1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
4 *
5 * the driver does not rely on the native chipselects at all
6 * but only uses the gpio type chipselects
7 *
8 * Based on: spi-bcm2835.c
9 *
10 * Copyright (C) 2015 Martin Sperl
11 */
12
13 #include <linux/clk.h>
14 #include <linux/completion.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_device.h>
25 #include <linux/of_gpio.h>
26 #include <linux/of_irq.h>
27 #include <linux/regmap.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spinlock.h>
30
31 /* define polling limits */
32 static unsigned int polling_limit_us = 30;
33 module_param(polling_limit_us, uint, 0664);
34 MODULE_PARM_DESC(polling_limit_us,
35 "time in us to run a transfer in polling mode - if zero no polling is used\n");
36
37 /*
38 * spi register defines
39 *
40 * note there is garbage in the "official" documentation,
41 * so some data is taken from the file:
42 * brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
43 * inside of:
44 * http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
45 */
46
47 /* SPI register offsets */
48 #define BCM2835_AUX_SPI_CNTL0 0x00
49 #define BCM2835_AUX_SPI_CNTL1 0x04
50 #define BCM2835_AUX_SPI_STAT 0x08
51 #define BCM2835_AUX_SPI_PEEK 0x0C
52 #define BCM2835_AUX_SPI_IO 0x20
53 #define BCM2835_AUX_SPI_TXHOLD 0x30
54
55 /* Bitfields in CNTL0 */
56 #define BCM2835_AUX_SPI_CNTL0_SPEED 0xFFF00000
57 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX 0xFFF
58 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT 20
59 #define BCM2835_AUX_SPI_CNTL0_CS 0x000E0000
60 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT 0x00010000
61 #define BCM2835_AUX_SPI_CNTL0_VAR_CS 0x00008000
62 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH 0x00004000
63 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD 0x00003000
64 #define BCM2835_AUX_SPI_CNTL0_ENABLE 0x00000800
65 #define BCM2835_AUX_SPI_CNTL0_IN_RISING 0x00000400
66 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO 0x00000200
67 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING 0x00000100
68 #define BCM2835_AUX_SPI_CNTL0_CPOL 0x00000080
69 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT 0x00000040
70 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN 0x0000003F
71
72 /* Bitfields in CNTL1 */
73 #define BCM2835_AUX_SPI_CNTL1_CSHIGH 0x00000700
74 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY 0x00000080
75 #define BCM2835_AUX_SPI_CNTL1_IDLE 0x00000040
76 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN 0x00000002
77 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN 0x00000001
78
79 /* Bitfields in STAT */
80 #define BCM2835_AUX_SPI_STAT_TX_LVL 0xFF000000
81 #define BCM2835_AUX_SPI_STAT_RX_LVL 0x00FF0000
82 #define BCM2835_AUX_SPI_STAT_TX_FULL 0x00000400
83 #define BCM2835_AUX_SPI_STAT_TX_EMPTY 0x00000200
84 #define BCM2835_AUX_SPI_STAT_RX_FULL 0x00000100
85 #define BCM2835_AUX_SPI_STAT_RX_EMPTY 0x00000080
86 #define BCM2835_AUX_SPI_STAT_BUSY 0x00000040
87 #define BCM2835_AUX_SPI_STAT_BITCOUNT 0x0000003F
88
89 struct bcm2835aux_spi {
90 void __iomem *regs;
91 struct clk *clk;
92 int irq;
93 u32 cntl[2];
94 const u8 *tx_buf;
95 u8 *rx_buf;
96 int tx_len;
97 int rx_len;
98 int pending;
99
100 u64 count_transfer_polling;
101 u64 count_transfer_irq;
102 u64 count_transfer_irq_after_poll;
103
104 struct dentry *debugfs_dir;
105 };
106
107 #if defined(CONFIG_DEBUG_FS)
bcm2835aux_debugfs_create(struct bcm2835aux_spi * bs,const char * dname)108 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
109 const char *dname)
110 {
111 char name[64];
112 struct dentry *dir;
113
114 /* get full name */
115 snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
116
117 /* the base directory */
118 dir = debugfs_create_dir(name, NULL);
119 bs->debugfs_dir = dir;
120
121 /* the counters */
122 debugfs_create_u64("count_transfer_polling", 0444, dir,
123 &bs->count_transfer_polling);
124 debugfs_create_u64("count_transfer_irq", 0444, dir,
125 &bs->count_transfer_irq);
126 debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
127 &bs->count_transfer_irq_after_poll);
128 }
129
bcm2835aux_debugfs_remove(struct bcm2835aux_spi * bs)130 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
131 {
132 debugfs_remove_recursive(bs->debugfs_dir);
133 bs->debugfs_dir = NULL;
134 }
135 #else
bcm2835aux_debugfs_create(struct bcm2835aux_spi * bs,const char * dname)136 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
137 const char *dname)
138 {
139 }
140
bcm2835aux_debugfs_remove(struct bcm2835aux_spi * bs)141 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
142 {
143 }
144 #endif /* CONFIG_DEBUG_FS */
145
bcm2835aux_rd(struct bcm2835aux_spi * bs,unsigned reg)146 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
147 {
148 return readl(bs->regs + reg);
149 }
150
bcm2835aux_wr(struct bcm2835aux_spi * bs,unsigned reg,u32 val)151 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
152 u32 val)
153 {
154 writel(val, bs->regs + reg);
155 }
156
bcm2835aux_rd_fifo(struct bcm2835aux_spi * bs)157 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
158 {
159 u32 data;
160 int count = min(bs->rx_len, 3);
161
162 data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
163 if (bs->rx_buf) {
164 switch (count) {
165 case 3:
166 *bs->rx_buf++ = (data >> 16) & 0xff;
167 fallthrough;
168 case 2:
169 *bs->rx_buf++ = (data >> 8) & 0xff;
170 fallthrough;
171 case 1:
172 *bs->rx_buf++ = (data >> 0) & 0xff;
173 /* fallthrough - no default */
174 }
175 }
176 bs->rx_len -= count;
177 bs->pending -= count;
178 }
179
bcm2835aux_wr_fifo(struct bcm2835aux_spi * bs)180 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
181 {
182 u32 data;
183 u8 byte;
184 int count;
185 int i;
186
187 /* gather up to 3 bytes to write to the FIFO */
188 count = min(bs->tx_len, 3);
189 data = 0;
190 for (i = 0; i < count; i++) {
191 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
192 data |= byte << (8 * (2 - i));
193 }
194
195 /* and set the variable bit-length */
196 data |= (count * 8) << 24;
197
198 /* and decrement length */
199 bs->tx_len -= count;
200 bs->pending += count;
201
202 /* write to the correct TX-register */
203 if (bs->tx_len)
204 bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
205 else
206 bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
207 }
208
bcm2835aux_spi_reset_hw(struct bcm2835aux_spi * bs)209 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
210 {
211 /* disable spi clearing fifo and interrupts */
212 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
213 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
214 BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
215 }
216
bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi * bs)217 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
218 {
219 u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
220
221 /* check if we have data to read */
222 for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
223 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
224 bcm2835aux_rd_fifo(bs);
225
226 /* check if we have data to write */
227 while (bs->tx_len &&
228 (bs->pending < 12) &&
229 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
230 BCM2835_AUX_SPI_STAT_TX_FULL))) {
231 bcm2835aux_wr_fifo(bs);
232 }
233 }
234
bcm2835aux_spi_interrupt(int irq,void * dev_id)235 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
236 {
237 struct spi_master *master = dev_id;
238 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
239
240 /* IRQ may be shared, so return if our interrupts are disabled */
241 if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
242 (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
243 return IRQ_NONE;
244
245 /* do common fifo handling */
246 bcm2835aux_spi_transfer_helper(bs);
247
248 if (!bs->tx_len) {
249 /* disable tx fifo empty interrupt */
250 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
251 BCM2835_AUX_SPI_CNTL1_IDLE);
252 }
253
254 /* and if rx_len is 0 then disable interrupts and wake up completion */
255 if (!bs->rx_len) {
256 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
257 complete(&master->xfer_completion);
258 }
259
260 return IRQ_HANDLED;
261 }
262
__bcm2835aux_spi_transfer_one_irq(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)263 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
264 struct spi_device *spi,
265 struct spi_transfer *tfr)
266 {
267 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
268
269 /* enable interrupts */
270 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
271 BCM2835_AUX_SPI_CNTL1_TXEMPTY |
272 BCM2835_AUX_SPI_CNTL1_IDLE);
273
274 /* and wait for finish... */
275 return 1;
276 }
277
bcm2835aux_spi_transfer_one_irq(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)278 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
279 struct spi_device *spi,
280 struct spi_transfer *tfr)
281 {
282 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
283
284 /* update statistics */
285 bs->count_transfer_irq++;
286
287 /* fill in registers and fifos before enabling interrupts */
288 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
289 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
290
291 /* fill in tx fifo with data before enabling interrupts */
292 while ((bs->tx_len) &&
293 (bs->pending < 12) &&
294 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
295 BCM2835_AUX_SPI_STAT_TX_FULL))) {
296 bcm2835aux_wr_fifo(bs);
297 }
298
299 /* now run the interrupt mode */
300 return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
301 }
302
bcm2835aux_spi_transfer_one_poll(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)303 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
304 struct spi_device *spi,
305 struct spi_transfer *tfr)
306 {
307 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
308 unsigned long timeout;
309
310 /* update statistics */
311 bs->count_transfer_polling++;
312
313 /* configure spi */
314 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
315 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
316
317 /* set the timeout to at least 2 jiffies */
318 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
319
320 /* loop until finished the transfer */
321 while (bs->rx_len) {
322
323 /* do common fifo handling */
324 bcm2835aux_spi_transfer_helper(bs);
325
326 /* there is still data pending to read check the timeout */
327 if (bs->rx_len && time_after(jiffies, timeout)) {
328 dev_dbg_ratelimited(&spi->dev,
329 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
330 jiffies - timeout,
331 bs->tx_len, bs->rx_len);
332 /* forward to interrupt handler */
333 bs->count_transfer_irq_after_poll++;
334 return __bcm2835aux_spi_transfer_one_irq(master,
335 spi, tfr);
336 }
337 }
338
339 /* and return without waiting for completion */
340 return 0;
341 }
342
bcm2835aux_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * tfr)343 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
344 struct spi_device *spi,
345 struct spi_transfer *tfr)
346 {
347 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
348 unsigned long spi_hz, clk_hz, speed;
349 unsigned long hz_per_byte, byte_limit;
350
351 /* calculate the registers to handle
352 *
353 * note that we use the variable data mode, which
354 * is not optimal for longer transfers as we waste registers
355 * resulting (potentially) in more interrupts when transferring
356 * more than 12 bytes
357 */
358
359 /* set clock */
360 spi_hz = tfr->speed_hz;
361 clk_hz = clk_get_rate(bs->clk);
362
363 if (spi_hz >= clk_hz / 2) {
364 speed = 0;
365 } else if (spi_hz) {
366 speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
367 if (speed > BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
368 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
369 } else { /* the slowest we can go */
370 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
371 }
372 /* mask out old speed from previous spi_transfer */
373 bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
374 /* set the new speed */
375 bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
376
377 tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
378
379 /* set transmit buffers and length */
380 bs->tx_buf = tfr->tx_buf;
381 bs->rx_buf = tfr->rx_buf;
382 bs->tx_len = tfr->len;
383 bs->rx_len = tfr->len;
384 bs->pending = 0;
385
386 /* Calculate the estimated time in us the transfer runs. Note that
387 * there are are 2 idle clocks cycles after each chunk getting
388 * transferred - in our case the chunk size is 3 bytes, so we
389 * approximate this by 9 cycles/byte. This is used to find the number
390 * of Hz per byte per polling limit. E.g., we can transfer 1 byte in
391 * 30 µs per 300,000 Hz of bus clock.
392 */
393 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
394 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
395
396 /* run in polling mode for short transfers */
397 if (tfr->len < byte_limit)
398 return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
399
400 /* run in interrupt mode for all others */
401 return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
402 }
403
bcm2835aux_spi_prepare_message(struct spi_master * master,struct spi_message * msg)404 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
405 struct spi_message *msg)
406 {
407 struct spi_device *spi = msg->spi;
408 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
409
410 bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
411 BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
412 BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
413 bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
414
415 /* handle all the modes */
416 if (spi->mode & SPI_CPOL) {
417 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
418 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
419 } else {
420 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
421 }
422 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
423 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
424
425 return 0;
426 }
427
bcm2835aux_spi_unprepare_message(struct spi_master * master,struct spi_message * msg)428 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
429 struct spi_message *msg)
430 {
431 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
432
433 bcm2835aux_spi_reset_hw(bs);
434
435 return 0;
436 }
437
bcm2835aux_spi_handle_err(struct spi_master * master,struct spi_message * msg)438 static void bcm2835aux_spi_handle_err(struct spi_master *master,
439 struct spi_message *msg)
440 {
441 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
442
443 bcm2835aux_spi_reset_hw(bs);
444 }
445
bcm2835aux_spi_setup(struct spi_device * spi)446 static int bcm2835aux_spi_setup(struct spi_device *spi)
447 {
448 int ret;
449
450 /* sanity check for native cs */
451 if (spi->mode & SPI_NO_CS)
452 return 0;
453 if (gpio_is_valid(spi->cs_gpio)) {
454 /* with gpio-cs set the GPIO to the correct level
455 * and as output (in case the dt has the gpio not configured
456 * as output but native cs)
457 */
458 ret = gpio_direction_output(spi->cs_gpio,
459 (spi->mode & SPI_CS_HIGH) ? 0 : 1);
460 if (ret)
461 dev_err(&spi->dev,
462 "could not set gpio %i as output: %i\n",
463 spi->cs_gpio, ret);
464
465 return ret;
466 }
467
468 /* for dt-backwards compatibility: only support native on CS0
469 * known things not supported with broken native CS:
470 * * multiple chip-selects: cs0-cs2 are all
471 * simultaniously asserted whenever there is a transfer
472 * this even includes SPI_NO_CS
473 * * SPI_CS_HIGH: cs are always asserted low
474 * * cs_change: cs is deasserted after each spi_transfer
475 * * cs_delay_usec: cs is always deasserted one SCK cycle
476 * after the last transfer
477 * probably more...
478 */
479 dev_warn(&spi->dev,
480 "Native CS is not supported - please configure cs-gpio in device-tree\n");
481
482 if (spi->chip_select == 0)
483 return 0;
484
485 dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
486
487 return -EINVAL;
488 }
489
bcm2835aux_spi_probe(struct platform_device * pdev)490 static int bcm2835aux_spi_probe(struct platform_device *pdev)
491 {
492 struct spi_master *master;
493 struct bcm2835aux_spi *bs;
494 unsigned long clk_hz;
495 int err;
496
497 master = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
498 if (!master)
499 return -ENOMEM;
500
501 platform_set_drvdata(pdev, master);
502 master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
503 master->bits_per_word_mask = SPI_BPW_MASK(8);
504 /* even though the driver never officially supported native CS
505 * allow a single native CS for legacy DT support purposes when
506 * no cs-gpio is configured.
507 * Known limitations for native cs are:
508 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
509 * whenever there is a transfer - this even includes SPI_NO_CS
510 * * SPI_CS_HIGH: is ignores - cs are always asserted low
511 * * cs_change: cs is deasserted after each spi_transfer
512 * * cs_delay_usec: cs is always deasserted one SCK cycle after
513 * a spi_transfer
514 */
515 master->num_chipselect = 1;
516 master->setup = bcm2835aux_spi_setup;
517 master->transfer_one = bcm2835aux_spi_transfer_one;
518 master->handle_err = bcm2835aux_spi_handle_err;
519 master->prepare_message = bcm2835aux_spi_prepare_message;
520 master->unprepare_message = bcm2835aux_spi_unprepare_message;
521 master->dev.of_node = pdev->dev.of_node;
522
523 bs = spi_master_get_devdata(master);
524
525 /* the main area */
526 bs->regs = devm_platform_ioremap_resource(pdev, 0);
527 if (IS_ERR(bs->regs))
528 return PTR_ERR(bs->regs);
529
530 bs->clk = devm_clk_get(&pdev->dev, NULL);
531 if (IS_ERR(bs->clk)) {
532 err = PTR_ERR(bs->clk);
533 dev_err(&pdev->dev, "could not get clk: %d\n", err);
534 return err;
535 }
536
537 bs->irq = platform_get_irq(pdev, 0);
538 if (bs->irq <= 0)
539 return bs->irq ? bs->irq : -ENODEV;
540
541 /* this also enables the HW block */
542 err = clk_prepare_enable(bs->clk);
543 if (err) {
544 dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
545 return err;
546 }
547
548 /* just checking if the clock returns a sane value */
549 clk_hz = clk_get_rate(bs->clk);
550 if (!clk_hz) {
551 dev_err(&pdev->dev, "clock returns 0 Hz\n");
552 err = -ENODEV;
553 goto out_clk_disable;
554 }
555
556 /* reset SPI-HW block */
557 bcm2835aux_spi_reset_hw(bs);
558
559 err = devm_request_irq(&pdev->dev, bs->irq,
560 bcm2835aux_spi_interrupt,
561 IRQF_SHARED,
562 dev_name(&pdev->dev), master);
563 if (err) {
564 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
565 goto out_clk_disable;
566 }
567
568 err = spi_register_master(master);
569 if (err) {
570 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
571 goto out_clk_disable;
572 }
573
574 bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
575
576 return 0;
577
578 out_clk_disable:
579 clk_disable_unprepare(bs->clk);
580 return err;
581 }
582
bcm2835aux_spi_remove(struct platform_device * pdev)583 static int bcm2835aux_spi_remove(struct platform_device *pdev)
584 {
585 struct spi_master *master = platform_get_drvdata(pdev);
586 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
587
588 bcm2835aux_debugfs_remove(bs);
589
590 spi_unregister_master(master);
591
592 bcm2835aux_spi_reset_hw(bs);
593
594 /* disable the HW block by releasing the clock */
595 clk_disable_unprepare(bs->clk);
596
597 return 0;
598 }
599
600 static const struct of_device_id bcm2835aux_spi_match[] = {
601 { .compatible = "brcm,bcm2835-aux-spi", },
602 {}
603 };
604 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
605
606 static struct platform_driver bcm2835aux_spi_driver = {
607 .driver = {
608 .name = "spi-bcm2835aux",
609 .of_match_table = bcm2835aux_spi_match,
610 },
611 .probe = bcm2835aux_spi_probe,
612 .remove = bcm2835aux_spi_remove,
613 };
614 module_platform_driver(bcm2835aux_spi_driver);
615
616 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
617 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
618 MODULE_LICENSE("GPL");
619