1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20
21 #define DRIVER_NAME "spi_stm32"
22
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1 0x00
25 #define STM32F4_SPI_CR2 0x04
26 #define STM32F4_SPI_SR 0x08
27 #define STM32F4_SPI_DR 0x0C
28 #define STM32F4_SPI_I2SCFGR 0x1C
29
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA BIT(0)
32 #define STM32F4_SPI_CR1_CPOL BIT(1)
33 #define STM32F4_SPI_CR1_MSTR BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT 3
35 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
38 #define STM32F4_SPI_CR1_SSI BIT(8)
39 #define STM32F4_SPI_CR1_SSM BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY BIT(10)
41 #define STM32F4_SPI_CR1_DFF BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN 0
47 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
48
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
52 #define STM32F4_SPI_CR2_SSOE BIT(2)
53 #define STM32F4_SPI_CR2_FRF BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE BIT(7)
57
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE BIT(0)
60 #define STM32F4_SPI_SR_TXE BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE BIT(2)
62 #define STM32F4_SPI_SR_UDR BIT(3)
63 #define STM32F4_SPI_SR_CRCERR BIT(4)
64 #define STM32F4_SPI_SR_MODF BIT(5)
65 #define STM32F4_SPI_SR_OVR BIT(6)
66 #define STM32F4_SPI_SR_BSY BIT(7)
67 #define STM32F4_SPI_SR_FRE BIT(8)
68
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
71
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
75
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1 0x00
78 #define STM32H7_SPI_CR2 0x04
79 #define STM32H7_SPI_CFG1 0x08
80 #define STM32H7_SPI_CFG2 0x0C
81 #define STM32H7_SPI_IER 0x10
82 #define STM32H7_SPI_SR 0x14
83 #define STM32H7_SPI_IFCR 0x18
84 #define STM32H7_SPI_TXDR 0x20
85 #define STM32H7_SPI_RXDR 0x30
86 #define STM32H7_SPI_I2SCFGR 0x50
87
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE BIT(0)
90 #define STM32H7_SPI_CR1_MASRX BIT(8)
91 #define STM32H7_SPI_CR1_CSTART BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR BIT(11)
94 #define STM32H7_SPI_CR1_SSI BIT(12)
95
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0
98 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
102 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
104 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
108 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN 0
110 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
111
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4
114 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT 17
116 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT 19
118 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL BIT(25)
123 #define STM32H7_SPI_CFG2_SSM BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
125
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE BIT(0)
128 #define STM32H7_SPI_IER_TXPIE BIT(1)
129 #define STM32H7_SPI_IER_DXPIE BIT(2)
130 #define STM32H7_SPI_IER_EOTIE BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE BIT(4)
132 #define STM32H7_SPI_IER_OVRIE BIT(6)
133 #define STM32H7_SPI_IER_MODFIE BIT(9)
134 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
135
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP BIT(0)
138 #define STM32H7_SPI_SR_TXP BIT(1)
139 #define STM32H7_SPI_SR_EOT BIT(3)
140 #define STM32H7_SPI_SR_OVR BIT(6)
141 #define STM32H7_SPI_SR_MODF BIT(9)
142 #define STM32H7_SPI_SR_SUSP BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13
144 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE BIT(15)
146
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
149
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
152
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX 0
159 #define STM32H7_SPI_SIMPLEX_TX 1
160 #define STM32H7_SPI_SIMPLEX_RX 2
161 #define STM32H7_SPI_HALF_DUPLEX 3
162
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX 0
165 #define SPI_SIMPLEX_TX 1
166 #define SPI_SIMPLEX_RX 2
167 #define SPI_3WIRE_TX 3
168 #define SPI_3WIRE_RX 4
169
170 #define SPI_1HZ_NS 1000000000
171
172 /*
173 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174 * without fifo buffers.
175 */
176 #define SPI_DMA_MIN_BYTES 16
177
178 /**
179 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180 * @reg: register offset
181 * @mask: bitfield mask
182 * @shift: left shift
183 */
184 struct stm32_spi_reg {
185 int reg;
186 int mask;
187 int shift;
188 };
189
190 /**
191 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192 * @en: enable register and SPI enable bit
193 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195 * @cpol: clock polarity register and polarity bit
196 * @cpha: clock phase register and phase bit
197 * @lsb_first: LSB transmitted first register and bit
198 * @br: baud rate register and bitfields
199 * @rx: SPI RX data register
200 * @tx: SPI TX data register
201 */
202 struct stm32_spi_regspec {
203 const struct stm32_spi_reg en;
204 const struct stm32_spi_reg dma_rx_en;
205 const struct stm32_spi_reg dma_tx_en;
206 const struct stm32_spi_reg cpol;
207 const struct stm32_spi_reg cpha;
208 const struct stm32_spi_reg lsb_first;
209 const struct stm32_spi_reg br;
210 const struct stm32_spi_reg rx;
211 const struct stm32_spi_reg tx;
212 };
213
214 struct stm32_spi;
215
216 /**
217 * struct stm32_spi_cfg - stm32 compatible configuration data
218 * @regs: registers descriptions
219 * @get_fifo_size: routine to get fifo size
220 * @get_bpw_mask: routine to get bits per word mask
221 * @disable: routine to disable controller
222 * @config: routine to configure controller as SPI Master
223 * @set_bpw: routine to configure registers to for bits per word
224 * @set_mode: routine to configure registers to desired mode
225 * @set_data_idleness: optional routine to configure registers to desired idle
226 * time between frames (if driver has this functionality)
227 * @set_number_of_data: optional routine to configure registers to desired
228 * number of data (if driver has this functionality)
229 * @can_dma: routine to determine if the transfer is eligible for DMA use
230 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231 * using DMA
232 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234 * @transfer_one_irq: routine to configure interrupts for driver
235 * @irq_handler_event: Interrupt handler for SPI controller events
236 * @irq_handler_thread: thread of interrupt handler for SPI controller
237 * @baud_rate_div_min: minimum baud rate divisor
238 * @baud_rate_div_max: maximum baud rate divisor
239 * @has_fifo: boolean to know if fifo is used for driver
240 * @has_startbit: boolean to know if start bit is used to start transfer
241 */
242 struct stm32_spi_cfg {
243 const struct stm32_spi_regspec *regs;
244 int (*get_fifo_size)(struct stm32_spi *spi);
245 int (*get_bpw_mask)(struct stm32_spi *spi);
246 void (*disable)(struct stm32_spi *spi);
247 int (*config)(struct stm32_spi *spi);
248 void (*set_bpw)(struct stm32_spi *spi);
249 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252 void (*transfer_one_dma_start)(struct stm32_spi *spi);
253 void (*dma_rx_cb)(void *data);
254 void (*dma_tx_cb)(void *data);
255 int (*transfer_one_irq)(struct stm32_spi *spi);
256 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258 unsigned int baud_rate_div_min;
259 unsigned int baud_rate_div_max;
260 bool has_fifo;
261 };
262
263 /**
264 * struct stm32_spi - private data of the SPI controller
265 * @dev: driver model representation of the controller
266 * @master: controller master interface
267 * @cfg: compatible configuration data
268 * @base: virtual memory area
269 * @clk: hw kernel clock feeding the SPI clock generator
270 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271 * @rst: SPI controller reset line
272 * @lock: prevent I/O concurrent access
273 * @irq: SPI controller interrupt line
274 * @fifo_size: size of the embedded fifo in bytes
275 * @cur_midi: master inter-data idleness in ns
276 * @cur_speed: speed configured in Hz
277 * @cur_bpw: number of bits in a single SPI data frame
278 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279 * @cur_comm: SPI communication mode
280 * @cur_xferlen: current transfer length in bytes
281 * @cur_usedma: boolean to know if dma is used in current transfer
282 * @tx_buf: data to be written, or NULL
283 * @rx_buf: data to be read, or NULL
284 * @tx_len: number of data to be written in bytes
285 * @rx_len: number of data to be read in bytes
286 * @dma_tx: dma channel for TX transfer
287 * @dma_rx: dma channel for RX transfer
288 * @phys_addr: SPI registers physical base address
289 */
290 struct stm32_spi {
291 struct device *dev;
292 struct spi_master *master;
293 const struct stm32_spi_cfg *cfg;
294 void __iomem *base;
295 struct clk *clk;
296 u32 clk_rate;
297 struct reset_control *rst;
298 spinlock_t lock; /* prevent I/O concurrent access */
299 int irq;
300 unsigned int fifo_size;
301
302 unsigned int cur_midi;
303 unsigned int cur_speed;
304 unsigned int cur_bpw;
305 unsigned int cur_fthlv;
306 unsigned int cur_comm;
307 unsigned int cur_xferlen;
308 bool cur_usedma;
309
310 const void *tx_buf;
311 void *rx_buf;
312 int tx_len;
313 int rx_len;
314 struct dma_chan *dma_tx;
315 struct dma_chan *dma_rx;
316 dma_addr_t phys_addr;
317 };
318
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330 .rx = { STM32F4_SPI_DR },
331 .tx = { STM32F4_SPI_DR },
332 };
333
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335 /* SPI data transfer is enabled but spi_ker_ck is idle.
336 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 */
338 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347 STM32H7_SPI_CFG1_MBR_SHIFT },
348
349 .rx = { STM32H7_SPI_RXDR },
350 .tx = { STM32H7_SPI_TXDR },
351 };
352
stm32_spi_set_bits(struct stm32_spi * spi,u32 offset,u32 bits)353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354 u32 offset, u32 bits)
355 {
356 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357 spi->base + offset);
358 }
359
stm32_spi_clr_bits(struct stm32_spi * spi,u32 offset,u32 bits)360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361 u32 offset, u32 bits)
362 {
363 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364 spi->base + offset);
365 }
366
367 /**
368 * stm32h7_spi_get_fifo_size - Return fifo size
369 * @spi: pointer to the spi controller data structure
370 */
stm32h7_spi_get_fifo_size(struct stm32_spi * spi)371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373 unsigned long flags;
374 u32 count = 0;
375
376 spin_lock_irqsave(&spi->lock, flags);
377
378 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385 spin_unlock_irqrestore(&spi->lock, flags);
386
387 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389 return count;
390 }
391
392 /**
393 * stm32f4_spi_get_bpw_mask - Return bits per word mask
394 * @spi: pointer to the spi controller data structure
395 */
stm32f4_spi_get_bpw_mask(struct stm32_spi * spi)396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401
402 /**
403 * stm32h7_spi_get_bpw_mask - Return bits per word mask
404 * @spi: pointer to the spi controller data structure
405 */
stm32h7_spi_get_bpw_mask(struct stm32_spi * spi)406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408 unsigned long flags;
409 u32 cfg1, max_bpw;
410
411 spin_lock_irqsave(&spi->lock, flags);
412
413 /*
414 * The most significant bit at DSIZE bit field is reserved when the
415 * maximum data size of periperal instances is limited to 16-bit
416 */
417 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421 STM32H7_SPI_CFG1_DSIZE_SHIFT;
422 max_bpw += 1;
423
424 spin_unlock_irqrestore(&spi->lock, flags);
425
426 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428 return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430
431 /**
432 * stm32_spi_prepare_mbr - Determine baud rate divisor value
433 * @spi: pointer to the spi controller data structure
434 * @speed_hz: requested speed
435 * @min_div: minimum baud rate divisor
436 * @max_div: maximum baud rate divisor
437 *
438 * Return baud rate divisor value in case of success or -EINVAL
439 */
stm32_spi_prepare_mbr(struct stm32_spi * spi,u32 speed_hz,u32 min_div,u32 max_div)440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441 u32 min_div, u32 max_div)
442 {
443 u32 div, mbrdiv;
444
445 /* Ensure spi->clk_rate is even */
446 div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447
448 /*
449 * SPI framework set xfer->speed_hz to master->max_speed_hz if
450 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452 * no need to check it there.
453 * However, we need to ensure the following calculations.
454 */
455 if ((div < min_div) || (div > max_div))
456 return -EINVAL;
457
458 /* Determine the first power of 2 greater than or equal to div */
459 if (div & (div - 1))
460 mbrdiv = fls(div);
461 else
462 mbrdiv = fls(div) - 1;
463
464 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466 return mbrdiv - 1;
467 }
468
469 /**
470 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471 * @spi: pointer to the spi controller data structure
472 * @xfer_len: length of the message to be transferred
473 */
stm32h7_spi_prepare_fthlv(struct stm32_spi * spi,u32 xfer_len)474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476 u32 fthlv, half_fifo, packet;
477
478 /* data packet should not exceed 1/2 of fifo space */
479 half_fifo = (spi->fifo_size / 2);
480
481 /* data_packet should not exceed transfer length */
482 if (half_fifo > xfer_len)
483 packet = xfer_len;
484 else
485 packet = half_fifo;
486
487 if (spi->cur_bpw <= 8)
488 fthlv = packet;
489 else if (spi->cur_bpw <= 16)
490 fthlv = packet / 2;
491 else
492 fthlv = packet / 4;
493
494 /* align packet size with data registers access */
495 if (spi->cur_bpw > 8)
496 fthlv -= (fthlv % 2); /* multiple of 2 */
497 else
498 fthlv -= (fthlv % 4); /* multiple of 4 */
499
500 if (!fthlv)
501 fthlv = 1;
502
503 return fthlv;
504 }
505
506 /**
507 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508 * @spi: pointer to the spi controller data structure
509 *
510 * Read from tx_buf depends on remaining bytes to avoid to read beyond
511 * tx_buf end.
512 */
stm32f4_spi_write_tx(struct stm32_spi * spi)513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516 STM32F4_SPI_SR_TXE)) {
517 u32 offs = spi->cur_xferlen - spi->tx_len;
518
519 if (spi->cur_bpw == 16) {
520 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523 spi->tx_len -= sizeof(u16);
524 } else {
525 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528 spi->tx_len -= sizeof(u8);
529 }
530 }
531
532 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534
535 /**
536 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537 * @spi: pointer to the spi controller data structure
538 *
539 * Read from tx_buf depends on remaining bytes to avoid to read beyond
540 * tx_buf end.
541 */
stm32h7_spi_write_txfifo(struct stm32_spi * spi)542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544 while ((spi->tx_len > 0) &&
545 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546 STM32H7_SPI_SR_TXP)) {
547 u32 offs = spi->cur_xferlen - spi->tx_len;
548
549 if (spi->tx_len >= sizeof(u32)) {
550 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553 spi->tx_len -= sizeof(u32);
554 } else if (spi->tx_len >= sizeof(u16)) {
555 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558 spi->tx_len -= sizeof(u16);
559 } else {
560 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563 spi->tx_len -= sizeof(u8);
564 }
565 }
566
567 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569
570 /**
571 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572 * @spi: pointer to the spi controller data structure
573 *
574 * Write in rx_buf depends on remaining bytes to avoid to write beyond
575 * rx_buf end.
576 */
stm32f4_spi_read_rx(struct stm32_spi * spi)577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580 STM32F4_SPI_SR_RXNE)) {
581 u32 offs = spi->cur_xferlen - spi->rx_len;
582
583 if (spi->cur_bpw == 16) {
584 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587 spi->rx_len -= sizeof(u16);
588 } else {
589 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592 spi->rx_len -= sizeof(u8);
593 }
594 }
595
596 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598
599 /**
600 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601 * @spi: pointer to the spi controller data structure
602 * @flush: boolean indicating that FIFO should be flushed
603 *
604 * Write in rx_buf depends on remaining bytes to avoid to write beyond
605 * rx_buf end.
606 */
stm32h7_spi_read_rxfifo(struct stm32_spi * spi,bool flush)607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611 STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613 while ((spi->rx_len > 0) &&
614 ((sr & STM32H7_SPI_SR_RXP) ||
615 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616 u32 offs = spi->cur_xferlen - spi->rx_len;
617
618 if ((spi->rx_len >= sizeof(u32)) ||
619 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623 spi->rx_len -= sizeof(u32);
624 } else if ((spi->rx_len >= sizeof(u16)) ||
625 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629 spi->rx_len -= sizeof(u16);
630 } else {
631 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634 spi->rx_len -= sizeof(u8);
635 }
636
637 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639 STM32H7_SPI_SR_RXPLVL_SHIFT;
640 }
641
642 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643 flush ? "(flush)" : "", spi->rx_len);
644 }
645
646 /**
647 * stm32_spi_enable - Enable SPI controller
648 * @spi: pointer to the spi controller data structure
649 */
stm32_spi_enable(struct stm32_spi * spi)650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652 dev_dbg(spi->dev, "enable controller\n");
653
654 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655 spi->cfg->regs->en.mask);
656 }
657
658 /**
659 * stm32f4_spi_disable - Disable SPI controller
660 * @spi: pointer to the spi controller data structure
661 */
stm32f4_spi_disable(struct stm32_spi * spi)662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664 unsigned long flags;
665 u32 sr;
666
667 dev_dbg(spi->dev, "disable controller\n");
668
669 spin_lock_irqsave(&spi->lock, flags);
670
671 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672 STM32F4_SPI_CR1_SPE)) {
673 spin_unlock_irqrestore(&spi->lock, flags);
674 return;
675 }
676
677 /* Disable interrupts */
678 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679 STM32F4_SPI_CR2_RXNEIE |
680 STM32F4_SPI_CR2_ERRIE);
681
682 /* Wait until BSY = 0 */
683 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684 sr, !(sr & STM32F4_SPI_SR_BSY),
685 10, 100000) < 0) {
686 dev_warn(spi->dev, "disabling condition timeout\n");
687 }
688
689 if (spi->cur_usedma && spi->dma_tx)
690 dmaengine_terminate_all(spi->dma_tx);
691 if (spi->cur_usedma && spi->dma_rx)
692 dmaengine_terminate_all(spi->dma_rx);
693
694 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697 STM32F4_SPI_CR2_RXDMAEN);
698
699 /* Sequence to clear OVR flag */
700 readl_relaxed(spi->base + STM32F4_SPI_DR);
701 readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703 spin_unlock_irqrestore(&spi->lock, flags);
704 }
705
706 /**
707 * stm32h7_spi_disable - Disable SPI controller
708 * @spi: pointer to the spi controller data structure
709 *
710 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712 * RX-Fifo.
713 * Normally, if TSIZE has been configured, we should relax the hardware at the
714 * reception of the EOT interrupt. But in case of error, EOT will not be
715 * raised. So the subsystem unprepare_message call allows us to properly
716 * complete the transfer from an hardware point of view.
717 */
stm32h7_spi_disable(struct stm32_spi * spi)718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720 unsigned long flags;
721 u32 cr1, sr;
722
723 dev_dbg(spi->dev, "disable controller\n");
724
725 spin_lock_irqsave(&spi->lock, flags);
726
727 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730 spin_unlock_irqrestore(&spi->lock, flags);
731 return;
732 }
733
734 /* Wait on EOT or suspend the flow */
735 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736 sr, !(sr & STM32H7_SPI_SR_EOT),
737 10, 100000) < 0) {
738 if (cr1 & STM32H7_SPI_CR1_CSTART) {
739 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740 spi->base + STM32H7_SPI_CR1);
741 if (readl_relaxed_poll_timeout_atomic(
742 spi->base + STM32H7_SPI_SR,
743 sr, !(sr & STM32H7_SPI_SR_SUSP),
744 10, 100000) < 0)
745 dev_warn(spi->dev,
746 "Suspend request timeout\n");
747 }
748 }
749
750 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751 stm32h7_spi_read_rxfifo(spi, true);
752
753 if (spi->cur_usedma && spi->dma_tx)
754 dmaengine_terminate_all(spi->dma_tx);
755 if (spi->cur_usedma && spi->dma_rx)
756 dmaengine_terminate_all(spi->dma_rx);
757
758 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761 STM32H7_SPI_CFG1_RXDMAEN);
762
763 /* Disable interrupts and clear status flags */
764 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767 spin_unlock_irqrestore(&spi->lock, flags);
768 }
769
770 /**
771 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772 * @master: controller master interface
773 * @spi_dev: pointer to the spi device
774 * @transfer: pointer to spi transfer
775 *
776 * If driver has fifo and the current transfer size is greater than fifo size,
777 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778 */
stm32_spi_can_dma(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)779 static bool stm32_spi_can_dma(struct spi_master *master,
780 struct spi_device *spi_dev,
781 struct spi_transfer *transfer)
782 {
783 unsigned int dma_size;
784 struct stm32_spi *spi = spi_master_get_devdata(master);
785
786 if (spi->cfg->has_fifo)
787 dma_size = spi->fifo_size;
788 else
789 dma_size = SPI_DMA_MIN_BYTES;
790
791 dev_dbg(spi->dev, "%s: %s\n", __func__,
792 (transfer->len > dma_size) ? "true" : "false");
793
794 return (transfer->len > dma_size);
795 }
796
797 /**
798 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799 * @irq: interrupt line
800 * @dev_id: SPI controller master interface
801 */
stm32f4_spi_irq_event(int irq,void * dev_id)802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804 struct spi_master *master = dev_id;
805 struct stm32_spi *spi = spi_master_get_devdata(master);
806 u32 sr, mask = 0;
807 bool end = false;
808
809 spin_lock(&spi->lock);
810
811 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812 /*
813 * BSY flag is not handled in interrupt but it is normal behavior when
814 * this flag is set.
815 */
816 sr &= ~STM32F4_SPI_SR_BSY;
817
818 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819 spi->cur_comm == SPI_3WIRE_TX)) {
820 /* OVR flag shouldn't be handled for TX only mode */
821 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822 mask |= STM32F4_SPI_SR_TXE;
823 }
824
825 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826 spi->cur_comm == SPI_SIMPLEX_RX ||
827 spi->cur_comm == SPI_3WIRE_RX)) {
828 /* TXE flag is set and is handled when RXNE flag occurs */
829 sr &= ~STM32F4_SPI_SR_TXE;
830 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831 }
832
833 if (!(sr & mask)) {
834 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835 spin_unlock(&spi->lock);
836 return IRQ_NONE;
837 }
838
839 if (sr & STM32F4_SPI_SR_OVR) {
840 dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842 /* Sequence to clear OVR flag */
843 readl_relaxed(spi->base + STM32F4_SPI_DR);
844 readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846 /*
847 * If overrun is detected, it means that something went wrong,
848 * so stop the current transfer. Transfer can wait for next
849 * RXNE but DR is already read and end never happens.
850 */
851 end = true;
852 goto end_irq;
853 }
854
855 if (sr & STM32F4_SPI_SR_TXE) {
856 if (spi->tx_buf)
857 stm32f4_spi_write_tx(spi);
858 if (spi->tx_len == 0)
859 end = true;
860 }
861
862 if (sr & STM32F4_SPI_SR_RXNE) {
863 stm32f4_spi_read_rx(spi);
864 if (spi->rx_len == 0)
865 end = true;
866 else if (spi->tx_buf)/* Load data for discontinuous mode */
867 stm32f4_spi_write_tx(spi);
868 }
869
870 end_irq:
871 if (end) {
872 /* Immediately disable interrupts to do not generate new one */
873 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874 STM32F4_SPI_CR2_TXEIE |
875 STM32F4_SPI_CR2_RXNEIE |
876 STM32F4_SPI_CR2_ERRIE);
877 spin_unlock(&spi->lock);
878 return IRQ_WAKE_THREAD;
879 }
880
881 spin_unlock(&spi->lock);
882 return IRQ_HANDLED;
883 }
884
885 /**
886 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887 * @irq: interrupt line
888 * @dev_id: SPI controller master interface
889 */
stm32f4_spi_irq_thread(int irq,void * dev_id)890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892 struct spi_master *master = dev_id;
893 struct stm32_spi *spi = spi_master_get_devdata(master);
894
895 spi_finalize_current_transfer(master);
896 stm32f4_spi_disable(spi);
897
898 return IRQ_HANDLED;
899 }
900
901 /**
902 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903 * @irq: interrupt line
904 * @dev_id: SPI controller master interface
905 */
stm32h7_spi_irq_thread(int irq,void * dev_id)906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908 struct spi_master *master = dev_id;
909 struct stm32_spi *spi = spi_master_get_devdata(master);
910 u32 sr, ier, mask;
911 unsigned long flags;
912 bool end = false;
913
914 spin_lock_irqsave(&spi->lock, flags);
915
916 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919 mask = ier;
920 /* EOTIE is triggered on EOT, SUSP and TXC events. */
921 mask |= STM32H7_SPI_SR_SUSP;
922 /*
923 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
924 * Full-Duplex, need to poll RXP event to know if there are remaining
925 * data, before disabling SPI.
926 */
927 if (spi->rx_buf && !spi->cur_usedma)
928 mask |= STM32H7_SPI_SR_RXP;
929
930 if (!(sr & mask)) {
931 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
932 sr, ier);
933 spin_unlock_irqrestore(&spi->lock, flags);
934 return IRQ_NONE;
935 }
936
937 if (sr & STM32H7_SPI_SR_SUSP) {
938 static DEFINE_RATELIMIT_STATE(rs,
939 DEFAULT_RATELIMIT_INTERVAL * 10,
940 1);
941 if (__ratelimit(&rs))
942 dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
943 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
944 stm32h7_spi_read_rxfifo(spi, false);
945 /*
946 * If communication is suspended while using DMA, it means
947 * that something went wrong, so stop the current transfer
948 */
949 if (spi->cur_usedma)
950 end = true;
951 }
952
953 if (sr & STM32H7_SPI_SR_MODF) {
954 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
955 end = true;
956 }
957
958 if (sr & STM32H7_SPI_SR_OVR) {
959 dev_warn(spi->dev, "Overrun: received value discarded\n");
960 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
961 stm32h7_spi_read_rxfifo(spi, false);
962 /*
963 * If overrun is detected while using DMA, it means that
964 * something went wrong, so stop the current transfer
965 */
966 if (spi->cur_usedma)
967 end = true;
968 }
969
970 if (sr & STM32H7_SPI_SR_EOT) {
971 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
972 stm32h7_spi_read_rxfifo(spi, true);
973 end = true;
974 }
975
976 if (sr & STM32H7_SPI_SR_TXP)
977 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
978 stm32h7_spi_write_txfifo(spi);
979
980 if (sr & STM32H7_SPI_SR_RXP)
981 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
982 stm32h7_spi_read_rxfifo(spi, false);
983
984 writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
985
986 spin_unlock_irqrestore(&spi->lock, flags);
987
988 if (end) {
989 stm32h7_spi_disable(spi);
990 spi_finalize_current_transfer(master);
991 }
992
993 return IRQ_HANDLED;
994 }
995
996 /**
997 * stm32_spi_prepare_msg - set up the controller to transfer a single message
998 * @master: controller master interface
999 * @msg: pointer to spi message
1000 */
stm32_spi_prepare_msg(struct spi_master * master,struct spi_message * msg)1001 static int stm32_spi_prepare_msg(struct spi_master *master,
1002 struct spi_message *msg)
1003 {
1004 struct stm32_spi *spi = spi_master_get_devdata(master);
1005 struct spi_device *spi_dev = msg->spi;
1006 struct device_node *np = spi_dev->dev.of_node;
1007 unsigned long flags;
1008 u32 clrb = 0, setb = 0;
1009
1010 /* SPI slave device may need time between data frames */
1011 spi->cur_midi = 0;
1012 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1013 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1014
1015 if (spi_dev->mode & SPI_CPOL)
1016 setb |= spi->cfg->regs->cpol.mask;
1017 else
1018 clrb |= spi->cfg->regs->cpol.mask;
1019
1020 if (spi_dev->mode & SPI_CPHA)
1021 setb |= spi->cfg->regs->cpha.mask;
1022 else
1023 clrb |= spi->cfg->regs->cpha.mask;
1024
1025 if (spi_dev->mode & SPI_LSB_FIRST)
1026 setb |= spi->cfg->regs->lsb_first.mask;
1027 else
1028 clrb |= spi->cfg->regs->lsb_first.mask;
1029
1030 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1031 spi_dev->mode & SPI_CPOL,
1032 spi_dev->mode & SPI_CPHA,
1033 spi_dev->mode & SPI_LSB_FIRST,
1034 spi_dev->mode & SPI_CS_HIGH);
1035
1036 spin_lock_irqsave(&spi->lock, flags);
1037
1038 /* CPOL, CPHA and LSB FIRST bits have common register */
1039 if (clrb || setb)
1040 writel_relaxed(
1041 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1042 ~clrb) | setb,
1043 spi->base + spi->cfg->regs->cpol.reg);
1044
1045 spin_unlock_irqrestore(&spi->lock, flags);
1046
1047 return 0;
1048 }
1049
1050 /**
1051 * stm32f4_spi_dma_tx_cb - dma callback
1052 * @data: pointer to the spi controller data structure
1053 *
1054 * DMA callback is called when the transfer is complete for DMA TX channel.
1055 */
stm32f4_spi_dma_tx_cb(void * data)1056 static void stm32f4_spi_dma_tx_cb(void *data)
1057 {
1058 struct stm32_spi *spi = data;
1059
1060 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061 spi_finalize_current_transfer(spi->master);
1062 stm32f4_spi_disable(spi);
1063 }
1064 }
1065
1066 /**
1067 * stm32f4_spi_dma_rx_cb - dma callback
1068 * @data: pointer to the spi controller data structure
1069 *
1070 * DMA callback is called when the transfer is complete for DMA RX channel.
1071 */
stm32f4_spi_dma_rx_cb(void * data)1072 static void stm32f4_spi_dma_rx_cb(void *data)
1073 {
1074 struct stm32_spi *spi = data;
1075
1076 spi_finalize_current_transfer(spi->master);
1077 stm32f4_spi_disable(spi);
1078 }
1079
1080 /**
1081 * stm32h7_spi_dma_cb - dma callback
1082 * @data: pointer to the spi controller data structure
1083 *
1084 * DMA callback is called when the transfer is complete or when an error
1085 * occurs. If the transfer is complete, EOT flag is raised.
1086 */
stm32h7_spi_dma_cb(void * data)1087 static void stm32h7_spi_dma_cb(void *data)
1088 {
1089 struct stm32_spi *spi = data;
1090 unsigned long flags;
1091 u32 sr;
1092
1093 spin_lock_irqsave(&spi->lock, flags);
1094
1095 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1096
1097 spin_unlock_irqrestore(&spi->lock, flags);
1098
1099 if (!(sr & STM32H7_SPI_SR_EOT))
1100 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1101
1102 /* Now wait for EOT, or SUSP or OVR in case of error */
1103 }
1104
1105 /**
1106 * stm32_spi_dma_config - configure dma slave channel depending on current
1107 * transfer bits_per_word.
1108 * @spi: pointer to the spi controller data structure
1109 * @dma_conf: pointer to the dma_slave_config structure
1110 * @dir: direction of the dma transfer
1111 */
stm32_spi_dma_config(struct stm32_spi * spi,struct dma_slave_config * dma_conf,enum dma_transfer_direction dir)1112 static void stm32_spi_dma_config(struct stm32_spi *spi,
1113 struct dma_slave_config *dma_conf,
1114 enum dma_transfer_direction dir)
1115 {
1116 enum dma_slave_buswidth buswidth;
1117 u32 maxburst;
1118
1119 if (spi->cur_bpw <= 8)
1120 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1121 else if (spi->cur_bpw <= 16)
1122 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1123 else
1124 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1125
1126 if (spi->cfg->has_fifo) {
1127 /* Valid for DMA Half or Full Fifo threshold */
1128 if (spi->cur_fthlv == 2)
1129 maxburst = 1;
1130 else
1131 maxburst = spi->cur_fthlv;
1132 } else {
1133 maxburst = 1;
1134 }
1135
1136 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1137 dma_conf->direction = dir;
1138 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1139 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1140 dma_conf->src_addr_width = buswidth;
1141 dma_conf->src_maxburst = maxburst;
1142
1143 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1144 buswidth, maxburst);
1145 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1146 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1147 dma_conf->dst_addr_width = buswidth;
1148 dma_conf->dst_maxburst = maxburst;
1149
1150 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1151 buswidth, maxburst);
1152 }
1153 }
1154
1155 /**
1156 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1157 * interrupts
1158 * @spi: pointer to the spi controller data structure
1159 *
1160 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1161 * in progress.
1162 */
stm32f4_spi_transfer_one_irq(struct stm32_spi * spi)1163 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1164 {
1165 unsigned long flags;
1166 u32 cr2 = 0;
1167
1168 /* Enable the interrupts relative to the current communication mode */
1169 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1170 cr2 |= STM32F4_SPI_CR2_TXEIE;
1171 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1172 spi->cur_comm == SPI_SIMPLEX_RX ||
1173 spi->cur_comm == SPI_3WIRE_RX) {
1174 /* In transmit-only mode, the OVR flag is set in the SR register
1175 * since the received data are never read. Therefore set OVR
1176 * interrupt only when rx buffer is available.
1177 */
1178 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1179 } else {
1180 return -EINVAL;
1181 }
1182
1183 spin_lock_irqsave(&spi->lock, flags);
1184
1185 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1186
1187 stm32_spi_enable(spi);
1188
1189 /* starting data transfer when buffer is loaded */
1190 if (spi->tx_buf)
1191 stm32f4_spi_write_tx(spi);
1192
1193 spin_unlock_irqrestore(&spi->lock, flags);
1194
1195 return 1;
1196 }
1197
1198 /**
1199 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1200 * interrupts
1201 * @spi: pointer to the spi controller data structure
1202 *
1203 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1204 * in progress.
1205 */
stm32h7_spi_transfer_one_irq(struct stm32_spi * spi)1206 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1207 {
1208 unsigned long flags;
1209 u32 ier = 0;
1210
1211 /* Enable the interrupts relative to the current communication mode */
1212 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1213 ier |= STM32H7_SPI_IER_DXPIE;
1214 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1215 ier |= STM32H7_SPI_IER_TXPIE;
1216 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1217 ier |= STM32H7_SPI_IER_RXPIE;
1218
1219 /* Enable the interrupts relative to the end of transfer */
1220 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1221 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1222
1223 spin_lock_irqsave(&spi->lock, flags);
1224
1225 stm32_spi_enable(spi);
1226
1227 /* Be sure to have data in fifo before starting data transfer */
1228 if (spi->tx_buf)
1229 stm32h7_spi_write_txfifo(spi);
1230
1231 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1232
1233 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1234
1235 spin_unlock_irqrestore(&spi->lock, flags);
1236
1237 return 1;
1238 }
1239
1240 /**
1241 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1242 * transfer using DMA
1243 * @spi: pointer to the spi controller data structure
1244 */
stm32f4_spi_transfer_one_dma_start(struct stm32_spi * spi)1245 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1246 {
1247 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1248 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1249 spi->cur_comm == SPI_FULL_DUPLEX) {
1250 /*
1251 * In transmit-only mode, the OVR flag is set in the SR register
1252 * since the received data are never read. Therefore set OVR
1253 * interrupt only when rx buffer is available.
1254 */
1255 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1256 }
1257
1258 stm32_spi_enable(spi);
1259 }
1260
1261 /**
1262 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1263 * transfer using DMA
1264 * @spi: pointer to the spi controller data structure
1265 */
stm32h7_spi_transfer_one_dma_start(struct stm32_spi * spi)1266 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1267 {
1268 /* Enable the interrupts relative to the end of transfer */
1269 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1270 STM32H7_SPI_IER_TXTFIE |
1271 STM32H7_SPI_IER_OVRIE |
1272 STM32H7_SPI_IER_MODFIE);
1273
1274 stm32_spi_enable(spi);
1275
1276 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1277 }
1278
1279 /**
1280 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1281 * @spi: pointer to the spi controller data structure
1282 * @xfer: pointer to the spi_transfer structure
1283 *
1284 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1285 * in progress.
1286 */
stm32_spi_transfer_one_dma(struct stm32_spi * spi,struct spi_transfer * xfer)1287 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1288 struct spi_transfer *xfer)
1289 {
1290 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1291 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1292 unsigned long flags;
1293
1294 spin_lock_irqsave(&spi->lock, flags);
1295
1296 rx_dma_desc = NULL;
1297 if (spi->rx_buf && spi->dma_rx) {
1298 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1299 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1300
1301 /* Enable Rx DMA request */
1302 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1303 spi->cfg->regs->dma_rx_en.mask);
1304
1305 rx_dma_desc = dmaengine_prep_slave_sg(
1306 spi->dma_rx, xfer->rx_sg.sgl,
1307 xfer->rx_sg.nents,
1308 rx_dma_conf.direction,
1309 DMA_PREP_INTERRUPT);
1310 }
1311
1312 tx_dma_desc = NULL;
1313 if (spi->tx_buf && spi->dma_tx) {
1314 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1315 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1316
1317 tx_dma_desc = dmaengine_prep_slave_sg(
1318 spi->dma_tx, xfer->tx_sg.sgl,
1319 xfer->tx_sg.nents,
1320 tx_dma_conf.direction,
1321 DMA_PREP_INTERRUPT);
1322 }
1323
1324 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1325 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1326 goto dma_desc_error;
1327
1328 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1329 goto dma_desc_error;
1330
1331 if (rx_dma_desc) {
1332 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1333 rx_dma_desc->callback_param = spi;
1334
1335 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1336 dev_err(spi->dev, "Rx DMA submit failed\n");
1337 goto dma_desc_error;
1338 }
1339 /* Enable Rx DMA channel */
1340 dma_async_issue_pending(spi->dma_rx);
1341 }
1342
1343 if (tx_dma_desc) {
1344 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1345 spi->cur_comm == SPI_3WIRE_TX) {
1346 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1347 tx_dma_desc->callback_param = spi;
1348 }
1349
1350 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1351 dev_err(spi->dev, "Tx DMA submit failed\n");
1352 goto dma_submit_error;
1353 }
1354 /* Enable Tx DMA channel */
1355 dma_async_issue_pending(spi->dma_tx);
1356
1357 /* Enable Tx DMA request */
1358 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1359 spi->cfg->regs->dma_tx_en.mask);
1360 }
1361
1362 spi->cfg->transfer_one_dma_start(spi);
1363
1364 spin_unlock_irqrestore(&spi->lock, flags);
1365
1366 return 1;
1367
1368 dma_submit_error:
1369 if (spi->dma_rx)
1370 dmaengine_terminate_all(spi->dma_rx);
1371
1372 dma_desc_error:
1373 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1374 spi->cfg->regs->dma_rx_en.mask);
1375
1376 spin_unlock_irqrestore(&spi->lock, flags);
1377
1378 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1379
1380 spi->cur_usedma = false;
1381 return spi->cfg->transfer_one_irq(spi);
1382 }
1383
1384 /**
1385 * stm32f4_spi_set_bpw - Configure bits per word
1386 * @spi: pointer to the spi controller data structure
1387 */
stm32f4_spi_set_bpw(struct stm32_spi * spi)1388 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1389 {
1390 if (spi->cur_bpw == 16)
1391 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1392 else
1393 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1394 }
1395
1396 /**
1397 * stm32h7_spi_set_bpw - configure bits per word
1398 * @spi: pointer to the spi controller data structure
1399 */
stm32h7_spi_set_bpw(struct stm32_spi * spi)1400 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1401 {
1402 u32 bpw, fthlv;
1403 u32 cfg1_clrb = 0, cfg1_setb = 0;
1404
1405 bpw = spi->cur_bpw - 1;
1406
1407 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1408 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1409 STM32H7_SPI_CFG1_DSIZE;
1410
1411 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1412 fthlv = spi->cur_fthlv - 1;
1413
1414 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1415 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1416 STM32H7_SPI_CFG1_FTHLV;
1417
1418 writel_relaxed(
1419 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1420 ~cfg1_clrb) | cfg1_setb,
1421 spi->base + STM32H7_SPI_CFG1);
1422 }
1423
1424 /**
1425 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1426 * @spi: pointer to the spi controller data structure
1427 * @mbrdiv: baud rate divisor value
1428 */
stm32_spi_set_mbr(struct stm32_spi * spi,u32 mbrdiv)1429 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1430 {
1431 u32 clrb = 0, setb = 0;
1432
1433 clrb |= spi->cfg->regs->br.mask;
1434 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1435 spi->cfg->regs->br.mask;
1436
1437 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1438 ~clrb) | setb,
1439 spi->base + spi->cfg->regs->br.reg);
1440 }
1441
1442 /**
1443 * stm32_spi_communication_type - return transfer communication type
1444 * @spi_dev: pointer to the spi device
1445 * @transfer: pointer to spi transfer
1446 */
stm32_spi_communication_type(struct spi_device * spi_dev,struct spi_transfer * transfer)1447 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1448 struct spi_transfer *transfer)
1449 {
1450 unsigned int type = SPI_FULL_DUPLEX;
1451
1452 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1453 /*
1454 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1455 * is forbidden and unvalidated by SPI subsystem so depending
1456 * on the valid buffer, we can determine the direction of the
1457 * transfer.
1458 */
1459 if (!transfer->tx_buf)
1460 type = SPI_3WIRE_RX;
1461 else
1462 type = SPI_3WIRE_TX;
1463 } else {
1464 if (!transfer->tx_buf)
1465 type = SPI_SIMPLEX_RX;
1466 else if (!transfer->rx_buf)
1467 type = SPI_SIMPLEX_TX;
1468 }
1469
1470 return type;
1471 }
1472
1473 /**
1474 * stm32f4_spi_set_mode - configure communication mode
1475 * @spi: pointer to the spi controller data structure
1476 * @comm_type: type of communication to configure
1477 */
stm32f4_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1478 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1479 {
1480 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1481 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1482 STM32F4_SPI_CR1_BIDIMODE |
1483 STM32F4_SPI_CR1_BIDIOE);
1484 } else if (comm_type == SPI_FULL_DUPLEX ||
1485 comm_type == SPI_SIMPLEX_RX) {
1486 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1487 STM32F4_SPI_CR1_BIDIMODE |
1488 STM32F4_SPI_CR1_BIDIOE);
1489 } else if (comm_type == SPI_3WIRE_RX) {
1490 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1491 STM32F4_SPI_CR1_BIDIMODE);
1492 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1493 STM32F4_SPI_CR1_BIDIOE);
1494 } else {
1495 return -EINVAL;
1496 }
1497
1498 return 0;
1499 }
1500
1501 /**
1502 * stm32h7_spi_set_mode - configure communication mode
1503 * @spi: pointer to the spi controller data structure
1504 * @comm_type: type of communication to configure
1505 */
stm32h7_spi_set_mode(struct stm32_spi * spi,unsigned int comm_type)1506 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1507 {
1508 u32 mode;
1509 u32 cfg2_clrb = 0, cfg2_setb = 0;
1510
1511 if (comm_type == SPI_3WIRE_RX) {
1512 mode = STM32H7_SPI_HALF_DUPLEX;
1513 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514 } else if (comm_type == SPI_3WIRE_TX) {
1515 mode = STM32H7_SPI_HALF_DUPLEX;
1516 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1517 } else if (comm_type == SPI_SIMPLEX_RX) {
1518 mode = STM32H7_SPI_SIMPLEX_RX;
1519 } else if (comm_type == SPI_SIMPLEX_TX) {
1520 mode = STM32H7_SPI_SIMPLEX_TX;
1521 } else {
1522 mode = STM32H7_SPI_FULL_DUPLEX;
1523 }
1524
1525 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1526 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1527 STM32H7_SPI_CFG2_COMM;
1528
1529 writel_relaxed(
1530 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1531 ~cfg2_clrb) | cfg2_setb,
1532 spi->base + STM32H7_SPI_CFG2);
1533
1534 return 0;
1535 }
1536
1537 /**
1538 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1539 * consecutive data frames in master mode
1540 * @spi: pointer to the spi controller data structure
1541 * @len: transfer len
1542 */
stm32h7_spi_data_idleness(struct stm32_spi * spi,u32 len)1543 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1544 {
1545 u32 cfg2_clrb = 0, cfg2_setb = 0;
1546
1547 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1548 if ((len > 1) && (spi->cur_midi > 0)) {
1549 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1550 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1551 (u32)STM32H7_SPI_CFG2_MIDI >>
1552 STM32H7_SPI_CFG2_MIDI_SHIFT);
1553
1554 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1555 sck_period_ns, midi, midi * sck_period_ns);
1556 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1557 STM32H7_SPI_CFG2_MIDI;
1558 }
1559
1560 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1561 ~cfg2_clrb) | cfg2_setb,
1562 spi->base + STM32H7_SPI_CFG2);
1563 }
1564
1565 /**
1566 * stm32h7_spi_number_of_data - configure number of data at current transfer
1567 * @spi: pointer to the spi controller data structure
1568 * @nb_words: transfer length (in words)
1569 */
stm32h7_spi_number_of_data(struct stm32_spi * spi,u32 nb_words)1570 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1571 {
1572 u32 cr2_clrb = 0, cr2_setb = 0;
1573
1574 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1575 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1576 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1577 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1578 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1579 ~cr2_clrb) | cr2_setb,
1580 spi->base + STM32H7_SPI_CR2);
1581 } else {
1582 return -EMSGSIZE;
1583 }
1584
1585 return 0;
1586 }
1587
1588 /**
1589 * stm32_spi_transfer_one_setup - common setup to transfer a single
1590 * spi_transfer either using DMA or
1591 * interrupts.
1592 * @spi: pointer to the spi controller data structure
1593 * @spi_dev: pointer to the spi device
1594 * @transfer: pointer to spi transfer
1595 */
stm32_spi_transfer_one_setup(struct stm32_spi * spi,struct spi_device * spi_dev,struct spi_transfer * transfer)1596 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1597 struct spi_device *spi_dev,
1598 struct spi_transfer *transfer)
1599 {
1600 unsigned long flags;
1601 unsigned int comm_type;
1602 int nb_words, ret = 0;
1603 int mbr;
1604
1605 spin_lock_irqsave(&spi->lock, flags);
1606
1607 spi->cur_xferlen = transfer->len;
1608
1609 spi->cur_bpw = transfer->bits_per_word;
1610 spi->cfg->set_bpw(spi);
1611
1612 /* Update spi->cur_speed with real clock speed */
1613 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1614 spi->cfg->baud_rate_div_min,
1615 spi->cfg->baud_rate_div_max);
1616 if (mbr < 0) {
1617 ret = mbr;
1618 goto out;
1619 }
1620
1621 transfer->speed_hz = spi->cur_speed;
1622 stm32_spi_set_mbr(spi, mbr);
1623
1624 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1625 ret = spi->cfg->set_mode(spi, comm_type);
1626 if (ret < 0)
1627 goto out;
1628
1629 spi->cur_comm = comm_type;
1630
1631 if (spi->cfg->set_data_idleness)
1632 spi->cfg->set_data_idleness(spi, transfer->len);
1633
1634 if (spi->cur_bpw <= 8)
1635 nb_words = transfer->len;
1636 else if (spi->cur_bpw <= 16)
1637 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1638 else
1639 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1640
1641 if (spi->cfg->set_number_of_data) {
1642 ret = spi->cfg->set_number_of_data(spi, nb_words);
1643 if (ret < 0)
1644 goto out;
1645 }
1646
1647 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1648 spi->cur_comm);
1649 dev_dbg(spi->dev,
1650 "data frame of %d-bit, data packet of %d data frames\n",
1651 spi->cur_bpw, spi->cur_fthlv);
1652 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1653 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1654 spi->cur_xferlen, nb_words);
1655 dev_dbg(spi->dev, "dma %s\n",
1656 (spi->cur_usedma) ? "enabled" : "disabled");
1657
1658 out:
1659 spin_unlock_irqrestore(&spi->lock, flags);
1660
1661 return ret;
1662 }
1663
1664 /**
1665 * stm32_spi_transfer_one - transfer a single spi_transfer
1666 * @master: controller master interface
1667 * @spi_dev: pointer to the spi device
1668 * @transfer: pointer to spi transfer
1669 *
1670 * It must return 0 if the transfer is finished or 1 if the transfer is still
1671 * in progress.
1672 */
stm32_spi_transfer_one(struct spi_master * master,struct spi_device * spi_dev,struct spi_transfer * transfer)1673 static int stm32_spi_transfer_one(struct spi_master *master,
1674 struct spi_device *spi_dev,
1675 struct spi_transfer *transfer)
1676 {
1677 struct stm32_spi *spi = spi_master_get_devdata(master);
1678 int ret;
1679
1680 spi->tx_buf = transfer->tx_buf;
1681 spi->rx_buf = transfer->rx_buf;
1682 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1683 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1684
1685 spi->cur_usedma = (master->can_dma &&
1686 master->can_dma(master, spi_dev, transfer));
1687
1688 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1689 if (ret) {
1690 dev_err(spi->dev, "SPI transfer setup failed\n");
1691 return ret;
1692 }
1693
1694 if (spi->cur_usedma)
1695 return stm32_spi_transfer_one_dma(spi, transfer);
1696 else
1697 return spi->cfg->transfer_one_irq(spi);
1698 }
1699
1700 /**
1701 * stm32_spi_unprepare_msg - relax the hardware
1702 * @master: controller master interface
1703 * @msg: pointer to the spi message
1704 */
stm32_spi_unprepare_msg(struct spi_master * master,struct spi_message * msg)1705 static int stm32_spi_unprepare_msg(struct spi_master *master,
1706 struct spi_message *msg)
1707 {
1708 struct stm32_spi *spi = spi_master_get_devdata(master);
1709
1710 spi->cfg->disable(spi);
1711
1712 return 0;
1713 }
1714
1715 /**
1716 * stm32f4_spi_config - Configure SPI controller as SPI master
1717 * @spi: pointer to the spi controller data structure
1718 */
stm32f4_spi_config(struct stm32_spi * spi)1719 static int stm32f4_spi_config(struct stm32_spi *spi)
1720 {
1721 unsigned long flags;
1722
1723 spin_lock_irqsave(&spi->lock, flags);
1724
1725 /* Ensure I2SMOD bit is kept cleared */
1726 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1727 STM32F4_SPI_I2SCFGR_I2SMOD);
1728
1729 /*
1730 * - SS input value high
1731 * - transmitter half duplex direction
1732 * - Set the master mode (default Motorola mode)
1733 * - Consider 1 master/n slaves configuration and
1734 * SS input value is determined by the SSI bit
1735 */
1736 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1737 STM32F4_SPI_CR1_BIDIOE |
1738 STM32F4_SPI_CR1_MSTR |
1739 STM32F4_SPI_CR1_SSM);
1740
1741 spin_unlock_irqrestore(&spi->lock, flags);
1742
1743 return 0;
1744 }
1745
1746 /**
1747 * stm32h7_spi_config - Configure SPI controller as SPI master
1748 * @spi: pointer to the spi controller data structure
1749 */
stm32h7_spi_config(struct stm32_spi * spi)1750 static int stm32h7_spi_config(struct stm32_spi *spi)
1751 {
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&spi->lock, flags);
1755
1756 /* Ensure I2SMOD bit is kept cleared */
1757 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1758 STM32H7_SPI_I2SCFGR_I2SMOD);
1759
1760 /*
1761 * - SS input value high
1762 * - transmitter half duplex direction
1763 * - automatic communication suspend when RX-Fifo is full
1764 */
1765 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1766 STM32H7_SPI_CR1_HDDIR |
1767 STM32H7_SPI_CR1_MASRX);
1768
1769 /*
1770 * - Set the master mode (default Motorola mode)
1771 * - Consider 1 master/n slaves configuration and
1772 * SS input value is determined by the SSI bit
1773 * - keep control of all associated GPIOs
1774 */
1775 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1776 STM32H7_SPI_CFG2_SSM |
1777 STM32H7_SPI_CFG2_AFCNTR);
1778
1779 spin_unlock_irqrestore(&spi->lock, flags);
1780
1781 return 0;
1782 }
1783
1784 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1785 .regs = &stm32f4_spi_regspec,
1786 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1787 .disable = stm32f4_spi_disable,
1788 .config = stm32f4_spi_config,
1789 .set_bpw = stm32f4_spi_set_bpw,
1790 .set_mode = stm32f4_spi_set_mode,
1791 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1792 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1793 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1794 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1795 .irq_handler_event = stm32f4_spi_irq_event,
1796 .irq_handler_thread = stm32f4_spi_irq_thread,
1797 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1798 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1799 .has_fifo = false,
1800 };
1801
1802 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1803 .regs = &stm32h7_spi_regspec,
1804 .get_fifo_size = stm32h7_spi_get_fifo_size,
1805 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1806 .disable = stm32h7_spi_disable,
1807 .config = stm32h7_spi_config,
1808 .set_bpw = stm32h7_spi_set_bpw,
1809 .set_mode = stm32h7_spi_set_mode,
1810 .set_data_idleness = stm32h7_spi_data_idleness,
1811 .set_number_of_data = stm32h7_spi_number_of_data,
1812 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1813 .dma_rx_cb = stm32h7_spi_dma_cb,
1814 .dma_tx_cb = stm32h7_spi_dma_cb,
1815 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1816 .irq_handler_thread = stm32h7_spi_irq_thread,
1817 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1818 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1819 .has_fifo = true,
1820 };
1821
1822 static const struct of_device_id stm32_spi_of_match[] = {
1823 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1824 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1825 {},
1826 };
1827 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1828
stm32_spi_probe(struct platform_device * pdev)1829 static int stm32_spi_probe(struct platform_device *pdev)
1830 {
1831 struct spi_master *master;
1832 struct stm32_spi *spi;
1833 struct resource *res;
1834 int ret;
1835
1836 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1837 if (!master) {
1838 dev_err(&pdev->dev, "spi master allocation failed\n");
1839 return -ENOMEM;
1840 }
1841 platform_set_drvdata(pdev, master);
1842
1843 spi = spi_master_get_devdata(master);
1844 spi->dev = &pdev->dev;
1845 spi->master = master;
1846 spin_lock_init(&spi->lock);
1847
1848 spi->cfg = (const struct stm32_spi_cfg *)
1849 of_match_device(pdev->dev.driver->of_match_table,
1850 &pdev->dev)->data;
1851
1852 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1853 spi->base = devm_ioremap_resource(&pdev->dev, res);
1854 if (IS_ERR(spi->base)) {
1855 ret = PTR_ERR(spi->base);
1856 goto err_master_put;
1857 }
1858
1859 spi->phys_addr = (dma_addr_t)res->start;
1860
1861 spi->irq = platform_get_irq(pdev, 0);
1862 if (spi->irq <= 0) {
1863 ret = dev_err_probe(&pdev->dev, spi->irq, "failed to get irq\n");
1864 goto err_master_put;
1865 }
1866 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1867 spi->cfg->irq_handler_event,
1868 spi->cfg->irq_handler_thread,
1869 IRQF_ONESHOT, pdev->name, master);
1870 if (ret) {
1871 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1872 ret);
1873 goto err_master_put;
1874 }
1875
1876 spi->clk = devm_clk_get(&pdev->dev, NULL);
1877 if (IS_ERR(spi->clk)) {
1878 ret = PTR_ERR(spi->clk);
1879 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1880 goto err_master_put;
1881 }
1882
1883 ret = clk_prepare_enable(spi->clk);
1884 if (ret) {
1885 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1886 goto err_master_put;
1887 }
1888 spi->clk_rate = clk_get_rate(spi->clk);
1889 if (!spi->clk_rate) {
1890 dev_err(&pdev->dev, "clk rate = 0\n");
1891 ret = -EINVAL;
1892 goto err_clk_disable;
1893 }
1894
1895 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1896 if (!IS_ERR(spi->rst)) {
1897 reset_control_assert(spi->rst);
1898 udelay(2);
1899 reset_control_deassert(spi->rst);
1900 }
1901
1902 if (spi->cfg->has_fifo)
1903 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1904
1905 ret = spi->cfg->config(spi);
1906 if (ret) {
1907 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1908 ret);
1909 goto err_clk_disable;
1910 }
1911
1912 master->dev.of_node = pdev->dev.of_node;
1913 master->auto_runtime_pm = true;
1914 master->bus_num = pdev->id;
1915 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1916 SPI_3WIRE;
1917 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1918 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1919 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1920 master->use_gpio_descriptors = true;
1921 master->prepare_message = stm32_spi_prepare_msg;
1922 master->transfer_one = stm32_spi_transfer_one;
1923 master->unprepare_message = stm32_spi_unprepare_msg;
1924 master->flags = SPI_MASTER_MUST_TX;
1925
1926 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1927 if (IS_ERR(spi->dma_tx)) {
1928 ret = PTR_ERR(spi->dma_tx);
1929 spi->dma_tx = NULL;
1930 if (ret == -EPROBE_DEFER)
1931 goto err_clk_disable;
1932
1933 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1934 } else {
1935 master->dma_tx = spi->dma_tx;
1936 }
1937
1938 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1939 if (IS_ERR(spi->dma_rx)) {
1940 ret = PTR_ERR(spi->dma_rx);
1941 spi->dma_rx = NULL;
1942 if (ret == -EPROBE_DEFER)
1943 goto err_dma_release;
1944
1945 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1946 } else {
1947 master->dma_rx = spi->dma_rx;
1948 }
1949
1950 if (spi->dma_tx || spi->dma_rx)
1951 master->can_dma = stm32_spi_can_dma;
1952
1953 pm_runtime_set_active(&pdev->dev);
1954 pm_runtime_enable(&pdev->dev);
1955
1956 ret = devm_spi_register_master(&pdev->dev, master);
1957 if (ret) {
1958 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1959 ret);
1960 goto err_pm_disable;
1961 }
1962
1963 if (!master->cs_gpiods) {
1964 dev_err(&pdev->dev, "no CS gpios available\n");
1965 ret = -EINVAL;
1966 goto err_pm_disable;
1967 }
1968
1969 dev_info(&pdev->dev, "driver initialized\n");
1970
1971 return 0;
1972
1973 err_pm_disable:
1974 pm_runtime_disable(&pdev->dev);
1975 err_dma_release:
1976 if (spi->dma_tx)
1977 dma_release_channel(spi->dma_tx);
1978 if (spi->dma_rx)
1979 dma_release_channel(spi->dma_rx);
1980 err_clk_disable:
1981 clk_disable_unprepare(spi->clk);
1982 err_master_put:
1983 spi_master_put(master);
1984
1985 return ret;
1986 }
1987
stm32_spi_remove(struct platform_device * pdev)1988 static int stm32_spi_remove(struct platform_device *pdev)
1989 {
1990 struct spi_master *master = platform_get_drvdata(pdev);
1991 struct stm32_spi *spi = spi_master_get_devdata(master);
1992
1993 spi->cfg->disable(spi);
1994
1995 if (master->dma_tx)
1996 dma_release_channel(master->dma_tx);
1997 if (master->dma_rx)
1998 dma_release_channel(master->dma_rx);
1999
2000 clk_disable_unprepare(spi->clk);
2001
2002 pm_runtime_disable(&pdev->dev);
2003
2004 pinctrl_pm_select_sleep_state(&pdev->dev);
2005
2006 return 0;
2007 }
2008
2009 #ifdef CONFIG_PM
stm32_spi_runtime_suspend(struct device * dev)2010 static int stm32_spi_runtime_suspend(struct device *dev)
2011 {
2012 struct spi_master *master = dev_get_drvdata(dev);
2013 struct stm32_spi *spi = spi_master_get_devdata(master);
2014
2015 clk_disable_unprepare(spi->clk);
2016
2017 return pinctrl_pm_select_sleep_state(dev);
2018 }
2019
stm32_spi_runtime_resume(struct device * dev)2020 static int stm32_spi_runtime_resume(struct device *dev)
2021 {
2022 struct spi_master *master = dev_get_drvdata(dev);
2023 struct stm32_spi *spi = spi_master_get_devdata(master);
2024 int ret;
2025
2026 ret = pinctrl_pm_select_default_state(dev);
2027 if (ret)
2028 return ret;
2029
2030 return clk_prepare_enable(spi->clk);
2031 }
2032 #endif
2033
2034 #ifdef CONFIG_PM_SLEEP
stm32_spi_suspend(struct device * dev)2035 static int stm32_spi_suspend(struct device *dev)
2036 {
2037 struct spi_master *master = dev_get_drvdata(dev);
2038 int ret;
2039
2040 ret = spi_master_suspend(master);
2041 if (ret)
2042 return ret;
2043
2044 return pm_runtime_force_suspend(dev);
2045 }
2046
stm32_spi_resume(struct device * dev)2047 static int stm32_spi_resume(struct device *dev)
2048 {
2049 struct spi_master *master = dev_get_drvdata(dev);
2050 struct stm32_spi *spi = spi_master_get_devdata(master);
2051 int ret;
2052
2053 ret = pm_runtime_force_resume(dev);
2054 if (ret)
2055 return ret;
2056
2057 ret = spi_master_resume(master);
2058 if (ret) {
2059 clk_disable_unprepare(spi->clk);
2060 return ret;
2061 }
2062
2063 ret = pm_runtime_get_sync(dev);
2064 if (ret < 0) {
2065 dev_err(dev, "Unable to power device:%d\n", ret);
2066 return ret;
2067 }
2068
2069 spi->cfg->config(spi);
2070
2071 pm_runtime_mark_last_busy(dev);
2072 pm_runtime_put_autosuspend(dev);
2073
2074 return 0;
2075 }
2076 #endif
2077
2078 static const struct dev_pm_ops stm32_spi_pm_ops = {
2079 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2080 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2081 stm32_spi_runtime_resume, NULL)
2082 };
2083
2084 static struct platform_driver stm32_spi_driver = {
2085 .probe = stm32_spi_probe,
2086 .remove = stm32_spi_remove,
2087 .driver = {
2088 .name = DRIVER_NAME,
2089 .pm = &stm32_spi_pm_ops,
2090 .of_match_table = stm32_spi_of_match,
2091 },
2092 };
2093
2094 module_platform_driver(stm32_spi_driver);
2095
2096 MODULE_ALIAS("platform:" DRIVER_NAME);
2097 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2098 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2099 MODULE_LICENSE("GPL v2");
2100