1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 MediaTek Inc.
4  * Author: Hanyi Wu <hanyi.wu@mediatek.com>
5  *         Sascha Hauer <s.hauer@pengutronix.de>
6  *         Dawei Chien <dawei.chien@mediatek.com>
7  *         Louis Yu <louis.yu@mediatek.com>
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/io.h>
22 #include <linux/thermal.h>
23 #include <linux/reset.h>
24 #include <linux/types.h>
25 
26 /* AUXADC Registers */
27 #define AUXADC_CON1_SET_V	0x008
28 #define AUXADC_CON1_CLR_V	0x00c
29 #define AUXADC_CON2_V		0x010
30 #define AUXADC_DATA(channel)	(0x14 + (channel) * 4)
31 
32 #define APMIXED_SYS_TS_CON1	0x604
33 
34 /* Thermal Controller Registers */
35 #define TEMP_MONCTL0		0x000
36 #define TEMP_MONCTL1		0x004
37 #define TEMP_MONCTL2		0x008
38 #define TEMP_MONIDET0		0x014
39 #define TEMP_MONIDET1		0x018
40 #define TEMP_MSRCTL0		0x038
41 #define TEMP_MSRCTL1		0x03c
42 #define TEMP_AHBPOLL		0x040
43 #define TEMP_AHBTO		0x044
44 #define TEMP_ADCPNP0		0x048
45 #define TEMP_ADCPNP1		0x04c
46 #define TEMP_ADCPNP2		0x050
47 #define TEMP_ADCPNP3		0x0b4
48 
49 #define TEMP_ADCMUX		0x054
50 #define TEMP_ADCEN		0x060
51 #define TEMP_PNPMUXADDR		0x064
52 #define TEMP_ADCMUXADDR		0x068
53 #define TEMP_ADCENADDR		0x074
54 #define TEMP_ADCVALIDADDR	0x078
55 #define TEMP_ADCVOLTADDR	0x07c
56 #define TEMP_RDCTRL		0x080
57 #define TEMP_ADCVALIDMASK	0x084
58 #define TEMP_ADCVOLTAGESHIFT	0x088
59 #define TEMP_ADCWRITECTRL	0x08c
60 #define TEMP_MSR0		0x090
61 #define TEMP_MSR1		0x094
62 #define TEMP_MSR2		0x098
63 #define TEMP_MSR3		0x0B8
64 
65 #define TEMP_SPARE0		0x0f0
66 
67 #define TEMP_ADCPNP0_1          0x148
68 #define TEMP_ADCPNP1_1          0x14c
69 #define TEMP_ADCPNP2_1          0x150
70 #define TEMP_MSR0_1             0x190
71 #define TEMP_MSR1_1             0x194
72 #define TEMP_MSR2_1             0x198
73 #define TEMP_ADCPNP3_1          0x1b4
74 #define TEMP_MSR3_1             0x1B8
75 
76 #define PTPCORESEL		0x400
77 
78 #define TEMP_MONCTL1_PERIOD_UNIT(x)	((x) & 0x3ff)
79 
80 #define TEMP_MONCTL2_FILTER_INTERVAL(x)	(((x) & 0x3ff) << 16)
81 #define TEMP_MONCTL2_SENSOR_INTERVAL(x)	((x) & 0x3ff)
82 
83 #define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x)	(x)
84 
85 #define TEMP_ADCWRITECTRL_ADC_PNP_WRITE		BIT(0)
86 #define TEMP_ADCWRITECTRL_ADC_MUX_WRITE		BIT(1)
87 
88 #define TEMP_ADCVALIDMASK_VALID_HIGH		BIT(5)
89 #define TEMP_ADCVALIDMASK_VALID_POS(bit)	(bit)
90 
91 /* MT8173 thermal sensors */
92 #define MT8173_TS1	0
93 #define MT8173_TS2	1
94 #define MT8173_TS3	2
95 #define MT8173_TS4	3
96 #define MT8173_TSABB	4
97 
98 /* AUXADC channel 11 is used for the temperature sensors */
99 #define MT8173_TEMP_AUXADC_CHANNEL	11
100 
101 /* The total number of temperature sensors in the MT8173 */
102 #define MT8173_NUM_SENSORS		5
103 
104 /* The number of banks in the MT8173 */
105 #define MT8173_NUM_ZONES		4
106 
107 /* The number of sensing points per bank */
108 #define MT8173_NUM_SENSORS_PER_ZONE	4
109 
110 /* The number of controller in the MT8173 */
111 #define MT8173_NUM_CONTROLLER		1
112 
113 /* The calibration coefficient of sensor  */
114 #define MT8173_CALIBRATION	165
115 
116 /*
117  * Layout of the fuses providing the calibration data
118  * These macros could be used for MT8183, MT8173, MT2701, and MT2712.
119  * MT8183 has 6 sensors and needs 6 VTS calibration data.
120  * MT8173 has 5 sensors and needs 5 VTS calibration data.
121  * MT2701 has 3 sensors and needs 3 VTS calibration data.
122  * MT2712 has 4 sensors and needs 4 VTS calibration data.
123  */
124 #define CALIB_BUF0_VALID_V1		BIT(0)
125 #define CALIB_BUF1_ADC_GE_V1(x)		(((x) >> 22) & 0x3ff)
126 #define CALIB_BUF0_VTS_TS1_V1(x)	(((x) >> 17) & 0x1ff)
127 #define CALIB_BUF0_VTS_TS2_V1(x)	(((x) >> 8) & 0x1ff)
128 #define CALIB_BUF1_VTS_TS3_V1(x)	(((x) >> 0) & 0x1ff)
129 #define CALIB_BUF2_VTS_TS4_V1(x)	(((x) >> 23) & 0x1ff)
130 #define CALIB_BUF2_VTS_TS5_V1(x)	(((x) >> 5) & 0x1ff)
131 #define CALIB_BUF2_VTS_TSABB_V1(x)	(((x) >> 14) & 0x1ff)
132 #define CALIB_BUF0_DEGC_CALI_V1(x)	(((x) >> 1) & 0x3f)
133 #define CALIB_BUF0_O_SLOPE_V1(x)	(((x) >> 26) & 0x3f)
134 #define CALIB_BUF0_O_SLOPE_SIGN_V1(x)	(((x) >> 7) & 0x1)
135 #define CALIB_BUF1_ID_V1(x)		(((x) >> 9) & 0x1)
136 
137 /*
138  * Layout of the fuses providing the calibration data
139  * These macros could be used for MT7622.
140  */
141 #define CALIB_BUF0_ADC_OE_V2(x)		(((x) >> 22) & 0x3ff)
142 #define CALIB_BUF0_ADC_GE_V2(x)		(((x) >> 12) & 0x3ff)
143 #define CALIB_BUF0_DEGC_CALI_V2(x)	(((x) >> 6) & 0x3f)
144 #define CALIB_BUF0_O_SLOPE_V2(x)	(((x) >> 0) & 0x3f)
145 #define CALIB_BUF1_VTS_TS1_V2(x)	(((x) >> 23) & 0x1ff)
146 #define CALIB_BUF1_VTS_TS2_V2(x)	(((x) >> 14) & 0x1ff)
147 #define CALIB_BUF1_VTS_TSABB_V2(x)	(((x) >> 5) & 0x1ff)
148 #define CALIB_BUF1_VALID_V2(x)		(((x) >> 4) & 0x1)
149 #define CALIB_BUF1_O_SLOPE_SIGN_V2(x)	(((x) >> 3) & 0x1)
150 
151 enum {
152 	VTS1,
153 	VTS2,
154 	VTS3,
155 	VTS4,
156 	VTS5,
157 	VTSABB,
158 	MAX_NUM_VTS,
159 };
160 
161 enum mtk_thermal_version {
162 	MTK_THERMAL_V1 = 1,
163 	MTK_THERMAL_V2,
164 };
165 
166 /* MT2701 thermal sensors */
167 #define MT2701_TS1	0
168 #define MT2701_TS2	1
169 #define MT2701_TSABB	2
170 
171 /* AUXADC channel 11 is used for the temperature sensors */
172 #define MT2701_TEMP_AUXADC_CHANNEL	11
173 
174 /* The total number of temperature sensors in the MT2701 */
175 #define MT2701_NUM_SENSORS	3
176 
177 /* The number of sensing points per bank */
178 #define MT2701_NUM_SENSORS_PER_ZONE	3
179 
180 /* The number of controller in the MT2701 */
181 #define MT2701_NUM_CONTROLLER		1
182 
183 /* The calibration coefficient of sensor  */
184 #define MT2701_CALIBRATION	165
185 
186 /* MT2712 thermal sensors */
187 #define MT2712_TS1	0
188 #define MT2712_TS2	1
189 #define MT2712_TS3	2
190 #define MT2712_TS4	3
191 
192 /* AUXADC channel 11 is used for the temperature sensors */
193 #define MT2712_TEMP_AUXADC_CHANNEL	11
194 
195 /* The total number of temperature sensors in the MT2712 */
196 #define MT2712_NUM_SENSORS	4
197 
198 /* The number of sensing points per bank */
199 #define MT2712_NUM_SENSORS_PER_ZONE	4
200 
201 /* The number of controller in the MT2712 */
202 #define MT2712_NUM_CONTROLLER		1
203 
204 /* The calibration coefficient of sensor  */
205 #define MT2712_CALIBRATION	165
206 
207 #define MT7622_TEMP_AUXADC_CHANNEL	11
208 #define MT7622_NUM_SENSORS		1
209 #define MT7622_NUM_ZONES		1
210 #define MT7622_NUM_SENSORS_PER_ZONE	1
211 #define MT7622_TS1	0
212 #define MT7622_NUM_CONTROLLER		1
213 
214 /* The maximum number of banks */
215 #define MAX_NUM_ZONES		8
216 
217 /* The calibration coefficient of sensor  */
218 #define MT7622_CALIBRATION	165
219 
220 /* MT8183 thermal sensors */
221 #define MT8183_TS1	0
222 #define MT8183_TS2	1
223 #define MT8183_TS3	2
224 #define MT8183_TS4	3
225 #define MT8183_TS5	4
226 #define MT8183_TSABB	5
227 
228 /* AUXADC channel  is used for the temperature sensors */
229 #define MT8183_TEMP_AUXADC_CHANNEL	11
230 
231 /* The total number of temperature sensors in the MT8183 */
232 #define MT8183_NUM_SENSORS	6
233 
234 /* The number of banks in the MT8183 */
235 #define MT8183_NUM_ZONES               1
236 
237 /* The number of sensing points per bank */
238 #define MT8183_NUM_SENSORS_PER_ZONE	 6
239 
240 /* The number of controller in the MT8183 */
241 #define MT8183_NUM_CONTROLLER		2
242 
243 /* The calibration coefficient of sensor  */
244 #define MT8183_CALIBRATION	153
245 
246 struct mtk_thermal;
247 
248 struct thermal_bank_cfg {
249 	unsigned int num_sensors;
250 	const int *sensors;
251 };
252 
253 struct mtk_thermal_bank {
254 	struct mtk_thermal *mt;
255 	int id;
256 };
257 
258 struct mtk_thermal_data {
259 	s32 num_banks;
260 	s32 num_sensors;
261 	s32 auxadc_channel;
262 	const int *vts_index;
263 	const int *sensor_mux_values;
264 	const int *msr;
265 	const int *adcpnp;
266 	const int cali_val;
267 	const int num_controller;
268 	const int *controller_offset;
269 	bool need_switch_bank;
270 	struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
271 	enum mtk_thermal_version version;
272 };
273 
274 struct mtk_thermal {
275 	struct device *dev;
276 	void __iomem *thermal_base;
277 
278 	struct clk *clk_peri_therm;
279 	struct clk *clk_auxadc;
280 	/* lock: for getting and putting banks */
281 	struct mutex lock;
282 
283 	/* Calibration values */
284 	s32 adc_ge;
285 	s32 adc_oe;
286 	s32 degc_cali;
287 	s32 o_slope;
288 	s32 o_slope_sign;
289 	s32 vts[MAX_NUM_VTS];
290 
291 	const struct mtk_thermal_data *conf;
292 	struct mtk_thermal_bank banks[MAX_NUM_ZONES];
293 };
294 
295 /* MT8183 thermal sensor data */
296 static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
297 	MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
298 };
299 
300 static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
301 	TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
302 };
303 
304 static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
305 	TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
306 	TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
307 };
308 
309 static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
310 static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
311 
312 static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
313 	VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
314 };
315 
316 /* MT8173 thermal sensor data */
317 static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
318 	{ MT8173_TS2, MT8173_TS3 },
319 	{ MT8173_TS2, MT8173_TS4 },
320 	{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
321 	{ MT8173_TS2 },
322 };
323 
324 static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
325 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
326 };
327 
328 static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
329 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
330 };
331 
332 static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
333 static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
334 
335 static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
336 	VTS1, VTS2, VTS3, VTS4, VTSABB
337 };
338 
339 /* MT2701 thermal sensor data */
340 static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
341 	MT2701_TS1, MT2701_TS2, MT2701_TSABB
342 };
343 
344 static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
345 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
346 };
347 
348 static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
349 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
350 };
351 
352 static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
353 static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
354 
355 static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
356 	VTS1, VTS2, VTS3
357 };
358 
359 /* MT2712 thermal sensor data */
360 static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
361 	MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
362 };
363 
364 static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
365 	TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
366 };
367 
368 static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
369 	TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
370 };
371 
372 static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
373 static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
374 
375 static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
376 	VTS1, VTS2, VTS3, VTS4
377 };
378 
379 /* MT7622 thermal sensor data */
380 static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
381 static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
382 static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
383 static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
384 static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
385 static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
386 
387 /*
388  * The MT8173 thermal controller has four banks. Each bank can read up to
389  * four temperature sensors simultaneously. The MT8173 has a total of 5
390  * temperature sensors. We use each bank to measure a certain area of the
391  * SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
392  * areas, hence is used in different banks.
393  *
394  * The thermal core only gets the maximum temperature of all banks, so
395  * the bank concept wouldn't be necessary here. However, the SVS (Smart
396  * Voltage Scaling) unit makes its decisions based on the same bank
397  * data, and this indeed needs the temperatures of the individual banks
398  * for making better decisions.
399  */
400 static const struct mtk_thermal_data mt8173_thermal_data = {
401 	.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
402 	.num_banks = MT8173_NUM_ZONES,
403 	.num_sensors = MT8173_NUM_SENSORS,
404 	.vts_index = mt8173_vts_index,
405 	.cali_val = MT8173_CALIBRATION,
406 	.num_controller = MT8173_NUM_CONTROLLER,
407 	.controller_offset = mt8173_tc_offset,
408 	.need_switch_bank = true,
409 	.bank_data = {
410 		{
411 			.num_sensors = 2,
412 			.sensors = mt8173_bank_data[0],
413 		}, {
414 			.num_sensors = 2,
415 			.sensors = mt8173_bank_data[1],
416 		}, {
417 			.num_sensors = 3,
418 			.sensors = mt8173_bank_data[2],
419 		}, {
420 			.num_sensors = 1,
421 			.sensors = mt8173_bank_data[3],
422 		},
423 	},
424 	.msr = mt8173_msr,
425 	.adcpnp = mt8173_adcpnp,
426 	.sensor_mux_values = mt8173_mux_values,
427 	.version = MTK_THERMAL_V1,
428 };
429 
430 /*
431  * The MT2701 thermal controller has one bank, which can read up to
432  * three temperature sensors simultaneously. The MT2701 has a total of 3
433  * temperature sensors.
434  *
435  * The thermal core only gets the maximum temperature of this one bank,
436  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
437  * Voltage Scaling) unit makes its decisions based on the same bank
438  * data.
439  */
440 static const struct mtk_thermal_data mt2701_thermal_data = {
441 	.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
442 	.num_banks = 1,
443 	.num_sensors = MT2701_NUM_SENSORS,
444 	.vts_index = mt2701_vts_index,
445 	.cali_val = MT2701_CALIBRATION,
446 	.num_controller = MT2701_NUM_CONTROLLER,
447 	.controller_offset = mt2701_tc_offset,
448 	.need_switch_bank = true,
449 	.bank_data = {
450 		{
451 			.num_sensors = 3,
452 			.sensors = mt2701_bank_data,
453 		},
454 	},
455 	.msr = mt2701_msr,
456 	.adcpnp = mt2701_adcpnp,
457 	.sensor_mux_values = mt2701_mux_values,
458 	.version = MTK_THERMAL_V1,
459 };
460 
461 /*
462  * The MT2712 thermal controller has one bank, which can read up to
463  * four temperature sensors simultaneously. The MT2712 has a total of 4
464  * temperature sensors.
465  *
466  * The thermal core only gets the maximum temperature of this one bank,
467  * so the bank concept wouldn't be necessary here. However, the SVS (Smart
468  * Voltage Scaling) unit makes its decisions based on the same bank
469  * data.
470  */
471 static const struct mtk_thermal_data mt2712_thermal_data = {
472 	.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
473 	.num_banks = 1,
474 	.num_sensors = MT2712_NUM_SENSORS,
475 	.vts_index = mt2712_vts_index,
476 	.cali_val = MT2712_CALIBRATION,
477 	.num_controller = MT2712_NUM_CONTROLLER,
478 	.controller_offset = mt2712_tc_offset,
479 	.need_switch_bank = true,
480 	.bank_data = {
481 		{
482 			.num_sensors = 4,
483 			.sensors = mt2712_bank_data,
484 		},
485 	},
486 	.msr = mt2712_msr,
487 	.adcpnp = mt2712_adcpnp,
488 	.sensor_mux_values = mt2712_mux_values,
489 	.version = MTK_THERMAL_V1,
490 };
491 
492 /*
493  * MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
494  * access.
495  */
496 static const struct mtk_thermal_data mt7622_thermal_data = {
497 	.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
498 	.num_banks = MT7622_NUM_ZONES,
499 	.num_sensors = MT7622_NUM_SENSORS,
500 	.vts_index = mt7622_vts_index,
501 	.cali_val = MT7622_CALIBRATION,
502 	.num_controller = MT7622_NUM_CONTROLLER,
503 	.controller_offset = mt7622_tc_offset,
504 	.need_switch_bank = true,
505 	.bank_data = {
506 		{
507 			.num_sensors = 1,
508 			.sensors = mt7622_bank_data,
509 		},
510 	},
511 	.msr = mt7622_msr,
512 	.adcpnp = mt7622_adcpnp,
513 	.sensor_mux_values = mt7622_mux_values,
514 	.version = MTK_THERMAL_V2,
515 };
516 
517 /*
518  * The MT8183 thermal controller has one bank for the current SW framework.
519  * The MT8183 has a total of 6 temperature sensors.
520  * There are two thermal controller to control the six sensor.
521  * The first one bind 2 sensor, and the other bind 4 sensors.
522  * The thermal core only gets the maximum temperature of all sensor, so
523  * the bank concept wouldn't be necessary here. However, the SVS (Smart
524  * Voltage Scaling) unit makes its decisions based on the same bank
525  * data, and this indeed needs the temperatures of the individual banks
526  * for making better decisions.
527  */
528 static const struct mtk_thermal_data mt8183_thermal_data = {
529 	.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
530 	.num_banks = MT8183_NUM_ZONES,
531 	.num_sensors = MT8183_NUM_SENSORS,
532 	.vts_index = mt8183_vts_index,
533 	.cali_val = MT8183_CALIBRATION,
534 	.num_controller = MT8183_NUM_CONTROLLER,
535 	.controller_offset = mt8183_tc_offset,
536 	.need_switch_bank = false,
537 	.bank_data = {
538 		{
539 			.num_sensors = 6,
540 			.sensors = mt8183_bank_data,
541 		},
542 	},
543 
544 	.msr = mt8183_msr,
545 	.adcpnp = mt8183_adcpnp,
546 	.sensor_mux_values = mt8183_mux_values,
547 	.version = MTK_THERMAL_V1,
548 };
549 
550 /**
551  * raw_to_mcelsius - convert a raw ADC value to mcelsius
552  * @mt:	The thermal controller
553  * @sensno:	sensor number
554  * @raw:	raw ADC value
555  *
556  * This converts the raw ADC value to mcelsius using the SoC specific
557  * calibration constants
558  */
raw_to_mcelsius_v1(struct mtk_thermal * mt,int sensno,s32 raw)559 static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
560 {
561 	s32 tmp;
562 
563 	raw &= 0xfff;
564 
565 	tmp = 203450520 << 3;
566 	tmp /= mt->conf->cali_val + mt->o_slope;
567 	tmp /= 10000 + mt->adc_ge;
568 	tmp *= raw - mt->vts[sensno] - 3350;
569 	tmp >>= 3;
570 
571 	return mt->degc_cali * 500 - tmp;
572 }
573 
raw_to_mcelsius_v2(struct mtk_thermal * mt,int sensno,s32 raw)574 static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
575 {
576 	s32 format_1 = 0;
577 	s32 format_2 = 0;
578 	s32 g_oe = 1;
579 	s32 g_gain = 1;
580 	s32 g_x_roomt = 0;
581 	s32 tmp = 0;
582 
583 	if (raw == 0)
584 		return 0;
585 
586 	raw &= 0xfff;
587 	g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
588 	g_oe = mt->adc_oe - 512;
589 	format_1 = mt->vts[VTS2] + 3105 - g_oe;
590 	format_2 = (mt->degc_cali * 10) >> 1;
591 	g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
592 
593 	tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
594 	tmp = tmp * 10 * 100 / 11;
595 
596 	if (mt->o_slope_sign == 0)
597 		tmp = tmp / (165 - mt->o_slope);
598 	else
599 		tmp = tmp / (165 + mt->o_slope);
600 
601 	return (format_2 - tmp) * 100;
602 }
603 
604 /**
605  * mtk_thermal_get_bank - get bank
606  * @bank:	The bank
607  *
608  * The bank registers are banked, we have to select a bank in the
609  * PTPCORESEL register to access it.
610  */
mtk_thermal_get_bank(struct mtk_thermal_bank * bank)611 static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
612 {
613 	struct mtk_thermal *mt = bank->mt;
614 	u32 val;
615 
616 	if (mt->conf->need_switch_bank) {
617 		mutex_lock(&mt->lock);
618 
619 		val = readl(mt->thermal_base + PTPCORESEL);
620 		val &= ~0xf;
621 		val |= bank->id;
622 		writel(val, mt->thermal_base + PTPCORESEL);
623 	}
624 }
625 
626 /**
627  * mtk_thermal_put_bank - release bank
628  * @bank:	The bank
629  *
630  * release a bank previously taken with mtk_thermal_get_bank,
631  */
mtk_thermal_put_bank(struct mtk_thermal_bank * bank)632 static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
633 {
634 	struct mtk_thermal *mt = bank->mt;
635 
636 	if (mt->conf->need_switch_bank)
637 		mutex_unlock(&mt->lock);
638 }
639 
640 /**
641  * mtk_thermal_bank_temperature - get the temperature of a bank
642  * @bank:	The bank
643  *
644  * The temperature of a bank is considered the maximum temperature of
645  * the sensors associated to the bank.
646  */
mtk_thermal_bank_temperature(struct mtk_thermal_bank * bank)647 static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
648 {
649 	struct mtk_thermal *mt = bank->mt;
650 	const struct mtk_thermal_data *conf = mt->conf;
651 	int i, temp = INT_MIN, max = INT_MIN;
652 	u32 raw;
653 
654 	for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
655 		raw = readl(mt->thermal_base + conf->msr[i]);
656 
657 		if (mt->conf->version == MTK_THERMAL_V1) {
658 			temp = raw_to_mcelsius_v1(
659 				mt, conf->bank_data[bank->id].sensors[i], raw);
660 		} else {
661 			temp = raw_to_mcelsius_v2(
662 				mt, conf->bank_data[bank->id].sensors[i], raw);
663 		}
664 
665 		/*
666 		 * The first read of a sensor often contains very high bogus
667 		 * temperature value. Filter these out so that the system does
668 		 * not immediately shut down.
669 		 */
670 		if (temp > 200000)
671 			temp = 0;
672 
673 		if (temp > max)
674 			max = temp;
675 	}
676 
677 	return max;
678 }
679 
mtk_read_temp(void * data,int * temperature)680 static int mtk_read_temp(void *data, int *temperature)
681 {
682 	struct mtk_thermal *mt = data;
683 	int i;
684 	int tempmax = INT_MIN;
685 
686 	for (i = 0; i < mt->conf->num_banks; i++) {
687 		struct mtk_thermal_bank *bank = &mt->banks[i];
688 
689 		mtk_thermal_get_bank(bank);
690 
691 		tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
692 
693 		mtk_thermal_put_bank(bank);
694 	}
695 
696 	*temperature = tempmax;
697 
698 	return 0;
699 }
700 
701 static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
702 	.get_temp = mtk_read_temp,
703 };
704 
mtk_thermal_init_bank(struct mtk_thermal * mt,int num,u32 apmixed_phys_base,u32 auxadc_phys_base,int ctrl_id)705 static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
706 				  u32 apmixed_phys_base, u32 auxadc_phys_base,
707 				  int ctrl_id)
708 {
709 	struct mtk_thermal_bank *bank = &mt->banks[num];
710 	const struct mtk_thermal_data *conf = mt->conf;
711 	int i;
712 
713 	int offset = mt->conf->controller_offset[ctrl_id];
714 	void __iomem *controller_base = mt->thermal_base + offset;
715 
716 	bank->id = num;
717 	bank->mt = mt;
718 
719 	mtk_thermal_get_bank(bank);
720 
721 	/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
722 	writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
723 
724 	/*
725 	 * filt interval is 1 * 46.540us = 46.54us,
726 	 * sen interval is 429 * 46.540us = 19.96ms
727 	 */
728 	writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
729 			TEMP_MONCTL2_SENSOR_INTERVAL(429),
730 			controller_base + TEMP_MONCTL2);
731 
732 	/* poll is set to 10u */
733 	writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
734 	       controller_base + TEMP_AHBPOLL);
735 
736 	/* temperature sampling control, 1 sample */
737 	writel(0x0, controller_base + TEMP_MSRCTL0);
738 
739 	/* exceed this polling time, IRQ would be inserted */
740 	writel(0xffffffff, controller_base + TEMP_AHBTO);
741 
742 	/* number of interrupts per event, 1 is enough */
743 	writel(0x0, controller_base + TEMP_MONIDET0);
744 	writel(0x0, controller_base + TEMP_MONIDET1);
745 
746 	/*
747 	 * The MT8173 thermal controller does not have its own ADC. Instead it
748 	 * uses AHB bus accesses to control the AUXADC. To do this the thermal
749 	 * controller has to be programmed with the physical addresses of the
750 	 * AUXADC registers and with the various bit positions in the AUXADC.
751 	 * Also the thermal controller controls a mux in the APMIXEDSYS register
752 	 * space.
753 	 */
754 
755 	/*
756 	 * this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
757 	 * automatically by hw
758 	 */
759 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
760 
761 	/* AHB address for auxadc mux selection */
762 	writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
763 	       controller_base + TEMP_ADCMUXADDR);
764 
765 	if (mt->conf->version == MTK_THERMAL_V1) {
766 		/* AHB address for pnp sensor mux selection */
767 		writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
768 		       controller_base + TEMP_PNPMUXADDR);
769 	}
770 
771 	/* AHB value for auxadc enable */
772 	writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
773 
774 	/* AHB address for auxadc enable (channel 0 immediate mode selected) */
775 	writel(auxadc_phys_base + AUXADC_CON1_SET_V,
776 	       controller_base + TEMP_ADCENADDR);
777 
778 	/* AHB address for auxadc valid bit */
779 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
780 	       controller_base + TEMP_ADCVALIDADDR);
781 
782 	/* AHB address for auxadc voltage output */
783 	writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
784 	       controller_base + TEMP_ADCVOLTADDR);
785 
786 	/* read valid & voltage are at the same register */
787 	writel(0x0, controller_base + TEMP_RDCTRL);
788 
789 	/* indicate where the valid bit is */
790 	writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
791 	       controller_base + TEMP_ADCVALIDMASK);
792 
793 	/* no shift */
794 	writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
795 
796 	/* enable auxadc mux write transaction */
797 	writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
798 		controller_base + TEMP_ADCWRITECTRL);
799 
800 	for (i = 0; i < conf->bank_data[num].num_sensors; i++)
801 		writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
802 		       mt->thermal_base + conf->adcpnp[i]);
803 
804 	writel((1 << conf->bank_data[num].num_sensors) - 1,
805 	       controller_base + TEMP_MONCTL0);
806 
807 	writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
808 	       TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
809 	       controller_base + TEMP_ADCWRITECTRL);
810 
811 	mtk_thermal_put_bank(bank);
812 }
813 
of_get_phys_base(struct device_node * np)814 static u64 of_get_phys_base(struct device_node *np)
815 {
816 	u64 size64;
817 	const __be32 *regaddr_p;
818 
819 	regaddr_p = of_get_address(np, 0, &size64, NULL);
820 	if (!regaddr_p)
821 		return OF_BAD_ADDR;
822 
823 	return of_translate_address(np, regaddr_p);
824 }
825 
mtk_thermal_extract_efuse_v1(struct mtk_thermal * mt,u32 * buf)826 static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
827 {
828 	int i;
829 
830 	if (!(buf[0] & CALIB_BUF0_VALID_V1))
831 		return -EINVAL;
832 
833 	mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
834 
835 	for (i = 0; i < mt->conf->num_sensors; i++) {
836 		switch (mt->conf->vts_index[i]) {
837 		case VTS1:
838 			mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
839 			break;
840 		case VTS2:
841 			mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
842 			break;
843 		case VTS3:
844 			mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
845 			break;
846 		case VTS4:
847 			mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
848 			break;
849 		case VTS5:
850 			mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
851 			break;
852 		case VTSABB:
853 			mt->vts[VTSABB] =
854 				CALIB_BUF2_VTS_TSABB_V1(buf[2]);
855 			break;
856 		default:
857 			break;
858 		}
859 	}
860 
861 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
862 	if (CALIB_BUF1_ID_V1(buf[1]) &
863 	    CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
864 		mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
865 	else
866 		mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
867 
868 	return 0;
869 }
870 
mtk_thermal_extract_efuse_v2(struct mtk_thermal * mt,u32 * buf)871 static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
872 {
873 	if (!CALIB_BUF1_VALID_V2(buf[1]))
874 		return -EINVAL;
875 
876 	mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
877 	mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
878 	mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
879 	mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
880 	mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
881 	mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
882 	mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
883 	mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
884 
885 	return 0;
886 }
887 
mtk_thermal_get_calibration_data(struct device * dev,struct mtk_thermal * mt)888 static int mtk_thermal_get_calibration_data(struct device *dev,
889 					    struct mtk_thermal *mt)
890 {
891 	struct nvmem_cell *cell;
892 	u32 *buf;
893 	size_t len;
894 	int i, ret = 0;
895 
896 	/* Start with default values */
897 	mt->adc_ge = 512;
898 	for (i = 0; i < mt->conf->num_sensors; i++)
899 		mt->vts[i] = 260;
900 	mt->degc_cali = 40;
901 	mt->o_slope = 0;
902 
903 	cell = nvmem_cell_get(dev, "calibration-data");
904 	if (IS_ERR(cell)) {
905 		if (PTR_ERR(cell) == -EPROBE_DEFER)
906 			return PTR_ERR(cell);
907 		return 0;
908 	}
909 
910 	buf = (u32 *)nvmem_cell_read(cell, &len);
911 
912 	nvmem_cell_put(cell);
913 
914 	if (IS_ERR(buf))
915 		return PTR_ERR(buf);
916 
917 	if (len < 3 * sizeof(u32)) {
918 		dev_warn(dev, "invalid calibration data\n");
919 		ret = -EINVAL;
920 		goto out;
921 	}
922 
923 	if (mt->conf->version == MTK_THERMAL_V1)
924 		ret = mtk_thermal_extract_efuse_v1(mt, buf);
925 	else
926 		ret = mtk_thermal_extract_efuse_v2(mt, buf);
927 
928 	if (ret) {
929 		dev_info(dev, "Device not calibrated, using default calibration values\n");
930 		ret = 0;
931 	}
932 
933 out:
934 	kfree(buf);
935 
936 	return ret;
937 }
938 
939 static const struct of_device_id mtk_thermal_of_match[] = {
940 	{
941 		.compatible = "mediatek,mt8173-thermal",
942 		.data = (void *)&mt8173_thermal_data,
943 	},
944 	{
945 		.compatible = "mediatek,mt2701-thermal",
946 		.data = (void *)&mt2701_thermal_data,
947 	},
948 	{
949 		.compatible = "mediatek,mt2712-thermal",
950 		.data = (void *)&mt2712_thermal_data,
951 	},
952 	{
953 		.compatible = "mediatek,mt7622-thermal",
954 		.data = (void *)&mt7622_thermal_data,
955 	},
956 	{
957 		.compatible = "mediatek,mt8183-thermal",
958 		.data = (void *)&mt8183_thermal_data,
959 	}, {
960 	},
961 };
962 MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
963 
mtk_thermal_turn_on_buffer(void __iomem * apmixed_base)964 static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
965 {
966 	int tmp;
967 
968 	tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
969 	tmp &= ~(0x37);
970 	tmp |= 0x1;
971 	writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
972 	udelay(200);
973 }
974 
mtk_thermal_release_periodic_ts(struct mtk_thermal * mt,void __iomem * auxadc_base)975 static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
976 					    void __iomem *auxadc_base)
977 {
978 	int tmp;
979 
980 	writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
981 	writel(0x1, mt->thermal_base + TEMP_MONCTL0);
982 	tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
983 	writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
984 }
985 
mtk_thermal_probe(struct platform_device * pdev)986 static int mtk_thermal_probe(struct platform_device *pdev)
987 {
988 	int ret, i, ctrl_id;
989 	struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
990 	struct mtk_thermal *mt;
991 	struct resource *res;
992 	u64 auxadc_phys_base, apmixed_phys_base;
993 	struct thermal_zone_device *tzdev;
994 	void __iomem *apmixed_base, *auxadc_base;
995 
996 	mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
997 	if (!mt)
998 		return -ENOMEM;
999 
1000 	mt->conf = of_device_get_match_data(&pdev->dev);
1001 
1002 	mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
1003 	if (IS_ERR(mt->clk_peri_therm))
1004 		return PTR_ERR(mt->clk_peri_therm);
1005 
1006 	mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
1007 	if (IS_ERR(mt->clk_auxadc))
1008 		return PTR_ERR(mt->clk_auxadc);
1009 
1010 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1011 	mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
1012 	if (IS_ERR(mt->thermal_base))
1013 		return PTR_ERR(mt->thermal_base);
1014 
1015 	ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
1016 	if (ret)
1017 		return ret;
1018 
1019 	mutex_init(&mt->lock);
1020 
1021 	mt->dev = &pdev->dev;
1022 
1023 	auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
1024 	if (!auxadc) {
1025 		dev_err(&pdev->dev, "missing auxadc node\n");
1026 		return -ENODEV;
1027 	}
1028 
1029 	auxadc_base = of_iomap(auxadc, 0);
1030 	auxadc_phys_base = of_get_phys_base(auxadc);
1031 
1032 	of_node_put(auxadc);
1033 
1034 	if (auxadc_phys_base == OF_BAD_ADDR) {
1035 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1036 		return -EINVAL;
1037 	}
1038 
1039 	apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
1040 	if (!apmixedsys) {
1041 		dev_err(&pdev->dev, "missing apmixedsys node\n");
1042 		return -ENODEV;
1043 	}
1044 
1045 	apmixed_base = of_iomap(apmixedsys, 0);
1046 	apmixed_phys_base = of_get_phys_base(apmixedsys);
1047 
1048 	of_node_put(apmixedsys);
1049 
1050 	if (apmixed_phys_base == OF_BAD_ADDR) {
1051 		dev_err(&pdev->dev, "Can't get auxadc phys address\n");
1052 		return -EINVAL;
1053 	}
1054 
1055 	ret = device_reset(&pdev->dev);
1056 	if (ret)
1057 		return ret;
1058 
1059 	ret = clk_prepare_enable(mt->clk_auxadc);
1060 	if (ret) {
1061 		dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
1062 		return ret;
1063 	}
1064 
1065 	ret = clk_prepare_enable(mt->clk_peri_therm);
1066 	if (ret) {
1067 		dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
1068 		goto err_disable_clk_auxadc;
1069 	}
1070 
1071 	if (mt->conf->version == MTK_THERMAL_V2) {
1072 		mtk_thermal_turn_on_buffer(apmixed_base);
1073 		mtk_thermal_release_periodic_ts(mt, auxadc_base);
1074 	}
1075 
1076 	for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
1077 		for (i = 0; i < mt->conf->num_banks; i++)
1078 			mtk_thermal_init_bank(mt, i, apmixed_phys_base,
1079 					      auxadc_phys_base, ctrl_id);
1080 
1081 	platform_set_drvdata(pdev, mt);
1082 
1083 	tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
1084 						     &mtk_thermal_ops);
1085 	if (IS_ERR(tzdev)) {
1086 		ret = PTR_ERR(tzdev);
1087 		goto err_disable_clk_peri_therm;
1088 	}
1089 
1090 	return 0;
1091 
1092 err_disable_clk_peri_therm:
1093 	clk_disable_unprepare(mt->clk_peri_therm);
1094 err_disable_clk_auxadc:
1095 	clk_disable_unprepare(mt->clk_auxadc);
1096 
1097 	return ret;
1098 }
1099 
mtk_thermal_remove(struct platform_device * pdev)1100 static int mtk_thermal_remove(struct platform_device *pdev)
1101 {
1102 	struct mtk_thermal *mt = platform_get_drvdata(pdev);
1103 
1104 	clk_disable_unprepare(mt->clk_peri_therm);
1105 	clk_disable_unprepare(mt->clk_auxadc);
1106 
1107 	return 0;
1108 }
1109 
1110 static struct platform_driver mtk_thermal_driver = {
1111 	.probe = mtk_thermal_probe,
1112 	.remove = mtk_thermal_remove,
1113 	.driver = {
1114 		.name = "mtk-thermal",
1115 		.of_match_table = mtk_thermal_of_match,
1116 	},
1117 };
1118 
1119 module_platform_driver(mtk_thermal_driver);
1120 
1121 MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
1122 MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
1123 MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
1124 MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
1125 MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
1126 MODULE_DESCRIPTION("Mediatek thermal driver");
1127 MODULE_LICENSE("GPL v2");
1128