1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userpsace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24 #include <linux/compat.h>
25 #include <linux/device.h>
26 #include <linux/fs.h>
27 #include <linux/iommu.h>
28 #include <linux/module.h>
29 #include <linux/mm.h>
30 #include <linux/kthread.h>
31 #include <linux/rbtree.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/slab.h>
35 #include <linux/uaccess.h>
36 #include <linux/vfio.h>
37 #include <linux/workqueue.h>
38 #include <linux/mdev.h>
39 #include <linux/notifier.h>
40 #include <linux/dma-iommu.h>
41 #include <linux/irqdomain.h>
42
43 #define DRIVER_VERSION "0.2"
44 #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
45 #define DRIVER_DESC "Type1 IOMMU driver for VFIO"
46
47 static bool allow_unsafe_interrupts;
48 module_param_named(allow_unsafe_interrupts,
49 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(allow_unsafe_interrupts,
51 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
52
53 static bool disable_hugepages;
54 module_param_named(disable_hugepages,
55 disable_hugepages, bool, S_IRUGO | S_IWUSR);
56 MODULE_PARM_DESC(disable_hugepages,
57 "Disable VFIO IOMMU support for IOMMU hugepages.");
58
59 static unsigned int dma_entry_limit __read_mostly = U16_MAX;
60 module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
61 MODULE_PARM_DESC(dma_entry_limit,
62 "Maximum number of user DMA mappings per container (65535).");
63
64 struct vfio_iommu {
65 struct list_head domain_list;
66 struct list_head iova_list;
67 struct vfio_domain *external_domain; /* domain for external user */
68 struct mutex lock;
69 struct rb_root dma_list;
70 struct blocking_notifier_head notifier;
71 unsigned int dma_avail;
72 uint64_t pgsize_bitmap;
73 bool v2;
74 bool nesting;
75 bool dirty_page_tracking;
76 bool pinned_page_dirty_scope;
77 };
78
79 struct vfio_domain {
80 struct iommu_domain *domain;
81 struct list_head next;
82 struct list_head group_list;
83 int prot; /* IOMMU_CACHE */
84 bool fgsp; /* Fine-grained super pages */
85 };
86
87 struct vfio_dma {
88 struct rb_node node;
89 dma_addr_t iova; /* Device address */
90 unsigned long vaddr; /* Process virtual addr */
91 size_t size; /* Map size (bytes) */
92 int prot; /* IOMMU_READ/WRITE */
93 bool iommu_mapped;
94 bool lock_cap; /* capable(CAP_IPC_LOCK) */
95 struct task_struct *task;
96 struct rb_root pfn_list; /* Ex-user pinned pfn list */
97 unsigned long *bitmap;
98 };
99
100 struct vfio_group {
101 struct iommu_group *iommu_group;
102 struct list_head next;
103 bool mdev_group; /* An mdev group */
104 bool pinned_page_dirty_scope;
105 };
106
107 struct vfio_iova {
108 struct list_head list;
109 dma_addr_t start;
110 dma_addr_t end;
111 };
112
113 /*
114 * Guest RAM pinning working set or DMA target
115 */
116 struct vfio_pfn {
117 struct rb_node node;
118 dma_addr_t iova; /* Device address */
119 unsigned long pfn; /* Host pfn */
120 unsigned int ref_count;
121 };
122
123 struct vfio_regions {
124 struct list_head list;
125 dma_addr_t iova;
126 phys_addr_t phys;
127 size_t len;
128 };
129
130 #define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
131 (!list_empty(&iommu->domain_list))
132
133 #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
134
135 /*
136 * Input argument of number of bits to bitmap_set() is unsigned integer, which
137 * further casts to signed integer for unaligned multi-bit operation,
138 * __bitmap_set().
139 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
140 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
141 * system.
142 */
143 #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
144 #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
145
146 static int put_pfn(unsigned long pfn, int prot);
147
148 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
149 struct iommu_group *iommu_group);
150
151 static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu);
152 /*
153 * This code handles mapping and unmapping of user data buffers
154 * into DMA'ble space using the IOMMU
155 */
156
vfio_find_dma(struct vfio_iommu * iommu,dma_addr_t start,size_t size)157 static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
158 dma_addr_t start, size_t size)
159 {
160 struct rb_node *node = iommu->dma_list.rb_node;
161
162 while (node) {
163 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
164
165 if (start + size <= dma->iova)
166 node = node->rb_left;
167 else if (start >= dma->iova + dma->size)
168 node = node->rb_right;
169 else
170 return dma;
171 }
172
173 return NULL;
174 }
175
vfio_link_dma(struct vfio_iommu * iommu,struct vfio_dma * new)176 static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
177 {
178 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
179 struct vfio_dma *dma;
180
181 while (*link) {
182 parent = *link;
183 dma = rb_entry(parent, struct vfio_dma, node);
184
185 if (new->iova + new->size <= dma->iova)
186 link = &(*link)->rb_left;
187 else
188 link = &(*link)->rb_right;
189 }
190
191 rb_link_node(&new->node, parent, link);
192 rb_insert_color(&new->node, &iommu->dma_list);
193 }
194
vfio_unlink_dma(struct vfio_iommu * iommu,struct vfio_dma * old)195 static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
196 {
197 rb_erase(&old->node, &iommu->dma_list);
198 }
199
200
vfio_dma_bitmap_alloc(struct vfio_dma * dma,size_t pgsize)201 static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
202 {
203 uint64_t npages = dma->size / pgsize;
204
205 if (npages > DIRTY_BITMAP_PAGES_MAX)
206 return -EINVAL;
207
208 /*
209 * Allocate extra 64 bits that are used to calculate shift required for
210 * bitmap_shift_left() to manipulate and club unaligned number of pages
211 * in adjacent vfio_dma ranges.
212 */
213 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
214 GFP_KERNEL);
215 if (!dma->bitmap)
216 return -ENOMEM;
217
218 return 0;
219 }
220
vfio_dma_bitmap_free(struct vfio_dma * dma)221 static void vfio_dma_bitmap_free(struct vfio_dma *dma)
222 {
223 kfree(dma->bitmap);
224 dma->bitmap = NULL;
225 }
226
vfio_dma_populate_bitmap(struct vfio_dma * dma,size_t pgsize)227 static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
228 {
229 struct rb_node *p;
230 unsigned long pgshift = __ffs(pgsize);
231
232 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
233 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
234
235 bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1);
236 }
237 }
238
vfio_dma_bitmap_alloc_all(struct vfio_iommu * iommu,size_t pgsize)239 static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
240 {
241 struct rb_node *n;
242
243 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
244 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
245 int ret;
246
247 ret = vfio_dma_bitmap_alloc(dma, pgsize);
248 if (ret) {
249 struct rb_node *p;
250
251 for (p = rb_prev(n); p; p = rb_prev(p)) {
252 struct vfio_dma *dma = rb_entry(n,
253 struct vfio_dma, node);
254
255 vfio_dma_bitmap_free(dma);
256 }
257 return ret;
258 }
259 vfio_dma_populate_bitmap(dma, pgsize);
260 }
261 return 0;
262 }
263
vfio_dma_bitmap_free_all(struct vfio_iommu * iommu)264 static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
265 {
266 struct rb_node *n;
267
268 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
269 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
270
271 vfio_dma_bitmap_free(dma);
272 }
273 }
274
275 /*
276 * Helper Functions for host iova-pfn list
277 */
vfio_find_vpfn(struct vfio_dma * dma,dma_addr_t iova)278 static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
279 {
280 struct vfio_pfn *vpfn;
281 struct rb_node *node = dma->pfn_list.rb_node;
282
283 while (node) {
284 vpfn = rb_entry(node, struct vfio_pfn, node);
285
286 if (iova < vpfn->iova)
287 node = node->rb_left;
288 else if (iova > vpfn->iova)
289 node = node->rb_right;
290 else
291 return vpfn;
292 }
293 return NULL;
294 }
295
vfio_link_pfn(struct vfio_dma * dma,struct vfio_pfn * new)296 static void vfio_link_pfn(struct vfio_dma *dma,
297 struct vfio_pfn *new)
298 {
299 struct rb_node **link, *parent = NULL;
300 struct vfio_pfn *vpfn;
301
302 link = &dma->pfn_list.rb_node;
303 while (*link) {
304 parent = *link;
305 vpfn = rb_entry(parent, struct vfio_pfn, node);
306
307 if (new->iova < vpfn->iova)
308 link = &(*link)->rb_left;
309 else
310 link = &(*link)->rb_right;
311 }
312
313 rb_link_node(&new->node, parent, link);
314 rb_insert_color(&new->node, &dma->pfn_list);
315 }
316
vfio_unlink_pfn(struct vfio_dma * dma,struct vfio_pfn * old)317 static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
318 {
319 rb_erase(&old->node, &dma->pfn_list);
320 }
321
vfio_add_to_pfn_list(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn)322 static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
323 unsigned long pfn)
324 {
325 struct vfio_pfn *vpfn;
326
327 vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
328 if (!vpfn)
329 return -ENOMEM;
330
331 vpfn->iova = iova;
332 vpfn->pfn = pfn;
333 vpfn->ref_count = 1;
334 vfio_link_pfn(dma, vpfn);
335 return 0;
336 }
337
vfio_remove_from_pfn_list(struct vfio_dma * dma,struct vfio_pfn * vpfn)338 static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
339 struct vfio_pfn *vpfn)
340 {
341 vfio_unlink_pfn(dma, vpfn);
342 kfree(vpfn);
343 }
344
vfio_iova_get_vfio_pfn(struct vfio_dma * dma,unsigned long iova)345 static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
346 unsigned long iova)
347 {
348 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
349
350 if (vpfn)
351 vpfn->ref_count++;
352 return vpfn;
353 }
354
vfio_iova_put_vfio_pfn(struct vfio_dma * dma,struct vfio_pfn * vpfn)355 static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
356 {
357 int ret = 0;
358
359 vpfn->ref_count--;
360 if (!vpfn->ref_count) {
361 ret = put_pfn(vpfn->pfn, dma->prot);
362 vfio_remove_from_pfn_list(dma, vpfn);
363 }
364 return ret;
365 }
366
vfio_lock_acct(struct vfio_dma * dma,long npage,bool async)367 static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
368 {
369 struct mm_struct *mm;
370 int ret;
371
372 if (!npage)
373 return 0;
374
375 mm = async ? get_task_mm(dma->task) : dma->task->mm;
376 if (!mm)
377 return -ESRCH; /* process exited */
378
379 ret = mmap_write_lock_killable(mm);
380 if (!ret) {
381 ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
382 dma->lock_cap);
383 mmap_write_unlock(mm);
384 }
385
386 if (async)
387 mmput(mm);
388
389 return ret;
390 }
391
392 /*
393 * Some mappings aren't backed by a struct page, for example an mmap'd
394 * MMIO range for our own or another device. These use a different
395 * pfn conversion and shouldn't be tracked as locked pages.
396 * For compound pages, any driver that sets the reserved bit in head
397 * page needs to set the reserved bit in all subpages to be safe.
398 */
is_invalid_reserved_pfn(unsigned long pfn)399 static bool is_invalid_reserved_pfn(unsigned long pfn)
400 {
401 if (pfn_valid(pfn))
402 return PageReserved(pfn_to_page(pfn));
403
404 return true;
405 }
406
put_pfn(unsigned long pfn,int prot)407 static int put_pfn(unsigned long pfn, int prot)
408 {
409 if (!is_invalid_reserved_pfn(pfn)) {
410 struct page *page = pfn_to_page(pfn);
411
412 unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE);
413 return 1;
414 }
415 return 0;
416 }
417
follow_fault_pfn(struct vm_area_struct * vma,struct mm_struct * mm,unsigned long vaddr,unsigned long * pfn,bool write_fault)418 static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
419 unsigned long vaddr, unsigned long *pfn,
420 bool write_fault)
421 {
422 int ret;
423
424 ret = follow_pfn(vma, vaddr, pfn);
425 if (ret) {
426 bool unlocked = false;
427
428 ret = fixup_user_fault(mm, vaddr,
429 FAULT_FLAG_REMOTE |
430 (write_fault ? FAULT_FLAG_WRITE : 0),
431 &unlocked);
432 if (unlocked)
433 return -EAGAIN;
434
435 if (ret)
436 return ret;
437
438 ret = follow_pfn(vma, vaddr, pfn);
439 }
440
441 return ret;
442 }
443
vaddr_get_pfn(struct mm_struct * mm,unsigned long vaddr,int prot,unsigned long * pfn)444 static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
445 int prot, unsigned long *pfn)
446 {
447 struct page *page[1];
448 struct vm_area_struct *vma;
449 unsigned int flags = 0;
450 int ret;
451
452 if (prot & IOMMU_WRITE)
453 flags |= FOLL_WRITE;
454
455 mmap_read_lock(mm);
456 ret = pin_user_pages_remote(mm, vaddr, 1, flags | FOLL_LONGTERM,
457 page, NULL, NULL);
458 if (ret == 1) {
459 *pfn = page_to_pfn(page[0]);
460 ret = 0;
461 goto done;
462 }
463
464 vaddr = untagged_addr(vaddr);
465
466 retry:
467 vma = find_vma_intersection(mm, vaddr, vaddr + 1);
468
469 if (vma && vma->vm_flags & VM_PFNMAP) {
470 ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE);
471 if (ret == -EAGAIN)
472 goto retry;
473
474 if (!ret && !is_invalid_reserved_pfn(*pfn))
475 ret = -EFAULT;
476 }
477 done:
478 mmap_read_unlock(mm);
479 return ret;
480 }
481
482 /*
483 * Attempt to pin pages. We really don't want to track all the pfns and
484 * the iommu can only map chunks of consecutive pfns anyway, so get the
485 * first page and all consecutive pages with the same locking.
486 */
vfio_pin_pages_remote(struct vfio_dma * dma,unsigned long vaddr,long npage,unsigned long * pfn_base,unsigned long limit)487 static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
488 long npage, unsigned long *pfn_base,
489 unsigned long limit)
490 {
491 unsigned long pfn = 0;
492 long ret, pinned = 0, lock_acct = 0;
493 bool rsvd;
494 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
495
496 /* This code path is only user initiated */
497 if (!current->mm)
498 return -ENODEV;
499
500 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
501 if (ret)
502 return ret;
503
504 pinned++;
505 rsvd = is_invalid_reserved_pfn(*pfn_base);
506
507 /*
508 * Reserved pages aren't counted against the user, externally pinned
509 * pages are already counted against the user.
510 */
511 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
512 if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
513 put_pfn(*pfn_base, dma->prot);
514 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
515 limit << PAGE_SHIFT);
516 return -ENOMEM;
517 }
518 lock_acct++;
519 }
520
521 if (unlikely(disable_hugepages))
522 goto out;
523
524 /* Lock all the consecutive pages from pfn_base */
525 for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
526 pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
527 ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
528 if (ret)
529 break;
530
531 if (pfn != *pfn_base + pinned ||
532 rsvd != is_invalid_reserved_pfn(pfn)) {
533 put_pfn(pfn, dma->prot);
534 break;
535 }
536
537 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
538 if (!dma->lock_cap &&
539 current->mm->locked_vm + lock_acct + 1 > limit) {
540 put_pfn(pfn, dma->prot);
541 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
542 __func__, limit << PAGE_SHIFT);
543 ret = -ENOMEM;
544 goto unpin_out;
545 }
546 lock_acct++;
547 }
548 }
549
550 out:
551 ret = vfio_lock_acct(dma, lock_acct, false);
552
553 unpin_out:
554 if (ret) {
555 if (!rsvd) {
556 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
557 put_pfn(pfn, dma->prot);
558 }
559
560 return ret;
561 }
562
563 return pinned;
564 }
565
vfio_unpin_pages_remote(struct vfio_dma * dma,dma_addr_t iova,unsigned long pfn,long npage,bool do_accounting)566 static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
567 unsigned long pfn, long npage,
568 bool do_accounting)
569 {
570 long unlocked = 0, locked = 0;
571 long i;
572
573 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
574 if (put_pfn(pfn++, dma->prot)) {
575 unlocked++;
576 if (vfio_find_vpfn(dma, iova))
577 locked++;
578 }
579 }
580
581 if (do_accounting)
582 vfio_lock_acct(dma, locked - unlocked, true);
583
584 return unlocked;
585 }
586
vfio_pin_page_external(struct vfio_dma * dma,unsigned long vaddr,unsigned long * pfn_base,bool do_accounting)587 static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
588 unsigned long *pfn_base, bool do_accounting)
589 {
590 struct mm_struct *mm;
591 int ret;
592
593 mm = get_task_mm(dma->task);
594 if (!mm)
595 return -ENODEV;
596
597 ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
598 if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
599 ret = vfio_lock_acct(dma, 1, true);
600 if (ret) {
601 put_pfn(*pfn_base, dma->prot);
602 if (ret == -ENOMEM)
603 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
604 "(%ld) exceeded\n", __func__,
605 dma->task->comm, task_pid_nr(dma->task),
606 task_rlimit(dma->task, RLIMIT_MEMLOCK));
607 }
608 }
609
610 mmput(mm);
611 return ret;
612 }
613
vfio_unpin_page_external(struct vfio_dma * dma,dma_addr_t iova,bool do_accounting)614 static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
615 bool do_accounting)
616 {
617 int unlocked;
618 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
619
620 if (!vpfn)
621 return 0;
622
623 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
624
625 if (do_accounting)
626 vfio_lock_acct(dma, -unlocked, true);
627
628 return unlocked;
629 }
630
vfio_iommu_type1_pin_pages(void * iommu_data,struct iommu_group * iommu_group,unsigned long * user_pfn,int npage,int prot,unsigned long * phys_pfn)631 static int vfio_iommu_type1_pin_pages(void *iommu_data,
632 struct iommu_group *iommu_group,
633 unsigned long *user_pfn,
634 int npage, int prot,
635 unsigned long *phys_pfn)
636 {
637 struct vfio_iommu *iommu = iommu_data;
638 struct vfio_group *group;
639 int i, j, ret;
640 unsigned long remote_vaddr;
641 struct vfio_dma *dma;
642 bool do_accounting;
643
644 if (!iommu || !user_pfn || !phys_pfn)
645 return -EINVAL;
646
647 /* Supported for v2 version only */
648 if (!iommu->v2)
649 return -EACCES;
650
651 mutex_lock(&iommu->lock);
652
653 /* Fail if notifier list is empty */
654 if (!iommu->notifier.head) {
655 ret = -EINVAL;
656 goto pin_done;
657 }
658
659 /*
660 * If iommu capable domain exist in the container then all pages are
661 * already pinned and accounted. Accouting should be done if there is no
662 * iommu capable domain in the container.
663 */
664 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
665
666 for (i = 0; i < npage; i++) {
667 dma_addr_t iova;
668 struct vfio_pfn *vpfn;
669
670 iova = user_pfn[i] << PAGE_SHIFT;
671 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
672 if (!dma) {
673 ret = -EINVAL;
674 goto pin_unwind;
675 }
676
677 if ((dma->prot & prot) != prot) {
678 ret = -EPERM;
679 goto pin_unwind;
680 }
681
682 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
683 if (vpfn) {
684 phys_pfn[i] = vpfn->pfn;
685 continue;
686 }
687
688 remote_vaddr = dma->vaddr + (iova - dma->iova);
689 ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
690 do_accounting);
691 if (ret)
692 goto pin_unwind;
693
694 ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
695 if (ret) {
696 if (put_pfn(phys_pfn[i], dma->prot) && do_accounting)
697 vfio_lock_acct(dma, -1, true);
698 goto pin_unwind;
699 }
700
701 if (iommu->dirty_page_tracking) {
702 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
703
704 /*
705 * Bitmap populated with the smallest supported page
706 * size
707 */
708 bitmap_set(dma->bitmap,
709 (iova - dma->iova) >> pgshift, 1);
710 }
711 }
712 ret = i;
713
714 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
715 if (!group->pinned_page_dirty_scope) {
716 group->pinned_page_dirty_scope = true;
717 update_pinned_page_dirty_scope(iommu);
718 }
719
720 goto pin_done;
721
722 pin_unwind:
723 phys_pfn[i] = 0;
724 for (j = 0; j < i; j++) {
725 dma_addr_t iova;
726
727 iova = user_pfn[j] << PAGE_SHIFT;
728 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
729 vfio_unpin_page_external(dma, iova, do_accounting);
730 phys_pfn[j] = 0;
731 }
732 pin_done:
733 mutex_unlock(&iommu->lock);
734 return ret;
735 }
736
vfio_iommu_type1_unpin_pages(void * iommu_data,unsigned long * user_pfn,int npage)737 static int vfio_iommu_type1_unpin_pages(void *iommu_data,
738 unsigned long *user_pfn,
739 int npage)
740 {
741 struct vfio_iommu *iommu = iommu_data;
742 bool do_accounting;
743 int i;
744
745 if (!iommu || !user_pfn)
746 return -EINVAL;
747
748 /* Supported for v2 version only */
749 if (!iommu->v2)
750 return -EACCES;
751
752 mutex_lock(&iommu->lock);
753
754 do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
755 for (i = 0; i < npage; i++) {
756 struct vfio_dma *dma;
757 dma_addr_t iova;
758
759 iova = user_pfn[i] << PAGE_SHIFT;
760 dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
761 if (!dma)
762 goto unpin_exit;
763 vfio_unpin_page_external(dma, iova, do_accounting);
764 }
765
766 unpin_exit:
767 mutex_unlock(&iommu->lock);
768 return i > npage ? npage : (i > 0 ? i : -EINVAL);
769 }
770
vfio_sync_unpin(struct vfio_dma * dma,struct vfio_domain * domain,struct list_head * regions,struct iommu_iotlb_gather * iotlb_gather)771 static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
772 struct list_head *regions,
773 struct iommu_iotlb_gather *iotlb_gather)
774 {
775 long unlocked = 0;
776 struct vfio_regions *entry, *next;
777
778 iommu_iotlb_sync(domain->domain, iotlb_gather);
779
780 list_for_each_entry_safe(entry, next, regions, list) {
781 unlocked += vfio_unpin_pages_remote(dma,
782 entry->iova,
783 entry->phys >> PAGE_SHIFT,
784 entry->len >> PAGE_SHIFT,
785 false);
786 list_del(&entry->list);
787 kfree(entry);
788 }
789
790 cond_resched();
791
792 return unlocked;
793 }
794
795 /*
796 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
797 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
798 * of these regions (currently using a list).
799 *
800 * This value specifies maximum number of regions for each IOTLB flush sync.
801 */
802 #define VFIO_IOMMU_TLB_SYNC_MAX 512
803
unmap_unpin_fast(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked,struct list_head * unmapped_list,int * unmapped_cnt,struct iommu_iotlb_gather * iotlb_gather)804 static size_t unmap_unpin_fast(struct vfio_domain *domain,
805 struct vfio_dma *dma, dma_addr_t *iova,
806 size_t len, phys_addr_t phys, long *unlocked,
807 struct list_head *unmapped_list,
808 int *unmapped_cnt,
809 struct iommu_iotlb_gather *iotlb_gather)
810 {
811 size_t unmapped = 0;
812 struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
813
814 if (entry) {
815 unmapped = iommu_unmap_fast(domain->domain, *iova, len,
816 iotlb_gather);
817
818 if (!unmapped) {
819 kfree(entry);
820 } else {
821 entry->iova = *iova;
822 entry->phys = phys;
823 entry->len = unmapped;
824 list_add_tail(&entry->list, unmapped_list);
825
826 *iova += unmapped;
827 (*unmapped_cnt)++;
828 }
829 }
830
831 /*
832 * Sync if the number of fast-unmap regions hits the limit
833 * or in case of errors.
834 */
835 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
836 *unlocked += vfio_sync_unpin(dma, domain, unmapped_list,
837 iotlb_gather);
838 *unmapped_cnt = 0;
839 }
840
841 return unmapped;
842 }
843
unmap_unpin_slow(struct vfio_domain * domain,struct vfio_dma * dma,dma_addr_t * iova,size_t len,phys_addr_t phys,long * unlocked)844 static size_t unmap_unpin_slow(struct vfio_domain *domain,
845 struct vfio_dma *dma, dma_addr_t *iova,
846 size_t len, phys_addr_t phys,
847 long *unlocked)
848 {
849 size_t unmapped = iommu_unmap(domain->domain, *iova, len);
850
851 if (unmapped) {
852 *unlocked += vfio_unpin_pages_remote(dma, *iova,
853 phys >> PAGE_SHIFT,
854 unmapped >> PAGE_SHIFT,
855 false);
856 *iova += unmapped;
857 cond_resched();
858 }
859 return unmapped;
860 }
861
vfio_unmap_unpin(struct vfio_iommu * iommu,struct vfio_dma * dma,bool do_accounting)862 static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
863 bool do_accounting)
864 {
865 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
866 struct vfio_domain *domain, *d;
867 LIST_HEAD(unmapped_region_list);
868 struct iommu_iotlb_gather iotlb_gather;
869 int unmapped_region_cnt = 0;
870 long unlocked = 0;
871
872 if (!dma->size)
873 return 0;
874
875 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
876 return 0;
877
878 /*
879 * We use the IOMMU to track the physical addresses, otherwise we'd
880 * need a much more complicated tracking system. Unfortunately that
881 * means we need to use one of the iommu domains to figure out the
882 * pfns to unpin. The rest need to be unmapped in advance so we have
883 * no iommu translations remaining when the pages are unpinned.
884 */
885 domain = d = list_first_entry(&iommu->domain_list,
886 struct vfio_domain, next);
887
888 list_for_each_entry_continue(d, &iommu->domain_list, next) {
889 iommu_unmap(d->domain, dma->iova, dma->size);
890 cond_resched();
891 }
892
893 iommu_iotlb_gather_init(&iotlb_gather);
894 while (iova < end) {
895 size_t unmapped, len;
896 phys_addr_t phys, next;
897
898 phys = iommu_iova_to_phys(domain->domain, iova);
899 if (WARN_ON(!phys)) {
900 iova += PAGE_SIZE;
901 continue;
902 }
903
904 /*
905 * To optimize for fewer iommu_unmap() calls, each of which
906 * may require hardware cache flushing, try to find the
907 * largest contiguous physical memory chunk to unmap.
908 */
909 for (len = PAGE_SIZE;
910 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
911 next = iommu_iova_to_phys(domain->domain, iova + len);
912 if (next != phys + len)
913 break;
914 }
915
916 /*
917 * First, try to use fast unmap/unpin. In case of failure,
918 * switch to slow unmap/unpin path.
919 */
920 unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
921 &unlocked, &unmapped_region_list,
922 &unmapped_region_cnt,
923 &iotlb_gather);
924 if (!unmapped) {
925 unmapped = unmap_unpin_slow(domain, dma, &iova, len,
926 phys, &unlocked);
927 if (WARN_ON(!unmapped))
928 break;
929 }
930 }
931
932 dma->iommu_mapped = false;
933
934 if (unmapped_region_cnt) {
935 unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list,
936 &iotlb_gather);
937 }
938
939 if (do_accounting) {
940 vfio_lock_acct(dma, -unlocked, true);
941 return 0;
942 }
943 return unlocked;
944 }
945
vfio_remove_dma(struct vfio_iommu * iommu,struct vfio_dma * dma)946 static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
947 {
948 vfio_unmap_unpin(iommu, dma, true);
949 vfio_unlink_dma(iommu, dma);
950 put_task_struct(dma->task);
951 vfio_dma_bitmap_free(dma);
952 kfree(dma);
953 iommu->dma_avail++;
954 }
955
vfio_update_pgsize_bitmap(struct vfio_iommu * iommu)956 static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
957 {
958 struct vfio_domain *domain;
959
960 iommu->pgsize_bitmap = ULONG_MAX;
961
962 list_for_each_entry(domain, &iommu->domain_list, next)
963 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
964
965 /*
966 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
967 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
968 * That way the user will be able to map/unmap buffers whose size/
969 * start address is aligned with PAGE_SIZE. Pinning code uses that
970 * granularity while iommu driver can use the sub-PAGE_SIZE size
971 * to map the buffer.
972 */
973 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
974 iommu->pgsize_bitmap &= PAGE_MASK;
975 iommu->pgsize_bitmap |= PAGE_SIZE;
976 }
977 }
978
update_user_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,struct vfio_dma * dma,dma_addr_t base_iova,size_t pgsize)979 static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
980 struct vfio_dma *dma, dma_addr_t base_iova,
981 size_t pgsize)
982 {
983 unsigned long pgshift = __ffs(pgsize);
984 unsigned long nbits = dma->size >> pgshift;
985 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
986 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
987 unsigned long shift = bit_offset % BITS_PER_LONG;
988 unsigned long leftover;
989
990 /*
991 * mark all pages dirty if any IOMMU capable device is not able
992 * to report dirty pages and all pages are pinned and mapped.
993 */
994 if (!iommu->pinned_page_dirty_scope && dma->iommu_mapped)
995 bitmap_set(dma->bitmap, 0, nbits);
996
997 if (shift) {
998 bitmap_shift_left(dma->bitmap, dma->bitmap, shift,
999 nbits + shift);
1000
1001 if (copy_from_user(&leftover,
1002 (void __user *)(bitmap + copy_offset),
1003 sizeof(leftover)))
1004 return -EFAULT;
1005
1006 bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift);
1007 }
1008
1009 if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap,
1010 DIRTY_BITMAP_BYTES(nbits + shift)))
1011 return -EFAULT;
1012
1013 return 0;
1014 }
1015
vfio_iova_dirty_bitmap(u64 __user * bitmap,struct vfio_iommu * iommu,dma_addr_t iova,size_t size,size_t pgsize)1016 static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1017 dma_addr_t iova, size_t size, size_t pgsize)
1018 {
1019 struct vfio_dma *dma;
1020 struct rb_node *n;
1021 unsigned long pgshift = __ffs(pgsize);
1022 int ret;
1023
1024 /*
1025 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1026 * vfio_dma mappings may be clubbed by specifying large ranges, but
1027 * there must not be any previous mappings bisected by the range.
1028 * An error will be returned if these conditions are not met.
1029 */
1030 dma = vfio_find_dma(iommu, iova, 1);
1031 if (dma && dma->iova != iova)
1032 return -EINVAL;
1033
1034 dma = vfio_find_dma(iommu, iova + size - 1, 0);
1035 if (dma && dma->iova + dma->size != iova + size)
1036 return -EINVAL;
1037
1038 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1039 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1040
1041 if (dma->iova < iova)
1042 continue;
1043
1044 if (dma->iova > iova + size - 1)
1045 break;
1046
1047 ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize);
1048 if (ret)
1049 return ret;
1050
1051 /*
1052 * Re-populate bitmap to include all pinned pages which are
1053 * considered as dirty but exclude pages which are unpinned and
1054 * pages which are marked dirty by vfio_dma_rw()
1055 */
1056 bitmap_clear(dma->bitmap, 0, dma->size >> pgshift);
1057 vfio_dma_populate_bitmap(dma, pgsize);
1058 }
1059 return 0;
1060 }
1061
verify_bitmap_size(uint64_t npages,uint64_t bitmap_size)1062 static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1063 {
1064 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1065 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1066 return -EINVAL;
1067
1068 return 0;
1069 }
1070
vfio_dma_do_unmap(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_unmap * unmap,struct vfio_bitmap * bitmap)1071 static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1072 struct vfio_iommu_type1_dma_unmap *unmap,
1073 struct vfio_bitmap *bitmap)
1074 {
1075 struct vfio_dma *dma, *dma_last = NULL;
1076 size_t unmapped = 0, pgsize;
1077 int ret = 0, retries = 0;
1078 unsigned long pgshift;
1079
1080 mutex_lock(&iommu->lock);
1081
1082 pgshift = __ffs(iommu->pgsize_bitmap);
1083 pgsize = (size_t)1 << pgshift;
1084
1085 if (unmap->iova & (pgsize - 1)) {
1086 ret = -EINVAL;
1087 goto unlock;
1088 }
1089
1090 if (!unmap->size || unmap->size & (pgsize - 1)) {
1091 ret = -EINVAL;
1092 goto unlock;
1093 }
1094
1095 if (unmap->iova + unmap->size - 1 < unmap->iova ||
1096 unmap->size > SIZE_MAX) {
1097 ret = -EINVAL;
1098 goto unlock;
1099 }
1100
1101 /* When dirty tracking is enabled, allow only min supported pgsize */
1102 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1103 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1104 ret = -EINVAL;
1105 goto unlock;
1106 }
1107
1108 WARN_ON((pgsize - 1) & PAGE_MASK);
1109 again:
1110 /*
1111 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1112 * avoid tracking individual mappings. This means that the granularity
1113 * of the original mapping was lost and the user was allowed to attempt
1114 * to unmap any range. Depending on the contiguousness of physical
1115 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1116 * or may not have worked. We only guaranteed unmap granularity
1117 * matching the original mapping; even though it was untracked here,
1118 * the original mappings are reflected in IOMMU mappings. This
1119 * resulted in a couple unusual behaviors. First, if a range is not
1120 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1121 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1122 * a zero sized unmap. Also, if an unmap request overlaps the first
1123 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1124 * This also returns success and the returned unmap size reflects the
1125 * actual size unmapped.
1126 *
1127 * We attempt to maintain compatibility with this "v1" interface, but
1128 * we take control out of the hands of the IOMMU. Therefore, an unmap
1129 * request offset from the beginning of the original mapping will
1130 * return success with zero sized unmap. And an unmap request covering
1131 * the first iova of mapping will unmap the entire range.
1132 *
1133 * The v2 version of this interface intends to be more deterministic.
1134 * Unmap requests must fully cover previous mappings. Multiple
1135 * mappings may still be unmaped by specifying large ranges, but there
1136 * must not be any previous mappings bisected by the range. An error
1137 * will be returned if these conditions are not met. The v2 interface
1138 * will only return success and a size of zero if there were no
1139 * mappings within the range.
1140 */
1141 if (iommu->v2) {
1142 dma = vfio_find_dma(iommu, unmap->iova, 1);
1143 if (dma && dma->iova != unmap->iova) {
1144 ret = -EINVAL;
1145 goto unlock;
1146 }
1147 dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
1148 if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
1149 ret = -EINVAL;
1150 goto unlock;
1151 }
1152 }
1153
1154 while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
1155 if (!iommu->v2 && unmap->iova > dma->iova)
1156 break;
1157 /*
1158 * Task with same address space who mapped this iova range is
1159 * allowed to unmap the iova range.
1160 */
1161 if (dma->task->mm != current->mm)
1162 break;
1163
1164 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1165 struct vfio_iommu_type1_dma_unmap nb_unmap;
1166
1167 if (dma_last == dma) {
1168 BUG_ON(++retries > 10);
1169 } else {
1170 dma_last = dma;
1171 retries = 0;
1172 }
1173
1174 nb_unmap.iova = dma->iova;
1175 nb_unmap.size = dma->size;
1176
1177 /*
1178 * Notify anyone (mdev vendor drivers) to invalidate and
1179 * unmap iovas within the range we're about to unmap.
1180 * Vendor drivers MUST unpin pages in response to an
1181 * invalidation.
1182 */
1183 mutex_unlock(&iommu->lock);
1184 blocking_notifier_call_chain(&iommu->notifier,
1185 VFIO_IOMMU_NOTIFY_DMA_UNMAP,
1186 &nb_unmap);
1187 mutex_lock(&iommu->lock);
1188 goto again;
1189 }
1190
1191 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1192 ret = update_user_bitmap(bitmap->data, iommu, dma,
1193 unmap->iova, pgsize);
1194 if (ret)
1195 break;
1196 }
1197
1198 unmapped += dma->size;
1199 vfio_remove_dma(iommu, dma);
1200 }
1201
1202 unlock:
1203 mutex_unlock(&iommu->lock);
1204
1205 /* Report how much was unmapped */
1206 unmap->size = unmapped;
1207
1208 return ret;
1209 }
1210
vfio_iommu_map(struct vfio_iommu * iommu,dma_addr_t iova,unsigned long pfn,long npage,int prot)1211 static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1212 unsigned long pfn, long npage, int prot)
1213 {
1214 struct vfio_domain *d;
1215 int ret;
1216
1217 list_for_each_entry(d, &iommu->domain_list, next) {
1218 ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
1219 npage << PAGE_SHIFT, prot | d->prot);
1220 if (ret)
1221 goto unwind;
1222
1223 cond_resched();
1224 }
1225
1226 return 0;
1227
1228 unwind:
1229 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1230 iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
1231 cond_resched();
1232 }
1233
1234 return ret;
1235 }
1236
vfio_pin_map_dma(struct vfio_iommu * iommu,struct vfio_dma * dma,size_t map_size)1237 static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1238 size_t map_size)
1239 {
1240 dma_addr_t iova = dma->iova;
1241 unsigned long vaddr = dma->vaddr;
1242 size_t size = map_size;
1243 long npage;
1244 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1245 int ret = 0;
1246
1247 while (size) {
1248 /* Pin a contiguous chunk of memory */
1249 npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
1250 size >> PAGE_SHIFT, &pfn, limit);
1251 if (npage <= 0) {
1252 WARN_ON(!npage);
1253 ret = (int)npage;
1254 break;
1255 }
1256
1257 /* Map it! */
1258 ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
1259 dma->prot);
1260 if (ret) {
1261 vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
1262 npage, true);
1263 break;
1264 }
1265
1266 size -= npage << PAGE_SHIFT;
1267 dma->size += npage << PAGE_SHIFT;
1268 }
1269
1270 dma->iommu_mapped = true;
1271
1272 if (ret)
1273 vfio_remove_dma(iommu, dma);
1274
1275 return ret;
1276 }
1277
1278 /*
1279 * Check dma map request is within a valid iova range
1280 */
vfio_iommu_iova_dma_valid(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1281 static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1282 dma_addr_t start, dma_addr_t end)
1283 {
1284 struct list_head *iova = &iommu->iova_list;
1285 struct vfio_iova *node;
1286
1287 list_for_each_entry(node, iova, list) {
1288 if (start >= node->start && end <= node->end)
1289 return true;
1290 }
1291
1292 /*
1293 * Check for list_empty() as well since a container with
1294 * a single mdev device will have an empty list.
1295 */
1296 return list_empty(iova);
1297 }
1298
vfio_dma_do_map(struct vfio_iommu * iommu,struct vfio_iommu_type1_dma_map * map)1299 static int vfio_dma_do_map(struct vfio_iommu *iommu,
1300 struct vfio_iommu_type1_dma_map *map)
1301 {
1302 dma_addr_t iova = map->iova;
1303 unsigned long vaddr = map->vaddr;
1304 size_t size = map->size;
1305 int ret = 0, prot = 0;
1306 size_t pgsize;
1307 struct vfio_dma *dma;
1308
1309 /* Verify that none of our __u64 fields overflow */
1310 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1311 return -EINVAL;
1312
1313 /* READ/WRITE from device perspective */
1314 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1315 prot |= IOMMU_WRITE;
1316 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1317 prot |= IOMMU_READ;
1318
1319 mutex_lock(&iommu->lock);
1320
1321 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1322
1323 WARN_ON((pgsize - 1) & PAGE_MASK);
1324
1325 if (!prot || !size || (size | iova | vaddr) & (pgsize - 1)) {
1326 ret = -EINVAL;
1327 goto out_unlock;
1328 }
1329
1330 /* Don't allow IOVA or virtual address wrap */
1331 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1332 ret = -EINVAL;
1333 goto out_unlock;
1334 }
1335
1336 if (vfio_find_dma(iommu, iova, size)) {
1337 ret = -EEXIST;
1338 goto out_unlock;
1339 }
1340
1341 if (!iommu->dma_avail) {
1342 ret = -ENOSPC;
1343 goto out_unlock;
1344 }
1345
1346 if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) {
1347 ret = -EINVAL;
1348 goto out_unlock;
1349 }
1350
1351 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
1352 if (!dma) {
1353 ret = -ENOMEM;
1354 goto out_unlock;
1355 }
1356
1357 iommu->dma_avail--;
1358 dma->iova = iova;
1359 dma->vaddr = vaddr;
1360 dma->prot = prot;
1361
1362 /*
1363 * We need to be able to both add to a task's locked memory and test
1364 * against the locked memory limit and we need to be able to do both
1365 * outside of this call path as pinning can be asynchronous via the
1366 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1367 * task_struct and VM locked pages requires an mm_struct, however
1368 * holding an indefinite mm reference is not recommended, therefore we
1369 * only hold a reference to a task. We could hold a reference to
1370 * current, however QEMU uses this call path through vCPU threads,
1371 * which can be killed resulting in a NULL mm and failure in the unmap
1372 * path when called via a different thread. Avoid this problem by
1373 * using the group_leader as threads within the same group require
1374 * both CLONE_THREAD and CLONE_VM and will therefore use the same
1375 * mm_struct.
1376 *
1377 * Previously we also used the task for testing CAP_IPC_LOCK at the
1378 * time of pinning and accounting, however has_capability() makes use
1379 * of real_cred, a copy-on-write field, so we can't guarantee that it
1380 * matches group_leader, or in fact that it might not change by the
1381 * time it's evaluated. If a process were to call MAP_DMA with
1382 * CAP_IPC_LOCK but later drop it, it doesn't make sense that they
1383 * possibly see different results for an iommu_mapped vfio_dma vs
1384 * externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the
1385 * time of calling MAP_DMA.
1386 */
1387 get_task_struct(current->group_leader);
1388 dma->task = current->group_leader;
1389 dma->lock_cap = capable(CAP_IPC_LOCK);
1390
1391 dma->pfn_list = RB_ROOT;
1392
1393 /* Insert zero-sized and grow as we map chunks of it */
1394 vfio_link_dma(iommu, dma);
1395
1396 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1397 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
1398 dma->size = size;
1399 else
1400 ret = vfio_pin_map_dma(iommu, dma, size);
1401
1402 if (!ret && iommu->dirty_page_tracking) {
1403 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1404 if (ret)
1405 vfio_remove_dma(iommu, dma);
1406 }
1407
1408 out_unlock:
1409 mutex_unlock(&iommu->lock);
1410 return ret;
1411 }
1412
vfio_bus_type(struct device * dev,void * data)1413 static int vfio_bus_type(struct device *dev, void *data)
1414 {
1415 struct bus_type **bus = data;
1416
1417 if (*bus && *bus != dev->bus)
1418 return -EINVAL;
1419
1420 *bus = dev->bus;
1421
1422 return 0;
1423 }
1424
vfio_iommu_replay(struct vfio_iommu * iommu,struct vfio_domain * domain)1425 static int vfio_iommu_replay(struct vfio_iommu *iommu,
1426 struct vfio_domain *domain)
1427 {
1428 struct vfio_domain *d = NULL;
1429 struct rb_node *n;
1430 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1431 int ret;
1432
1433 /* Arbitrarily pick the first domain in the list for lookups */
1434 if (!list_empty(&iommu->domain_list))
1435 d = list_first_entry(&iommu->domain_list,
1436 struct vfio_domain, next);
1437
1438 n = rb_first(&iommu->dma_list);
1439
1440 for (; n; n = rb_next(n)) {
1441 struct vfio_dma *dma;
1442 dma_addr_t iova;
1443
1444 dma = rb_entry(n, struct vfio_dma, node);
1445 iova = dma->iova;
1446
1447 while (iova < dma->iova + dma->size) {
1448 phys_addr_t phys;
1449 size_t size;
1450
1451 if (dma->iommu_mapped) {
1452 phys_addr_t p;
1453 dma_addr_t i;
1454
1455 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1456 ret = -EINVAL;
1457 goto unwind;
1458 }
1459
1460 phys = iommu_iova_to_phys(d->domain, iova);
1461
1462 if (WARN_ON(!phys)) {
1463 iova += PAGE_SIZE;
1464 continue;
1465 }
1466
1467 size = PAGE_SIZE;
1468 p = phys + size;
1469 i = iova + size;
1470 while (i < dma->iova + dma->size &&
1471 p == iommu_iova_to_phys(d->domain, i)) {
1472 size += PAGE_SIZE;
1473 p += PAGE_SIZE;
1474 i += PAGE_SIZE;
1475 }
1476 } else {
1477 unsigned long pfn;
1478 unsigned long vaddr = dma->vaddr +
1479 (iova - dma->iova);
1480 size_t n = dma->iova + dma->size - iova;
1481 long npage;
1482
1483 npage = vfio_pin_pages_remote(dma, vaddr,
1484 n >> PAGE_SHIFT,
1485 &pfn, limit);
1486 if (npage <= 0) {
1487 WARN_ON(!npage);
1488 ret = (int)npage;
1489 goto unwind;
1490 }
1491
1492 phys = pfn << PAGE_SHIFT;
1493 size = npage << PAGE_SHIFT;
1494 }
1495
1496 ret = iommu_map(domain->domain, iova, phys,
1497 size, dma->prot | domain->prot);
1498 if (ret) {
1499 if (!dma->iommu_mapped)
1500 vfio_unpin_pages_remote(dma, iova,
1501 phys >> PAGE_SHIFT,
1502 size >> PAGE_SHIFT,
1503 true);
1504 goto unwind;
1505 }
1506
1507 iova += size;
1508 }
1509 }
1510
1511 /* All dmas are now mapped, defer to second tree walk for unwind */
1512 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1513 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1514
1515 dma->iommu_mapped = true;
1516 }
1517
1518 return 0;
1519
1520 unwind:
1521 for (; n; n = rb_prev(n)) {
1522 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1523 dma_addr_t iova;
1524
1525 if (dma->iommu_mapped) {
1526 iommu_unmap(domain->domain, dma->iova, dma->size);
1527 continue;
1528 }
1529
1530 iova = dma->iova;
1531 while (iova < dma->iova + dma->size) {
1532 phys_addr_t phys, p;
1533 size_t size;
1534 dma_addr_t i;
1535
1536 phys = iommu_iova_to_phys(domain->domain, iova);
1537 if (!phys) {
1538 iova += PAGE_SIZE;
1539 continue;
1540 }
1541
1542 size = PAGE_SIZE;
1543 p = phys + size;
1544 i = iova + size;
1545 while (i < dma->iova + dma->size &&
1546 p == iommu_iova_to_phys(domain->domain, i)) {
1547 size += PAGE_SIZE;
1548 p += PAGE_SIZE;
1549 i += PAGE_SIZE;
1550 }
1551
1552 iommu_unmap(domain->domain, iova, size);
1553 vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT,
1554 size >> PAGE_SHIFT, true);
1555 }
1556 }
1557
1558 return ret;
1559 }
1560
1561 /*
1562 * We change our unmap behavior slightly depending on whether the IOMMU
1563 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1564 * for practically any contiguous power-of-two mapping we give it. This means
1565 * we don't need to look for contiguous chunks ourselves to make unmapping
1566 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1567 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1568 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1569 * hugetlbfs is in use.
1570 */
vfio_test_domain_fgsp(struct vfio_domain * domain)1571 static void vfio_test_domain_fgsp(struct vfio_domain *domain)
1572 {
1573 struct page *pages;
1574 int ret, order = get_order(PAGE_SIZE * 2);
1575
1576 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1577 if (!pages)
1578 return;
1579
1580 ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
1581 IOMMU_READ | IOMMU_WRITE | domain->prot);
1582 if (!ret) {
1583 size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
1584
1585 if (unmapped == PAGE_SIZE)
1586 iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
1587 else
1588 domain->fgsp = true;
1589 }
1590
1591 __free_pages(pages, order);
1592 }
1593
find_iommu_group(struct vfio_domain * domain,struct iommu_group * iommu_group)1594 static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
1595 struct iommu_group *iommu_group)
1596 {
1597 struct vfio_group *g;
1598
1599 list_for_each_entry(g, &domain->group_list, next) {
1600 if (g->iommu_group == iommu_group)
1601 return g;
1602 }
1603
1604 return NULL;
1605 }
1606
vfio_iommu_find_iommu_group(struct vfio_iommu * iommu,struct iommu_group * iommu_group)1607 static struct vfio_group *vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1608 struct iommu_group *iommu_group)
1609 {
1610 struct vfio_domain *domain;
1611 struct vfio_group *group = NULL;
1612
1613 list_for_each_entry(domain, &iommu->domain_list, next) {
1614 group = find_iommu_group(domain, iommu_group);
1615 if (group)
1616 return group;
1617 }
1618
1619 if (iommu->external_domain)
1620 group = find_iommu_group(iommu->external_domain, iommu_group);
1621
1622 return group;
1623 }
1624
update_pinned_page_dirty_scope(struct vfio_iommu * iommu)1625 static void update_pinned_page_dirty_scope(struct vfio_iommu *iommu)
1626 {
1627 struct vfio_domain *domain;
1628 struct vfio_group *group;
1629
1630 list_for_each_entry(domain, &iommu->domain_list, next) {
1631 list_for_each_entry(group, &domain->group_list, next) {
1632 if (!group->pinned_page_dirty_scope) {
1633 iommu->pinned_page_dirty_scope = false;
1634 return;
1635 }
1636 }
1637 }
1638
1639 if (iommu->external_domain) {
1640 domain = iommu->external_domain;
1641 list_for_each_entry(group, &domain->group_list, next) {
1642 if (!group->pinned_page_dirty_scope) {
1643 iommu->pinned_page_dirty_scope = false;
1644 return;
1645 }
1646 }
1647 }
1648
1649 iommu->pinned_page_dirty_scope = true;
1650 }
1651
vfio_iommu_has_sw_msi(struct list_head * group_resv_regions,phys_addr_t * base)1652 static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1653 phys_addr_t *base)
1654 {
1655 struct iommu_resv_region *region;
1656 bool ret = false;
1657
1658 list_for_each_entry(region, group_resv_regions, list) {
1659 /*
1660 * The presence of any 'real' MSI regions should take
1661 * precedence over the software-managed one if the
1662 * IOMMU driver happens to advertise both types.
1663 */
1664 if (region->type == IOMMU_RESV_MSI) {
1665 ret = false;
1666 break;
1667 }
1668
1669 if (region->type == IOMMU_RESV_SW_MSI) {
1670 *base = region->start;
1671 ret = true;
1672 }
1673 }
1674
1675 return ret;
1676 }
1677
vfio_mdev_get_iommu_device(struct device * dev)1678 static struct device *vfio_mdev_get_iommu_device(struct device *dev)
1679 {
1680 struct device *(*fn)(struct device *dev);
1681 struct device *iommu_device;
1682
1683 fn = symbol_get(mdev_get_iommu_device);
1684 if (fn) {
1685 iommu_device = fn(dev);
1686 symbol_put(mdev_get_iommu_device);
1687
1688 return iommu_device;
1689 }
1690
1691 return NULL;
1692 }
1693
vfio_mdev_attach_domain(struct device * dev,void * data)1694 static int vfio_mdev_attach_domain(struct device *dev, void *data)
1695 {
1696 struct iommu_domain *domain = data;
1697 struct device *iommu_device;
1698
1699 iommu_device = vfio_mdev_get_iommu_device(dev);
1700 if (iommu_device) {
1701 if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1702 return iommu_aux_attach_device(domain, iommu_device);
1703 else
1704 return iommu_attach_device(domain, iommu_device);
1705 }
1706
1707 return -EINVAL;
1708 }
1709
vfio_mdev_detach_domain(struct device * dev,void * data)1710 static int vfio_mdev_detach_domain(struct device *dev, void *data)
1711 {
1712 struct iommu_domain *domain = data;
1713 struct device *iommu_device;
1714
1715 iommu_device = vfio_mdev_get_iommu_device(dev);
1716 if (iommu_device) {
1717 if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
1718 iommu_aux_detach_device(domain, iommu_device);
1719 else
1720 iommu_detach_device(domain, iommu_device);
1721 }
1722
1723 return 0;
1724 }
1725
vfio_iommu_attach_group(struct vfio_domain * domain,struct vfio_group * group)1726 static int vfio_iommu_attach_group(struct vfio_domain *domain,
1727 struct vfio_group *group)
1728 {
1729 if (group->mdev_group)
1730 return iommu_group_for_each_dev(group->iommu_group,
1731 domain->domain,
1732 vfio_mdev_attach_domain);
1733 else
1734 return iommu_attach_group(domain->domain, group->iommu_group);
1735 }
1736
vfio_iommu_detach_group(struct vfio_domain * domain,struct vfio_group * group)1737 static void vfio_iommu_detach_group(struct vfio_domain *domain,
1738 struct vfio_group *group)
1739 {
1740 if (group->mdev_group)
1741 iommu_group_for_each_dev(group->iommu_group, domain->domain,
1742 vfio_mdev_detach_domain);
1743 else
1744 iommu_detach_group(domain->domain, group->iommu_group);
1745 }
1746
vfio_bus_is_mdev(struct bus_type * bus)1747 static bool vfio_bus_is_mdev(struct bus_type *bus)
1748 {
1749 struct bus_type *mdev_bus;
1750 bool ret = false;
1751
1752 mdev_bus = symbol_get(mdev_bus_type);
1753 if (mdev_bus) {
1754 ret = (bus == mdev_bus);
1755 symbol_put(mdev_bus_type);
1756 }
1757
1758 return ret;
1759 }
1760
vfio_mdev_iommu_device(struct device * dev,void * data)1761 static int vfio_mdev_iommu_device(struct device *dev, void *data)
1762 {
1763 struct device **old = data, *new;
1764
1765 new = vfio_mdev_get_iommu_device(dev);
1766 if (!new || (*old && *old != new))
1767 return -EINVAL;
1768
1769 *old = new;
1770
1771 return 0;
1772 }
1773
1774 /*
1775 * This is a helper function to insert an address range to iova list.
1776 * The list is initially created with a single entry corresponding to
1777 * the IOMMU domain geometry to which the device group is attached.
1778 * The list aperture gets modified when a new domain is added to the
1779 * container if the new aperture doesn't conflict with the current one
1780 * or with any existing dma mappings. The list is also modified to
1781 * exclude any reserved regions associated with the device group.
1782 */
vfio_iommu_iova_insert(struct list_head * head,dma_addr_t start,dma_addr_t end)1783 static int vfio_iommu_iova_insert(struct list_head *head,
1784 dma_addr_t start, dma_addr_t end)
1785 {
1786 struct vfio_iova *region;
1787
1788 region = kmalloc(sizeof(*region), GFP_KERNEL);
1789 if (!region)
1790 return -ENOMEM;
1791
1792 INIT_LIST_HEAD(®ion->list);
1793 region->start = start;
1794 region->end = end;
1795
1796 list_add_tail(®ion->list, head);
1797 return 0;
1798 }
1799
1800 /*
1801 * Check the new iommu aperture conflicts with existing aper or with any
1802 * existing dma mappings.
1803 */
vfio_iommu_aper_conflict(struct vfio_iommu * iommu,dma_addr_t start,dma_addr_t end)1804 static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1805 dma_addr_t start, dma_addr_t end)
1806 {
1807 struct vfio_iova *first, *last;
1808 struct list_head *iova = &iommu->iova_list;
1809
1810 if (list_empty(iova))
1811 return false;
1812
1813 /* Disjoint sets, return conflict */
1814 first = list_first_entry(iova, struct vfio_iova, list);
1815 last = list_last_entry(iova, struct vfio_iova, list);
1816 if (start > last->end || end < first->start)
1817 return true;
1818
1819 /* Check for any existing dma mappings below the new start */
1820 if (start > first->start) {
1821 if (vfio_find_dma(iommu, first->start, start - first->start))
1822 return true;
1823 }
1824
1825 /* Check for any existing dma mappings beyond the new end */
1826 if (end < last->end) {
1827 if (vfio_find_dma(iommu, end + 1, last->end - end))
1828 return true;
1829 }
1830
1831 return false;
1832 }
1833
1834 /*
1835 * Resize iommu iova aperture window. This is called only if the new
1836 * aperture has no conflict with existing aperture and dma mappings.
1837 */
vfio_iommu_aper_resize(struct list_head * iova,dma_addr_t start,dma_addr_t end)1838 static int vfio_iommu_aper_resize(struct list_head *iova,
1839 dma_addr_t start, dma_addr_t end)
1840 {
1841 struct vfio_iova *node, *next;
1842
1843 if (list_empty(iova))
1844 return vfio_iommu_iova_insert(iova, start, end);
1845
1846 /* Adjust iova list start */
1847 list_for_each_entry_safe(node, next, iova, list) {
1848 if (start < node->start)
1849 break;
1850 if (start >= node->start && start < node->end) {
1851 node->start = start;
1852 break;
1853 }
1854 /* Delete nodes before new start */
1855 list_del(&node->list);
1856 kfree(node);
1857 }
1858
1859 /* Adjust iova list end */
1860 list_for_each_entry_safe(node, next, iova, list) {
1861 if (end > node->end)
1862 continue;
1863 if (end > node->start && end <= node->end) {
1864 node->end = end;
1865 continue;
1866 }
1867 /* Delete nodes after new end */
1868 list_del(&node->list);
1869 kfree(node);
1870 }
1871
1872 return 0;
1873 }
1874
1875 /*
1876 * Check reserved region conflicts with existing dma mappings
1877 */
vfio_iommu_resv_conflict(struct vfio_iommu * iommu,struct list_head * resv_regions)1878 static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
1879 struct list_head *resv_regions)
1880 {
1881 struct iommu_resv_region *region;
1882
1883 /* Check for conflict with existing dma mappings */
1884 list_for_each_entry(region, resv_regions, list) {
1885 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
1886 continue;
1887
1888 if (vfio_find_dma(iommu, region->start, region->length))
1889 return true;
1890 }
1891
1892 return false;
1893 }
1894
1895 /*
1896 * Check iova region overlap with reserved regions and
1897 * exclude them from the iommu iova range
1898 */
vfio_iommu_resv_exclude(struct list_head * iova,struct list_head * resv_regions)1899 static int vfio_iommu_resv_exclude(struct list_head *iova,
1900 struct list_head *resv_regions)
1901 {
1902 struct iommu_resv_region *resv;
1903 struct vfio_iova *n, *next;
1904
1905 list_for_each_entry(resv, resv_regions, list) {
1906 phys_addr_t start, end;
1907
1908 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
1909 continue;
1910
1911 start = resv->start;
1912 end = resv->start + resv->length - 1;
1913
1914 list_for_each_entry_safe(n, next, iova, list) {
1915 int ret = 0;
1916
1917 /* No overlap */
1918 if (start > n->end || end < n->start)
1919 continue;
1920 /*
1921 * Insert a new node if current node overlaps with the
1922 * reserve region to exlude that from valid iova range.
1923 * Note that, new node is inserted before the current
1924 * node and finally the current node is deleted keeping
1925 * the list updated and sorted.
1926 */
1927 if (start > n->start)
1928 ret = vfio_iommu_iova_insert(&n->list, n->start,
1929 start - 1);
1930 if (!ret && end < n->end)
1931 ret = vfio_iommu_iova_insert(&n->list, end + 1,
1932 n->end);
1933 if (ret)
1934 return ret;
1935
1936 list_del(&n->list);
1937 kfree(n);
1938 }
1939 }
1940
1941 if (list_empty(iova))
1942 return -EINVAL;
1943
1944 return 0;
1945 }
1946
vfio_iommu_resv_free(struct list_head * resv_regions)1947 static void vfio_iommu_resv_free(struct list_head *resv_regions)
1948 {
1949 struct iommu_resv_region *n, *next;
1950
1951 list_for_each_entry_safe(n, next, resv_regions, list) {
1952 list_del(&n->list);
1953 kfree(n);
1954 }
1955 }
1956
vfio_iommu_iova_free(struct list_head * iova)1957 static void vfio_iommu_iova_free(struct list_head *iova)
1958 {
1959 struct vfio_iova *n, *next;
1960
1961 list_for_each_entry_safe(n, next, iova, list) {
1962 list_del(&n->list);
1963 kfree(n);
1964 }
1965 }
1966
vfio_iommu_iova_get_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)1967 static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
1968 struct list_head *iova_copy)
1969 {
1970 struct list_head *iova = &iommu->iova_list;
1971 struct vfio_iova *n;
1972 int ret;
1973
1974 list_for_each_entry(n, iova, list) {
1975 ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
1976 if (ret)
1977 goto out_free;
1978 }
1979
1980 return 0;
1981
1982 out_free:
1983 vfio_iommu_iova_free(iova_copy);
1984 return ret;
1985 }
1986
vfio_iommu_iova_insert_copy(struct vfio_iommu * iommu,struct list_head * iova_copy)1987 static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
1988 struct list_head *iova_copy)
1989 {
1990 struct list_head *iova = &iommu->iova_list;
1991
1992 vfio_iommu_iova_free(iova);
1993
1994 list_splice_tail(iova_copy, iova);
1995 }
1996
vfio_iommu_type1_attach_group(void * iommu_data,struct iommu_group * iommu_group)1997 static int vfio_iommu_type1_attach_group(void *iommu_data,
1998 struct iommu_group *iommu_group)
1999 {
2000 struct vfio_iommu *iommu = iommu_data;
2001 struct vfio_group *group;
2002 struct vfio_domain *domain, *d;
2003 struct bus_type *bus = NULL;
2004 int ret;
2005 bool resv_msi, msi_remap;
2006 phys_addr_t resv_msi_base = 0;
2007 struct iommu_domain_geometry geo;
2008 LIST_HEAD(iova_copy);
2009 LIST_HEAD(group_resv_regions);
2010
2011 mutex_lock(&iommu->lock);
2012
2013 /* Check for duplicates */
2014 if (vfio_iommu_find_iommu_group(iommu, iommu_group)) {
2015 mutex_unlock(&iommu->lock);
2016 return -EINVAL;
2017 }
2018
2019 group = kzalloc(sizeof(*group), GFP_KERNEL);
2020 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2021 if (!group || !domain) {
2022 ret = -ENOMEM;
2023 goto out_free;
2024 }
2025
2026 group->iommu_group = iommu_group;
2027
2028 /* Determine bus_type in order to allocate a domain */
2029 ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
2030 if (ret)
2031 goto out_free;
2032
2033 if (vfio_bus_is_mdev(bus)) {
2034 struct device *iommu_device = NULL;
2035
2036 group->mdev_group = true;
2037
2038 /* Determine the isolation type */
2039 ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
2040 vfio_mdev_iommu_device);
2041 if (ret || !iommu_device) {
2042 if (!iommu->external_domain) {
2043 INIT_LIST_HEAD(&domain->group_list);
2044 iommu->external_domain = domain;
2045 vfio_update_pgsize_bitmap(iommu);
2046 } else {
2047 kfree(domain);
2048 }
2049
2050 list_add(&group->next,
2051 &iommu->external_domain->group_list);
2052 /*
2053 * Non-iommu backed group cannot dirty memory directly,
2054 * it can only use interfaces that provide dirty
2055 * tracking.
2056 * The iommu scope can only be promoted with the
2057 * addition of a dirty tracking group.
2058 */
2059 group->pinned_page_dirty_scope = true;
2060 if (!iommu->pinned_page_dirty_scope)
2061 update_pinned_page_dirty_scope(iommu);
2062 mutex_unlock(&iommu->lock);
2063
2064 return 0;
2065 }
2066
2067 bus = iommu_device->bus;
2068 }
2069
2070 domain->domain = iommu_domain_alloc(bus);
2071 if (!domain->domain) {
2072 ret = -EIO;
2073 goto out_free;
2074 }
2075
2076 if (iommu->nesting) {
2077 int attr = 1;
2078
2079 ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
2080 &attr);
2081 if (ret)
2082 goto out_domain;
2083 }
2084
2085 ret = vfio_iommu_attach_group(domain, group);
2086 if (ret)
2087 goto out_domain;
2088
2089 /* Get aperture info */
2090 iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY, &geo);
2091
2092 if (vfio_iommu_aper_conflict(iommu, geo.aperture_start,
2093 geo.aperture_end)) {
2094 ret = -EINVAL;
2095 goto out_detach;
2096 }
2097
2098 ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
2099 if (ret)
2100 goto out_detach;
2101
2102 if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
2103 ret = -EINVAL;
2104 goto out_detach;
2105 }
2106
2107 /*
2108 * We don't want to work on the original iova list as the list
2109 * gets modified and in case of failure we have to retain the
2110 * original list. Get a copy here.
2111 */
2112 ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
2113 if (ret)
2114 goto out_detach;
2115
2116 ret = vfio_iommu_aper_resize(&iova_copy, geo.aperture_start,
2117 geo.aperture_end);
2118 if (ret)
2119 goto out_detach;
2120
2121 ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
2122 if (ret)
2123 goto out_detach;
2124
2125 resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base);
2126
2127 INIT_LIST_HEAD(&domain->group_list);
2128 list_add(&group->next, &domain->group_list);
2129
2130 msi_remap = irq_domain_check_msi_remap() ||
2131 iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
2132
2133 if (!allow_unsafe_interrupts && !msi_remap) {
2134 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2135 __func__);
2136 ret = -EPERM;
2137 goto out_detach;
2138 }
2139
2140 if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
2141 domain->prot |= IOMMU_CACHE;
2142
2143 /*
2144 * Try to match an existing compatible domain. We don't want to
2145 * preclude an IOMMU driver supporting multiple bus_types and being
2146 * able to include different bus_types in the same IOMMU domain, so
2147 * we test whether the domains use the same iommu_ops rather than
2148 * testing if they're on the same bus_type.
2149 */
2150 list_for_each_entry(d, &iommu->domain_list, next) {
2151 if (d->domain->ops == domain->domain->ops &&
2152 d->prot == domain->prot) {
2153 vfio_iommu_detach_group(domain, group);
2154 if (!vfio_iommu_attach_group(d, group)) {
2155 list_add(&group->next, &d->group_list);
2156 iommu_domain_free(domain->domain);
2157 kfree(domain);
2158 goto done;
2159 }
2160
2161 ret = vfio_iommu_attach_group(domain, group);
2162 if (ret)
2163 goto out_domain;
2164 }
2165 }
2166
2167 vfio_test_domain_fgsp(domain);
2168
2169 /* replay mappings on new domains */
2170 ret = vfio_iommu_replay(iommu, domain);
2171 if (ret)
2172 goto out_detach;
2173
2174 if (resv_msi) {
2175 ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
2176 if (ret && ret != -ENODEV)
2177 goto out_detach;
2178 }
2179
2180 list_add(&domain->next, &iommu->domain_list);
2181 vfio_update_pgsize_bitmap(iommu);
2182 done:
2183 /* Delete the old one and insert new iova list */
2184 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2185
2186 /*
2187 * An iommu backed group can dirty memory directly and therefore
2188 * demotes the iommu scope until it declares itself dirty tracking
2189 * capable via the page pinning interface.
2190 */
2191 iommu->pinned_page_dirty_scope = false;
2192 mutex_unlock(&iommu->lock);
2193 vfio_iommu_resv_free(&group_resv_regions);
2194
2195 return 0;
2196
2197 out_detach:
2198 vfio_iommu_detach_group(domain, group);
2199 out_domain:
2200 iommu_domain_free(domain->domain);
2201 vfio_iommu_iova_free(&iova_copy);
2202 vfio_iommu_resv_free(&group_resv_regions);
2203 out_free:
2204 kfree(domain);
2205 kfree(group);
2206 mutex_unlock(&iommu->lock);
2207 return ret;
2208 }
2209
vfio_iommu_unmap_unpin_all(struct vfio_iommu * iommu)2210 static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2211 {
2212 struct rb_node *node;
2213
2214 while ((node = rb_first(&iommu->dma_list)))
2215 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2216 }
2217
vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu * iommu)2218 static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2219 {
2220 struct rb_node *n, *p;
2221
2222 n = rb_first(&iommu->dma_list);
2223 for (; n; n = rb_next(n)) {
2224 struct vfio_dma *dma;
2225 long locked = 0, unlocked = 0;
2226
2227 dma = rb_entry(n, struct vfio_dma, node);
2228 unlocked += vfio_unmap_unpin(iommu, dma, false);
2229 p = rb_first(&dma->pfn_list);
2230 for (; p; p = rb_next(p)) {
2231 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2232 node);
2233
2234 if (!is_invalid_reserved_pfn(vpfn->pfn))
2235 locked++;
2236 }
2237 vfio_lock_acct(dma, locked - unlocked, true);
2238 }
2239 }
2240
vfio_sanity_check_pfn_list(struct vfio_iommu * iommu)2241 static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
2242 {
2243 struct rb_node *n;
2244
2245 n = rb_first(&iommu->dma_list);
2246 for (; n; n = rb_next(n)) {
2247 struct vfio_dma *dma;
2248
2249 dma = rb_entry(n, struct vfio_dma, node);
2250
2251 if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
2252 break;
2253 }
2254 /* mdev vendor driver must unregister notifier */
2255 WARN_ON(iommu->notifier.head);
2256 }
2257
2258 /*
2259 * Called when a domain is removed in detach. It is possible that
2260 * the removed domain decided the iova aperture window. Modify the
2261 * iova aperture with the smallest window among existing domains.
2262 */
vfio_iommu_aper_expand(struct vfio_iommu * iommu,struct list_head * iova_copy)2263 static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2264 struct list_head *iova_copy)
2265 {
2266 struct vfio_domain *domain;
2267 struct iommu_domain_geometry geo;
2268 struct vfio_iova *node;
2269 dma_addr_t start = 0;
2270 dma_addr_t end = (dma_addr_t)~0;
2271
2272 if (list_empty(iova_copy))
2273 return;
2274
2275 list_for_each_entry(domain, &iommu->domain_list, next) {
2276 iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY,
2277 &geo);
2278 if (geo.aperture_start > start)
2279 start = geo.aperture_start;
2280 if (geo.aperture_end < end)
2281 end = geo.aperture_end;
2282 }
2283
2284 /* Modify aperture limits. The new aper is either same or bigger */
2285 node = list_first_entry(iova_copy, struct vfio_iova, list);
2286 node->start = start;
2287 node = list_last_entry(iova_copy, struct vfio_iova, list);
2288 node->end = end;
2289 }
2290
2291 /*
2292 * Called when a group is detached. The reserved regions for that
2293 * group can be part of valid iova now. But since reserved regions
2294 * may be duplicated among groups, populate the iova valid regions
2295 * list again.
2296 */
vfio_iommu_resv_refresh(struct vfio_iommu * iommu,struct list_head * iova_copy)2297 static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2298 struct list_head *iova_copy)
2299 {
2300 struct vfio_domain *d;
2301 struct vfio_group *g;
2302 struct vfio_iova *node;
2303 dma_addr_t start, end;
2304 LIST_HEAD(resv_regions);
2305 int ret;
2306
2307 if (list_empty(iova_copy))
2308 return -EINVAL;
2309
2310 list_for_each_entry(d, &iommu->domain_list, next) {
2311 list_for_each_entry(g, &d->group_list, next) {
2312 ret = iommu_get_group_resv_regions(g->iommu_group,
2313 &resv_regions);
2314 if (ret)
2315 goto done;
2316 }
2317 }
2318
2319 node = list_first_entry(iova_copy, struct vfio_iova, list);
2320 start = node->start;
2321 node = list_last_entry(iova_copy, struct vfio_iova, list);
2322 end = node->end;
2323
2324 /* purge the iova list and create new one */
2325 vfio_iommu_iova_free(iova_copy);
2326
2327 ret = vfio_iommu_aper_resize(iova_copy, start, end);
2328 if (ret)
2329 goto done;
2330
2331 /* Exclude current reserved regions from iova ranges */
2332 ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions);
2333 done:
2334 vfio_iommu_resv_free(&resv_regions);
2335 return ret;
2336 }
2337
vfio_iommu_type1_detach_group(void * iommu_data,struct iommu_group * iommu_group)2338 static void vfio_iommu_type1_detach_group(void *iommu_data,
2339 struct iommu_group *iommu_group)
2340 {
2341 struct vfio_iommu *iommu = iommu_data;
2342 struct vfio_domain *domain;
2343 struct vfio_group *group;
2344 bool update_dirty_scope = false;
2345 LIST_HEAD(iova_copy);
2346
2347 mutex_lock(&iommu->lock);
2348
2349 if (iommu->external_domain) {
2350 group = find_iommu_group(iommu->external_domain, iommu_group);
2351 if (group) {
2352 update_dirty_scope = !group->pinned_page_dirty_scope;
2353 list_del(&group->next);
2354 kfree(group);
2355
2356 if (list_empty(&iommu->external_domain->group_list)) {
2357 vfio_sanity_check_pfn_list(iommu);
2358
2359 if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
2360 vfio_iommu_unmap_unpin_all(iommu);
2361
2362 kfree(iommu->external_domain);
2363 iommu->external_domain = NULL;
2364 }
2365 goto detach_group_done;
2366 }
2367 }
2368
2369 /*
2370 * Get a copy of iova list. This will be used to update
2371 * and to replace the current one later. Please note that
2372 * we will leave the original list as it is if update fails.
2373 */
2374 vfio_iommu_iova_get_copy(iommu, &iova_copy);
2375
2376 list_for_each_entry(domain, &iommu->domain_list, next) {
2377 group = find_iommu_group(domain, iommu_group);
2378 if (!group)
2379 continue;
2380
2381 vfio_iommu_detach_group(domain, group);
2382 update_dirty_scope = !group->pinned_page_dirty_scope;
2383 list_del(&group->next);
2384 kfree(group);
2385 /*
2386 * Group ownership provides privilege, if the group list is
2387 * empty, the domain goes away. If it's the last domain with
2388 * iommu and external domain doesn't exist, then all the
2389 * mappings go away too. If it's the last domain with iommu and
2390 * external domain exist, update accounting
2391 */
2392 if (list_empty(&domain->group_list)) {
2393 if (list_is_singular(&iommu->domain_list)) {
2394 if (!iommu->external_domain)
2395 vfio_iommu_unmap_unpin_all(iommu);
2396 else
2397 vfio_iommu_unmap_unpin_reaccount(iommu);
2398 }
2399 iommu_domain_free(domain->domain);
2400 list_del(&domain->next);
2401 kfree(domain);
2402 vfio_iommu_aper_expand(iommu, &iova_copy);
2403 vfio_update_pgsize_bitmap(iommu);
2404 }
2405 break;
2406 }
2407
2408 if (!vfio_iommu_resv_refresh(iommu, &iova_copy))
2409 vfio_iommu_iova_insert_copy(iommu, &iova_copy);
2410 else
2411 vfio_iommu_iova_free(&iova_copy);
2412
2413 detach_group_done:
2414 /*
2415 * Removal of a group without dirty tracking may allow the iommu scope
2416 * to be promoted.
2417 */
2418 if (update_dirty_scope)
2419 update_pinned_page_dirty_scope(iommu);
2420 mutex_unlock(&iommu->lock);
2421 }
2422
vfio_iommu_type1_open(unsigned long arg)2423 static void *vfio_iommu_type1_open(unsigned long arg)
2424 {
2425 struct vfio_iommu *iommu;
2426
2427 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
2428 if (!iommu)
2429 return ERR_PTR(-ENOMEM);
2430
2431 switch (arg) {
2432 case VFIO_TYPE1_IOMMU:
2433 break;
2434 case VFIO_TYPE1_NESTING_IOMMU:
2435 iommu->nesting = true;
2436 fallthrough;
2437 case VFIO_TYPE1v2_IOMMU:
2438 iommu->v2 = true;
2439 break;
2440 default:
2441 kfree(iommu);
2442 return ERR_PTR(-EINVAL);
2443 }
2444
2445 INIT_LIST_HEAD(&iommu->domain_list);
2446 INIT_LIST_HEAD(&iommu->iova_list);
2447 iommu->dma_list = RB_ROOT;
2448 iommu->dma_avail = dma_entry_limit;
2449 mutex_init(&iommu->lock);
2450 BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
2451
2452 return iommu;
2453 }
2454
vfio_release_domain(struct vfio_domain * domain,bool external)2455 static void vfio_release_domain(struct vfio_domain *domain, bool external)
2456 {
2457 struct vfio_group *group, *group_tmp;
2458
2459 list_for_each_entry_safe(group, group_tmp,
2460 &domain->group_list, next) {
2461 if (!external)
2462 vfio_iommu_detach_group(domain, group);
2463 list_del(&group->next);
2464 kfree(group);
2465 }
2466
2467 if (!external)
2468 iommu_domain_free(domain->domain);
2469 }
2470
vfio_iommu_type1_release(void * iommu_data)2471 static void vfio_iommu_type1_release(void *iommu_data)
2472 {
2473 struct vfio_iommu *iommu = iommu_data;
2474 struct vfio_domain *domain, *domain_tmp;
2475
2476 if (iommu->external_domain) {
2477 vfio_release_domain(iommu->external_domain, true);
2478 vfio_sanity_check_pfn_list(iommu);
2479 kfree(iommu->external_domain);
2480 }
2481
2482 vfio_iommu_unmap_unpin_all(iommu);
2483
2484 list_for_each_entry_safe(domain, domain_tmp,
2485 &iommu->domain_list, next) {
2486 vfio_release_domain(domain, false);
2487 list_del(&domain->next);
2488 kfree(domain);
2489 }
2490
2491 vfio_iommu_iova_free(&iommu->iova_list);
2492
2493 kfree(iommu);
2494 }
2495
vfio_domains_have_iommu_cache(struct vfio_iommu * iommu)2496 static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
2497 {
2498 struct vfio_domain *domain;
2499 int ret = 1;
2500
2501 mutex_lock(&iommu->lock);
2502 list_for_each_entry(domain, &iommu->domain_list, next) {
2503 if (!(domain->prot & IOMMU_CACHE)) {
2504 ret = 0;
2505 break;
2506 }
2507 }
2508 mutex_unlock(&iommu->lock);
2509
2510 return ret;
2511 }
2512
vfio_iommu_type1_check_extension(struct vfio_iommu * iommu,unsigned long arg)2513 static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2514 unsigned long arg)
2515 {
2516 switch (arg) {
2517 case VFIO_TYPE1_IOMMU:
2518 case VFIO_TYPE1v2_IOMMU:
2519 case VFIO_TYPE1_NESTING_IOMMU:
2520 return 1;
2521 case VFIO_DMA_CC_IOMMU:
2522 if (!iommu)
2523 return 0;
2524 return vfio_domains_have_iommu_cache(iommu);
2525 default:
2526 return 0;
2527 }
2528 }
2529
vfio_iommu_iova_add_cap(struct vfio_info_cap * caps,struct vfio_iommu_type1_info_cap_iova_range * cap_iovas,size_t size)2530 static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2531 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2532 size_t size)
2533 {
2534 struct vfio_info_cap_header *header;
2535 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2536
2537 header = vfio_info_cap_add(caps, size,
2538 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1);
2539 if (IS_ERR(header))
2540 return PTR_ERR(header);
2541
2542 iova_cap = container_of(header,
2543 struct vfio_iommu_type1_info_cap_iova_range,
2544 header);
2545 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2546 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2547 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2548 return 0;
2549 }
2550
vfio_iommu_iova_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2551 static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2552 struct vfio_info_cap *caps)
2553 {
2554 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2555 struct vfio_iova *iova;
2556 size_t size;
2557 int iovas = 0, i = 0, ret;
2558
2559 list_for_each_entry(iova, &iommu->iova_list, list)
2560 iovas++;
2561
2562 if (!iovas) {
2563 /*
2564 * Return 0 as a container with a single mdev device
2565 * will have an empty list
2566 */
2567 return 0;
2568 }
2569
2570 size = sizeof(*cap_iovas) + (iovas * sizeof(*cap_iovas->iova_ranges));
2571
2572 cap_iovas = kzalloc(size, GFP_KERNEL);
2573 if (!cap_iovas)
2574 return -ENOMEM;
2575
2576 cap_iovas->nr_iovas = iovas;
2577
2578 list_for_each_entry(iova, &iommu->iova_list, list) {
2579 cap_iovas->iova_ranges[i].start = iova->start;
2580 cap_iovas->iova_ranges[i].end = iova->end;
2581 i++;
2582 }
2583
2584 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2585
2586 kfree(cap_iovas);
2587 return ret;
2588 }
2589
vfio_iommu_migration_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2590 static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2591 struct vfio_info_cap *caps)
2592 {
2593 struct vfio_iommu_type1_info_cap_migration cap_mig;
2594
2595 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2596 cap_mig.header.version = 1;
2597
2598 cap_mig.flags = 0;
2599 /* support minimum pgsize */
2600 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2601 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2602
2603 return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
2604 }
2605
vfio_iommu_dma_avail_build_caps(struct vfio_iommu * iommu,struct vfio_info_cap * caps)2606 static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2607 struct vfio_info_cap *caps)
2608 {
2609 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2610
2611 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2612 cap_dma_avail.header.version = 1;
2613
2614 cap_dma_avail.avail = iommu->dma_avail;
2615
2616 return vfio_info_add_capability(caps, &cap_dma_avail.header,
2617 sizeof(cap_dma_avail));
2618 }
2619
vfio_iommu_type1_get_info(struct vfio_iommu * iommu,unsigned long arg)2620 static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2621 unsigned long arg)
2622 {
2623 struct vfio_iommu_type1_info info;
2624 unsigned long minsz;
2625 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2626 unsigned long capsz;
2627 int ret;
2628
2629 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2630
2631 /* For backward compatibility, cannot require this */
2632 capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
2633
2634 if (copy_from_user(&info, (void __user *)arg, minsz))
2635 return -EFAULT;
2636
2637 if (info.argsz < minsz)
2638 return -EINVAL;
2639
2640 if (info.argsz >= capsz) {
2641 minsz = capsz;
2642 info.cap_offset = 0; /* output, no-recopy necessary */
2643 }
2644
2645 mutex_lock(&iommu->lock);
2646 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2647
2648 info.iova_pgsizes = iommu->pgsize_bitmap;
2649
2650 ret = vfio_iommu_migration_build_caps(iommu, &caps);
2651
2652 if (!ret)
2653 ret = vfio_iommu_dma_avail_build_caps(iommu, &caps);
2654
2655 if (!ret)
2656 ret = vfio_iommu_iova_build_caps(iommu, &caps);
2657
2658 mutex_unlock(&iommu->lock);
2659
2660 if (ret)
2661 return ret;
2662
2663 if (caps.size) {
2664 info.flags |= VFIO_IOMMU_INFO_CAPS;
2665
2666 if (info.argsz < sizeof(info) + caps.size) {
2667 info.argsz = sizeof(info) + caps.size;
2668 } else {
2669 vfio_info_cap_shift(&caps, sizeof(info));
2670 if (copy_to_user((void __user *)arg +
2671 sizeof(info), caps.buf,
2672 caps.size)) {
2673 kfree(caps.buf);
2674 return -EFAULT;
2675 }
2676 info.cap_offset = sizeof(info);
2677 }
2678
2679 kfree(caps.buf);
2680 }
2681
2682 return copy_to_user((void __user *)arg, &info, minsz) ?
2683 -EFAULT : 0;
2684 }
2685
vfio_iommu_type1_map_dma(struct vfio_iommu * iommu,unsigned long arg)2686 static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2687 unsigned long arg)
2688 {
2689 struct vfio_iommu_type1_dma_map map;
2690 unsigned long minsz;
2691 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
2692
2693 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2694
2695 if (copy_from_user(&map, (void __user *)arg, minsz))
2696 return -EFAULT;
2697
2698 if (map.argsz < minsz || map.flags & ~mask)
2699 return -EINVAL;
2700
2701 return vfio_dma_do_map(iommu, &map);
2702 }
2703
vfio_iommu_type1_unmap_dma(struct vfio_iommu * iommu,unsigned long arg)2704 static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2705 unsigned long arg)
2706 {
2707 struct vfio_iommu_type1_dma_unmap unmap;
2708 struct vfio_bitmap bitmap = { 0 };
2709 unsigned long minsz;
2710 int ret;
2711
2712 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2713
2714 if (copy_from_user(&unmap, (void __user *)arg, minsz))
2715 return -EFAULT;
2716
2717 if (unmap.argsz < minsz ||
2718 unmap.flags & ~VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP)
2719 return -EINVAL;
2720
2721 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2722 unsigned long pgshift;
2723
2724 if (unmap.argsz < (minsz + sizeof(bitmap)))
2725 return -EINVAL;
2726
2727 if (copy_from_user(&bitmap,
2728 (void __user *)(arg + minsz),
2729 sizeof(bitmap)))
2730 return -EFAULT;
2731
2732 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2733 return -EINVAL;
2734
2735 pgshift = __ffs(bitmap.pgsize);
2736 ret = verify_bitmap_size(unmap.size >> pgshift,
2737 bitmap.size);
2738 if (ret)
2739 return ret;
2740 }
2741
2742 ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap);
2743 if (ret)
2744 return ret;
2745
2746 return copy_to_user((void __user *)arg, &unmap, minsz) ?
2747 -EFAULT : 0;
2748 }
2749
vfio_iommu_type1_dirty_pages(struct vfio_iommu * iommu,unsigned long arg)2750 static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2751 unsigned long arg)
2752 {
2753 struct vfio_iommu_type1_dirty_bitmap dirty;
2754 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2755 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2756 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2757 unsigned long minsz;
2758 int ret = 0;
2759
2760 if (!iommu->v2)
2761 return -EACCES;
2762
2763 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2764
2765 if (copy_from_user(&dirty, (void __user *)arg, minsz))
2766 return -EFAULT;
2767
2768 if (dirty.argsz < minsz || dirty.flags & ~mask)
2769 return -EINVAL;
2770
2771 /* only one flag should be set at a time */
2772 if (__ffs(dirty.flags) != __fls(dirty.flags))
2773 return -EINVAL;
2774
2775 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2776 size_t pgsize;
2777
2778 mutex_lock(&iommu->lock);
2779 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2780 if (!iommu->dirty_page_tracking) {
2781 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2782 if (!ret)
2783 iommu->dirty_page_tracking = true;
2784 }
2785 mutex_unlock(&iommu->lock);
2786 return ret;
2787 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2788 mutex_lock(&iommu->lock);
2789 if (iommu->dirty_page_tracking) {
2790 iommu->dirty_page_tracking = false;
2791 vfio_dma_bitmap_free_all(iommu);
2792 }
2793 mutex_unlock(&iommu->lock);
2794 return 0;
2795 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2796 struct vfio_iommu_type1_dirty_bitmap_get range;
2797 unsigned long pgshift;
2798 size_t data_size = dirty.argsz - minsz;
2799 size_t iommu_pgsize;
2800
2801 if (!data_size || data_size < sizeof(range))
2802 return -EINVAL;
2803
2804 if (copy_from_user(&range, (void __user *)(arg + minsz),
2805 sizeof(range)))
2806 return -EFAULT;
2807
2808 if (range.iova + range.size < range.iova)
2809 return -EINVAL;
2810 if (!access_ok((void __user *)range.bitmap.data,
2811 range.bitmap.size))
2812 return -EINVAL;
2813
2814 pgshift = __ffs(range.bitmap.pgsize);
2815 ret = verify_bitmap_size(range.size >> pgshift,
2816 range.bitmap.size);
2817 if (ret)
2818 return ret;
2819
2820 mutex_lock(&iommu->lock);
2821
2822 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2823
2824 /* allow only smallest supported pgsize */
2825 if (range.bitmap.pgsize != iommu_pgsize) {
2826 ret = -EINVAL;
2827 goto out_unlock;
2828 }
2829 if (range.iova & (iommu_pgsize - 1)) {
2830 ret = -EINVAL;
2831 goto out_unlock;
2832 }
2833 if (!range.size || range.size & (iommu_pgsize - 1)) {
2834 ret = -EINVAL;
2835 goto out_unlock;
2836 }
2837
2838 if (iommu->dirty_page_tracking)
2839 ret = vfio_iova_dirty_bitmap(range.bitmap.data,
2840 iommu, range.iova,
2841 range.size,
2842 range.bitmap.pgsize);
2843 else
2844 ret = -EINVAL;
2845 out_unlock:
2846 mutex_unlock(&iommu->lock);
2847
2848 return ret;
2849 }
2850
2851 return -EINVAL;
2852 }
2853
vfio_iommu_type1_ioctl(void * iommu_data,unsigned int cmd,unsigned long arg)2854 static long vfio_iommu_type1_ioctl(void *iommu_data,
2855 unsigned int cmd, unsigned long arg)
2856 {
2857 struct vfio_iommu *iommu = iommu_data;
2858
2859 switch (cmd) {
2860 case VFIO_CHECK_EXTENSION:
2861 return vfio_iommu_type1_check_extension(iommu, arg);
2862 case VFIO_IOMMU_GET_INFO:
2863 return vfio_iommu_type1_get_info(iommu, arg);
2864 case VFIO_IOMMU_MAP_DMA:
2865 return vfio_iommu_type1_map_dma(iommu, arg);
2866 case VFIO_IOMMU_UNMAP_DMA:
2867 return vfio_iommu_type1_unmap_dma(iommu, arg);
2868 case VFIO_IOMMU_DIRTY_PAGES:
2869 return vfio_iommu_type1_dirty_pages(iommu, arg);
2870 default:
2871 return -ENOTTY;
2872 }
2873 }
2874
vfio_iommu_type1_register_notifier(void * iommu_data,unsigned long * events,struct notifier_block * nb)2875 static int vfio_iommu_type1_register_notifier(void *iommu_data,
2876 unsigned long *events,
2877 struct notifier_block *nb)
2878 {
2879 struct vfio_iommu *iommu = iommu_data;
2880
2881 /* clear known events */
2882 *events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
2883
2884 /* refuse to register if still events remaining */
2885 if (*events)
2886 return -EINVAL;
2887
2888 return blocking_notifier_chain_register(&iommu->notifier, nb);
2889 }
2890
vfio_iommu_type1_unregister_notifier(void * iommu_data,struct notifier_block * nb)2891 static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
2892 struct notifier_block *nb)
2893 {
2894 struct vfio_iommu *iommu = iommu_data;
2895
2896 return blocking_notifier_chain_unregister(&iommu->notifier, nb);
2897 }
2898
vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu * iommu,dma_addr_t user_iova,void * data,size_t count,bool write,size_t * copied)2899 static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
2900 dma_addr_t user_iova, void *data,
2901 size_t count, bool write,
2902 size_t *copied)
2903 {
2904 struct mm_struct *mm;
2905 unsigned long vaddr;
2906 struct vfio_dma *dma;
2907 bool kthread = current->mm == NULL;
2908 size_t offset;
2909
2910 *copied = 0;
2911
2912 dma = vfio_find_dma(iommu, user_iova, 1);
2913 if (!dma)
2914 return -EINVAL;
2915
2916 if ((write && !(dma->prot & IOMMU_WRITE)) ||
2917 !(dma->prot & IOMMU_READ))
2918 return -EPERM;
2919
2920 mm = get_task_mm(dma->task);
2921
2922 if (!mm)
2923 return -EPERM;
2924
2925 if (kthread)
2926 kthread_use_mm(mm);
2927 else if (current->mm != mm)
2928 goto out;
2929
2930 offset = user_iova - dma->iova;
2931
2932 if (count > dma->size - offset)
2933 count = dma->size - offset;
2934
2935 vaddr = dma->vaddr + offset;
2936
2937 if (write) {
2938 *copied = copy_to_user((void __user *)vaddr, data,
2939 count) ? 0 : count;
2940 if (*copied && iommu->dirty_page_tracking) {
2941 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
2942 /*
2943 * Bitmap populated with the smallest supported page
2944 * size
2945 */
2946 bitmap_set(dma->bitmap, offset >> pgshift,
2947 ((offset + *copied - 1) >> pgshift) -
2948 (offset >> pgshift) + 1);
2949 }
2950 } else
2951 *copied = copy_from_user(data, (void __user *)vaddr,
2952 count) ? 0 : count;
2953 if (kthread)
2954 kthread_unuse_mm(mm);
2955 out:
2956 mmput(mm);
2957 return *copied ? 0 : -EFAULT;
2958 }
2959
vfio_iommu_type1_dma_rw(void * iommu_data,dma_addr_t user_iova,void * data,size_t count,bool write)2960 static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
2961 void *data, size_t count, bool write)
2962 {
2963 struct vfio_iommu *iommu = iommu_data;
2964 int ret = 0;
2965 size_t done;
2966
2967 mutex_lock(&iommu->lock);
2968 while (count > 0) {
2969 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
2970 count, write, &done);
2971 if (ret)
2972 break;
2973
2974 count -= done;
2975 data += done;
2976 user_iova += done;
2977 }
2978
2979 mutex_unlock(&iommu->lock);
2980 return ret;
2981 }
2982
2983 static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
2984 .name = "vfio-iommu-type1",
2985 .owner = THIS_MODULE,
2986 .open = vfio_iommu_type1_open,
2987 .release = vfio_iommu_type1_release,
2988 .ioctl = vfio_iommu_type1_ioctl,
2989 .attach_group = vfio_iommu_type1_attach_group,
2990 .detach_group = vfio_iommu_type1_detach_group,
2991 .pin_pages = vfio_iommu_type1_pin_pages,
2992 .unpin_pages = vfio_iommu_type1_unpin_pages,
2993 .register_notifier = vfio_iommu_type1_register_notifier,
2994 .unregister_notifier = vfio_iommu_type1_unregister_notifier,
2995 .dma_rw = vfio_iommu_type1_dma_rw,
2996 };
2997
vfio_iommu_type1_init(void)2998 static int __init vfio_iommu_type1_init(void)
2999 {
3000 return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
3001 }
3002
vfio_iommu_type1_cleanup(void)3003 static void __exit vfio_iommu_type1_cleanup(void)
3004 {
3005 vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
3006 }
3007
3008 module_init(vfio_iommu_type1_init);
3009 module_exit(vfio_iommu_type1_cleanup);
3010
3011 MODULE_VERSION(DRIVER_VERSION);
3012 MODULE_LICENSE("GPL v2");
3013 MODULE_AUTHOR(DRIVER_AUTHOR);
3014 MODULE_DESCRIPTION(DRIVER_DESC);
3015