SOFTDEP("pre: crc32c");
2593 MODULE_SOFTDEP("pre: xxhash64");
2594 MODULE_SOFTDEP("pre: sha256");
2595 MODULE_SOFTDEP("pre: blake2b-256");
2596