1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10 #include <linux/bitmap.h>
11 #include <linux/clk.h>
12 #include <linux/completion.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/sh_dma.h>
27
28 #include <linux/spi/sh_msiof.h>
29 #include <linux/spi/spi.h>
30
31 #include <asm/unaligned.h>
32
33 struct sh_msiof_chipdata {
34 u32 bits_per_word_mask;
35 u16 tx_fifo_size;
36 u16 rx_fifo_size;
37 u16 ctlr_flags;
38 u16 min_div_pow;
39 };
40
41 struct sh_msiof_spi_priv {
42 struct spi_controller *ctlr;
43 void __iomem *mapbase;
44 struct clk *clk;
45 struct platform_device *pdev;
46 struct sh_msiof_spi_info *info;
47 struct completion done;
48 struct completion done_txdma;
49 unsigned int tx_fifo_size;
50 unsigned int rx_fifo_size;
51 unsigned int min_div_pow;
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
56 bool native_cs_inited;
57 bool native_cs_high;
58 bool slave_aborted;
59 };
60
61 #define MAX_SS 3 /* Maximum number of native chip selects */
62
63 #define SITMDR1 0x00 /* Transmit Mode Register 1 */
64 #define SITMDR2 0x04 /* Transmit Mode Register 2 */
65 #define SITMDR3 0x08 /* Transmit Mode Register 3 */
66 #define SIRMDR1 0x10 /* Receive Mode Register 1 */
67 #define SIRMDR2 0x14 /* Receive Mode Register 2 */
68 #define SIRMDR3 0x18 /* Receive Mode Register 3 */
69 #define SITSCR 0x20 /* Transmit Clock Select Register */
70 #define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
71 #define SICTR 0x28 /* Control Register */
72 #define SIFCTR 0x30 /* FIFO Control Register */
73 #define SISTR 0x40 /* Status Register */
74 #define SIIER 0x44 /* Interrupt Enable Register */
75 #define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
76 #define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
77 #define SITFDR 0x50 /* Transmit FIFO Data Register */
78 #define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
79 #define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
80 #define SIRFDR 0x60 /* Receive FIFO Data Register */
81
82 /* SITMDR1 and SIRMDR1 */
83 #define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
84 #define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
85 #define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
86 #define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
87 #define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
88 #define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
89 #define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
90 #define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
91 #define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
92 #define SIMDR1_FLD_SHIFT 2
93 #define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
94 /* SITMDR1 */
95 #define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
96 #define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
97 #define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
98
99 /* SITMDR2 and SIRMDR2 */
100 #define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
101 #define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
102 #define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
103
104 /* SITSCR and SIRSCR */
105 #define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
106 #define SISCR_BRPS(i) (((i) - 1) << 8)
107 #define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
108 #define SISCR_BRDV_DIV_2 0
109 #define SISCR_BRDV_DIV_4 1
110 #define SISCR_BRDV_DIV_8 2
111 #define SISCR_BRDV_DIV_16 3
112 #define SISCR_BRDV_DIV_32 4
113 #define SISCR_BRDV_DIV_1 7
114
115 /* SICTR */
116 #define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
117 #define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
118 #define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
119 #define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
120 #define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
121 #define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
122 #define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
123 #define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
124 #define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
125 #define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
126 #define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
127 #define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
128 #define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
129 #define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
130 #define SICTR_TXE BIT(9) /* Transmit Enable */
131 #define SICTR_RXE BIT(8) /* Receive Enable */
132 #define SICTR_TXRST BIT(1) /* Transmit Reset */
133 #define SICTR_RXRST BIT(0) /* Receive Reset */
134
135 /* SIFCTR */
136 #define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
137 #define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
138 #define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
139 #define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
140 #define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
141 #define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
142 #define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
143 #define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
144 #define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
145 #define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
146 #define SIFCTR_TFUA_SHIFT 20
147 #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
148 #define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
149 #define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
150 #define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
151 #define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
152 #define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
153 #define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
154 #define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
155 #define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
156 #define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
157 #define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
158 #define SIFCTR_RFUA_SHIFT 4
159 #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
160
161 /* SISTR */
162 #define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
163 #define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
164 #define SISTR_TEOF BIT(23) /* Frame Transmission End */
165 #define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
166 #define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
167 #define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
168 #define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
169 #define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
170 #define SISTR_REOF BIT(7) /* Frame Reception End */
171 #define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
172 #define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
173 #define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
174
175 /* SIIER */
176 #define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
177 #define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
178 #define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
179 #define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
180 #define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
181 #define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
182 #define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
183 #define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
184 #define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
185 #define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
186 #define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
187 #define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
188 #define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
189 #define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
190
191
sh_msiof_read(struct sh_msiof_spi_priv * p,int reg_offs)192 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
193 {
194 switch (reg_offs) {
195 case SITSCR:
196 case SIRSCR:
197 return ioread16(p->mapbase + reg_offs);
198 default:
199 return ioread32(p->mapbase + reg_offs);
200 }
201 }
202
sh_msiof_write(struct sh_msiof_spi_priv * p,int reg_offs,u32 value)203 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
204 u32 value)
205 {
206 switch (reg_offs) {
207 case SITSCR:
208 case SIRSCR:
209 iowrite16(value, p->mapbase + reg_offs);
210 break;
211 default:
212 iowrite32(value, p->mapbase + reg_offs);
213 break;
214 }
215 }
216
sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv * p,u32 clr,u32 set)217 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
218 u32 clr, u32 set)
219 {
220 u32 mask = clr | set;
221 u32 data;
222
223 data = sh_msiof_read(p, SICTR);
224 data &= ~clr;
225 data |= set;
226 sh_msiof_write(p, SICTR, data);
227
228 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
229 (data & mask) == set, 1, 100);
230 }
231
sh_msiof_spi_irq(int irq,void * data)232 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
233 {
234 struct sh_msiof_spi_priv *p = data;
235
236 /* just disable the interrupt and wake up */
237 sh_msiof_write(p, SIIER, 0);
238 complete(&p->done);
239
240 return IRQ_HANDLED;
241 }
242
sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv * p)243 static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
244 {
245 u32 mask = SICTR_TXRST | SICTR_RXRST;
246 u32 data;
247
248 data = sh_msiof_read(p, SICTR);
249 data |= mask;
250 sh_msiof_write(p, SICTR, data);
251
252 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
253 100);
254 }
255
256 static const u32 sh_msiof_spi_div_array[] = {
257 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
258 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
259 };
260
sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv * p,unsigned long parent_rate,u32 spi_hz)261 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
262 unsigned long parent_rate, u32 spi_hz)
263 {
264 unsigned long div;
265 u32 brps, scr;
266 unsigned int div_pow = p->min_div_pow;
267
268 if (!spi_hz || !parent_rate) {
269 WARN(1, "Invalid clock rate parameters %lu and %u\n",
270 parent_rate, spi_hz);
271 return;
272 }
273
274 div = DIV_ROUND_UP(parent_rate, spi_hz);
275 if (div <= 1024) {
276 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
277 if (!div_pow && div <= 32 && div > 2)
278 div_pow = 1;
279
280 if (div_pow)
281 brps = (div + 1) >> div_pow;
282 else
283 brps = div;
284
285 for (; brps > 32; div_pow++)
286 brps = (brps + 1) >> 1;
287 } else {
288 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
289 dev_err(&p->pdev->dev,
290 "Requested SPI transfer rate %d is too low\n", spi_hz);
291 div_pow = 5;
292 brps = 32;
293 }
294
295 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
296 sh_msiof_write(p, SITSCR, scr);
297 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
298 sh_msiof_write(p, SIRSCR, scr);
299 }
300
sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)301 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
302 {
303 /*
304 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
305 * b'000 : 0
306 * b'001 : 100
307 * b'010 : 200
308 * b'011 (SYNCDL only) : 300
309 * b'101 : 50
310 * b'110 : 150
311 */
312 if (dtdl_or_syncdl % 100)
313 return dtdl_or_syncdl / 100 + 5;
314 else
315 return dtdl_or_syncdl / 100;
316 }
317
sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv * p)318 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
319 {
320 u32 val;
321
322 if (!p->info)
323 return 0;
324
325 /* check if DTDL and SYNCDL is allowed value */
326 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
327 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
328 return 0;
329 }
330
331 /* check if the sum of DTDL and SYNCDL becomes an integer value */
332 if ((p->info->dtdl + p->info->syncdl) % 100) {
333 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
334 return 0;
335 }
336
337 val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
338 val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
339
340 return val;
341 }
342
sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv * p,u32 ss,u32 cpol,u32 cpha,u32 tx_hi_z,u32 lsb_first,u32 cs_high)343 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
344 u32 cpol, u32 cpha,
345 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
346 {
347 u32 tmp;
348 int edge;
349
350 /*
351 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
352 * 0 0 10 10 1 1
353 * 0 1 10 10 0 0
354 * 1 0 11 11 0 0
355 * 1 1 11 11 1 1
356 */
357 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
358 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
359 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
360 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
361 if (spi_controller_is_slave(p->ctlr)) {
362 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
363 } else {
364 sh_msiof_write(p, SITMDR1,
365 tmp | SIMDR1_TRMD | SITMDR1_PCON |
366 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
367 }
368 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
369 /* These bits are reserved if RX needs TX */
370 tmp &= ~0x0000ffff;
371 }
372 sh_msiof_write(p, SIRMDR1, tmp);
373
374 tmp = 0;
375 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
376 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
377
378 edge = cpol ^ !cpha;
379
380 tmp |= edge << SICTR_TEDG_SHIFT;
381 tmp |= edge << SICTR_REDG_SHIFT;
382 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
383 sh_msiof_write(p, SICTR, tmp);
384 }
385
sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv * p,const void * tx_buf,void * rx_buf,u32 bits,u32 words)386 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
387 const void *tx_buf, void *rx_buf,
388 u32 bits, u32 words)
389 {
390 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
391
392 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
393 sh_msiof_write(p, SITMDR2, dr2);
394 else
395 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
396
397 if (rx_buf)
398 sh_msiof_write(p, SIRMDR2, dr2);
399 }
400
sh_msiof_reset_str(struct sh_msiof_spi_priv * p)401 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
402 {
403 sh_msiof_write(p, SISTR,
404 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
405 }
406
sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)407 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
408 const void *tx_buf, int words, int fs)
409 {
410 const u8 *buf_8 = tx_buf;
411 int k;
412
413 for (k = 0; k < words; k++)
414 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
415 }
416
sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)417 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
418 const void *tx_buf, int words, int fs)
419 {
420 const u16 *buf_16 = tx_buf;
421 int k;
422
423 for (k = 0; k < words; k++)
424 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
425 }
426
sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)427 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
428 const void *tx_buf, int words, int fs)
429 {
430 const u16 *buf_16 = tx_buf;
431 int k;
432
433 for (k = 0; k < words; k++)
434 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
435 }
436
sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)437 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
438 const void *tx_buf, int words, int fs)
439 {
440 const u32 *buf_32 = tx_buf;
441 int k;
442
443 for (k = 0; k < words; k++)
444 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
445 }
446
sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)447 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
448 const void *tx_buf, int words, int fs)
449 {
450 const u32 *buf_32 = tx_buf;
451 int k;
452
453 for (k = 0; k < words; k++)
454 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
455 }
456
sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)457 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
458 const void *tx_buf, int words, int fs)
459 {
460 const u32 *buf_32 = tx_buf;
461 int k;
462
463 for (k = 0; k < words; k++)
464 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
465 }
466
sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv * p,const void * tx_buf,int words,int fs)467 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
468 const void *tx_buf, int words, int fs)
469 {
470 const u32 *buf_32 = tx_buf;
471 int k;
472
473 for (k = 0; k < words; k++)
474 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
475 }
476
sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)477 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
478 void *rx_buf, int words, int fs)
479 {
480 u8 *buf_8 = rx_buf;
481 int k;
482
483 for (k = 0; k < words; k++)
484 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
485 }
486
sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)487 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
488 void *rx_buf, int words, int fs)
489 {
490 u16 *buf_16 = rx_buf;
491 int k;
492
493 for (k = 0; k < words; k++)
494 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
495 }
496
sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)497 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
498 void *rx_buf, int words, int fs)
499 {
500 u16 *buf_16 = rx_buf;
501 int k;
502
503 for (k = 0; k < words; k++)
504 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
505 }
506
sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)507 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
508 void *rx_buf, int words, int fs)
509 {
510 u32 *buf_32 = rx_buf;
511 int k;
512
513 for (k = 0; k < words; k++)
514 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
515 }
516
sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)517 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
518 void *rx_buf, int words, int fs)
519 {
520 u32 *buf_32 = rx_buf;
521 int k;
522
523 for (k = 0; k < words; k++)
524 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
525 }
526
sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)527 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
528 void *rx_buf, int words, int fs)
529 {
530 u32 *buf_32 = rx_buf;
531 int k;
532
533 for (k = 0; k < words; k++)
534 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
535 }
536
sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv * p,void * rx_buf,int words,int fs)537 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
538 void *rx_buf, int words, int fs)
539 {
540 u32 *buf_32 = rx_buf;
541 int k;
542
543 for (k = 0; k < words; k++)
544 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
545 }
546
sh_msiof_spi_setup(struct spi_device * spi)547 static int sh_msiof_spi_setup(struct spi_device *spi)
548 {
549 struct sh_msiof_spi_priv *p =
550 spi_controller_get_devdata(spi->controller);
551 u32 clr, set, tmp;
552
553 if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
554 return 0;
555
556 if (p->native_cs_inited &&
557 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
558 return 0;
559
560 /* Configure native chip select mode/polarity early */
561 clr = SIMDR1_SYNCMD_MASK;
562 set = SIMDR1_SYNCMD_SPI;
563 if (spi->mode & SPI_CS_HIGH)
564 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
565 else
566 set |= BIT(SIMDR1_SYNCAC_SHIFT);
567 pm_runtime_get_sync(&p->pdev->dev);
568 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
569 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
570 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
571 sh_msiof_write(p, SIRMDR1, tmp | set);
572 pm_runtime_put(&p->pdev->dev);
573 p->native_cs_high = spi->mode & SPI_CS_HIGH;
574 p->native_cs_inited = true;
575 return 0;
576 }
577
sh_msiof_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)578 static int sh_msiof_prepare_message(struct spi_controller *ctlr,
579 struct spi_message *msg)
580 {
581 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
582 const struct spi_device *spi = msg->spi;
583 u32 ss, cs_high;
584
585 /* Configure pins before asserting CS */
586 if (spi->cs_gpiod) {
587 ss = ctlr->unused_native_cs;
588 cs_high = p->native_cs_high;
589 } else {
590 ss = spi->chip_select;
591 cs_high = !!(spi->mode & SPI_CS_HIGH);
592 }
593 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
594 !!(spi->mode & SPI_CPHA),
595 !!(spi->mode & SPI_3WIRE),
596 !!(spi->mode & SPI_LSB_FIRST), cs_high);
597 return 0;
598 }
599
sh_msiof_spi_start(struct sh_msiof_spi_priv * p,void * rx_buf)600 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
601 {
602 bool slave = spi_controller_is_slave(p->ctlr);
603 int ret = 0;
604
605 /* setup clock and rx/tx signals */
606 if (!slave)
607 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
608 if (rx_buf && !ret)
609 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
610 if (!ret)
611 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
612
613 /* start by setting frame bit */
614 if (!ret && !slave)
615 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
616
617 return ret;
618 }
619
sh_msiof_spi_stop(struct sh_msiof_spi_priv * p,void * rx_buf)620 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
621 {
622 bool slave = spi_controller_is_slave(p->ctlr);
623 int ret = 0;
624
625 /* shut down frame, rx/tx and clock signals */
626 if (!slave)
627 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
628 if (!ret)
629 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
630 if (rx_buf && !ret)
631 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
632 if (!ret && !slave)
633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
634
635 return ret;
636 }
637
sh_msiof_slave_abort(struct spi_controller * ctlr)638 static int sh_msiof_slave_abort(struct spi_controller *ctlr)
639 {
640 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
641
642 p->slave_aborted = true;
643 complete(&p->done);
644 complete(&p->done_txdma);
645 return 0;
646 }
647
sh_msiof_wait_for_completion(struct sh_msiof_spi_priv * p,struct completion * x)648 static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
649 struct completion *x)
650 {
651 if (spi_controller_is_slave(p->ctlr)) {
652 if (wait_for_completion_interruptible(x) ||
653 p->slave_aborted) {
654 dev_dbg(&p->pdev->dev, "interrupted\n");
655 return -EINTR;
656 }
657 } else {
658 if (!wait_for_completion_timeout(x, HZ)) {
659 dev_err(&p->pdev->dev, "timeout\n");
660 return -ETIMEDOUT;
661 }
662 }
663
664 return 0;
665 }
666
sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv * p,void (* tx_fifo)(struct sh_msiof_spi_priv *,const void *,int,int),void (* rx_fifo)(struct sh_msiof_spi_priv *,void *,int,int),const void * tx_buf,void * rx_buf,int words,int bits)667 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
668 void (*tx_fifo)(struct sh_msiof_spi_priv *,
669 const void *, int, int),
670 void (*rx_fifo)(struct sh_msiof_spi_priv *,
671 void *, int, int),
672 const void *tx_buf, void *rx_buf,
673 int words, int bits)
674 {
675 int fifo_shift;
676 int ret;
677
678 /* limit maximum word transfer to rx/tx fifo size */
679 if (tx_buf)
680 words = min_t(int, words, p->tx_fifo_size);
681 if (rx_buf)
682 words = min_t(int, words, p->rx_fifo_size);
683
684 /* the fifo contents need shifting */
685 fifo_shift = 32 - bits;
686
687 /* default FIFO watermarks for PIO */
688 sh_msiof_write(p, SIFCTR, 0);
689
690 /* setup msiof transfer mode registers */
691 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
692 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
693
694 /* write tx fifo */
695 if (tx_buf)
696 tx_fifo(p, tx_buf, words, fifo_shift);
697
698 reinit_completion(&p->done);
699 p->slave_aborted = false;
700
701 ret = sh_msiof_spi_start(p, rx_buf);
702 if (ret) {
703 dev_err(&p->pdev->dev, "failed to start hardware\n");
704 goto stop_ier;
705 }
706
707 /* wait for tx fifo to be emptied / rx fifo to be filled */
708 ret = sh_msiof_wait_for_completion(p, &p->done);
709 if (ret)
710 goto stop_reset;
711
712 /* read rx fifo */
713 if (rx_buf)
714 rx_fifo(p, rx_buf, words, fifo_shift);
715
716 /* clear status bits */
717 sh_msiof_reset_str(p);
718
719 ret = sh_msiof_spi_stop(p, rx_buf);
720 if (ret) {
721 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
722 return ret;
723 }
724
725 return words;
726
727 stop_reset:
728 sh_msiof_reset_str(p);
729 sh_msiof_spi_stop(p, rx_buf);
730 stop_ier:
731 sh_msiof_write(p, SIIER, 0);
732 return ret;
733 }
734
sh_msiof_dma_complete(void * arg)735 static void sh_msiof_dma_complete(void *arg)
736 {
737 complete(arg);
738 }
739
sh_msiof_dma_once(struct sh_msiof_spi_priv * p,const void * tx,void * rx,unsigned int len)740 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
741 void *rx, unsigned int len)
742 {
743 u32 ier_bits = 0;
744 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
745 dma_cookie_t cookie;
746 int ret;
747
748 /* First prepare and submit the DMA request(s), as this may fail */
749 if (rx) {
750 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
751 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
752 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
753 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
754 if (!desc_rx)
755 return -EAGAIN;
756
757 desc_rx->callback = sh_msiof_dma_complete;
758 desc_rx->callback_param = &p->done;
759 cookie = dmaengine_submit(desc_rx);
760 if (dma_submit_error(cookie))
761 return cookie;
762 }
763
764 if (tx) {
765 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
766 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
767 p->tx_dma_addr, len, DMA_TO_DEVICE);
768 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
769 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
770 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
771 if (!desc_tx) {
772 ret = -EAGAIN;
773 goto no_dma_tx;
774 }
775
776 desc_tx->callback = sh_msiof_dma_complete;
777 desc_tx->callback_param = &p->done_txdma;
778 cookie = dmaengine_submit(desc_tx);
779 if (dma_submit_error(cookie)) {
780 ret = cookie;
781 goto no_dma_tx;
782 }
783 }
784
785 /* 1 stage FIFO watermarks for DMA */
786 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
787
788 /* setup msiof transfer mode registers (32-bit words) */
789 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
790
791 sh_msiof_write(p, SIIER, ier_bits);
792
793 reinit_completion(&p->done);
794 if (tx)
795 reinit_completion(&p->done_txdma);
796 p->slave_aborted = false;
797
798 /* Now start DMA */
799 if (rx)
800 dma_async_issue_pending(p->ctlr->dma_rx);
801 if (tx)
802 dma_async_issue_pending(p->ctlr->dma_tx);
803
804 ret = sh_msiof_spi_start(p, rx);
805 if (ret) {
806 dev_err(&p->pdev->dev, "failed to start hardware\n");
807 goto stop_dma;
808 }
809
810 if (tx) {
811 /* wait for tx DMA completion */
812 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
813 if (ret)
814 goto stop_reset;
815 }
816
817 if (rx) {
818 /* wait for rx DMA completion */
819 ret = sh_msiof_wait_for_completion(p, &p->done);
820 if (ret)
821 goto stop_reset;
822
823 sh_msiof_write(p, SIIER, 0);
824 } else {
825 /* wait for tx fifo to be emptied */
826 sh_msiof_write(p, SIIER, SIIER_TEOFE);
827 ret = sh_msiof_wait_for_completion(p, &p->done);
828 if (ret)
829 goto stop_reset;
830 }
831
832 /* clear status bits */
833 sh_msiof_reset_str(p);
834
835 ret = sh_msiof_spi_stop(p, rx);
836 if (ret) {
837 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
838 return ret;
839 }
840
841 if (rx)
842 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
843 p->rx_dma_addr, len, DMA_FROM_DEVICE);
844
845 return 0;
846
847 stop_reset:
848 sh_msiof_reset_str(p);
849 sh_msiof_spi_stop(p, rx);
850 stop_dma:
851 if (tx)
852 dmaengine_terminate_all(p->ctlr->dma_tx);
853 no_dma_tx:
854 if (rx)
855 dmaengine_terminate_all(p->ctlr->dma_rx);
856 sh_msiof_write(p, SIIER, 0);
857 return ret;
858 }
859
copy_bswap32(u32 * dst,const u32 * src,unsigned int words)860 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
861 {
862 /* src or dst can be unaligned, but not both */
863 if ((unsigned long)src & 3) {
864 while (words--) {
865 *dst++ = swab32(get_unaligned(src));
866 src++;
867 }
868 } else if ((unsigned long)dst & 3) {
869 while (words--) {
870 put_unaligned(swab32(*src++), dst);
871 dst++;
872 }
873 } else {
874 while (words--)
875 *dst++ = swab32(*src++);
876 }
877 }
878
copy_wswap32(u32 * dst,const u32 * src,unsigned int words)879 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
880 {
881 /* src or dst can be unaligned, but not both */
882 if ((unsigned long)src & 3) {
883 while (words--) {
884 *dst++ = swahw32(get_unaligned(src));
885 src++;
886 }
887 } else if ((unsigned long)dst & 3) {
888 while (words--) {
889 put_unaligned(swahw32(*src++), dst);
890 dst++;
891 }
892 } else {
893 while (words--)
894 *dst++ = swahw32(*src++);
895 }
896 }
897
copy_plain32(u32 * dst,const u32 * src,unsigned int words)898 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
899 {
900 memcpy(dst, src, words * 4);
901 }
902
sh_msiof_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * t)903 static int sh_msiof_transfer_one(struct spi_controller *ctlr,
904 struct spi_device *spi,
905 struct spi_transfer *t)
906 {
907 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
908 void (*copy32)(u32 *, const u32 *, unsigned int);
909 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
910 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
911 const void *tx_buf = t->tx_buf;
912 void *rx_buf = t->rx_buf;
913 unsigned int len = t->len;
914 unsigned int bits = t->bits_per_word;
915 unsigned int bytes_per_word;
916 unsigned int words;
917 int n;
918 bool swab;
919 int ret;
920
921 /* reset registers */
922 sh_msiof_spi_reset_regs(p);
923
924 /* setup clocks (clock already enabled in chipselect()) */
925 if (!spi_controller_is_slave(p->ctlr))
926 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
927
928 while (ctlr->dma_tx && len > 15) {
929 /*
930 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
931 * words, with byte resp. word swapping.
932 */
933 unsigned int l = 0;
934
935 if (tx_buf)
936 l = min(round_down(len, 4), p->tx_fifo_size * 4);
937 if (rx_buf)
938 l = min(round_down(len, 4), p->rx_fifo_size * 4);
939
940 if (bits <= 8) {
941 copy32 = copy_bswap32;
942 } else if (bits <= 16) {
943 copy32 = copy_wswap32;
944 } else {
945 copy32 = copy_plain32;
946 }
947
948 if (tx_buf)
949 copy32(p->tx_dma_page, tx_buf, l / 4);
950
951 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
952 if (ret == -EAGAIN) {
953 dev_warn_once(&p->pdev->dev,
954 "DMA not available, falling back to PIO\n");
955 break;
956 }
957 if (ret)
958 return ret;
959
960 if (rx_buf) {
961 copy32(rx_buf, p->rx_dma_page, l / 4);
962 rx_buf += l;
963 }
964 if (tx_buf)
965 tx_buf += l;
966
967 len -= l;
968 if (!len)
969 return 0;
970 }
971
972 if (bits <= 8 && len > 15) {
973 bits = 32;
974 swab = true;
975 } else {
976 swab = false;
977 }
978
979 /* setup bytes per word and fifo read/write functions */
980 if (bits <= 8) {
981 bytes_per_word = 1;
982 tx_fifo = sh_msiof_spi_write_fifo_8;
983 rx_fifo = sh_msiof_spi_read_fifo_8;
984 } else if (bits <= 16) {
985 bytes_per_word = 2;
986 if ((unsigned long)tx_buf & 0x01)
987 tx_fifo = sh_msiof_spi_write_fifo_16u;
988 else
989 tx_fifo = sh_msiof_spi_write_fifo_16;
990
991 if ((unsigned long)rx_buf & 0x01)
992 rx_fifo = sh_msiof_spi_read_fifo_16u;
993 else
994 rx_fifo = sh_msiof_spi_read_fifo_16;
995 } else if (swab) {
996 bytes_per_word = 4;
997 if ((unsigned long)tx_buf & 0x03)
998 tx_fifo = sh_msiof_spi_write_fifo_s32u;
999 else
1000 tx_fifo = sh_msiof_spi_write_fifo_s32;
1001
1002 if ((unsigned long)rx_buf & 0x03)
1003 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1004 else
1005 rx_fifo = sh_msiof_spi_read_fifo_s32;
1006 } else {
1007 bytes_per_word = 4;
1008 if ((unsigned long)tx_buf & 0x03)
1009 tx_fifo = sh_msiof_spi_write_fifo_32u;
1010 else
1011 tx_fifo = sh_msiof_spi_write_fifo_32;
1012
1013 if ((unsigned long)rx_buf & 0x03)
1014 rx_fifo = sh_msiof_spi_read_fifo_32u;
1015 else
1016 rx_fifo = sh_msiof_spi_read_fifo_32;
1017 }
1018
1019 /* transfer in fifo sized chunks */
1020 words = len / bytes_per_word;
1021
1022 while (words > 0) {
1023 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1024 words, bits);
1025 if (n < 0)
1026 return n;
1027
1028 if (tx_buf)
1029 tx_buf += n * bytes_per_word;
1030 if (rx_buf)
1031 rx_buf += n * bytes_per_word;
1032 words -= n;
1033
1034 if (words == 0 && (len % bytes_per_word)) {
1035 words = len % bytes_per_word;
1036 bits = t->bits_per_word;
1037 bytes_per_word = 1;
1038 tx_fifo = sh_msiof_spi_write_fifo_8;
1039 rx_fifo = sh_msiof_spi_read_fifo_8;
1040 }
1041 }
1042
1043 return 0;
1044 }
1045
1046 static const struct sh_msiof_chipdata sh_data = {
1047 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1048 .tx_fifo_size = 64,
1049 .rx_fifo_size = 64,
1050 .ctlr_flags = 0,
1051 .min_div_pow = 0,
1052 };
1053
1054 static const struct sh_msiof_chipdata rcar_gen2_data = {
1055 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1056 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1057 .tx_fifo_size = 64,
1058 .rx_fifo_size = 64,
1059 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1060 .min_div_pow = 0,
1061 };
1062
1063 static const struct sh_msiof_chipdata rcar_gen3_data = {
1064 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1065 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1066 .tx_fifo_size = 64,
1067 .rx_fifo_size = 64,
1068 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1069 .min_div_pow = 1,
1070 };
1071
1072 static const struct of_device_id sh_msiof_match[] = {
1073 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1074 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1075 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1076 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1077 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1078 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1080 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1081 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1082 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1083 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1084 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1085 {},
1086 };
1087 MODULE_DEVICE_TABLE(of, sh_msiof_match);
1088
1089 #ifdef CONFIG_OF
sh_msiof_spi_parse_dt(struct device * dev)1090 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1091 {
1092 struct sh_msiof_spi_info *info;
1093 struct device_node *np = dev->of_node;
1094 u32 num_cs = 1;
1095
1096 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1097 if (!info)
1098 return NULL;
1099
1100 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1101 : MSIOF_SPI_MASTER;
1102
1103 /* Parse the MSIOF properties */
1104 if (info->mode == MSIOF_SPI_MASTER)
1105 of_property_read_u32(np, "num-cs", &num_cs);
1106 of_property_read_u32(np, "renesas,tx-fifo-size",
1107 &info->tx_fifo_override);
1108 of_property_read_u32(np, "renesas,rx-fifo-size",
1109 &info->rx_fifo_override);
1110 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1111 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1112
1113 info->num_chipselect = num_cs;
1114
1115 return info;
1116 }
1117 #else
sh_msiof_spi_parse_dt(struct device * dev)1118 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1119 {
1120 return NULL;
1121 }
1122 #endif
1123
sh_msiof_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1124 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1125 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1126 {
1127 dma_cap_mask_t mask;
1128 struct dma_chan *chan;
1129 struct dma_slave_config cfg;
1130 int ret;
1131
1132 dma_cap_zero(mask);
1133 dma_cap_set(DMA_SLAVE, mask);
1134
1135 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1136 (void *)(unsigned long)id, dev,
1137 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1138 if (!chan) {
1139 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1140 return NULL;
1141 }
1142
1143 memset(&cfg, 0, sizeof(cfg));
1144 cfg.direction = dir;
1145 if (dir == DMA_MEM_TO_DEV) {
1146 cfg.dst_addr = port_addr;
1147 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1148 } else {
1149 cfg.src_addr = port_addr;
1150 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1151 }
1152
1153 ret = dmaengine_slave_config(chan, &cfg);
1154 if (ret) {
1155 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1156 dma_release_channel(chan);
1157 return NULL;
1158 }
1159
1160 return chan;
1161 }
1162
sh_msiof_request_dma(struct sh_msiof_spi_priv * p)1163 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1164 {
1165 struct platform_device *pdev = p->pdev;
1166 struct device *dev = &pdev->dev;
1167 const struct sh_msiof_spi_info *info = p->info;
1168 unsigned int dma_tx_id, dma_rx_id;
1169 const struct resource *res;
1170 struct spi_controller *ctlr;
1171 struct device *tx_dev, *rx_dev;
1172
1173 if (dev->of_node) {
1174 /* In the OF case we will get the slave IDs from the DT */
1175 dma_tx_id = 0;
1176 dma_rx_id = 0;
1177 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1178 dma_tx_id = info->dma_tx_id;
1179 dma_rx_id = info->dma_rx_id;
1180 } else {
1181 /* The driver assumes no error */
1182 return 0;
1183 }
1184
1185 /* The DMA engine uses the second register set, if present */
1186 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1187 if (!res)
1188 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1189
1190 ctlr = p->ctlr;
1191 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1192 dma_tx_id, res->start + SITFDR);
1193 if (!ctlr->dma_tx)
1194 return -ENODEV;
1195
1196 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1197 dma_rx_id, res->start + SIRFDR);
1198 if (!ctlr->dma_rx)
1199 goto free_tx_chan;
1200
1201 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1202 if (!p->tx_dma_page)
1203 goto free_rx_chan;
1204
1205 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1206 if (!p->rx_dma_page)
1207 goto free_tx_page;
1208
1209 tx_dev = ctlr->dma_tx->device->dev;
1210 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1211 DMA_TO_DEVICE);
1212 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1213 goto free_rx_page;
1214
1215 rx_dev = ctlr->dma_rx->device->dev;
1216 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1217 DMA_FROM_DEVICE);
1218 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1219 goto unmap_tx_page;
1220
1221 dev_info(dev, "DMA available");
1222 return 0;
1223
1224 unmap_tx_page:
1225 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1226 free_rx_page:
1227 free_page((unsigned long)p->rx_dma_page);
1228 free_tx_page:
1229 free_page((unsigned long)p->tx_dma_page);
1230 free_rx_chan:
1231 dma_release_channel(ctlr->dma_rx);
1232 free_tx_chan:
1233 dma_release_channel(ctlr->dma_tx);
1234 ctlr->dma_tx = NULL;
1235 return -ENODEV;
1236 }
1237
sh_msiof_release_dma(struct sh_msiof_spi_priv * p)1238 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1239 {
1240 struct spi_controller *ctlr = p->ctlr;
1241
1242 if (!ctlr->dma_tx)
1243 return;
1244
1245 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1246 DMA_FROM_DEVICE);
1247 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1248 DMA_TO_DEVICE);
1249 free_page((unsigned long)p->rx_dma_page);
1250 free_page((unsigned long)p->tx_dma_page);
1251 dma_release_channel(ctlr->dma_rx);
1252 dma_release_channel(ctlr->dma_tx);
1253 }
1254
sh_msiof_spi_probe(struct platform_device * pdev)1255 static int sh_msiof_spi_probe(struct platform_device *pdev)
1256 {
1257 struct spi_controller *ctlr;
1258 const struct sh_msiof_chipdata *chipdata;
1259 struct sh_msiof_spi_info *info;
1260 struct sh_msiof_spi_priv *p;
1261 int i;
1262 int ret;
1263
1264 chipdata = of_device_get_match_data(&pdev->dev);
1265 if (chipdata) {
1266 info = sh_msiof_spi_parse_dt(&pdev->dev);
1267 } else {
1268 chipdata = (const void *)pdev->id_entry->driver_data;
1269 info = dev_get_platdata(&pdev->dev);
1270 }
1271
1272 if (!info) {
1273 dev_err(&pdev->dev, "failed to obtain device info\n");
1274 return -ENXIO;
1275 }
1276
1277 if (info->mode == MSIOF_SPI_SLAVE)
1278 ctlr = spi_alloc_slave(&pdev->dev,
1279 sizeof(struct sh_msiof_spi_priv));
1280 else
1281 ctlr = spi_alloc_master(&pdev->dev,
1282 sizeof(struct sh_msiof_spi_priv));
1283 if (ctlr == NULL)
1284 return -ENOMEM;
1285
1286 p = spi_controller_get_devdata(ctlr);
1287
1288 platform_set_drvdata(pdev, p);
1289 p->ctlr = ctlr;
1290 p->info = info;
1291 p->min_div_pow = chipdata->min_div_pow;
1292
1293 init_completion(&p->done);
1294 init_completion(&p->done_txdma);
1295
1296 p->clk = devm_clk_get(&pdev->dev, NULL);
1297 if (IS_ERR(p->clk)) {
1298 dev_err(&pdev->dev, "cannot get clock\n");
1299 ret = PTR_ERR(p->clk);
1300 goto err1;
1301 }
1302
1303 i = platform_get_irq(pdev, 0);
1304 if (i < 0) {
1305 ret = i;
1306 goto err1;
1307 }
1308
1309 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1310 if (IS_ERR(p->mapbase)) {
1311 ret = PTR_ERR(p->mapbase);
1312 goto err1;
1313 }
1314
1315 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1316 dev_name(&pdev->dev), p);
1317 if (ret) {
1318 dev_err(&pdev->dev, "unable to request irq\n");
1319 goto err1;
1320 }
1321
1322 p->pdev = pdev;
1323 pm_runtime_enable(&pdev->dev);
1324
1325 /* Platform data may override FIFO sizes */
1326 p->tx_fifo_size = chipdata->tx_fifo_size;
1327 p->rx_fifo_size = chipdata->rx_fifo_size;
1328 if (p->info->tx_fifo_override)
1329 p->tx_fifo_size = p->info->tx_fifo_override;
1330 if (p->info->rx_fifo_override)
1331 p->rx_fifo_size = p->info->rx_fifo_override;
1332
1333 /* init controller code */
1334 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1335 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1336 ctlr->flags = chipdata->ctlr_flags;
1337 ctlr->bus_num = pdev->id;
1338 ctlr->num_chipselect = p->info->num_chipselect;
1339 ctlr->dev.of_node = pdev->dev.of_node;
1340 ctlr->setup = sh_msiof_spi_setup;
1341 ctlr->prepare_message = sh_msiof_prepare_message;
1342 ctlr->slave_abort = sh_msiof_slave_abort;
1343 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1344 ctlr->auto_runtime_pm = true;
1345 ctlr->transfer_one = sh_msiof_transfer_one;
1346 ctlr->use_gpio_descriptors = true;
1347 ctlr->max_native_cs = MAX_SS;
1348
1349 ret = sh_msiof_request_dma(p);
1350 if (ret < 0)
1351 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1352
1353 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1354 if (ret < 0) {
1355 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1356 goto err2;
1357 }
1358
1359 return 0;
1360
1361 err2:
1362 sh_msiof_release_dma(p);
1363 pm_runtime_disable(&pdev->dev);
1364 err1:
1365 spi_controller_put(ctlr);
1366 return ret;
1367 }
1368
sh_msiof_spi_remove(struct platform_device * pdev)1369 static int sh_msiof_spi_remove(struct platform_device *pdev)
1370 {
1371 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1372
1373 sh_msiof_release_dma(p);
1374 pm_runtime_disable(&pdev->dev);
1375 return 0;
1376 }
1377
1378 static const struct platform_device_id spi_driver_ids[] = {
1379 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1380 {},
1381 };
1382 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1383
1384 #ifdef CONFIG_PM_SLEEP
sh_msiof_spi_suspend(struct device * dev)1385 static int sh_msiof_spi_suspend(struct device *dev)
1386 {
1387 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1388
1389 return spi_controller_suspend(p->ctlr);
1390 }
1391
sh_msiof_spi_resume(struct device * dev)1392 static int sh_msiof_spi_resume(struct device *dev)
1393 {
1394 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1395
1396 return spi_controller_resume(p->ctlr);
1397 }
1398
1399 static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1400 sh_msiof_spi_resume);
1401 #define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1402 #else
1403 #define DEV_PM_OPS NULL
1404 #endif /* CONFIG_PM_SLEEP */
1405
1406 static struct platform_driver sh_msiof_spi_drv = {
1407 .probe = sh_msiof_spi_probe,
1408 .remove = sh_msiof_spi_remove,
1409 .id_table = spi_driver_ids,
1410 .driver = {
1411 .name = "spi_sh_msiof",
1412 .pm = DEV_PM_OPS,
1413 .of_match_table = of_match_ptr(sh_msiof_match),
1414 },
1415 };
1416 module_platform_driver(sh_msiof_spi_drv);
1417
1418 MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1419 MODULE_AUTHOR("Magnus Damm");
1420 MODULE_LICENSE("GPL v2");
1421 MODULE_ALIAS("platform:spi_sh_msiof");
1422