1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
3  *
4  * Driver for the IFX 6x60 spi modem.
5  *
6  * Copyright (C) 2008 Option International
7  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8  *		      Denis Joseph Barrow <d.barow@option.com>
9  *		      Jan Dumon <j.dumon@option.com>
10  *
11  * Copyright (C) 2009, 2010 Intel Corp
12  * Russ Gorby <russ.gorby@intel.com>
13  *
14  * Driver modified by Intel from Option gtm501l_spi.c
15  *
16  * Notes
17  * o	The driver currently assumes a single device only. If you need to
18  *	change this then look for saved_ifx_dev and add a device lookup
19  * o	The driver is intended to be big-endian safe but has never been
20  *	tested that way (no suitable hardware). There are a couple of FIXME
21  *	notes by areas that may need addressing
22  * o	Some of the GPIO naming/setup assumptions may need revisiting if
23  *	you need to use this driver for another platform.
24  *
25  *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio/consumer.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 
52 #include "ifx6x60.h"
53 
54 #define IFX_SPI_MORE_MASK		0x10
55 #define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
56 #define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
57 #define IFX_SPI_MODE			SPI_MODE_1
58 #define IFX_SPI_TTY_ID			0
59 #define IFX_SPI_TIMEOUT_SEC		2
60 #define IFX_SPI_HEADER_0		(-1)
61 #define IFX_SPI_HEADER_F		(-2)
62 
63 #define PO_POST_DELAY		200
64 
65 /* forward reference */
66 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
67 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
68 				unsigned long event, void *data);
69 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
70 
71 /* local variables */
72 static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
73 static struct tty_driver *tty_drv;
74 static struct ifx_spi_device *saved_ifx_dev;
75 static struct lock_class_key ifx_spi_key;
76 
77 static struct notifier_block ifx_modem_reboot_notifier_block = {
78 	.notifier_call = ifx_modem_reboot_callback,
79 };
80 
ifx_modem_power_off(struct ifx_spi_device * ifx_dev)81 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
82 {
83 	gpiod_set_value(ifx_dev->gpio.pmu_reset, 1);
84 	msleep(PO_POST_DELAY);
85 
86 	return 0;
87 }
88 
ifx_modem_reboot_callback(struct notifier_block * nfb,unsigned long event,void * data)89 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
90 				 unsigned long event, void *data)
91 {
92 	if (saved_ifx_dev)
93 		ifx_modem_power_off(saved_ifx_dev);
94 	else
95 		pr_warn("no ifx modem active;\n");
96 
97 	return NOTIFY_OK;
98 }
99 
100 /* GPIO/GPE settings */
101 
102 /**
103  *	mrdy_set_high		-	set MRDY GPIO
104  *	@ifx: device we are controlling
105  *
106  */
mrdy_set_high(struct ifx_spi_device * ifx)107 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
108 {
109 	gpiod_set_value(ifx->gpio.mrdy, 1);
110 }
111 
112 /**
113  *	mrdy_set_low		-	clear MRDY GPIO
114  *	@ifx: device we are controlling
115  *
116  */
mrdy_set_low(struct ifx_spi_device * ifx)117 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
118 {
119 	gpiod_set_value(ifx->gpio.mrdy, 0);
120 }
121 
122 /**
123  *	ifx_spi_power_state_set
124  *	@ifx_dev: our SPI device
125  *	@val: bits to set
126  *
127  *	Set bit in power status and signal power system if status becomes non-0
128  */
129 static void
ifx_spi_power_state_set(struct ifx_spi_device * ifx_dev,unsigned char val)130 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
131 {
132 	unsigned long flags;
133 
134 	spin_lock_irqsave(&ifx_dev->power_lock, flags);
135 
136 	/*
137 	 * if power status is already non-0, just update, else
138 	 * tell power system
139 	 */
140 	if (!ifx_dev->power_status)
141 		pm_runtime_get(&ifx_dev->spi_dev->dev);
142 	ifx_dev->power_status |= val;
143 
144 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
145 }
146 
147 /**
148  *	ifx_spi_power_state_clear	-	clear power bit
149  *	@ifx_dev: our SPI device
150  *	@val: bits to clear
151  *
152  *	clear bit in power status and signal power system if status becomes 0
153  */
154 static void
ifx_spi_power_state_clear(struct ifx_spi_device * ifx_dev,unsigned char val)155 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
156 {
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&ifx_dev->power_lock, flags);
160 
161 	if (ifx_dev->power_status) {
162 		ifx_dev->power_status &= ~val;
163 		if (!ifx_dev->power_status)
164 			pm_runtime_put(&ifx_dev->spi_dev->dev);
165 	}
166 
167 	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
168 }
169 
170 /**
171  *	swap_buf_8
172  *	@buf: our buffer
173  *	@len : number of bytes (not words) in the buffer
174  *	@end: end of buffer
175  *
176  *	Swap the contents of a buffer into big endian format
177  */
swap_buf_8(unsigned char * buf,int len,void * end)178 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
179 {
180 	/* don't swap buffer if SPI word width is 8 bits */
181 	return;
182 }
183 
184 /**
185  *	swap_buf_16
186  *	@buf: our buffer
187  *	@len : number of bytes (not words) in the buffer
188  *	@end: end of buffer
189  *
190  *	Swap the contents of a buffer into big endian format
191  */
swap_buf_16(unsigned char * buf,int len,void * end)192 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
193 {
194 	int n;
195 
196 	u16 *buf_16 = (u16 *)buf;
197 	len = ((len + 1) >> 1);
198 	if ((void *)&buf_16[len] > end) {
199 		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
200 		       &buf_16[len], end);
201 		return;
202 	}
203 	for (n = 0; n < len; n++) {
204 		*buf_16 = cpu_to_be16(*buf_16);
205 		buf_16++;
206 	}
207 }
208 
209 /**
210  *	swap_buf_32
211  *	@buf: our buffer
212  *	@len : number of bytes (not words) in the buffer
213  *	@end: end of buffer
214  *
215  *	Swap the contents of a buffer into big endian format
216  */
swap_buf_32(unsigned char * buf,int len,void * end)217 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
218 {
219 	int n;
220 
221 	u32 *buf_32 = (u32 *)buf;
222 	len = (len + 3) >> 2;
223 
224 	if ((void *)&buf_32[len] > end) {
225 		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
226 		       &buf_32[len], end);
227 		return;
228 	}
229 	for (n = 0; n < len; n++) {
230 		*buf_32 = cpu_to_be32(*buf_32);
231 		buf_32++;
232 	}
233 }
234 
235 /**
236  *	mrdy_assert		-	assert MRDY line
237  *	@ifx_dev: our SPI device
238  *
239  *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
240  *	now.
241  *
242  *	FIXME: Can SRDY even go high as we are running this code ?
243  */
mrdy_assert(struct ifx_spi_device * ifx_dev)244 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
245 {
246 	int val = gpiod_get_value(ifx_dev->gpio.srdy);
247 	if (!val) {
248 		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
249 				      &ifx_dev->flags)) {
250 			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
251 
252 		}
253 	}
254 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
255 	mrdy_set_high(ifx_dev);
256 }
257 
258 /**
259  *	ifx_spi_timeout		-	SPI timeout
260  *	@t: timer in our SPI device
261  *
262  *	The SPI has timed out: hang up the tty. Users will then see a hangup
263  *	and error events.
264  */
ifx_spi_timeout(struct timer_list * t)265 static void ifx_spi_timeout(struct timer_list *t)
266 {
267 	struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
268 
269 	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
270 	tty_port_tty_hangup(&ifx_dev->tty_port, false);
271 	mrdy_set_low(ifx_dev);
272 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
273 }
274 
275 /* char/tty operations */
276 
277 /**
278  *	ifx_spi_tiocmget	-	get modem lines
279  *	@tty: our tty device
280  *
281  *	Map the signal state into Linux modem flags and report the value
282  *	in Linux terms
283  */
ifx_spi_tiocmget(struct tty_struct * tty)284 static int ifx_spi_tiocmget(struct tty_struct *tty)
285 {
286 	unsigned int value;
287 	struct ifx_spi_device *ifx_dev = tty->driver_data;
288 
289 	value =
290 	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
291 	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
292 	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
293 	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
294 	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
295 	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
296 	return value;
297 }
298 
299 /**
300  *	ifx_spi_tiocmset	-	set modem bits
301  *	@tty: the tty structure
302  *	@set: bits to set
303  *	@clear: bits to clear
304  *
305  *	The IFX6x60 only supports DTR and RTS. Set them accordingly
306  *	and flag that an update to the modem is needed.
307  *
308  *	FIXME: do we need to kick the tranfers when we do this ?
309  */
ifx_spi_tiocmset(struct tty_struct * tty,unsigned int set,unsigned int clear)310 static int ifx_spi_tiocmset(struct tty_struct *tty,
311 			    unsigned int set, unsigned int clear)
312 {
313 	struct ifx_spi_device *ifx_dev = tty->driver_data;
314 
315 	if (set & TIOCM_RTS)
316 		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
317 	if (set & TIOCM_DTR)
318 		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
319 	if (clear & TIOCM_RTS)
320 		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
321 	if (clear & TIOCM_DTR)
322 		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
323 
324 	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
325 	return 0;
326 }
327 
328 /**
329  *	ifx_spi_open	-	called on tty open
330  *	@tty: our tty device
331  *	@filp: file handle being associated with the tty
332  *
333  *	Open the tty interface. We let the tty_port layer do all the work
334  *	for us.
335  *
336  *	FIXME: Remove single device assumption and saved_ifx_dev
337  */
ifx_spi_open(struct tty_struct * tty,struct file * filp)338 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
339 {
340 	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
341 }
342 
343 /**
344  *	ifx_spi_close	-	called when our tty closes
345  *	@tty: the tty being closed
346  *	@filp: the file handle being closed
347  *
348  *	Perform the close of the tty. We use the tty_port layer to do all
349  *	our hard work.
350  */
ifx_spi_close(struct tty_struct * tty,struct file * filp)351 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
352 {
353 	struct ifx_spi_device *ifx_dev = tty->driver_data;
354 	tty_port_close(&ifx_dev->tty_port, tty, filp);
355 	/* FIXME: should we do an ifx_spi_reset here ? */
356 }
357 
358 /**
359  *	ifx_decode_spi_header	-	decode received header
360  *	@buffer: the received data
361  *	@length: decoded length
362  *	@more: decoded more flag
363  *	@received_cts: status of cts we received
364  *
365  *	Note how received_cts is handled -- if header is all F it is left
366  *	the same as it was, if header is all 0 it is set to 0 otherwise it is
367  *	taken from the incoming header.
368  *
369  *	FIXME: endianness
370  */
ifx_spi_decode_spi_header(unsigned char * buffer,int * length,unsigned char * more,unsigned char * received_cts)371 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
372 			unsigned char *more, unsigned char *received_cts)
373 {
374 	u16 h1;
375 	u16 h2;
376 	u16 *in_buffer = (u16 *)buffer;
377 
378 	h1 = *in_buffer;
379 	h2 = *(in_buffer+1);
380 
381 	if (h1 == 0 && h2 == 0) {
382 		*received_cts = 0;
383 		*more = 0;
384 		return IFX_SPI_HEADER_0;
385 	} else if (h1 == 0xffff && h2 == 0xffff) {
386 		*more = 0;
387 		/* spi_slave_cts remains as it was */
388 		return IFX_SPI_HEADER_F;
389 	}
390 
391 	*length = h1 & 0xfff;	/* upper bits of byte are flags */
392 	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
393 	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
394 	return 0;
395 }
396 
397 /**
398  *	ifx_setup_spi_header	-	set header fields
399  *	@txbuffer: pointer to start of SPI buffer
400  *	@tx_count: bytes
401  *	@more: indicate if more to follow
402  *
403  *	Format up an SPI header for a transfer
404  *
405  *	FIXME: endianness?
406  */
ifx_spi_setup_spi_header(unsigned char * txbuffer,int tx_count,unsigned char more)407 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
408 					unsigned char more)
409 {
410 	*(u16 *)(txbuffer) = tx_count;
411 	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
412 	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
413 }
414 
415 /**
416  *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
417  *	@ifx_dev: our SPI device
418  *
419  *	The transmit buffr needs a header and various other bits of
420  *	information followed by as much data as we can pull from the FIFO
421  *	and transfer. This function formats up a suitable buffer in the
422  *	ifx_dev->tx_buffer
423  *
424  *	FIXME: performance - should we wake the tty when the queue is half
425  *			     empty ?
426  */
ifx_spi_prepare_tx_buffer(struct ifx_spi_device * ifx_dev)427 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
428 {
429 	int temp_count;
430 	int queue_length;
431 	int tx_count;
432 	unsigned char *tx_buffer;
433 
434 	tx_buffer = ifx_dev->tx_buffer;
435 
436 	/* make room for required SPI header */
437 	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
438 	tx_count = IFX_SPI_HEADER_OVERHEAD;
439 
440 	/* clear to signal no more data if this turns out to be the
441 	 * last buffer sent in a sequence */
442 	ifx_dev->spi_more = 0;
443 
444 	/* if modem cts is set, just send empty buffer */
445 	if (!ifx_dev->spi_slave_cts) {
446 		/* see if there's tx data */
447 		queue_length = kfifo_len(&ifx_dev->tx_fifo);
448 		if (queue_length != 0) {
449 			/* data to mux -- see if there's room for it */
450 			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
451 			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
452 					tx_buffer, temp_count,
453 					&ifx_dev->fifo_lock);
454 
455 			/* update buffer pointer and data count in message */
456 			tx_buffer += temp_count;
457 			tx_count += temp_count;
458 			if (temp_count == queue_length)
459 				/* poke port to get more data */
460 				tty_port_tty_wakeup(&ifx_dev->tty_port);
461 			else /* more data in port, use next SPI message */
462 				ifx_dev->spi_more = 1;
463 		}
464 	}
465 	/* have data and info for header -- set up SPI header in buffer */
466 	/* spi header needs payload size, not entire buffer size */
467 	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
468 					tx_count-IFX_SPI_HEADER_OVERHEAD,
469 					ifx_dev->spi_more);
470 	/* swap actual data in the buffer */
471 	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
472 		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
473 	return tx_count;
474 }
475 
476 /**
477  *	ifx_spi_write		-	line discipline write
478  *	@tty: our tty device
479  *	@buf: pointer to buffer to write (kernel space)
480  *	@count: size of buffer
481  *
482  *	Write the characters we have been given into the FIFO. If the device
483  *	is not active then activate it, when the SRDY line is asserted back
484  *	this will commence I/O
485  */
ifx_spi_write(struct tty_struct * tty,const unsigned char * buf,int count)486 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
487 			 int count)
488 {
489 	struct ifx_spi_device *ifx_dev = tty->driver_data;
490 	unsigned char *tmp_buf = (unsigned char *)buf;
491 	unsigned long flags;
492 	bool is_fifo_empty;
493 	int tx_count;
494 
495 	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
496 	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
497 	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
498 	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
499 	if (is_fifo_empty)
500 		mrdy_assert(ifx_dev);
501 
502 	return tx_count;
503 }
504 
505 /**
506  *	ifx_spi_chars_in_buffer	-	line discipline helper
507  *	@tty: our tty device
508  *
509  *	Report how much data we can accept before we drop bytes. As we use
510  *	a simple FIFO this is nice and easy.
511  */
ifx_spi_write_room(struct tty_struct * tty)512 static int ifx_spi_write_room(struct tty_struct *tty)
513 {
514 	struct ifx_spi_device *ifx_dev = tty->driver_data;
515 	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
516 }
517 
518 /**
519  *	ifx_spi_chars_in_buffer	-	line discipline helper
520  *	@tty: our tty device
521  *
522  *	Report how many characters we have buffered. In our case this is the
523  *	number of bytes sitting in our transmit FIFO.
524  */
ifx_spi_chars_in_buffer(struct tty_struct * tty)525 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
526 {
527 	struct ifx_spi_device *ifx_dev = tty->driver_data;
528 	return kfifo_len(&ifx_dev->tx_fifo);
529 }
530 
531 /**
532  *	ifx_port_hangup
533  *	@tty: our tty
534  *
535  *	tty port hang up. Called when tty_hangup processing is invoked either
536  *	by loss of carrier, or by software (eg vhangup). Serialized against
537  *	activate/shutdown by the tty layer.
538  */
ifx_spi_hangup(struct tty_struct * tty)539 static void ifx_spi_hangup(struct tty_struct *tty)
540 {
541 	struct ifx_spi_device *ifx_dev = tty->driver_data;
542 	tty_port_hangup(&ifx_dev->tty_port);
543 }
544 
545 /**
546  *	ifx_port_activate
547  *	@port: our tty port
548  *
549  *	tty port activate method - called for first open. Serialized
550  *	with hangup and shutdown by the tty layer.
551  */
ifx_port_activate(struct tty_port * port,struct tty_struct * tty)552 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
553 {
554 	struct ifx_spi_device *ifx_dev =
555 		container_of(port, struct ifx_spi_device, tty_port);
556 
557 	/* clear any old data; can't do this in 'close' */
558 	kfifo_reset(&ifx_dev->tx_fifo);
559 
560 	/* clear any flag which may be set in port shutdown procedure */
561 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
562 	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
563 
564 	/* put port data into this tty */
565 	tty->driver_data = ifx_dev;
566 
567 	/* allows flip string push from int context */
568 	port->low_latency = 1;
569 
570 	/* set flag to allows data transfer */
571 	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
572 
573 	return 0;
574 }
575 
576 /**
577  *	ifx_port_shutdown
578  *	@port: our tty port
579  *
580  *	tty port shutdown method - called for last port close. Serialized
581  *	with hangup and activate by the tty layer.
582  */
ifx_port_shutdown(struct tty_port * port)583 static void ifx_port_shutdown(struct tty_port *port)
584 {
585 	struct ifx_spi_device *ifx_dev =
586 		container_of(port, struct ifx_spi_device, tty_port);
587 
588 	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
589 	mrdy_set_low(ifx_dev);
590 	del_timer(&ifx_dev->spi_timer);
591 	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
592 	tasklet_kill(&ifx_dev->io_work_tasklet);
593 }
594 
595 static const struct tty_port_operations ifx_tty_port_ops = {
596 	.activate = ifx_port_activate,
597 	.shutdown = ifx_port_shutdown,
598 };
599 
600 static const struct tty_operations ifx_spi_serial_ops = {
601 	.open = ifx_spi_open,
602 	.close = ifx_spi_close,
603 	.write = ifx_spi_write,
604 	.hangup = ifx_spi_hangup,
605 	.write_room = ifx_spi_write_room,
606 	.chars_in_buffer = ifx_spi_chars_in_buffer,
607 	.tiocmget = ifx_spi_tiocmget,
608 	.tiocmset = ifx_spi_tiocmset,
609 };
610 
611 /**
612  *	ifx_spi_insert_fip_string	-	queue received data
613  *	@ifx_dev: our SPI device
614  *	@chars: buffer we have received
615  *	@size: number of chars reeived
616  *
617  *	Queue bytes to the tty assuming the tty side is currently open. If
618  *	not the discard the data.
619  */
ifx_spi_insert_flip_string(struct ifx_spi_device * ifx_dev,unsigned char * chars,size_t size)620 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
621 				    unsigned char *chars, size_t size)
622 {
623 	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
624 	tty_flip_buffer_push(&ifx_dev->tty_port);
625 }
626 
627 /**
628  *	ifx_spi_complete	-	SPI transfer completed
629  *	@ctx: our SPI device
630  *
631  *	An SPI transfer has completed. Process any received data and kick off
632  *	any further transmits we can commence.
633  */
ifx_spi_complete(void * ctx)634 static void ifx_spi_complete(void *ctx)
635 {
636 	struct ifx_spi_device *ifx_dev = ctx;
637 	int length;
638 	int actual_length;
639 	unsigned char more = 0;
640 	unsigned char cts;
641 	int local_write_pending = 0;
642 	int queue_length;
643 	int srdy;
644 	int decode_result;
645 
646 	mrdy_set_low(ifx_dev);
647 
648 	if (!ifx_dev->spi_msg.status) {
649 		/* check header validity, get comm flags */
650 		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
651 			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
652 		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
653 				&length, &more, &cts);
654 		if (decode_result == IFX_SPI_HEADER_0) {
655 			dev_dbg(&ifx_dev->spi_dev->dev,
656 				"ignore input: invalid header 0");
657 			ifx_dev->spi_slave_cts = 0;
658 			goto complete_exit;
659 		} else if (decode_result == IFX_SPI_HEADER_F) {
660 			dev_dbg(&ifx_dev->spi_dev->dev,
661 				"ignore input: invalid header F");
662 			goto complete_exit;
663 		}
664 
665 		ifx_dev->spi_slave_cts = cts;
666 
667 		actual_length = min((unsigned int)length,
668 					ifx_dev->spi_msg.actual_length);
669 		ifx_dev->swap_buf(
670 			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
671 			 actual_length,
672 			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
673 		ifx_spi_insert_flip_string(
674 			ifx_dev,
675 			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
676 			(size_t)actual_length);
677 	} else {
678 		more = 0;
679 		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
680 		       ifx_dev->spi_msg.status);
681 	}
682 
683 complete_exit:
684 	if (ifx_dev->write_pending) {
685 		ifx_dev->write_pending = 0;
686 		local_write_pending = 1;
687 	}
688 
689 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
690 
691 	queue_length = kfifo_len(&ifx_dev->tx_fifo);
692 	srdy = gpiod_get_value(ifx_dev->gpio.srdy);
693 	if (!srdy)
694 		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
695 
696 	/* schedule output if there is more to do */
697 	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
698 		tasklet_schedule(&ifx_dev->io_work_tasklet);
699 	else {
700 		if (more || ifx_dev->spi_more || queue_length > 0 ||
701 			local_write_pending) {
702 			if (ifx_dev->spi_slave_cts) {
703 				if (more)
704 					mrdy_assert(ifx_dev);
705 			} else
706 				mrdy_assert(ifx_dev);
707 		} else {
708 			/*
709 			 * poke line discipline driver if any for more data
710 			 * may or may not get more data to write
711 			 * for now, say not busy
712 			 */
713 			ifx_spi_power_state_clear(ifx_dev,
714 						  IFX_SPI_POWER_DATA_PENDING);
715 			tty_port_tty_wakeup(&ifx_dev->tty_port);
716 		}
717 	}
718 }
719 
720 /**
721  *	ifx_spio_io		-	I/O tasklet
722  *	@data: our SPI device
723  *
724  *	Queue data for transmission if possible and then kick off the
725  *	transfer.
726  */
ifx_spi_io(struct tasklet_struct * t)727 static void ifx_spi_io(struct tasklet_struct *t)
728 {
729 	int retval;
730 	struct ifx_spi_device *ifx_dev = from_tasklet(ifx_dev, t,
731 						      io_work_tasklet);
732 
733 	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
734 		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
735 		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
736 			ifx_dev->gpio.unack_srdy_int_nb--;
737 
738 		ifx_spi_prepare_tx_buffer(ifx_dev);
739 
740 		spi_message_init(&ifx_dev->spi_msg);
741 		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
742 
743 		ifx_dev->spi_msg.context = ifx_dev;
744 		ifx_dev->spi_msg.complete = ifx_spi_complete;
745 
746 		/* set up our spi transfer */
747 		/* note len is BYTES, not transfers */
748 		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
749 		ifx_dev->spi_xfer.cs_change = 0;
750 		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
751 		/* ifx_dev->spi_xfer.speed_hz = 390625; */
752 		ifx_dev->spi_xfer.bits_per_word =
753 			ifx_dev->spi_dev->bits_per_word;
754 
755 		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
756 		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
757 
758 		/*
759 		 * setup dma pointers
760 		 */
761 		if (ifx_dev->use_dma) {
762 			ifx_dev->spi_msg.is_dma_mapped = 1;
763 			ifx_dev->tx_dma = ifx_dev->tx_bus;
764 			ifx_dev->rx_dma = ifx_dev->rx_bus;
765 			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
766 			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
767 		} else {
768 			ifx_dev->spi_msg.is_dma_mapped = 0;
769 			ifx_dev->tx_dma = (dma_addr_t)0;
770 			ifx_dev->rx_dma = (dma_addr_t)0;
771 			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
772 			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
773 		}
774 
775 		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
776 
777 		/* Assert MRDY. This may have already been done by the write
778 		 * routine.
779 		 */
780 		mrdy_assert(ifx_dev);
781 
782 		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
783 		if (retval) {
784 			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
785 				  &ifx_dev->flags);
786 			tasklet_schedule(&ifx_dev->io_work_tasklet);
787 			return;
788 		}
789 	} else
790 		ifx_dev->write_pending = 1;
791 }
792 
793 /**
794  *	ifx_spi_free_port	-	free up the tty side
795  *	@ifx_dev: IFX device going away
796  *
797  *	Unregister and free up a port when the device goes away
798  */
ifx_spi_free_port(struct ifx_spi_device * ifx_dev)799 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
800 {
801 	if (ifx_dev->tty_dev)
802 		tty_unregister_device(tty_drv, ifx_dev->minor);
803 	tty_port_destroy(&ifx_dev->tty_port);
804 	kfifo_free(&ifx_dev->tx_fifo);
805 }
806 
807 /**
808  *	ifx_spi_create_port	-	create a new port
809  *	@ifx_dev: our spi device
810  *
811  *	Allocate and initialise the tty port that goes with this interface
812  *	and add it to the tty layer so that it can be opened.
813  */
ifx_spi_create_port(struct ifx_spi_device * ifx_dev)814 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
815 {
816 	int ret = 0;
817 	struct tty_port *pport = &ifx_dev->tty_port;
818 
819 	spin_lock_init(&ifx_dev->fifo_lock);
820 	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
821 		&ifx_spi_key, 0);
822 
823 	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
824 		ret = -ENOMEM;
825 		goto error_ret;
826 	}
827 
828 	tty_port_init(pport);
829 	pport->ops = &ifx_tty_port_ops;
830 	ifx_dev->minor = IFX_SPI_TTY_ID;
831 	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
832 			ifx_dev->minor, &ifx_dev->spi_dev->dev);
833 	if (IS_ERR(ifx_dev->tty_dev)) {
834 		dev_dbg(&ifx_dev->spi_dev->dev,
835 			"%s: registering tty device failed", __func__);
836 		ret = PTR_ERR(ifx_dev->tty_dev);
837 		goto error_port;
838 	}
839 	return 0;
840 
841 error_port:
842 	tty_port_destroy(pport);
843 error_ret:
844 	ifx_spi_free_port(ifx_dev);
845 	return ret;
846 }
847 
848 /**
849  *	ifx_spi_handle_srdy		-	handle SRDY
850  *	@ifx_dev: device asserting SRDY
851  *
852  *	Check our device state and see what we need to kick off when SRDY
853  *	is asserted. This usually means killing the timer and firing off the
854  *	I/O processing.
855  */
ifx_spi_handle_srdy(struct ifx_spi_device * ifx_dev)856 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
857 {
858 	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
859 		del_timer(&ifx_dev->spi_timer);
860 		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
861 	}
862 
863 	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
864 
865 	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
866 		tasklet_schedule(&ifx_dev->io_work_tasklet);
867 	else
868 		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
869 }
870 
871 /**
872  *	ifx_spi_srdy_interrupt	-	SRDY asserted
873  *	@irq: our IRQ number
874  *	@dev: our ifx device
875  *
876  *	The modem asserted SRDY. Handle the srdy event
877  */
ifx_spi_srdy_interrupt(int irq,void * dev)878 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
879 {
880 	struct ifx_spi_device *ifx_dev = dev;
881 	ifx_dev->gpio.unack_srdy_int_nb++;
882 	ifx_spi_handle_srdy(ifx_dev);
883 	return IRQ_HANDLED;
884 }
885 
886 /**
887  *	ifx_spi_reset_interrupt	-	Modem has changed reset state
888  *	@irq: interrupt number
889  *	@dev: our device pointer
890  *
891  *	The modem has either entered or left reset state. Check the GPIO
892  *	line to see which.
893  *
894  *	FIXME: review locking on MR_INPROGRESS versus
895  *	parallel unsolicited reset/solicited reset
896  */
ifx_spi_reset_interrupt(int irq,void * dev)897 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
898 {
899 	struct ifx_spi_device *ifx_dev = dev;
900 	int val = gpiod_get_value(ifx_dev->gpio.reset_out);
901 	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
902 
903 	if (val == 0) {
904 		/* entered reset */
905 		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
906 		if (!solreset) {
907 			/* unsolicited reset  */
908 			tty_port_tty_hangup(&ifx_dev->tty_port, false);
909 		}
910 	} else {
911 		/* exited reset */
912 		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
913 		if (solreset) {
914 			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
915 			wake_up(&ifx_dev->mdm_reset_wait);
916 		}
917 	}
918 	return IRQ_HANDLED;
919 }
920 
921 /**
922  *	ifx_spi_free_device - free device
923  *	@ifx_dev: device to free
924  *
925  *	Free the IFX device
926  */
ifx_spi_free_device(struct ifx_spi_device * ifx_dev)927 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
928 {
929 	ifx_spi_free_port(ifx_dev);
930 	dma_free_coherent(&ifx_dev->spi_dev->dev,
931 				IFX_SPI_TRANSFER_SIZE,
932 				ifx_dev->tx_buffer,
933 				ifx_dev->tx_bus);
934 	dma_free_coherent(&ifx_dev->spi_dev->dev,
935 				IFX_SPI_TRANSFER_SIZE,
936 				ifx_dev->rx_buffer,
937 				ifx_dev->rx_bus);
938 }
939 
940 /**
941  *	ifx_spi_reset	-	reset modem
942  *	@ifx_dev: modem to reset
943  *
944  *	Perform a reset on the modem
945  */
ifx_spi_reset(struct ifx_spi_device * ifx_dev)946 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
947 {
948 	int ret;
949 	/*
950 	 * set up modem power, reset
951 	 *
952 	 * delays are required on some platforms for the modem
953 	 * to reset properly
954 	 */
955 	set_bit(MR_START, &ifx_dev->mdm_reset_state);
956 	gpiod_set_value(ifx_dev->gpio.po, 0);
957 	gpiod_set_value(ifx_dev->gpio.reset, 0);
958 	msleep(25);
959 	gpiod_set_value(ifx_dev->gpio.reset, 1);
960 	msleep(1);
961 	gpiod_set_value(ifx_dev->gpio.po, 1);
962 	msleep(1);
963 	gpiod_set_value(ifx_dev->gpio.po, 0);
964 	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
965 				 test_bit(MR_COMPLETE,
966 					  &ifx_dev->mdm_reset_state),
967 				 IFX_RESET_TIMEOUT);
968 	if (!ret)
969 		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
970 			 ifx_dev->mdm_reset_state);
971 
972 	ifx_dev->mdm_reset_state = 0;
973 	return ret;
974 }
975 
976 /**
977  *	ifx_spi_spi_probe	-	probe callback
978  *	@spi: our possible matching SPI device
979  *
980  *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
981  *	GPIO setup.
982  *
983  *	FIXME:
984  *	-	Support for multiple devices
985  *	-	Split out MID specific GPIO handling eventually
986  */
987 
ifx_spi_spi_probe(struct spi_device * spi)988 static int ifx_spi_spi_probe(struct spi_device *spi)
989 {
990 	int ret;
991 	int srdy;
992 	struct ifx_modem_platform_data *pl_data;
993 	struct ifx_spi_device *ifx_dev;
994 	struct device *dev = &spi->dev;
995 
996 	if (saved_ifx_dev) {
997 		dev_dbg(dev, "ignoring subsequent detection");
998 		return -ENODEV;
999 	}
1000 
1001 	pl_data = dev_get_platdata(dev);
1002 	if (!pl_data) {
1003 		dev_err(dev, "missing platform data!");
1004 		return -ENODEV;
1005 	}
1006 
1007 	/* initialize structure to hold our device variables */
1008 	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009 	if (!ifx_dev) {
1010 		dev_err(dev, "spi device allocation failed");
1011 		return -ENOMEM;
1012 	}
1013 	saved_ifx_dev = ifx_dev;
1014 	ifx_dev->spi_dev = spi;
1015 	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016 	spin_lock_init(&ifx_dev->write_lock);
1017 	spin_lock_init(&ifx_dev->power_lock);
1018 	ifx_dev->power_status = 0;
1019 	timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020 	ifx_dev->modem = pl_data->modem_type;
1021 	ifx_dev->use_dma = pl_data->use_dma;
1022 	ifx_dev->max_hz = pl_data->max_hz;
1023 	/* initialize spi mode, etc */
1024 	spi->max_speed_hz = ifx_dev->max_hz;
1025 	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026 	spi->bits_per_word = spi_bpw;
1027 	ret = spi_setup(spi);
1028 	if (ret) {
1029 		dev_err(dev, "SPI setup wasn't successful %d", ret);
1030 		kfree(ifx_dev);
1031 		return -ENODEV;
1032 	}
1033 
1034 	/* init swap_buf function according to word width configuration */
1035 	if (spi->bits_per_word == 32)
1036 		ifx_dev->swap_buf = swap_buf_32;
1037 	else if (spi->bits_per_word == 16)
1038 		ifx_dev->swap_buf = swap_buf_16;
1039 	else
1040 		ifx_dev->swap_buf = swap_buf_8;
1041 
1042 	/* ensure SPI protocol flags are initialized to enable transfer */
1043 	ifx_dev->spi_more = 0;
1044 	ifx_dev->spi_slave_cts = 0;
1045 
1046 	/*initialize transfer and dma buffers */
1047 	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048 				IFX_SPI_TRANSFER_SIZE,
1049 				&ifx_dev->tx_bus,
1050 				GFP_KERNEL);
1051 	if (!ifx_dev->tx_buffer) {
1052 		dev_err(dev, "DMA-TX buffer allocation failed");
1053 		ret = -ENOMEM;
1054 		goto error_ret;
1055 	}
1056 	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057 				IFX_SPI_TRANSFER_SIZE,
1058 				&ifx_dev->rx_bus,
1059 				GFP_KERNEL);
1060 	if (!ifx_dev->rx_buffer) {
1061 		dev_err(dev, "DMA-RX buffer allocation failed");
1062 		ret = -ENOMEM;
1063 		goto error_ret;
1064 	}
1065 
1066 	/* initialize waitq for modem reset */
1067 	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068 
1069 	spi_set_drvdata(spi, ifx_dev);
1070 	tasklet_setup(&ifx_dev->io_work_tasklet, ifx_spi_io);
1071 
1072 	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1073 
1074 	/* create our tty port */
1075 	ret = ifx_spi_create_port(ifx_dev);
1076 	if (ret != 0) {
1077 		dev_err(dev, "create default tty port failed");
1078 		goto error_ret;
1079 	}
1080 
1081 	ifx_dev->gpio.reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1082 	if (IS_ERR(ifx_dev->gpio.reset)) {
1083 		dev_err(dev, "could not obtain reset GPIO\n");
1084 		ret = PTR_ERR(ifx_dev->gpio.reset);
1085 		goto error_ret;
1086 	}
1087 	gpiod_set_consumer_name(ifx_dev->gpio.reset, "ifxModem reset");
1088 	ifx_dev->gpio.po = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
1089 	if (IS_ERR(ifx_dev->gpio.po)) {
1090 		dev_err(dev, "could not obtain power GPIO\n");
1091 		ret = PTR_ERR(ifx_dev->gpio.po);
1092 		goto error_ret;
1093 	}
1094 	gpiod_set_consumer_name(ifx_dev->gpio.po, "ifxModem power");
1095 	ifx_dev->gpio.mrdy = devm_gpiod_get(dev, "mrdy", GPIOD_OUT_LOW);
1096 	if (IS_ERR(ifx_dev->gpio.mrdy)) {
1097 		dev_err(dev, "could not obtain mrdy GPIO\n");
1098 		ret = PTR_ERR(ifx_dev->gpio.mrdy);
1099 		goto error_ret;
1100 	}
1101 	gpiod_set_consumer_name(ifx_dev->gpio.mrdy, "ifxModem mrdy");
1102 	ifx_dev->gpio.srdy = devm_gpiod_get(dev, "srdy", GPIOD_IN);
1103 	if (IS_ERR(ifx_dev->gpio.srdy)) {
1104 		dev_err(dev, "could not obtain srdy GPIO\n");
1105 		ret = PTR_ERR(ifx_dev->gpio.srdy);
1106 		goto error_ret;
1107 	}
1108 	gpiod_set_consumer_name(ifx_dev->gpio.srdy, "ifxModem srdy");
1109 	ifx_dev->gpio.reset_out = devm_gpiod_get(dev, "rst_out", GPIOD_IN);
1110 	if (IS_ERR(ifx_dev->gpio.reset_out)) {
1111 		dev_err(dev, "could not obtain rst_out GPIO\n");
1112 		ret = PTR_ERR(ifx_dev->gpio.reset_out);
1113 		goto error_ret;
1114 	}
1115 	gpiod_set_consumer_name(ifx_dev->gpio.reset_out, "ifxModem reset out");
1116 	ifx_dev->gpio.pmu_reset = devm_gpiod_get(dev, "pmu_reset", GPIOD_ASIS);
1117 	if (IS_ERR(ifx_dev->gpio.pmu_reset)) {
1118 		dev_err(dev, "could not obtain pmu_reset GPIO\n");
1119 		ret = PTR_ERR(ifx_dev->gpio.pmu_reset);
1120 		goto error_ret;
1121 	}
1122 	gpiod_set_consumer_name(ifx_dev->gpio.pmu_reset, "ifxModem PMU reset");
1123 
1124 	ret = request_irq(gpiod_to_irq(ifx_dev->gpio.reset_out),
1125 			  ifx_spi_reset_interrupt,
1126 			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1127 			  ifx_dev);
1128 	if (ret) {
1129 		dev_err(dev, "Unable to get irq %x\n",
1130 			gpiod_to_irq(ifx_dev->gpio.reset_out));
1131 		goto error_ret;
1132 	}
1133 
1134 	ret = ifx_spi_reset(ifx_dev);
1135 
1136 	ret = request_irq(gpiod_to_irq(ifx_dev->gpio.srdy),
1137 			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1138 			  ifx_dev);
1139 	if (ret) {
1140 		dev_err(dev, "Unable to get irq %x",
1141 			gpiod_to_irq(ifx_dev->gpio.srdy));
1142 		goto error_ret2;
1143 	}
1144 
1145 	/* set pm runtime power state and register with power system */
1146 	pm_runtime_set_active(dev);
1147 	pm_runtime_enable(dev);
1148 
1149 	/* handle case that modem is already signaling SRDY */
1150 	/* no outgoing tty open at this point, this just satisfies the
1151 	 * modem's read and should reset communication properly
1152 	 */
1153 	srdy = gpiod_get_value(ifx_dev->gpio.srdy);
1154 
1155 	if (srdy) {
1156 		mrdy_assert(ifx_dev);
1157 		ifx_spi_handle_srdy(ifx_dev);
1158 	} else
1159 		mrdy_set_low(ifx_dev);
1160 	return 0;
1161 
1162 error_ret2:
1163 	free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1164 error_ret:
1165 	ifx_spi_free_device(ifx_dev);
1166 	saved_ifx_dev = NULL;
1167 	return ret;
1168 }
1169 
1170 /**
1171  *	ifx_spi_spi_remove	-	SPI device was removed
1172  *	@spi: SPI device
1173  *
1174  *	FIXME: We should be shutting the device down here not in
1175  *	the module unload path.
1176  */
1177 
ifx_spi_spi_remove(struct spi_device * spi)1178 static int ifx_spi_spi_remove(struct spi_device *spi)
1179 {
1180 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1181 	/* stop activity */
1182 	tasklet_kill(&ifx_dev->io_work_tasklet);
1183 
1184 	pm_runtime_disable(&spi->dev);
1185 
1186 	/* free irq */
1187 	free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1188 	free_irq(gpiod_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1189 
1190 	/* free allocations */
1191 	ifx_spi_free_device(ifx_dev);
1192 
1193 	saved_ifx_dev = NULL;
1194 	return 0;
1195 }
1196 
1197 /**
1198  *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1199  *	@spi: SPI device
1200  *
1201  *	No action needs to be taken here
1202  */
1203 
ifx_spi_spi_shutdown(struct spi_device * spi)1204 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1205 {
1206 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1207 
1208 	ifx_modem_power_off(ifx_dev);
1209 }
1210 
1211 /*
1212  * various suspends and resumes have nothing to do
1213  * no hardware to save state for
1214  */
1215 
1216 /**
1217  *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1218  *	@dev: device being suspended
1219  *
1220  *	Suspend the modem. No action needed on Intel MID platforms, may
1221  *	need extending for other systems.
1222  */
ifx_spi_pm_suspend(struct device * dev)1223 static int ifx_spi_pm_suspend(struct device *dev)
1224 {
1225 	return 0;
1226 }
1227 
1228 /**
1229  *	ifx_spi_pm_resume	-	resume modem on system resume
1230  *	@dev: device being suspended
1231  *
1232  *	Allow the modem to resume. No action needed.
1233  *
1234  *	FIXME: do we need to reset anything here ?
1235  */
ifx_spi_pm_resume(struct device * dev)1236 static int ifx_spi_pm_resume(struct device *dev)
1237 {
1238 	return 0;
1239 }
1240 
1241 /**
1242  *	ifx_spi_pm_runtime_resume	-	suspend modem
1243  *	@dev: device being suspended
1244  *
1245  *	Allow the modem to resume. No action needed.
1246  */
ifx_spi_pm_runtime_resume(struct device * dev)1247 static int ifx_spi_pm_runtime_resume(struct device *dev)
1248 {
1249 	return 0;
1250 }
1251 
1252 /**
1253  *	ifx_spi_pm_runtime_suspend	-	suspend modem
1254  *	@dev: device being suspended
1255  *
1256  *	Allow the modem to suspend and thus suspend to continue up the
1257  *	device tree.
1258  */
ifx_spi_pm_runtime_suspend(struct device * dev)1259 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1260 {
1261 	return 0;
1262 }
1263 
1264 /**
1265  *	ifx_spi_pm_runtime_idle		-	check if modem idle
1266  *	@dev: our device
1267  *
1268  *	Check conditions and queue runtime suspend if idle.
1269  */
ifx_spi_pm_runtime_idle(struct device * dev)1270 static int ifx_spi_pm_runtime_idle(struct device *dev)
1271 {
1272 	struct spi_device *spi = to_spi_device(dev);
1273 	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1274 
1275 	if (!ifx_dev->power_status)
1276 		pm_runtime_suspend(dev);
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct dev_pm_ops ifx_spi_pm = {
1282 	.resume = ifx_spi_pm_resume,
1283 	.suspend = ifx_spi_pm_suspend,
1284 	.runtime_resume = ifx_spi_pm_runtime_resume,
1285 	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1286 	.runtime_idle = ifx_spi_pm_runtime_idle
1287 };
1288 
1289 static const struct spi_device_id ifx_id_table[] = {
1290 	{"ifx6160", 0},
1291 	{"ifx6260", 0},
1292 	{ }
1293 };
1294 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1295 
1296 /* spi operations */
1297 static struct spi_driver ifx_spi_driver = {
1298 	.driver = {
1299 		.name = DRVNAME,
1300 		.pm = &ifx_spi_pm,
1301 	},
1302 	.probe = ifx_spi_spi_probe,
1303 	.shutdown = ifx_spi_spi_shutdown,
1304 	.remove = ifx_spi_spi_remove,
1305 	.id_table = ifx_id_table
1306 };
1307 
1308 /**
1309  *	ifx_spi_exit	-	module exit
1310  *
1311  *	Unload the module.
1312  */
1313 
ifx_spi_exit(void)1314 static void __exit ifx_spi_exit(void)
1315 {
1316 	/* unregister */
1317 	spi_unregister_driver(&ifx_spi_driver);
1318 	tty_unregister_driver(tty_drv);
1319 	put_tty_driver(tty_drv);
1320 	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1321 }
1322 
1323 /**
1324  *	ifx_spi_init		-	module entry point
1325  *
1326  *	Initialise the SPI and tty interfaces for the IFX SPI driver
1327  *	We need to initialize upper-edge spi driver after the tty
1328  *	driver because otherwise the spi probe will race
1329  */
1330 
ifx_spi_init(void)1331 static int __init ifx_spi_init(void)
1332 {
1333 	int result;
1334 
1335 	tty_drv = alloc_tty_driver(1);
1336 	if (!tty_drv) {
1337 		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1338 		return -ENOMEM;
1339 	}
1340 
1341 	tty_drv->driver_name = DRVNAME;
1342 	tty_drv->name = TTYNAME;
1343 	tty_drv->minor_start = IFX_SPI_TTY_ID;
1344 	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1345 	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1346 	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1347 	tty_drv->init_termios = tty_std_termios;
1348 
1349 	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1350 
1351 	result = tty_register_driver(tty_drv);
1352 	if (result) {
1353 		pr_err("%s: tty_register_driver failed(%d)",
1354 			DRVNAME, result);
1355 		goto err_free_tty;
1356 	}
1357 
1358 	result = spi_register_driver(&ifx_spi_driver);
1359 	if (result) {
1360 		pr_err("%s: spi_register_driver failed(%d)",
1361 			DRVNAME, result);
1362 		goto err_unreg_tty;
1363 	}
1364 
1365 	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1366 	if (result) {
1367 		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1368 			DRVNAME, result);
1369 		goto err_unreg_spi;
1370 	}
1371 
1372 	return 0;
1373 err_unreg_spi:
1374 	spi_unregister_driver(&ifx_spi_driver);
1375 err_unreg_tty:
1376 	tty_unregister_driver(tty_drv);
1377 err_free_tty:
1378 	put_tty_driver(tty_drv);
1379 
1380 	return result;
1381 }
1382 
1383 module_init(ifx_spi_init);
1384 module_exit(ifx_spi_exit);
1385 
1386 MODULE_AUTHOR("Intel");
1387 MODULE_DESCRIPTION("IFX6x60 spi driver");
1388 MODULE_LICENSE("GPL");
1389 MODULE_INFO(Version, "0.1-IFX6x60");
1390