1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
3 *
4 * Driver for the IFX 6x60 spi modem.
5 *
6 * Copyright (C) 2008 Option International
7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8 * Denis Joseph Barrow <d.barow@option.com>
9 * Jan Dumon <j.dumon@option.com>
10 *
11 * Copyright (C) 2009, 2010 Intel Corp
12 * Russ Gorby <russ.gorby@intel.com>
13 *
14 * Driver modified by Intel from Option gtm501l_spi.c
15 *
16 * Notes
17 * o The driver currently assumes a single device only. If you need to
18 * change this then look for saved_ifx_dev and add a device lookup
19 * o The driver is intended to be big-endian safe but has never been
20 * tested that way (no suitable hardware). There are a couple of FIXME
21 * notes by areas that may need addressing
22 * o Some of the GPIO naming/setup assumptions may need revisiting if
23 * you need to use this driver for another platform.
24 *
25 *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio/consumer.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51
52 #include "ifx6x60.h"
53
54 #define IFX_SPI_MORE_MASK 0x10
55 #define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
56 #define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
57 #define IFX_SPI_MODE SPI_MODE_1
58 #define IFX_SPI_TTY_ID 0
59 #define IFX_SPI_TIMEOUT_SEC 2
60 #define IFX_SPI_HEADER_0 (-1)
61 #define IFX_SPI_HEADER_F (-2)
62
63 #define PO_POST_DELAY 200
64
65 /* forward reference */
66 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
67 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
68 unsigned long event, void *data);
69 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
70
71 /* local variables */
72 static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
73 static struct tty_driver *tty_drv;
74 static struct ifx_spi_device *saved_ifx_dev;
75 static struct lock_class_key ifx_spi_key;
76
77 static struct notifier_block ifx_modem_reboot_notifier_block = {
78 .notifier_call = ifx_modem_reboot_callback,
79 };
80
ifx_modem_power_off(struct ifx_spi_device * ifx_dev)81 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
82 {
83 gpiod_set_value(ifx_dev->gpio.pmu_reset, 1);
84 msleep(PO_POST_DELAY);
85
86 return 0;
87 }
88
ifx_modem_reboot_callback(struct notifier_block * nfb,unsigned long event,void * data)89 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
90 unsigned long event, void *data)
91 {
92 if (saved_ifx_dev)
93 ifx_modem_power_off(saved_ifx_dev);
94 else
95 pr_warn("no ifx modem active;\n");
96
97 return NOTIFY_OK;
98 }
99
100 /* GPIO/GPE settings */
101
102 /**
103 * mrdy_set_high - set MRDY GPIO
104 * @ifx: device we are controlling
105 *
106 */
mrdy_set_high(struct ifx_spi_device * ifx)107 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
108 {
109 gpiod_set_value(ifx->gpio.mrdy, 1);
110 }
111
112 /**
113 * mrdy_set_low - clear MRDY GPIO
114 * @ifx: device we are controlling
115 *
116 */
mrdy_set_low(struct ifx_spi_device * ifx)117 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
118 {
119 gpiod_set_value(ifx->gpio.mrdy, 0);
120 }
121
122 /**
123 * ifx_spi_power_state_set
124 * @ifx_dev: our SPI device
125 * @val: bits to set
126 *
127 * Set bit in power status and signal power system if status becomes non-0
128 */
129 static void
ifx_spi_power_state_set(struct ifx_spi_device * ifx_dev,unsigned char val)130 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
131 {
132 unsigned long flags;
133
134 spin_lock_irqsave(&ifx_dev->power_lock, flags);
135
136 /*
137 * if power status is already non-0, just update, else
138 * tell power system
139 */
140 if (!ifx_dev->power_status)
141 pm_runtime_get(&ifx_dev->spi_dev->dev);
142 ifx_dev->power_status |= val;
143
144 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
145 }
146
147 /**
148 * ifx_spi_power_state_clear - clear power bit
149 * @ifx_dev: our SPI device
150 * @val: bits to clear
151 *
152 * clear bit in power status and signal power system if status becomes 0
153 */
154 static void
ifx_spi_power_state_clear(struct ifx_spi_device * ifx_dev,unsigned char val)155 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
156 {
157 unsigned long flags;
158
159 spin_lock_irqsave(&ifx_dev->power_lock, flags);
160
161 if (ifx_dev->power_status) {
162 ifx_dev->power_status &= ~val;
163 if (!ifx_dev->power_status)
164 pm_runtime_put(&ifx_dev->spi_dev->dev);
165 }
166
167 spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
168 }
169
170 /**
171 * swap_buf_8
172 * @buf: our buffer
173 * @len : number of bytes (not words) in the buffer
174 * @end: end of buffer
175 *
176 * Swap the contents of a buffer into big endian format
177 */
swap_buf_8(unsigned char * buf,int len,void * end)178 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
179 {
180 /* don't swap buffer if SPI word width is 8 bits */
181 return;
182 }
183
184 /**
185 * swap_buf_16
186 * @buf: our buffer
187 * @len : number of bytes (not words) in the buffer
188 * @end: end of buffer
189 *
190 * Swap the contents of a buffer into big endian format
191 */
swap_buf_16(unsigned char * buf,int len,void * end)192 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
193 {
194 int n;
195
196 u16 *buf_16 = (u16 *)buf;
197 len = ((len + 1) >> 1);
198 if ((void *)&buf_16[len] > end) {
199 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
200 &buf_16[len], end);
201 return;
202 }
203 for (n = 0; n < len; n++) {
204 *buf_16 = cpu_to_be16(*buf_16);
205 buf_16++;
206 }
207 }
208
209 /**
210 * swap_buf_32
211 * @buf: our buffer
212 * @len : number of bytes (not words) in the buffer
213 * @end: end of buffer
214 *
215 * Swap the contents of a buffer into big endian format
216 */
swap_buf_32(unsigned char * buf,int len,void * end)217 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
218 {
219 int n;
220
221 u32 *buf_32 = (u32 *)buf;
222 len = (len + 3) >> 2;
223
224 if ((void *)&buf_32[len] > end) {
225 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
226 &buf_32[len], end);
227 return;
228 }
229 for (n = 0; n < len; n++) {
230 *buf_32 = cpu_to_be32(*buf_32);
231 buf_32++;
232 }
233 }
234
235 /**
236 * mrdy_assert - assert MRDY line
237 * @ifx_dev: our SPI device
238 *
239 * Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
240 * now.
241 *
242 * FIXME: Can SRDY even go high as we are running this code ?
243 */
mrdy_assert(struct ifx_spi_device * ifx_dev)244 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
245 {
246 int val = gpiod_get_value(ifx_dev->gpio.srdy);
247 if (!val) {
248 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
249 &ifx_dev->flags)) {
250 mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
251
252 }
253 }
254 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
255 mrdy_set_high(ifx_dev);
256 }
257
258 /**
259 * ifx_spi_timeout - SPI timeout
260 * @t: timer in our SPI device
261 *
262 * The SPI has timed out: hang up the tty. Users will then see a hangup
263 * and error events.
264 */
ifx_spi_timeout(struct timer_list * t)265 static void ifx_spi_timeout(struct timer_list *t)
266 {
267 struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
268
269 dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
270 tty_port_tty_hangup(&ifx_dev->tty_port, false);
271 mrdy_set_low(ifx_dev);
272 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
273 }
274
275 /* char/tty operations */
276
277 /**
278 * ifx_spi_tiocmget - get modem lines
279 * @tty: our tty device
280 *
281 * Map the signal state into Linux modem flags and report the value
282 * in Linux terms
283 */
ifx_spi_tiocmget(struct tty_struct * tty)284 static int ifx_spi_tiocmget(struct tty_struct *tty)
285 {
286 unsigned int value;
287 struct ifx_spi_device *ifx_dev = tty->driver_data;
288
289 value =
290 (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
291 (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
292 (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
293 (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
294 (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
295 (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
296 return value;
297 }
298
299 /**
300 * ifx_spi_tiocmset - set modem bits
301 * @tty: the tty structure
302 * @set: bits to set
303 * @clear: bits to clear
304 *
305 * The IFX6x60 only supports DTR and RTS. Set them accordingly
306 * and flag that an update to the modem is needed.
307 *
308 * FIXME: do we need to kick the tranfers when we do this ?
309 */
ifx_spi_tiocmset(struct tty_struct * tty,unsigned int set,unsigned int clear)310 static int ifx_spi_tiocmset(struct tty_struct *tty,
311 unsigned int set, unsigned int clear)
312 {
313 struct ifx_spi_device *ifx_dev = tty->driver_data;
314
315 if (set & TIOCM_RTS)
316 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
317 if (set & TIOCM_DTR)
318 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
319 if (clear & TIOCM_RTS)
320 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
321 if (clear & TIOCM_DTR)
322 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
323
324 set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
325 return 0;
326 }
327
328 /**
329 * ifx_spi_open - called on tty open
330 * @tty: our tty device
331 * @filp: file handle being associated with the tty
332 *
333 * Open the tty interface. We let the tty_port layer do all the work
334 * for us.
335 *
336 * FIXME: Remove single device assumption and saved_ifx_dev
337 */
ifx_spi_open(struct tty_struct * tty,struct file * filp)338 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
339 {
340 return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
341 }
342
343 /**
344 * ifx_spi_close - called when our tty closes
345 * @tty: the tty being closed
346 * @filp: the file handle being closed
347 *
348 * Perform the close of the tty. We use the tty_port layer to do all
349 * our hard work.
350 */
ifx_spi_close(struct tty_struct * tty,struct file * filp)351 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
352 {
353 struct ifx_spi_device *ifx_dev = tty->driver_data;
354 tty_port_close(&ifx_dev->tty_port, tty, filp);
355 /* FIXME: should we do an ifx_spi_reset here ? */
356 }
357
358 /**
359 * ifx_decode_spi_header - decode received header
360 * @buffer: the received data
361 * @length: decoded length
362 * @more: decoded more flag
363 * @received_cts: status of cts we received
364 *
365 * Note how received_cts is handled -- if header is all F it is left
366 * the same as it was, if header is all 0 it is set to 0 otherwise it is
367 * taken from the incoming header.
368 *
369 * FIXME: endianness
370 */
ifx_spi_decode_spi_header(unsigned char * buffer,int * length,unsigned char * more,unsigned char * received_cts)371 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
372 unsigned char *more, unsigned char *received_cts)
373 {
374 u16 h1;
375 u16 h2;
376 u16 *in_buffer = (u16 *)buffer;
377
378 h1 = *in_buffer;
379 h2 = *(in_buffer+1);
380
381 if (h1 == 0 && h2 == 0) {
382 *received_cts = 0;
383 *more = 0;
384 return IFX_SPI_HEADER_0;
385 } else if (h1 == 0xffff && h2 == 0xffff) {
386 *more = 0;
387 /* spi_slave_cts remains as it was */
388 return IFX_SPI_HEADER_F;
389 }
390
391 *length = h1 & 0xfff; /* upper bits of byte are flags */
392 *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
393 *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
394 return 0;
395 }
396
397 /**
398 * ifx_setup_spi_header - set header fields
399 * @txbuffer: pointer to start of SPI buffer
400 * @tx_count: bytes
401 * @more: indicate if more to follow
402 *
403 * Format up an SPI header for a transfer
404 *
405 * FIXME: endianness?
406 */
ifx_spi_setup_spi_header(unsigned char * txbuffer,int tx_count,unsigned char more)407 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
408 unsigned char more)
409 {
410 *(u16 *)(txbuffer) = tx_count;
411 *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
412 txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
413 }
414
415 /**
416 * ifx_spi_prepare_tx_buffer - prepare transmit frame
417 * @ifx_dev: our SPI device
418 *
419 * The transmit buffr needs a header and various other bits of
420 * information followed by as much data as we can pull from the FIFO
421 * and transfer. This function formats up a suitable buffer in the
422 * ifx_dev->tx_buffer
423 *
424 * FIXME: performance - should we wake the tty when the queue is half
425 * empty ?
426 */
ifx_spi_prepare_tx_buffer(struct ifx_spi_device * ifx_dev)427 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
428 {
429 int temp_count;
430 int queue_length;
431 int tx_count;
432 unsigned char *tx_buffer;
433
434 tx_buffer = ifx_dev->tx_buffer;
435
436 /* make room for required SPI header */
437 tx_buffer += IFX_SPI_HEADER_OVERHEAD;
438 tx_count = IFX_SPI_HEADER_OVERHEAD;
439
440 /* clear to signal no more data if this turns out to be the
441 * last buffer sent in a sequence */
442 ifx_dev->spi_more = 0;
443
444 /* if modem cts is set, just send empty buffer */
445 if (!ifx_dev->spi_slave_cts) {
446 /* see if there's tx data */
447 queue_length = kfifo_len(&ifx_dev->tx_fifo);
448 if (queue_length != 0) {
449 /* data to mux -- see if there's room for it */
450 temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
451 temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
452 tx_buffer, temp_count,
453 &ifx_dev->fifo_lock);
454
455 /* update buffer pointer and data count in message */
456 tx_buffer += temp_count;
457 tx_count += temp_count;
458 if (temp_count == queue_length)
459 /* poke port to get more data */
460 tty_port_tty_wakeup(&ifx_dev->tty_port);
461 else /* more data in port, use next SPI message */
462 ifx_dev->spi_more = 1;
463 }
464 }
465 /* have data and info for header -- set up SPI header in buffer */
466 /* spi header needs payload size, not entire buffer size */
467 ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
468 tx_count-IFX_SPI_HEADER_OVERHEAD,
469 ifx_dev->spi_more);
470 /* swap actual data in the buffer */
471 ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
472 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
473 return tx_count;
474 }
475
476 /**
477 * ifx_spi_write - line discipline write
478 * @tty: our tty device
479 * @buf: pointer to buffer to write (kernel space)
480 * @count: size of buffer
481 *
482 * Write the characters we have been given into the FIFO. If the device
483 * is not active then activate it, when the SRDY line is asserted back
484 * this will commence I/O
485 */
ifx_spi_write(struct tty_struct * tty,const unsigned char * buf,int count)486 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
487 int count)
488 {
489 struct ifx_spi_device *ifx_dev = tty->driver_data;
490 unsigned char *tmp_buf = (unsigned char *)buf;
491 unsigned long flags;
492 bool is_fifo_empty;
493 int tx_count;
494
495 spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
496 is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
497 tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
498 spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
499 if (is_fifo_empty)
500 mrdy_assert(ifx_dev);
501
502 return tx_count;
503 }
504
505 /**
506 * ifx_spi_chars_in_buffer - line discipline helper
507 * @tty: our tty device
508 *
509 * Report how much data we can accept before we drop bytes. As we use
510 * a simple FIFO this is nice and easy.
511 */
ifx_spi_write_room(struct tty_struct * tty)512 static int ifx_spi_write_room(struct tty_struct *tty)
513 {
514 struct ifx_spi_device *ifx_dev = tty->driver_data;
515 return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
516 }
517
518 /**
519 * ifx_spi_chars_in_buffer - line discipline helper
520 * @tty: our tty device
521 *
522 * Report how many characters we have buffered. In our case this is the
523 * number of bytes sitting in our transmit FIFO.
524 */
ifx_spi_chars_in_buffer(struct tty_struct * tty)525 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
526 {
527 struct ifx_spi_device *ifx_dev = tty->driver_data;
528 return kfifo_len(&ifx_dev->tx_fifo);
529 }
530
531 /**
532 * ifx_port_hangup
533 * @tty: our tty
534 *
535 * tty port hang up. Called when tty_hangup processing is invoked either
536 * by loss of carrier, or by software (eg vhangup). Serialized against
537 * activate/shutdown by the tty layer.
538 */
ifx_spi_hangup(struct tty_struct * tty)539 static void ifx_spi_hangup(struct tty_struct *tty)
540 {
541 struct ifx_spi_device *ifx_dev = tty->driver_data;
542 tty_port_hangup(&ifx_dev->tty_port);
543 }
544
545 /**
546 * ifx_port_activate
547 * @port: our tty port
548 *
549 * tty port activate method - called for first open. Serialized
550 * with hangup and shutdown by the tty layer.
551 */
ifx_port_activate(struct tty_port * port,struct tty_struct * tty)552 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
553 {
554 struct ifx_spi_device *ifx_dev =
555 container_of(port, struct ifx_spi_device, tty_port);
556
557 /* clear any old data; can't do this in 'close' */
558 kfifo_reset(&ifx_dev->tx_fifo);
559
560 /* clear any flag which may be set in port shutdown procedure */
561 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
562 clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
563
564 /* put port data into this tty */
565 tty->driver_data = ifx_dev;
566
567 /* allows flip string push from int context */
568 port->low_latency = 1;
569
570 /* set flag to allows data transfer */
571 set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
572
573 return 0;
574 }
575
576 /**
577 * ifx_port_shutdown
578 * @port: our tty port
579 *
580 * tty port shutdown method - called for last port close. Serialized
581 * with hangup and activate by the tty layer.
582 */
ifx_port_shutdown(struct tty_port * port)583 static void ifx_port_shutdown(struct tty_port *port)
584 {
585 struct ifx_spi_device *ifx_dev =
586 container_of(port, struct ifx_spi_device, tty_port);
587
588 clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
589 mrdy_set_low(ifx_dev);
590 del_timer(&ifx_dev->spi_timer);
591 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
592 tasklet_kill(&ifx_dev->io_work_tasklet);
593 }
594
595 static const struct tty_port_operations ifx_tty_port_ops = {
596 .activate = ifx_port_activate,
597 .shutdown = ifx_port_shutdown,
598 };
599
600 static const struct tty_operations ifx_spi_serial_ops = {
601 .open = ifx_spi_open,
602 .close = ifx_spi_close,
603 .write = ifx_spi_write,
604 .hangup = ifx_spi_hangup,
605 .write_room = ifx_spi_write_room,
606 .chars_in_buffer = ifx_spi_chars_in_buffer,
607 .tiocmget = ifx_spi_tiocmget,
608 .tiocmset = ifx_spi_tiocmset,
609 };
610
611 /**
612 * ifx_spi_insert_fip_string - queue received data
613 * @ifx_dev: our SPI device
614 * @chars: buffer we have received
615 * @size: number of chars reeived
616 *
617 * Queue bytes to the tty assuming the tty side is currently open. If
618 * not the discard the data.
619 */
ifx_spi_insert_flip_string(struct ifx_spi_device * ifx_dev,unsigned char * chars,size_t size)620 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
621 unsigned char *chars, size_t size)
622 {
623 tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
624 tty_flip_buffer_push(&ifx_dev->tty_port);
625 }
626
627 /**
628 * ifx_spi_complete - SPI transfer completed
629 * @ctx: our SPI device
630 *
631 * An SPI transfer has completed. Process any received data and kick off
632 * any further transmits we can commence.
633 */
ifx_spi_complete(void * ctx)634 static void ifx_spi_complete(void *ctx)
635 {
636 struct ifx_spi_device *ifx_dev = ctx;
637 int length;
638 int actual_length;
639 unsigned char more = 0;
640 unsigned char cts;
641 int local_write_pending = 0;
642 int queue_length;
643 int srdy;
644 int decode_result;
645
646 mrdy_set_low(ifx_dev);
647
648 if (!ifx_dev->spi_msg.status) {
649 /* check header validity, get comm flags */
650 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
651 &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
652 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
653 &length, &more, &cts);
654 if (decode_result == IFX_SPI_HEADER_0) {
655 dev_dbg(&ifx_dev->spi_dev->dev,
656 "ignore input: invalid header 0");
657 ifx_dev->spi_slave_cts = 0;
658 goto complete_exit;
659 } else if (decode_result == IFX_SPI_HEADER_F) {
660 dev_dbg(&ifx_dev->spi_dev->dev,
661 "ignore input: invalid header F");
662 goto complete_exit;
663 }
664
665 ifx_dev->spi_slave_cts = cts;
666
667 actual_length = min((unsigned int)length,
668 ifx_dev->spi_msg.actual_length);
669 ifx_dev->swap_buf(
670 (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
671 actual_length,
672 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
673 ifx_spi_insert_flip_string(
674 ifx_dev,
675 ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
676 (size_t)actual_length);
677 } else {
678 more = 0;
679 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
680 ifx_dev->spi_msg.status);
681 }
682
683 complete_exit:
684 if (ifx_dev->write_pending) {
685 ifx_dev->write_pending = 0;
686 local_write_pending = 1;
687 }
688
689 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
690
691 queue_length = kfifo_len(&ifx_dev->tx_fifo);
692 srdy = gpiod_get_value(ifx_dev->gpio.srdy);
693 if (!srdy)
694 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
695
696 /* schedule output if there is more to do */
697 if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
698 tasklet_schedule(&ifx_dev->io_work_tasklet);
699 else {
700 if (more || ifx_dev->spi_more || queue_length > 0 ||
701 local_write_pending) {
702 if (ifx_dev->spi_slave_cts) {
703 if (more)
704 mrdy_assert(ifx_dev);
705 } else
706 mrdy_assert(ifx_dev);
707 } else {
708 /*
709 * poke line discipline driver if any for more data
710 * may or may not get more data to write
711 * for now, say not busy
712 */
713 ifx_spi_power_state_clear(ifx_dev,
714 IFX_SPI_POWER_DATA_PENDING);
715 tty_port_tty_wakeup(&ifx_dev->tty_port);
716 }
717 }
718 }
719
720 /**
721 * ifx_spio_io - I/O tasklet
722 * @data: our SPI device
723 *
724 * Queue data for transmission if possible and then kick off the
725 * transfer.
726 */
ifx_spi_io(struct tasklet_struct * t)727 static void ifx_spi_io(struct tasklet_struct *t)
728 {
729 int retval;
730 struct ifx_spi_device *ifx_dev = from_tasklet(ifx_dev, t,
731 io_work_tasklet);
732
733 if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
734 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
735 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
736 ifx_dev->gpio.unack_srdy_int_nb--;
737
738 ifx_spi_prepare_tx_buffer(ifx_dev);
739
740 spi_message_init(&ifx_dev->spi_msg);
741 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
742
743 ifx_dev->spi_msg.context = ifx_dev;
744 ifx_dev->spi_msg.complete = ifx_spi_complete;
745
746 /* set up our spi transfer */
747 /* note len is BYTES, not transfers */
748 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
749 ifx_dev->spi_xfer.cs_change = 0;
750 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
751 /* ifx_dev->spi_xfer.speed_hz = 390625; */
752 ifx_dev->spi_xfer.bits_per_word =
753 ifx_dev->spi_dev->bits_per_word;
754
755 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
756 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
757
758 /*
759 * setup dma pointers
760 */
761 if (ifx_dev->use_dma) {
762 ifx_dev->spi_msg.is_dma_mapped = 1;
763 ifx_dev->tx_dma = ifx_dev->tx_bus;
764 ifx_dev->rx_dma = ifx_dev->rx_bus;
765 ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
766 ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
767 } else {
768 ifx_dev->spi_msg.is_dma_mapped = 0;
769 ifx_dev->tx_dma = (dma_addr_t)0;
770 ifx_dev->rx_dma = (dma_addr_t)0;
771 ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
772 ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
773 }
774
775 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
776
777 /* Assert MRDY. This may have already been done by the write
778 * routine.
779 */
780 mrdy_assert(ifx_dev);
781
782 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
783 if (retval) {
784 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
785 &ifx_dev->flags);
786 tasklet_schedule(&ifx_dev->io_work_tasklet);
787 return;
788 }
789 } else
790 ifx_dev->write_pending = 1;
791 }
792
793 /**
794 * ifx_spi_free_port - free up the tty side
795 * @ifx_dev: IFX device going away
796 *
797 * Unregister and free up a port when the device goes away
798 */
ifx_spi_free_port(struct ifx_spi_device * ifx_dev)799 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
800 {
801 if (ifx_dev->tty_dev)
802 tty_unregister_device(tty_drv, ifx_dev->minor);
803 tty_port_destroy(&ifx_dev->tty_port);
804 kfifo_free(&ifx_dev->tx_fifo);
805 }
806
807 /**
808 * ifx_spi_create_port - create a new port
809 * @ifx_dev: our spi device
810 *
811 * Allocate and initialise the tty port that goes with this interface
812 * and add it to the tty layer so that it can be opened.
813 */
ifx_spi_create_port(struct ifx_spi_device * ifx_dev)814 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
815 {
816 int ret = 0;
817 struct tty_port *pport = &ifx_dev->tty_port;
818
819 spin_lock_init(&ifx_dev->fifo_lock);
820 lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
821 &ifx_spi_key, 0);
822
823 if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
824 ret = -ENOMEM;
825 goto error_ret;
826 }
827
828 tty_port_init(pport);
829 pport->ops = &ifx_tty_port_ops;
830 ifx_dev->minor = IFX_SPI_TTY_ID;
831 ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
832 ifx_dev->minor, &ifx_dev->spi_dev->dev);
833 if (IS_ERR(ifx_dev->tty_dev)) {
834 dev_dbg(&ifx_dev->spi_dev->dev,
835 "%s: registering tty device failed", __func__);
836 ret = PTR_ERR(ifx_dev->tty_dev);
837 goto error_port;
838 }
839 return 0;
840
841 error_port:
842 tty_port_destroy(pport);
843 error_ret:
844 ifx_spi_free_port(ifx_dev);
845 return ret;
846 }
847
848 /**
849 * ifx_spi_handle_srdy - handle SRDY
850 * @ifx_dev: device asserting SRDY
851 *
852 * Check our device state and see what we need to kick off when SRDY
853 * is asserted. This usually means killing the timer and firing off the
854 * I/O processing.
855 */
ifx_spi_handle_srdy(struct ifx_spi_device * ifx_dev)856 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
857 {
858 if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
859 del_timer(&ifx_dev->spi_timer);
860 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
861 }
862
863 ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
864
865 if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
866 tasklet_schedule(&ifx_dev->io_work_tasklet);
867 else
868 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
869 }
870
871 /**
872 * ifx_spi_srdy_interrupt - SRDY asserted
873 * @irq: our IRQ number
874 * @dev: our ifx device
875 *
876 * The modem asserted SRDY. Handle the srdy event
877 */
ifx_spi_srdy_interrupt(int irq,void * dev)878 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
879 {
880 struct ifx_spi_device *ifx_dev = dev;
881 ifx_dev->gpio.unack_srdy_int_nb++;
882 ifx_spi_handle_srdy(ifx_dev);
883 return IRQ_HANDLED;
884 }
885
886 /**
887 * ifx_spi_reset_interrupt - Modem has changed reset state
888 * @irq: interrupt number
889 * @dev: our device pointer
890 *
891 * The modem has either entered or left reset state. Check the GPIO
892 * line to see which.
893 *
894 * FIXME: review locking on MR_INPROGRESS versus
895 * parallel unsolicited reset/solicited reset
896 */
ifx_spi_reset_interrupt(int irq,void * dev)897 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
898 {
899 struct ifx_spi_device *ifx_dev = dev;
900 int val = gpiod_get_value(ifx_dev->gpio.reset_out);
901 int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
902
903 if (val == 0) {
904 /* entered reset */
905 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
906 if (!solreset) {
907 /* unsolicited reset */
908 tty_port_tty_hangup(&ifx_dev->tty_port, false);
909 }
910 } else {
911 /* exited reset */
912 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
913 if (solreset) {
914 set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
915 wake_up(&ifx_dev->mdm_reset_wait);
916 }
917 }
918 return IRQ_HANDLED;
919 }
920
921 /**
922 * ifx_spi_free_device - free device
923 * @ifx_dev: device to free
924 *
925 * Free the IFX device
926 */
ifx_spi_free_device(struct ifx_spi_device * ifx_dev)927 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
928 {
929 ifx_spi_free_port(ifx_dev);
930 dma_free_coherent(&ifx_dev->spi_dev->dev,
931 IFX_SPI_TRANSFER_SIZE,
932 ifx_dev->tx_buffer,
933 ifx_dev->tx_bus);
934 dma_free_coherent(&ifx_dev->spi_dev->dev,
935 IFX_SPI_TRANSFER_SIZE,
936 ifx_dev->rx_buffer,
937 ifx_dev->rx_bus);
938 }
939
940 /**
941 * ifx_spi_reset - reset modem
942 * @ifx_dev: modem to reset
943 *
944 * Perform a reset on the modem
945 */
ifx_spi_reset(struct ifx_spi_device * ifx_dev)946 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
947 {
948 int ret;
949 /*
950 * set up modem power, reset
951 *
952 * delays are required on some platforms for the modem
953 * to reset properly
954 */
955 set_bit(MR_START, &ifx_dev->mdm_reset_state);
956 gpiod_set_value(ifx_dev->gpio.po, 0);
957 gpiod_set_value(ifx_dev->gpio.reset, 0);
958 msleep(25);
959 gpiod_set_value(ifx_dev->gpio.reset, 1);
960 msleep(1);
961 gpiod_set_value(ifx_dev->gpio.po, 1);
962 msleep(1);
963 gpiod_set_value(ifx_dev->gpio.po, 0);
964 ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
965 test_bit(MR_COMPLETE,
966 &ifx_dev->mdm_reset_state),
967 IFX_RESET_TIMEOUT);
968 if (!ret)
969 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
970 ifx_dev->mdm_reset_state);
971
972 ifx_dev->mdm_reset_state = 0;
973 return ret;
974 }
975
976 /**
977 * ifx_spi_spi_probe - probe callback
978 * @spi: our possible matching SPI device
979 *
980 * Probe for a 6x60 modem on SPI bus. Perform any needed device and
981 * GPIO setup.
982 *
983 * FIXME:
984 * - Support for multiple devices
985 * - Split out MID specific GPIO handling eventually
986 */
987
ifx_spi_spi_probe(struct spi_device * spi)988 static int ifx_spi_spi_probe(struct spi_device *spi)
989 {
990 int ret;
991 int srdy;
992 struct ifx_modem_platform_data *pl_data;
993 struct ifx_spi_device *ifx_dev;
994 struct device *dev = &spi->dev;
995
996 if (saved_ifx_dev) {
997 dev_dbg(dev, "ignoring subsequent detection");
998 return -ENODEV;
999 }
1000
1001 pl_data = dev_get_platdata(dev);
1002 if (!pl_data) {
1003 dev_err(dev, "missing platform data!");
1004 return -ENODEV;
1005 }
1006
1007 /* initialize structure to hold our device variables */
1008 ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009 if (!ifx_dev) {
1010 dev_err(dev, "spi device allocation failed");
1011 return -ENOMEM;
1012 }
1013 saved_ifx_dev = ifx_dev;
1014 ifx_dev->spi_dev = spi;
1015 clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016 spin_lock_init(&ifx_dev->write_lock);
1017 spin_lock_init(&ifx_dev->power_lock);
1018 ifx_dev->power_status = 0;
1019 timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020 ifx_dev->modem = pl_data->modem_type;
1021 ifx_dev->use_dma = pl_data->use_dma;
1022 ifx_dev->max_hz = pl_data->max_hz;
1023 /* initialize spi mode, etc */
1024 spi->max_speed_hz = ifx_dev->max_hz;
1025 spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026 spi->bits_per_word = spi_bpw;
1027 ret = spi_setup(spi);
1028 if (ret) {
1029 dev_err(dev, "SPI setup wasn't successful %d", ret);
1030 kfree(ifx_dev);
1031 return -ENODEV;
1032 }
1033
1034 /* init swap_buf function according to word width configuration */
1035 if (spi->bits_per_word == 32)
1036 ifx_dev->swap_buf = swap_buf_32;
1037 else if (spi->bits_per_word == 16)
1038 ifx_dev->swap_buf = swap_buf_16;
1039 else
1040 ifx_dev->swap_buf = swap_buf_8;
1041
1042 /* ensure SPI protocol flags are initialized to enable transfer */
1043 ifx_dev->spi_more = 0;
1044 ifx_dev->spi_slave_cts = 0;
1045
1046 /*initialize transfer and dma buffers */
1047 ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048 IFX_SPI_TRANSFER_SIZE,
1049 &ifx_dev->tx_bus,
1050 GFP_KERNEL);
1051 if (!ifx_dev->tx_buffer) {
1052 dev_err(dev, "DMA-TX buffer allocation failed");
1053 ret = -ENOMEM;
1054 goto error_ret;
1055 }
1056 ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057 IFX_SPI_TRANSFER_SIZE,
1058 &ifx_dev->rx_bus,
1059 GFP_KERNEL);
1060 if (!ifx_dev->rx_buffer) {
1061 dev_err(dev, "DMA-RX buffer allocation failed");
1062 ret = -ENOMEM;
1063 goto error_ret;
1064 }
1065
1066 /* initialize waitq for modem reset */
1067 init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069 spi_set_drvdata(spi, ifx_dev);
1070 tasklet_setup(&ifx_dev->io_work_tasklet, ifx_spi_io);
1071
1072 set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1073
1074 /* create our tty port */
1075 ret = ifx_spi_create_port(ifx_dev);
1076 if (ret != 0) {
1077 dev_err(dev, "create default tty port failed");
1078 goto error_ret;
1079 }
1080
1081 ifx_dev->gpio.reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1082 if (IS_ERR(ifx_dev->gpio.reset)) {
1083 dev_err(dev, "could not obtain reset GPIO\n");
1084 ret = PTR_ERR(ifx_dev->gpio.reset);
1085 goto error_ret;
1086 }
1087 gpiod_set_consumer_name(ifx_dev->gpio.reset, "ifxModem reset");
1088 ifx_dev->gpio.po = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
1089 if (IS_ERR(ifx_dev->gpio.po)) {
1090 dev_err(dev, "could not obtain power GPIO\n");
1091 ret = PTR_ERR(ifx_dev->gpio.po);
1092 goto error_ret;
1093 }
1094 gpiod_set_consumer_name(ifx_dev->gpio.po, "ifxModem power");
1095 ifx_dev->gpio.mrdy = devm_gpiod_get(dev, "mrdy", GPIOD_OUT_LOW);
1096 if (IS_ERR(ifx_dev->gpio.mrdy)) {
1097 dev_err(dev, "could not obtain mrdy GPIO\n");
1098 ret = PTR_ERR(ifx_dev->gpio.mrdy);
1099 goto error_ret;
1100 }
1101 gpiod_set_consumer_name(ifx_dev->gpio.mrdy, "ifxModem mrdy");
1102 ifx_dev->gpio.srdy = devm_gpiod_get(dev, "srdy", GPIOD_IN);
1103 if (IS_ERR(ifx_dev->gpio.srdy)) {
1104 dev_err(dev, "could not obtain srdy GPIO\n");
1105 ret = PTR_ERR(ifx_dev->gpio.srdy);
1106 goto error_ret;
1107 }
1108 gpiod_set_consumer_name(ifx_dev->gpio.srdy, "ifxModem srdy");
1109 ifx_dev->gpio.reset_out = devm_gpiod_get(dev, "rst_out", GPIOD_IN);
1110 if (IS_ERR(ifx_dev->gpio.reset_out)) {
1111 dev_err(dev, "could not obtain rst_out GPIO\n");
1112 ret = PTR_ERR(ifx_dev->gpio.reset_out);
1113 goto error_ret;
1114 }
1115 gpiod_set_consumer_name(ifx_dev->gpio.reset_out, "ifxModem reset out");
1116 ifx_dev->gpio.pmu_reset = devm_gpiod_get(dev, "pmu_reset", GPIOD_ASIS);
1117 if (IS_ERR(ifx_dev->gpio.pmu_reset)) {
1118 dev_err(dev, "could not obtain pmu_reset GPIO\n");
1119 ret = PTR_ERR(ifx_dev->gpio.pmu_reset);
1120 goto error_ret;
1121 }
1122 gpiod_set_consumer_name(ifx_dev->gpio.pmu_reset, "ifxModem PMU reset");
1123
1124 ret = request_irq(gpiod_to_irq(ifx_dev->gpio.reset_out),
1125 ifx_spi_reset_interrupt,
1126 IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1127 ifx_dev);
1128 if (ret) {
1129 dev_err(dev, "Unable to get irq %x\n",
1130 gpiod_to_irq(ifx_dev->gpio.reset_out));
1131 goto error_ret;
1132 }
1133
1134 ret = ifx_spi_reset(ifx_dev);
1135
1136 ret = request_irq(gpiod_to_irq(ifx_dev->gpio.srdy),
1137 ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1138 ifx_dev);
1139 if (ret) {
1140 dev_err(dev, "Unable to get irq %x",
1141 gpiod_to_irq(ifx_dev->gpio.srdy));
1142 goto error_ret2;
1143 }
1144
1145 /* set pm runtime power state and register with power system */
1146 pm_runtime_set_active(dev);
1147 pm_runtime_enable(dev);
1148
1149 /* handle case that modem is already signaling SRDY */
1150 /* no outgoing tty open at this point, this just satisfies the
1151 * modem's read and should reset communication properly
1152 */
1153 srdy = gpiod_get_value(ifx_dev->gpio.srdy);
1154
1155 if (srdy) {
1156 mrdy_assert(ifx_dev);
1157 ifx_spi_handle_srdy(ifx_dev);
1158 } else
1159 mrdy_set_low(ifx_dev);
1160 return 0;
1161
1162 error_ret2:
1163 free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1164 error_ret:
1165 ifx_spi_free_device(ifx_dev);
1166 saved_ifx_dev = NULL;
1167 return ret;
1168 }
1169
1170 /**
1171 * ifx_spi_spi_remove - SPI device was removed
1172 * @spi: SPI device
1173 *
1174 * FIXME: We should be shutting the device down here not in
1175 * the module unload path.
1176 */
1177
ifx_spi_spi_remove(struct spi_device * spi)1178 static int ifx_spi_spi_remove(struct spi_device *spi)
1179 {
1180 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1181 /* stop activity */
1182 tasklet_kill(&ifx_dev->io_work_tasklet);
1183
1184 pm_runtime_disable(&spi->dev);
1185
1186 /* free irq */
1187 free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1188 free_irq(gpiod_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1189
1190 /* free allocations */
1191 ifx_spi_free_device(ifx_dev);
1192
1193 saved_ifx_dev = NULL;
1194 return 0;
1195 }
1196
1197 /**
1198 * ifx_spi_spi_shutdown - called on SPI shutdown
1199 * @spi: SPI device
1200 *
1201 * No action needs to be taken here
1202 */
1203
ifx_spi_spi_shutdown(struct spi_device * spi)1204 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1205 {
1206 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1207
1208 ifx_modem_power_off(ifx_dev);
1209 }
1210
1211 /*
1212 * various suspends and resumes have nothing to do
1213 * no hardware to save state for
1214 */
1215
1216 /**
1217 * ifx_spi_pm_suspend - suspend modem on system suspend
1218 * @dev: device being suspended
1219 *
1220 * Suspend the modem. No action needed on Intel MID platforms, may
1221 * need extending for other systems.
1222 */
ifx_spi_pm_suspend(struct device * dev)1223 static int ifx_spi_pm_suspend(struct device *dev)
1224 {
1225 return 0;
1226 }
1227
1228 /**
1229 * ifx_spi_pm_resume - resume modem on system resume
1230 * @dev: device being suspended
1231 *
1232 * Allow the modem to resume. No action needed.
1233 *
1234 * FIXME: do we need to reset anything here ?
1235 */
ifx_spi_pm_resume(struct device * dev)1236 static int ifx_spi_pm_resume(struct device *dev)
1237 {
1238 return 0;
1239 }
1240
1241 /**
1242 * ifx_spi_pm_runtime_resume - suspend modem
1243 * @dev: device being suspended
1244 *
1245 * Allow the modem to resume. No action needed.
1246 */
ifx_spi_pm_runtime_resume(struct device * dev)1247 static int ifx_spi_pm_runtime_resume(struct device *dev)
1248 {
1249 return 0;
1250 }
1251
1252 /**
1253 * ifx_spi_pm_runtime_suspend - suspend modem
1254 * @dev: device being suspended
1255 *
1256 * Allow the modem to suspend and thus suspend to continue up the
1257 * device tree.
1258 */
ifx_spi_pm_runtime_suspend(struct device * dev)1259 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1260 {
1261 return 0;
1262 }
1263
1264 /**
1265 * ifx_spi_pm_runtime_idle - check if modem idle
1266 * @dev: our device
1267 *
1268 * Check conditions and queue runtime suspend if idle.
1269 */
ifx_spi_pm_runtime_idle(struct device * dev)1270 static int ifx_spi_pm_runtime_idle(struct device *dev)
1271 {
1272 struct spi_device *spi = to_spi_device(dev);
1273 struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1274
1275 if (!ifx_dev->power_status)
1276 pm_runtime_suspend(dev);
1277
1278 return 0;
1279 }
1280
1281 static const struct dev_pm_ops ifx_spi_pm = {
1282 .resume = ifx_spi_pm_resume,
1283 .suspend = ifx_spi_pm_suspend,
1284 .runtime_resume = ifx_spi_pm_runtime_resume,
1285 .runtime_suspend = ifx_spi_pm_runtime_suspend,
1286 .runtime_idle = ifx_spi_pm_runtime_idle
1287 };
1288
1289 static const struct spi_device_id ifx_id_table[] = {
1290 {"ifx6160", 0},
1291 {"ifx6260", 0},
1292 { }
1293 };
1294 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1295
1296 /* spi operations */
1297 static struct spi_driver ifx_spi_driver = {
1298 .driver = {
1299 .name = DRVNAME,
1300 .pm = &ifx_spi_pm,
1301 },
1302 .probe = ifx_spi_spi_probe,
1303 .shutdown = ifx_spi_spi_shutdown,
1304 .remove = ifx_spi_spi_remove,
1305 .id_table = ifx_id_table
1306 };
1307
1308 /**
1309 * ifx_spi_exit - module exit
1310 *
1311 * Unload the module.
1312 */
1313
ifx_spi_exit(void)1314 static void __exit ifx_spi_exit(void)
1315 {
1316 /* unregister */
1317 spi_unregister_driver(&ifx_spi_driver);
1318 tty_unregister_driver(tty_drv);
1319 put_tty_driver(tty_drv);
1320 unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1321 }
1322
1323 /**
1324 * ifx_spi_init - module entry point
1325 *
1326 * Initialise the SPI and tty interfaces for the IFX SPI driver
1327 * We need to initialize upper-edge spi driver after the tty
1328 * driver because otherwise the spi probe will race
1329 */
1330
ifx_spi_init(void)1331 static int __init ifx_spi_init(void)
1332 {
1333 int result;
1334
1335 tty_drv = alloc_tty_driver(1);
1336 if (!tty_drv) {
1337 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1338 return -ENOMEM;
1339 }
1340
1341 tty_drv->driver_name = DRVNAME;
1342 tty_drv->name = TTYNAME;
1343 tty_drv->minor_start = IFX_SPI_TTY_ID;
1344 tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1345 tty_drv->subtype = SERIAL_TYPE_NORMAL;
1346 tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1347 tty_drv->init_termios = tty_std_termios;
1348
1349 tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1350
1351 result = tty_register_driver(tty_drv);
1352 if (result) {
1353 pr_err("%s: tty_register_driver failed(%d)",
1354 DRVNAME, result);
1355 goto err_free_tty;
1356 }
1357
1358 result = spi_register_driver(&ifx_spi_driver);
1359 if (result) {
1360 pr_err("%s: spi_register_driver failed(%d)",
1361 DRVNAME, result);
1362 goto err_unreg_tty;
1363 }
1364
1365 result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1366 if (result) {
1367 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1368 DRVNAME, result);
1369 goto err_unreg_spi;
1370 }
1371
1372 return 0;
1373 err_unreg_spi:
1374 spi_unregister_driver(&ifx_spi_driver);
1375 err_unreg_tty:
1376 tty_unregister_driver(tty_drv);
1377 err_free_tty:
1378 put_tty_driver(tty_drv);
1379
1380 return result;
1381 }
1382
1383 module_init(ifx_spi_init);
1384 module_exit(ifx_spi_exit);
1385
1386 MODULE_AUTHOR("Intel");
1387 MODULE_DESCRIPTION("IFX6x60 spi driver");
1388 MODULE_LICENSE("GPL");
1389 MODULE_INFO(Version, "0.1-IFX6x60");
1390