1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4  */
5 
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7 
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/wait.h>
23 
24 #include <soc/qcom/cmd-db.h>
25 #include <soc/qcom/tcs.h>
26 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
27 
28 #include "rpmh-internal.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace-rpmh.h"
32 
33 #define RSC_DRV_TCS_OFFSET		672
34 #define RSC_DRV_CMD_OFFSET		20
35 
36 /* DRV HW Solver Configuration Information Register */
37 #define DRV_SOLVER_CONFIG		0x04
38 #define DRV_HW_SOLVER_MASK		1
39 #define DRV_HW_SOLVER_SHIFT		24
40 
41 /* DRV TCS Configuration Information Register */
42 #define DRV_PRNT_CHLD_CONFIG		0x0C
43 #define DRV_NUM_TCS_MASK		0x3F
44 #define DRV_NUM_TCS_SHIFT		6
45 #define DRV_NCPT_MASK			0x1F
46 #define DRV_NCPT_SHIFT			27
47 
48 /* Offsets for common TCS Registers, one bit per TCS */
49 #define RSC_DRV_IRQ_ENABLE		0x00
50 #define RSC_DRV_IRQ_STATUS		0x04
51 #define RSC_DRV_IRQ_CLEAR		0x08	/* w/o; write 1 to clear */
52 
53 /*
54  * Offsets for per TCS Registers.
55  *
56  * TCSes start at 0x10 from tcs_base and are stored one after another.
57  * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
58  * of the below to find a register.
59  */
60 #define RSC_DRV_CMD_WAIT_FOR_CMPL	0x10	/* 1 bit per command */
61 #define RSC_DRV_CONTROL			0x14
62 #define RSC_DRV_STATUS			0x18	/* zero if tcs is busy */
63 #define RSC_DRV_CMD_ENABLE		0x1C	/* 1 bit per command */
64 
65 /*
66  * Offsets for per command in a TCS.
67  *
68  * Commands (up to 16) start at 0x30 in a TCS; multiply command index
69  * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
70  */
71 #define RSC_DRV_CMD_MSGID		0x30
72 #define RSC_DRV_CMD_ADDR		0x34
73 #define RSC_DRV_CMD_DATA		0x38
74 #define RSC_DRV_CMD_STATUS		0x3C
75 #define RSC_DRV_CMD_RESP_DATA		0x40
76 
77 #define TCS_AMC_MODE_ENABLE		BIT(16)
78 #define TCS_AMC_MODE_TRIGGER		BIT(24)
79 
80 /* TCS CMD register bit mask */
81 #define CMD_MSGID_LEN			8
82 #define CMD_MSGID_RESP_REQ		BIT(8)
83 #define CMD_MSGID_WRITE			BIT(16)
84 #define CMD_STATUS_ISSUED		BIT(8)
85 #define CMD_STATUS_COMPL		BIT(16)
86 
87 /*
88  * Here's a high level overview of how all the registers in RPMH work
89  * together:
90  *
91  * - The main rpmh-rsc address is the base of a register space that can
92  *   be used to find overall configuration of the hardware
93  *   (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
94  *   space are all the TCS blocks. The offset of the TCS blocks is
95  *   specified in the device tree by "qcom,tcs-offset" and used to
96  *   compute tcs_base.
97  * - TCS blocks come one after another. Type, count, and order are
98  *   specified by the device tree as "qcom,tcs-config".
99  * - Each TCS block has some registers, then space for up to 16 commands.
100  *   Note that though address space is reserved for 16 commands, fewer
101  *   might be present. See ncpt (num cmds per TCS).
102  *
103  * Here's a picture:
104  *
105  *  +---------------------------------------------------+
106  *  |RSC                                                |
107  *  | ctrl                                              |
108  *  |                                                   |
109  *  | Drvs:                                             |
110  *  | +-----------------------------------------------+ |
111  *  | |DRV0                                           | |
112  *  | | ctrl/config                                   | |
113  *  | | IRQ                                           | |
114  *  | |                                               | |
115  *  | | TCSes:                                        | |
116  *  | | +------------------------------------------+  | |
117  *  | | |TCS0  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
118  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
119  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
120  *  | | +------------------------------------------+  | |
121  *  | | +------------------------------------------+  | |
122  *  | | |TCS1  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
123  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
124  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
125  *  | | +------------------------------------------+  | |
126  *  | | +------------------------------------------+  | |
127  *  | | |TCS2  |  |  |  |  |  |  |  |  |  |  |  |  |  | |
128  *  | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15|  | |
129  *  | | |      |  |  |  |  |  |  |  |  |  |  |  |  |  | |
130  *  | | +------------------------------------------+  | |
131  *  | |                    ......                     | |
132  *  | +-----------------------------------------------+ |
133  *  | +-----------------------------------------------+ |
134  *  | |DRV1                                           | |
135  *  | | (same as DRV0)                                | |
136  *  | +-----------------------------------------------+ |
137  *  |                      ......                       |
138  *  +---------------------------------------------------+
139  */
140 
141 static inline void __iomem *
tcs_reg_addr(const struct rsc_drv * drv,int reg,int tcs_id)142 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
143 {
144 	return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
145 }
146 
147 static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)148 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
149 {
150 	return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
151 }
152 
read_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)153 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
154 			int cmd_id)
155 {
156 	return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
157 }
158 
read_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id)159 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
160 {
161 	return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
162 }
163 
write_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id,u32 data)164 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
165 			  int cmd_id, u32 data)
166 {
167 	writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
168 }
169 
write_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)170 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
171 			  u32 data)
172 {
173 	writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
174 }
175 
write_tcs_reg_sync(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)176 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
177 			       u32 data)
178 {
179 	int i;
180 
181 	writel(data, tcs_reg_addr(drv, reg, tcs_id));
182 
183 	/*
184 	 * Wait until we read back the same value.  Use a counter rather than
185 	 * ktime for timeout since this may be called after timekeeping stops.
186 	 */
187 	for (i = 0; i < USEC_PER_SEC; i++) {
188 		if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
189 			return;
190 		udelay(1);
191 	}
192 	pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
193 	       data, tcs_id, reg);
194 }
195 
196 /**
197  * tcs_is_free() - Return if a TCS is totally free.
198  * @drv:    The RSC controller.
199  * @tcs_id: The global ID of this TCS.
200  *
201  * Returns true if nobody has claimed this TCS (by setting tcs_in_use).
202  *
203  * Context: Must be called with the drv->lock held.
204  *
205  * Return: true if the given TCS is free.
206  */
tcs_is_free(struct rsc_drv * drv,int tcs_id)207 static bool tcs_is_free(struct rsc_drv *drv, int tcs_id)
208 {
209 	return !test_bit(tcs_id, drv->tcs_in_use);
210 }
211 
212 /**
213  * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
214  * @drv:  The RSC controller.
215  * @type: SLEEP_TCS or WAKE_TCS
216  *
217  * This will clear the "slots" variable of the given tcs_group and also
218  * tell the hardware to forget about all entries.
219  *
220  * The caller must ensure that no other RPMH actions are happening when this
221  * function is called, since otherwise the device may immediately become
222  * used again even before this function exits.
223  */
tcs_invalidate(struct rsc_drv * drv,int type)224 static void tcs_invalidate(struct rsc_drv *drv, int type)
225 {
226 	int m;
227 	struct tcs_group *tcs = &drv->tcs[type];
228 
229 	/* Caller ensures nobody else is running so no lock */
230 	if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
231 		return;
232 
233 	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
234 		write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
235 		write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, m, 0);
236 	}
237 	bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
238 }
239 
240 /**
241  * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
242  * @drv: The RSC controller.
243  *
244  * The caller must ensure that no other RPMH actions are happening when this
245  * function is called, since otherwise the device may immediately become
246  * used again even before this function exits.
247  */
rpmh_rsc_invalidate(struct rsc_drv * drv)248 void rpmh_rsc_invalidate(struct rsc_drv *drv)
249 {
250 	tcs_invalidate(drv, SLEEP_TCS);
251 	tcs_invalidate(drv, WAKE_TCS);
252 }
253 
254 /**
255  * get_tcs_for_msg() - Get the tcs_group used to send the given message.
256  * @drv: The RSC controller.
257  * @msg: The message we want to send.
258  *
259  * This is normally pretty straightforward except if we are trying to send
260  * an ACTIVE_ONLY message but don't have any active_only TCSes.
261  *
262  * Return: A pointer to a tcs_group or an ERR_PTR.
263  */
get_tcs_for_msg(struct rsc_drv * drv,const struct tcs_request * msg)264 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
265 					 const struct tcs_request *msg)
266 {
267 	int type;
268 	struct tcs_group *tcs;
269 
270 	switch (msg->state) {
271 	case RPMH_ACTIVE_ONLY_STATE:
272 		type = ACTIVE_TCS;
273 		break;
274 	case RPMH_WAKE_ONLY_STATE:
275 		type = WAKE_TCS;
276 		break;
277 	case RPMH_SLEEP_STATE:
278 		type = SLEEP_TCS;
279 		break;
280 	default:
281 		return ERR_PTR(-EINVAL);
282 	}
283 
284 	/*
285 	 * If we are making an active request on a RSC that does not have a
286 	 * dedicated TCS for active state use, then re-purpose a wake TCS to
287 	 * send active votes. This is safe because we ensure any active-only
288 	 * transfers have finished before we use it (maybe by running from
289 	 * the last CPU in PM code).
290 	 */
291 	tcs = &drv->tcs[type];
292 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
293 		tcs = &drv->tcs[WAKE_TCS];
294 
295 	return tcs;
296 }
297 
298 /**
299  * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
300  * @drv:    The RSC controller.
301  * @tcs_id: The global ID of this TCS.
302  *
303  * For ACTIVE_ONLY transfers we want to call back into the client when the
304  * transfer finishes. To do this we need the "request" that the client
305  * originally provided us. This function grabs the request that we stashed
306  * when we started the transfer.
307  *
308  * This only makes sense for ACTIVE_ONLY transfers since those are the only
309  * ones we track sending (the only ones we enable interrupts for and the only
310  * ones we call back to the client for).
311  *
312  * Return: The stashed request.
313  */
get_req_from_tcs(struct rsc_drv * drv,int tcs_id)314 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
315 						  int tcs_id)
316 {
317 	struct tcs_group *tcs;
318 	int i;
319 
320 	for (i = 0; i < TCS_TYPE_NR; i++) {
321 		tcs = &drv->tcs[i];
322 		if (tcs->mask & BIT(tcs_id))
323 			return tcs->req[tcs_id - tcs->offset];
324 	}
325 
326 	return NULL;
327 }
328 
329 /**
330  * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
331  * @drv:     The controller.
332  * @tcs_id:  The global ID of this TCS.
333  * @trigger: If true then untrigger/retrigger. If false then just untrigger.
334  *
335  * In the normal case we only ever call with "trigger=true" to start a
336  * transfer. That will un-trigger/disable the TCS from the last transfer
337  * then trigger/enable for this transfer.
338  *
339  * If we borrowed a wake TCS for an active-only transfer we'll also call
340  * this function with "trigger=false" to just do the un-trigger/disable
341  * before using the TCS for wake purposes again.
342  *
343  * Note that the AP is only in charge of triggering active-only transfers.
344  * The AP never triggers sleep/wake values using this function.
345  */
__tcs_set_trigger(struct rsc_drv * drv,int tcs_id,bool trigger)346 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
347 {
348 	u32 enable;
349 
350 	/*
351 	 * HW req: Clear the DRV_CONTROL and enable TCS again
352 	 * While clearing ensure that the AMC mode trigger is cleared
353 	 * and then the mode enable is cleared.
354 	 */
355 	enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
356 	enable &= ~TCS_AMC_MODE_TRIGGER;
357 	write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
358 	enable &= ~TCS_AMC_MODE_ENABLE;
359 	write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
360 
361 	if (trigger) {
362 		/* Enable the AMC mode on the TCS and then trigger the TCS */
363 		enable = TCS_AMC_MODE_ENABLE;
364 		write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
365 		enable |= TCS_AMC_MODE_TRIGGER;
366 		write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
367 	}
368 }
369 
370 /**
371  * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
372  * @drv:     The controller.
373  * @tcs_id:  The global ID of this TCS.
374  * @enable:  If true then enable; if false then disable
375  *
376  * We only ever call this when we borrow a wake TCS for an active-only
377  * transfer. For active-only TCSes interrupts are always left enabled.
378  */
enable_tcs_irq(struct rsc_drv * drv,int tcs_id,bool enable)379 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
380 {
381 	u32 data;
382 
383 	data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
384 	if (enable)
385 		data |= BIT(tcs_id);
386 	else
387 		data &= ~BIT(tcs_id);
388 	writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
389 }
390 
391 /**
392  * tcs_tx_done() - TX Done interrupt handler.
393  * @irq: The IRQ number (ignored).
394  * @p:   Pointer to "struct rsc_drv".
395  *
396  * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
397  * IRQ for) when a transfer is done.
398  *
399  * Return: IRQ_HANDLED
400  */
tcs_tx_done(int irq,void * p)401 static irqreturn_t tcs_tx_done(int irq, void *p)
402 {
403 	struct rsc_drv *drv = p;
404 	int i, j, err = 0;
405 	unsigned long irq_status;
406 	const struct tcs_request *req;
407 	struct tcs_cmd *cmd;
408 
409 	irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
410 
411 	for_each_set_bit(i, &irq_status, BITS_PER_LONG) {
412 		req = get_req_from_tcs(drv, i);
413 		if (!req) {
414 			WARN_ON(1);
415 			goto skip;
416 		}
417 
418 		err = 0;
419 		for (j = 0; j < req->num_cmds; j++) {
420 			u32 sts;
421 
422 			cmd = &req->cmds[j];
423 			sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
424 			if (!(sts & CMD_STATUS_ISSUED) ||
425 			   ((req->wait_for_compl || cmd->wait) &&
426 			   !(sts & CMD_STATUS_COMPL))) {
427 				pr_err("Incomplete request: %s: addr=%#x data=%#x",
428 				       drv->name, cmd->addr, cmd->data);
429 				err = -EIO;
430 			}
431 		}
432 
433 		trace_rpmh_tx_done(drv, i, req, err);
434 
435 		/*
436 		 * If wake tcs was re-purposed for sending active
437 		 * votes, clear AMC trigger & enable modes and
438 		 * disable interrupt for this TCS
439 		 */
440 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
441 			__tcs_set_trigger(drv, i, false);
442 skip:
443 		/* Reclaim the TCS */
444 		write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
445 		write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, i, 0);
446 		writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
447 		spin_lock(&drv->lock);
448 		clear_bit(i, drv->tcs_in_use);
449 		/*
450 		 * Disable interrupt for WAKE TCS to avoid being
451 		 * spammed with interrupts coming when the solver
452 		 * sends its wake votes.
453 		 */
454 		if (!drv->tcs[ACTIVE_TCS].num_tcs)
455 			enable_tcs_irq(drv, i, false);
456 		spin_unlock(&drv->lock);
457 		wake_up(&drv->tcs_wait);
458 		if (req)
459 			rpmh_tx_done(req, err);
460 	}
461 
462 	return IRQ_HANDLED;
463 }
464 
465 /**
466  * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
467  * @drv:    The controller.
468  * @tcs_id: The global ID of this TCS.
469  * @cmd_id: The index within the TCS to start writing.
470  * @msg:    The message we want to send, which will contain several addr/data
471  *          pairs to program (but few enough that they all fit in one TCS).
472  *
473  * This is used for all types of transfers (active, sleep, and wake).
474  */
__tcs_buffer_write(struct rsc_drv * drv,int tcs_id,int cmd_id,const struct tcs_request * msg)475 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
476 			       const struct tcs_request *msg)
477 {
478 	u32 msgid, cmd_msgid;
479 	u32 cmd_enable = 0;
480 	u32 cmd_complete;
481 	struct tcs_cmd *cmd;
482 	int i, j;
483 
484 	cmd_msgid = CMD_MSGID_LEN;
485 	cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
486 	cmd_msgid |= CMD_MSGID_WRITE;
487 
488 	cmd_complete = read_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id);
489 
490 	for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
491 		cmd = &msg->cmds[i];
492 		cmd_enable |= BIT(j);
493 		cmd_complete |= cmd->wait << j;
494 		msgid = cmd_msgid;
495 		msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
496 
497 		write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
498 		write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
499 		write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
500 		trace_rpmh_send_msg_rcuidle(drv, tcs_id, j, msgid, cmd);
501 	}
502 
503 	write_tcs_reg(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, cmd_complete);
504 	cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
505 	write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
506 }
507 
508 /**
509  * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
510  * @drv: The controller.
511  * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
512  * @msg: The message we want to send, which will contain several addr/data
513  *       pairs to program (but few enough that they all fit in one TCS).
514  *
515  * This will walk through the TCSes in the group and check if any of them
516  * appear to be sending to addresses referenced in the message. If it finds
517  * one it'll return -EBUSY.
518  *
519  * Only for use for active-only transfers.
520  *
521  * Must be called with the drv->lock held since that protects tcs_in_use.
522  *
523  * Return: 0 if nothing in flight or -EBUSY if we should try again later.
524  *         The caller must re-enable interrupts between tries since that's
525  *         the only way tcs_is_free() will ever return true and the only way
526  *         RSC_DRV_CMD_ENABLE will ever be cleared.
527  */
check_for_req_inflight(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)528 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
529 				  const struct tcs_request *msg)
530 {
531 	unsigned long curr_enabled;
532 	u32 addr;
533 	int i, j, k;
534 	int tcs_id = tcs->offset;
535 
536 	for (i = 0; i < tcs->num_tcs; i++, tcs_id++) {
537 		if (tcs_is_free(drv, tcs_id))
538 			continue;
539 
540 		curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
541 
542 		for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
543 			addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j);
544 			for (k = 0; k < msg->num_cmds; k++) {
545 				if (addr == msg->cmds[k].addr)
546 					return -EBUSY;
547 			}
548 		}
549 	}
550 
551 	return 0;
552 }
553 
554 /**
555  * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
556  * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
557  *       we borrowed it because there are zero active-only ones).
558  *
559  * Must be called with the drv->lock held since that protects tcs_in_use.
560  *
561  * Return: The first tcs that's free.
562  */
find_free_tcs(struct tcs_group * tcs)563 static int find_free_tcs(struct tcs_group *tcs)
564 {
565 	int i;
566 
567 	for (i = 0; i < tcs->num_tcs; i++) {
568 		if (tcs_is_free(tcs->drv, tcs->offset + i))
569 			return tcs->offset + i;
570 	}
571 
572 	return -EBUSY;
573 }
574 
575 /**
576  * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
577  * @drv: The controller.
578  * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
579  * @msg: The data to be sent.
580  *
581  * Claims a tcs in the given tcs_group while making sure that no existing cmd
582  * is in flight that would conflict with the one in @msg.
583  *
584  * Context: Must be called with the drv->lock held since that protects
585  * tcs_in_use.
586  *
587  * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
588  * or the tcs_group is full.
589  */
claim_tcs_for_req(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)590 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
591 			     const struct tcs_request *msg)
592 {
593 	int ret;
594 
595 	/*
596 	 * The h/w does not like if we send a request to the same address,
597 	 * when one is already in-flight or being processed.
598 	 */
599 	ret = check_for_req_inflight(drv, tcs, msg);
600 	if (ret)
601 		return ret;
602 
603 	return find_free_tcs(tcs);
604 }
605 
606 /**
607  * rpmh_rsc_send_data() - Write / trigger active-only message.
608  * @drv: The controller.
609  * @msg: The data to be sent.
610  *
611  * NOTES:
612  * - This is only used for "ACTIVE_ONLY" since the limitations of this
613  *   function don't make sense for sleep/wake cases.
614  * - To do the transfer, we will grab a whole TCS for ourselves--we don't
615  *   try to share. If there are none available we'll wait indefinitely
616  *   for a free one.
617  * - This function will not wait for the commands to be finished, only for
618  *   data to be programmed into the RPMh. See rpmh_tx_done() which will
619  *   be called when the transfer is fully complete.
620  * - This function must be called with interrupts enabled. If the hardware
621  *   is busy doing someone else's transfer we need that transfer to fully
622  *   finish so that we can have the hardware, and to fully finish it needs
623  *   the interrupt handler to run. If the interrupts is set to run on the
624  *   active CPU this can never happen if interrupts are disabled.
625  *
626  * Return: 0 on success, -EINVAL on error.
627  */
rpmh_rsc_send_data(struct rsc_drv * drv,const struct tcs_request * msg)628 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
629 {
630 	struct tcs_group *tcs;
631 	int tcs_id;
632 	unsigned long flags;
633 
634 	tcs = get_tcs_for_msg(drv, msg);
635 	if (IS_ERR(tcs))
636 		return PTR_ERR(tcs);
637 
638 	spin_lock_irqsave(&drv->lock, flags);
639 
640 	/* Wait forever for a free tcs. It better be there eventually! */
641 	wait_event_lock_irq(drv->tcs_wait,
642 			    (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
643 			    drv->lock);
644 
645 	tcs->req[tcs_id - tcs->offset] = msg;
646 	set_bit(tcs_id, drv->tcs_in_use);
647 	if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
648 		/*
649 		 * Clear previously programmed WAKE commands in selected
650 		 * repurposed TCS to avoid triggering them. tcs->slots will be
651 		 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
652 		 */
653 		write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
654 		write_tcs_reg_sync(drv, RSC_DRV_CMD_WAIT_FOR_CMPL, tcs_id, 0);
655 		enable_tcs_irq(drv, tcs_id, true);
656 	}
657 	spin_unlock_irqrestore(&drv->lock, flags);
658 
659 	/*
660 	 * These two can be done after the lock is released because:
661 	 * - We marked "tcs_in_use" under lock.
662 	 * - Once "tcs_in_use" has been marked nobody else could be writing
663 	 *   to these registers until the interrupt goes off.
664 	 * - The interrupt can't go off until we trigger w/ the last line
665 	 *   of __tcs_set_trigger() below.
666 	 */
667 	__tcs_buffer_write(drv, tcs_id, 0, msg);
668 	__tcs_set_trigger(drv, tcs_id, true);
669 
670 	return 0;
671 }
672 
673 /**
674  * find_slots() - Find a place to write the given message.
675  * @tcs:    The tcs group to search.
676  * @msg:    The message we want to find room for.
677  * @tcs_id: If we return 0 from the function, we return the global ID of the
678  *          TCS to write to here.
679  * @cmd_id: If we return 0 from the function, we return the index of
680  *          the command array of the returned TCS where the client should
681  *          start writing the message.
682  *
683  * Only for use on sleep/wake TCSes since those are the only ones we maintain
684  * tcs->slots for.
685  *
686  * Return: -ENOMEM if there was no room, else 0.
687  */
find_slots(struct tcs_group * tcs,const struct tcs_request * msg,int * tcs_id,int * cmd_id)688 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
689 		      int *tcs_id, int *cmd_id)
690 {
691 	int slot, offset;
692 	int i = 0;
693 
694 	/* Do over, until we can fit the full payload in a single TCS */
695 	do {
696 		slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
697 						  i, msg->num_cmds, 0);
698 		if (slot >= tcs->num_tcs * tcs->ncpt)
699 			return -ENOMEM;
700 		i += tcs->ncpt;
701 	} while (slot + msg->num_cmds - 1 >= i);
702 
703 	bitmap_set(tcs->slots, slot, msg->num_cmds);
704 
705 	offset = slot / tcs->ncpt;
706 	*tcs_id = offset + tcs->offset;
707 	*cmd_id = slot % tcs->ncpt;
708 
709 	return 0;
710 }
711 
712 /**
713  * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
714  * @drv: The controller.
715  * @msg: The data to be written to the controller.
716  *
717  * This should only be called for for sleep/wake state, never active-only
718  * state.
719  *
720  * The caller must ensure that no other RPMH actions are happening and the
721  * controller is idle when this function is called since it runs lockless.
722  *
723  * Return: 0 if no error; else -error.
724  */
rpmh_rsc_write_ctrl_data(struct rsc_drv * drv,const struct tcs_request * msg)725 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
726 {
727 	struct tcs_group *tcs;
728 	int tcs_id = 0, cmd_id = 0;
729 	int ret;
730 
731 	tcs = get_tcs_for_msg(drv, msg);
732 	if (IS_ERR(tcs))
733 		return PTR_ERR(tcs);
734 
735 	/* find the TCS id and the command in the TCS to write to */
736 	ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
737 	if (!ret)
738 		__tcs_buffer_write(drv, tcs_id, cmd_id, msg);
739 
740 	return ret;
741 }
742 
743 /**
744  * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
745  * @drv: The controller
746  *
747  * Checks if any of the AMCs are busy in handling ACTIVE sets.
748  * This is called from the last cpu powering down before flushing
749  * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
750  * power collapse, so deny from the last cpu's pm notification.
751  *
752  * Context: Must be called with the drv->lock held.
753  *
754  * Return:
755  * * False		- AMCs are idle
756  * * True		- AMCs are busy
757  */
rpmh_rsc_ctrlr_is_busy(struct rsc_drv * drv)758 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
759 {
760 	int m;
761 	struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
762 
763 	/*
764 	 * If we made an active request on a RSC that does not have a
765 	 * dedicated TCS for active state use, then re-purposed wake TCSes
766 	 * should be checked for not busy, because we used wake TCSes for
767 	 * active requests in this case.
768 	 */
769 	if (!tcs->num_tcs)
770 		tcs = &drv->tcs[WAKE_TCS];
771 
772 	for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++) {
773 		if (!tcs_is_free(drv, m))
774 			return true;
775 	}
776 
777 	return false;
778 }
779 
780 /**
781  * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
782  * @nfb:    Pointer to the notifier block in struct rsc_drv.
783  * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
784  * @v:      Unused
785  *
786  * This function is given to cpu_pm_register_notifier so we can be informed
787  * about when CPUs go down. When all CPUs go down we know no more active
788  * transfers will be started so we write sleep/wake sets. This function gets
789  * called from cpuidle code paths and also at system suspend time.
790  *
791  * If its last CPU going down and AMCs are not busy then writes cached sleep
792  * and wake messages to TCSes. The firmware then takes care of triggering
793  * them when entering deepest low power modes.
794  *
795  * Return: See cpu_pm_register_notifier()
796  */
rpmh_rsc_cpu_pm_callback(struct notifier_block * nfb,unsigned long action,void * v)797 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
798 				    unsigned long action, void *v)
799 {
800 	struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
801 	int ret = NOTIFY_OK;
802 	int cpus_in_pm;
803 
804 	switch (action) {
805 	case CPU_PM_ENTER:
806 		cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
807 		/*
808 		 * NOTE: comments for num_online_cpus() point out that it's
809 		 * only a snapshot so we need to be careful. It should be OK
810 		 * for us to use, though.  It's important for us not to miss
811 		 * if we're the last CPU going down so it would only be a
812 		 * problem if a CPU went offline right after we did the check
813 		 * AND that CPU was not idle AND that CPU was the last non-idle
814 		 * CPU. That can't happen. CPUs would have to come out of idle
815 		 * before the CPU could go offline.
816 		 */
817 		if (cpus_in_pm < num_online_cpus())
818 			return NOTIFY_OK;
819 		break;
820 	case CPU_PM_ENTER_FAILED:
821 	case CPU_PM_EXIT:
822 		atomic_dec(&drv->cpus_in_pm);
823 		return NOTIFY_OK;
824 	default:
825 		return NOTIFY_DONE;
826 	}
827 
828 	/*
829 	 * It's likely we're on the last CPU. Grab the drv->lock and write
830 	 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
831 	 * means that if we race with another CPU coming up we are still
832 	 * guaranteed to be safe. If another CPU came up just after we checked
833 	 * and has grabbed the lock or started an active transfer then we'll
834 	 * notice we're busy and abort. If another CPU comes up after we start
835 	 * flushing it will be blocked from starting an active transfer until
836 	 * we're done flushing. If another CPU starts an active transfer after
837 	 * we release the lock we're still OK because we're no longer the last
838 	 * CPU.
839 	 */
840 	if (spin_trylock(&drv->lock)) {
841 		if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
842 			ret = NOTIFY_BAD;
843 		spin_unlock(&drv->lock);
844 	} else {
845 		/* Another CPU must be up */
846 		return NOTIFY_OK;
847 	}
848 
849 	if (ret == NOTIFY_BAD) {
850 		/* Double-check if we're here because someone else is up */
851 		if (cpus_in_pm < num_online_cpus())
852 			ret = NOTIFY_OK;
853 		else
854 			/* We won't be called w/ CPU_PM_ENTER_FAILED */
855 			atomic_dec(&drv->cpus_in_pm);
856 	}
857 
858 	return ret;
859 }
860 
rpmh_probe_tcs_config(struct platform_device * pdev,struct rsc_drv * drv,void __iomem * base)861 static int rpmh_probe_tcs_config(struct platform_device *pdev,
862 				 struct rsc_drv *drv, void __iomem *base)
863 {
864 	struct tcs_type_config {
865 		u32 type;
866 		u32 n;
867 	} tcs_cfg[TCS_TYPE_NR] = { { 0 } };
868 	struct device_node *dn = pdev->dev.of_node;
869 	u32 config, max_tcs, ncpt, offset;
870 	int i, ret, n, st = 0;
871 	struct tcs_group *tcs;
872 
873 	ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
874 	if (ret)
875 		return ret;
876 	drv->tcs_base = base + offset;
877 
878 	config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
879 
880 	max_tcs = config;
881 	max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
882 	max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
883 
884 	ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
885 	ncpt = ncpt >> DRV_NCPT_SHIFT;
886 
887 	n = of_property_count_u32_elems(dn, "qcom,tcs-config");
888 	if (n != 2 * TCS_TYPE_NR)
889 		return -EINVAL;
890 
891 	for (i = 0; i < TCS_TYPE_NR; i++) {
892 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
893 						 i * 2, &tcs_cfg[i].type);
894 		if (ret)
895 			return ret;
896 		if (tcs_cfg[i].type >= TCS_TYPE_NR)
897 			return -EINVAL;
898 
899 		ret = of_property_read_u32_index(dn, "qcom,tcs-config",
900 						 i * 2 + 1, &tcs_cfg[i].n);
901 		if (ret)
902 			return ret;
903 		if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
904 			return -EINVAL;
905 	}
906 
907 	for (i = 0; i < TCS_TYPE_NR; i++) {
908 		tcs = &drv->tcs[tcs_cfg[i].type];
909 		if (tcs->drv)
910 			return -EINVAL;
911 		tcs->drv = drv;
912 		tcs->type = tcs_cfg[i].type;
913 		tcs->num_tcs = tcs_cfg[i].n;
914 		tcs->ncpt = ncpt;
915 
916 		if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
917 			continue;
918 
919 		if (st + tcs->num_tcs > max_tcs ||
920 		    st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
921 			return -EINVAL;
922 
923 		tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
924 		tcs->offset = st;
925 		st += tcs->num_tcs;
926 	}
927 
928 	drv->num_tcs = st;
929 
930 	return 0;
931 }
932 
rpmh_rsc_probe(struct platform_device * pdev)933 static int rpmh_rsc_probe(struct platform_device *pdev)
934 {
935 	struct device_node *dn = pdev->dev.of_node;
936 	struct rsc_drv *drv;
937 	struct resource *res;
938 	char drv_id[10] = {0};
939 	int ret, irq;
940 	u32 solver_config;
941 	void __iomem *base;
942 
943 	/*
944 	 * Even though RPMh doesn't directly use cmd-db, all of its children
945 	 * do. To avoid adding this check to our children we'll do it now.
946 	 */
947 	ret = cmd_db_ready();
948 	if (ret) {
949 		if (ret != -EPROBE_DEFER)
950 			dev_err(&pdev->dev, "Command DB not available (%d)\n",
951 									ret);
952 		return ret;
953 	}
954 
955 	drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
956 	if (!drv)
957 		return -ENOMEM;
958 
959 	ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
960 	if (ret)
961 		return ret;
962 
963 	drv->name = of_get_property(dn, "label", NULL);
964 	if (!drv->name)
965 		drv->name = dev_name(&pdev->dev);
966 
967 	snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
968 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, drv_id);
969 	base = devm_ioremap_resource(&pdev->dev, res);
970 	if (IS_ERR(base))
971 		return PTR_ERR(base);
972 
973 	ret = rpmh_probe_tcs_config(pdev, drv, base);
974 	if (ret)
975 		return ret;
976 
977 	spin_lock_init(&drv->lock);
978 	init_waitqueue_head(&drv->tcs_wait);
979 	bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
980 
981 	irq = platform_get_irq(pdev, drv->id);
982 	if (irq < 0)
983 		return irq;
984 
985 	ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
986 			       IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
987 			       drv->name, drv);
988 	if (ret)
989 		return ret;
990 
991 	/*
992 	 * CPU PM notification are not required for controllers that support
993 	 * 'HW solver' mode where they can be in autonomous mode executing low
994 	 * power mode to power down.
995 	 */
996 	solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
997 	solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
998 	solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
999 	if (!solver_config) {
1000 		drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
1001 		cpu_pm_register_notifier(&drv->rsc_pm);
1002 	}
1003 
1004 	/* Enable the active TCS to send requests immediately */
1005 	writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
1006 		       drv->tcs_base + RSC_DRV_IRQ_ENABLE);
1007 
1008 	spin_lock_init(&drv->client.cache_lock);
1009 	INIT_LIST_HEAD(&drv->client.cache);
1010 	INIT_LIST_HEAD(&drv->client.batch_cache);
1011 
1012 	dev_set_drvdata(&pdev->dev, drv);
1013 
1014 	return devm_of_platform_populate(&pdev->dev);
1015 }
1016 
1017 static const struct of_device_id rpmh_drv_match[] = {
1018 	{ .compatible = "qcom,rpmh-rsc", },
1019 	{ }
1020 };
1021 
1022 static struct platform_driver rpmh_driver = {
1023 	.probe = rpmh_rsc_probe,
1024 	.driver = {
1025 		  .name = "rpmh",
1026 		  .of_match_table = rpmh_drv_match,
1027 		  .suppress_bind_attrs = true,
1028 	},
1029 };
1030 
rpmh_driver_init(void)1031 static int __init rpmh_driver_init(void)
1032 {
1033 	return platform_driver_register(&rpmh_driver);
1034 }
1035 arch_initcall(rpmh_driver_init);
1036