1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, Linaro Limited
5 */
6
7 #include <linux/module.h>
8 #include <linux/err.h>
9 #include <linux/debugfs.h>
10 #include <linux/string.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/of.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_domain.h>
21 #include <linux/pm_opp.h>
22 #include <linux/interrupt.h>
23 #include <linux/regmap.h>
24 #include <linux/mfd/syscon.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/clk.h>
27 #include <linux/nvmem-consumer.h>
28
29 /* Register Offsets for RB-CPR and Bit Definitions */
30
31 /* RBCPR Version Register */
32 #define REG_RBCPR_VERSION 0
33 #define RBCPR_VER_2 0x02
34 #define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
35
36 /* RBCPR Gate Count and Target Registers */
37 #define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
38
39 #define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
40 #define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
41 #define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
42 #define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
43
44 /* RBCPR Timer Control */
45 #define REG_RBCPR_TIMER_INTERVAL 0x44
46 #define REG_RBIF_TIMER_ADJUST 0x4c
47
48 #define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
49 #define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
50 #define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
51 #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
52 #define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
53 #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
54
55 /* RBCPR Config Register */
56 #define REG_RBIF_LIMIT 0x48
57 #define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
58 #define RBIF_LIMIT_CEILING_SHIFT 6
59 #define RBIF_LIMIT_FLOOR_BITS 6
60 #define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
61
62 #define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
63 #define RBIF_LIMIT_FLOOR_DEFAULT 0
64
65 #define REG_RBIF_SW_VLEVEL 0x94
66 #define RBIF_SW_VLEVEL_DEFAULT 0x20
67
68 #define REG_RBCPR_STEP_QUOT 0x80
69 #define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
70 #define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
71 #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
72
73 /* RBCPR Control Register */
74 #define REG_RBCPR_CTL 0x90
75
76 #define RBCPR_CTL_LOOP_EN BIT(0)
77 #define RBCPR_CTL_TIMER_EN BIT(3)
78 #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
79 #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
80 #define RBCPR_CTL_COUNT_MODE BIT(10)
81 #define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
82 #define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
83 #define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
84 #define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
85
86 /* RBCPR Ack/Nack Response */
87 #define REG_RBIF_CONT_ACK_CMD 0x98
88 #define REG_RBIF_CONT_NACK_CMD 0x9c
89
90 /* RBCPR Result status Register */
91 #define REG_RBCPR_RESULT_0 0xa0
92
93 #define RBCPR_RESULT0_BUSY_SHIFT 19
94 #define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
95 #define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
96 #define RBCPR_RESULT0_ERROR_SHIFT 6
97 #define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
98 #define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
99 #define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
100 #define RBCPR_RESULT0_STEP_UP_SHIFT 1
101
102 /* RBCPR Interrupt Control Register */
103 #define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
104 #define REG_RBIF_IRQ_CLEAR 0x110
105 #define REG_RBIF_IRQ_STATUS 0x114
106
107 #define CPR_INT_DONE BIT(0)
108 #define CPR_INT_MIN BIT(1)
109 #define CPR_INT_DOWN BIT(2)
110 #define CPR_INT_MID BIT(3)
111 #define CPR_INT_UP BIT(4)
112 #define CPR_INT_MAX BIT(5)
113 #define CPR_INT_CLAMP BIT(6)
114 #define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
115 CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
116 #define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
117
118 #define CPR_NUM_RING_OSC 8
119
120 /* CPR eFuse parameters */
121 #define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
122
123 #define CPR_FUSE_MIN_QUOT_DIFF 50
124
125 #define FUSE_REVISION_UNKNOWN (-1)
126
127 enum voltage_change_dir {
128 NO_CHANGE,
129 DOWN,
130 UP,
131 };
132
133 struct cpr_fuse {
134 char *ring_osc;
135 char *init_voltage;
136 char *quotient;
137 char *quotient_offset;
138 };
139
140 struct fuse_corner_data {
141 int ref_uV;
142 int max_uV;
143 int min_uV;
144 int max_volt_scale;
145 int max_quot_scale;
146 /* fuse quot */
147 int quot_offset;
148 int quot_scale;
149 int quot_adjust;
150 /* fuse quot_offset */
151 int quot_offset_scale;
152 int quot_offset_adjust;
153 };
154
155 struct cpr_fuses {
156 int init_voltage_step;
157 int init_voltage_width;
158 struct fuse_corner_data *fuse_corner_data;
159 };
160
161 struct corner_data {
162 unsigned int fuse_corner;
163 unsigned long freq;
164 };
165
166 struct cpr_desc {
167 unsigned int num_fuse_corners;
168 int min_diff_quot;
169 int *step_quot;
170
171 unsigned int timer_delay_us;
172 unsigned int timer_cons_up;
173 unsigned int timer_cons_down;
174 unsigned int up_threshold;
175 unsigned int down_threshold;
176 unsigned int idle_clocks;
177 unsigned int gcnt_us;
178 unsigned int vdd_apc_step_up_limit;
179 unsigned int vdd_apc_step_down_limit;
180 unsigned int clamp_timer_interval;
181
182 struct cpr_fuses cpr_fuses;
183 bool reduce_to_fuse_uV;
184 bool reduce_to_corner_uV;
185 };
186
187 struct acc_desc {
188 unsigned int enable_reg;
189 u32 enable_mask;
190
191 struct reg_sequence *config;
192 struct reg_sequence *settings;
193 int num_regs_per_fuse;
194 };
195
196 struct cpr_acc_desc {
197 const struct cpr_desc *cpr_desc;
198 const struct acc_desc *acc_desc;
199 };
200
201 struct fuse_corner {
202 int min_uV;
203 int max_uV;
204 int uV;
205 int quot;
206 int step_quot;
207 const struct reg_sequence *accs;
208 int num_accs;
209 unsigned long max_freq;
210 u8 ring_osc_idx;
211 };
212
213 struct corner {
214 int min_uV;
215 int max_uV;
216 int uV;
217 int last_uV;
218 int quot_adjust;
219 u32 save_ctl;
220 u32 save_irq;
221 unsigned long freq;
222 struct fuse_corner *fuse_corner;
223 };
224
225 struct cpr_drv {
226 unsigned int num_corners;
227 unsigned int ref_clk_khz;
228
229 struct generic_pm_domain pd;
230 struct device *dev;
231 struct device *attached_cpu_dev;
232 struct mutex lock;
233 void __iomem *base;
234 struct corner *corner;
235 struct regulator *vdd_apc;
236 struct clk *cpu_clk;
237 struct regmap *tcsr;
238 bool loop_disabled;
239 u32 gcnt;
240 unsigned long flags;
241
242 struct fuse_corner *fuse_corners;
243 struct corner *corners;
244
245 const struct cpr_desc *desc;
246 const struct acc_desc *acc_desc;
247 const struct cpr_fuse *cpr_fuses;
248
249 struct dentry *debugfs;
250 };
251
cpr_is_allowed(struct cpr_drv * drv)252 static bool cpr_is_allowed(struct cpr_drv *drv)
253 {
254 return !drv->loop_disabled;
255 }
256
cpr_write(struct cpr_drv * drv,u32 offset,u32 value)257 static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
258 {
259 writel_relaxed(value, drv->base + offset);
260 }
261
cpr_read(struct cpr_drv * drv,u32 offset)262 static u32 cpr_read(struct cpr_drv *drv, u32 offset)
263 {
264 return readl_relaxed(drv->base + offset);
265 }
266
267 static void
cpr_masked_write(struct cpr_drv * drv,u32 offset,u32 mask,u32 value)268 cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
269 {
270 u32 val;
271
272 val = readl_relaxed(drv->base + offset);
273 val &= ~mask;
274 val |= value & mask;
275 writel_relaxed(val, drv->base + offset);
276 }
277
cpr_irq_clr(struct cpr_drv * drv)278 static void cpr_irq_clr(struct cpr_drv *drv)
279 {
280 cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
281 }
282
cpr_irq_clr_nack(struct cpr_drv * drv)283 static void cpr_irq_clr_nack(struct cpr_drv *drv)
284 {
285 cpr_irq_clr(drv);
286 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
287 }
288
cpr_irq_clr_ack(struct cpr_drv * drv)289 static void cpr_irq_clr_ack(struct cpr_drv *drv)
290 {
291 cpr_irq_clr(drv);
292 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
293 }
294
cpr_irq_set(struct cpr_drv * drv,u32 int_bits)295 static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
296 {
297 cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
298 }
299
cpr_ctl_modify(struct cpr_drv * drv,u32 mask,u32 value)300 static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
301 {
302 cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
303 }
304
cpr_ctl_enable(struct cpr_drv * drv,struct corner * corner)305 static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
306 {
307 u32 val, mask;
308 const struct cpr_desc *desc = drv->desc;
309
310 /* Program Consecutive Up & Down */
311 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
312 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
313 mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
314 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
315 cpr_masked_write(drv, REG_RBCPR_CTL,
316 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
317 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
318 corner->save_ctl);
319 cpr_irq_set(drv, corner->save_irq);
320
321 if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
322 val = RBCPR_CTL_LOOP_EN;
323 else
324 val = 0;
325 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
326 }
327
cpr_ctl_disable(struct cpr_drv * drv)328 static void cpr_ctl_disable(struct cpr_drv *drv)
329 {
330 cpr_irq_set(drv, 0);
331 cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
332 RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
333 cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
334 RBIF_TIMER_ADJ_CONS_UP_MASK |
335 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
336 cpr_irq_clr(drv);
337 cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
338 cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
339 cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
340 }
341
cpr_ctl_is_enabled(struct cpr_drv * drv)342 static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
343 {
344 u32 reg_val;
345
346 reg_val = cpr_read(drv, REG_RBCPR_CTL);
347 return reg_val & RBCPR_CTL_LOOP_EN;
348 }
349
cpr_ctl_is_busy(struct cpr_drv * drv)350 static bool cpr_ctl_is_busy(struct cpr_drv *drv)
351 {
352 u32 reg_val;
353
354 reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
355 return reg_val & RBCPR_RESULT0_BUSY_MASK;
356 }
357
cpr_corner_save(struct cpr_drv * drv,struct corner * corner)358 static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
359 {
360 corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
361 corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
362 }
363
cpr_corner_restore(struct cpr_drv * drv,struct corner * corner)364 static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
365 {
366 u32 gcnt, ctl, irq, ro_sel, step_quot;
367 struct fuse_corner *fuse = corner->fuse_corner;
368 const struct cpr_desc *desc = drv->desc;
369 int i;
370
371 ro_sel = fuse->ring_osc_idx;
372 gcnt = drv->gcnt;
373 gcnt |= fuse->quot - corner->quot_adjust;
374
375 /* Program the step quotient and idle clocks */
376 step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
377 step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
378 cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
379
380 /* Clear the target quotient value and gate count of all ROs */
381 for (i = 0; i < CPR_NUM_RING_OSC; i++)
382 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
383
384 cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
385 ctl = corner->save_ctl;
386 cpr_write(drv, REG_RBCPR_CTL, ctl);
387 irq = corner->save_irq;
388 cpr_irq_set(drv, irq);
389 dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
390 ctl, irq);
391 }
392
cpr_set_acc(struct regmap * tcsr,struct fuse_corner * f,struct fuse_corner * end)393 static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
394 struct fuse_corner *end)
395 {
396 if (f == end)
397 return;
398
399 if (f < end) {
400 for (f += 1; f <= end; f++)
401 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
402 } else {
403 for (f -= 1; f >= end; f--)
404 regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
405 }
406 }
407
cpr_pre_voltage(struct cpr_drv * drv,struct fuse_corner * fuse_corner,enum voltage_change_dir dir)408 static int cpr_pre_voltage(struct cpr_drv *drv,
409 struct fuse_corner *fuse_corner,
410 enum voltage_change_dir dir)
411 {
412 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
413
414 if (drv->tcsr && dir == DOWN)
415 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
416
417 return 0;
418 }
419
cpr_post_voltage(struct cpr_drv * drv,struct fuse_corner * fuse_corner,enum voltage_change_dir dir)420 static int cpr_post_voltage(struct cpr_drv *drv,
421 struct fuse_corner *fuse_corner,
422 enum voltage_change_dir dir)
423 {
424 struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
425
426 if (drv->tcsr && dir == UP)
427 cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
428
429 return 0;
430 }
431
cpr_scale_voltage(struct cpr_drv * drv,struct corner * corner,int new_uV,enum voltage_change_dir dir)432 static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
433 int new_uV, enum voltage_change_dir dir)
434 {
435 int ret;
436 struct fuse_corner *fuse_corner = corner->fuse_corner;
437
438 ret = cpr_pre_voltage(drv, fuse_corner, dir);
439 if (ret)
440 return ret;
441
442 ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
443 if (ret) {
444 dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
445 new_uV);
446 return ret;
447 }
448
449 ret = cpr_post_voltage(drv, fuse_corner, dir);
450 if (ret)
451 return ret;
452
453 return 0;
454 }
455
cpr_get_cur_perf_state(struct cpr_drv * drv)456 static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
457 {
458 return drv->corner ? drv->corner - drv->corners + 1 : 0;
459 }
460
cpr_scale(struct cpr_drv * drv,enum voltage_change_dir dir)461 static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
462 {
463 u32 val, error_steps, reg_mask;
464 int last_uV, new_uV, step_uV, ret;
465 struct corner *corner;
466 const struct cpr_desc *desc = drv->desc;
467
468 if (dir != UP && dir != DOWN)
469 return 0;
470
471 step_uV = regulator_get_linear_step(drv->vdd_apc);
472 if (!step_uV)
473 return -EINVAL;
474
475 corner = drv->corner;
476
477 val = cpr_read(drv, REG_RBCPR_RESULT_0);
478
479 error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
480 error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
481 last_uV = corner->last_uV;
482
483 if (dir == UP) {
484 if (desc->clamp_timer_interval &&
485 error_steps < desc->up_threshold) {
486 /*
487 * Handle the case where another measurement started
488 * after the interrupt was triggered due to a core
489 * exiting from power collapse.
490 */
491 error_steps = max(desc->up_threshold,
492 desc->vdd_apc_step_up_limit);
493 }
494
495 if (last_uV >= corner->max_uV) {
496 cpr_irq_clr_nack(drv);
497
498 /* Maximize the UP threshold */
499 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
500 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
501 val = reg_mask;
502 cpr_ctl_modify(drv, reg_mask, val);
503
504 /* Disable UP interrupt */
505 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
506
507 return 0;
508 }
509
510 if (error_steps > desc->vdd_apc_step_up_limit)
511 error_steps = desc->vdd_apc_step_up_limit;
512
513 /* Calculate new voltage */
514 new_uV = last_uV + error_steps * step_uV;
515 new_uV = min(new_uV, corner->max_uV);
516
517 dev_dbg(drv->dev,
518 "UP: -> new_uV: %d last_uV: %d perf state: %u\n",
519 new_uV, last_uV, cpr_get_cur_perf_state(drv));
520 } else {
521 if (desc->clamp_timer_interval &&
522 error_steps < desc->down_threshold) {
523 /*
524 * Handle the case where another measurement started
525 * after the interrupt was triggered due to a core
526 * exiting from power collapse.
527 */
528 error_steps = max(desc->down_threshold,
529 desc->vdd_apc_step_down_limit);
530 }
531
532 if (last_uV <= corner->min_uV) {
533 cpr_irq_clr_nack(drv);
534
535 /* Enable auto nack down */
536 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
537 val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
538
539 cpr_ctl_modify(drv, reg_mask, val);
540
541 /* Disable DOWN interrupt */
542 cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
543
544 return 0;
545 }
546
547 if (error_steps > desc->vdd_apc_step_down_limit)
548 error_steps = desc->vdd_apc_step_down_limit;
549
550 /* Calculate new voltage */
551 new_uV = last_uV - error_steps * step_uV;
552 new_uV = max(new_uV, corner->min_uV);
553
554 dev_dbg(drv->dev,
555 "DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
556 new_uV, last_uV, cpr_get_cur_perf_state(drv));
557 }
558
559 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
560 if (ret) {
561 cpr_irq_clr_nack(drv);
562 return ret;
563 }
564 drv->corner->last_uV = new_uV;
565
566 if (dir == UP) {
567 /* Disable auto nack down */
568 reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
569 val = 0;
570 } else {
571 /* Restore default threshold for UP */
572 reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
573 reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
574 val = desc->up_threshold;
575 val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
576 }
577
578 cpr_ctl_modify(drv, reg_mask, val);
579
580 /* Re-enable default interrupts */
581 cpr_irq_set(drv, CPR_INT_DEFAULT);
582
583 /* Ack */
584 cpr_irq_clr_ack(drv);
585
586 return 0;
587 }
588
cpr_irq_handler(int irq,void * dev)589 static irqreturn_t cpr_irq_handler(int irq, void *dev)
590 {
591 struct cpr_drv *drv = dev;
592 const struct cpr_desc *desc = drv->desc;
593 irqreturn_t ret = IRQ_HANDLED;
594 u32 val;
595
596 mutex_lock(&drv->lock);
597
598 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
599 if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
600 val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
601
602 dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
603
604 if (!cpr_ctl_is_enabled(drv)) {
605 dev_dbg(drv->dev, "CPR is disabled\n");
606 ret = IRQ_NONE;
607 } else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
608 dev_dbg(drv->dev, "CPR measurement is not ready\n");
609 } else if (!cpr_is_allowed(drv)) {
610 val = cpr_read(drv, REG_RBCPR_CTL);
611 dev_err_ratelimited(drv->dev,
612 "Interrupt broken? RBCPR_CTL = %#02x\n",
613 val);
614 ret = IRQ_NONE;
615 } else {
616 /*
617 * Following sequence of handling is as per each IRQ's
618 * priority
619 */
620 if (val & CPR_INT_UP) {
621 cpr_scale(drv, UP);
622 } else if (val & CPR_INT_DOWN) {
623 cpr_scale(drv, DOWN);
624 } else if (val & CPR_INT_MIN) {
625 cpr_irq_clr_nack(drv);
626 } else if (val & CPR_INT_MAX) {
627 cpr_irq_clr_nack(drv);
628 } else if (val & CPR_INT_MID) {
629 /* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
630 dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
631 } else {
632 dev_dbg(drv->dev,
633 "IRQ occurred for unknown flag (%#08x)\n", val);
634 }
635
636 /* Save register values for the corner */
637 cpr_corner_save(drv, drv->corner);
638 }
639
640 mutex_unlock(&drv->lock);
641
642 return ret;
643 }
644
cpr_enable(struct cpr_drv * drv)645 static int cpr_enable(struct cpr_drv *drv)
646 {
647 int ret;
648
649 ret = regulator_enable(drv->vdd_apc);
650 if (ret)
651 return ret;
652
653 mutex_lock(&drv->lock);
654
655 if (cpr_is_allowed(drv) && drv->corner) {
656 cpr_irq_clr(drv);
657 cpr_corner_restore(drv, drv->corner);
658 cpr_ctl_enable(drv, drv->corner);
659 }
660
661 mutex_unlock(&drv->lock);
662
663 return 0;
664 }
665
cpr_disable(struct cpr_drv * drv)666 static int cpr_disable(struct cpr_drv *drv)
667 {
668 mutex_lock(&drv->lock);
669
670 if (cpr_is_allowed(drv)) {
671 cpr_ctl_disable(drv);
672 cpr_irq_clr(drv);
673 }
674
675 mutex_unlock(&drv->lock);
676
677 return regulator_disable(drv->vdd_apc);
678 }
679
cpr_config(struct cpr_drv * drv)680 static int cpr_config(struct cpr_drv *drv)
681 {
682 int i;
683 u32 val, gcnt;
684 struct corner *corner;
685 const struct cpr_desc *desc = drv->desc;
686
687 /* Disable interrupt and CPR */
688 cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
689 cpr_write(drv, REG_RBCPR_CTL, 0);
690
691 /* Program the default HW ceiling, floor and vlevel */
692 val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
693 << RBIF_LIMIT_CEILING_SHIFT;
694 val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
695 cpr_write(drv, REG_RBIF_LIMIT, val);
696 cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
697
698 /*
699 * Clear the target quotient value and gate count of all
700 * ring oscillators
701 */
702 for (i = 0; i < CPR_NUM_RING_OSC; i++)
703 cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
704
705 /* Init and save gcnt */
706 gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
707 gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
708 gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
709 drv->gcnt = gcnt;
710
711 /* Program the delay count for the timer */
712 val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
713 cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
714 dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
715 desc->timer_delay_us);
716
717 /* Program Consecutive Up & Down */
718 val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
719 val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
720 val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
721 cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
722
723 /* Program the control register */
724 val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
725 val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
726 val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
727 val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
728 cpr_write(drv, REG_RBCPR_CTL, val);
729
730 for (i = 0; i < drv->num_corners; i++) {
731 corner = &drv->corners[i];
732 corner->save_ctl = val;
733 corner->save_irq = CPR_INT_DEFAULT;
734 }
735
736 cpr_irq_set(drv, CPR_INT_DEFAULT);
737
738 val = cpr_read(drv, REG_RBCPR_VERSION);
739 if (val <= RBCPR_VER_2)
740 drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
741
742 return 0;
743 }
744
cpr_set_performance_state(struct generic_pm_domain * domain,unsigned int state)745 static int cpr_set_performance_state(struct generic_pm_domain *domain,
746 unsigned int state)
747 {
748 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
749 struct corner *corner, *end;
750 enum voltage_change_dir dir;
751 int ret = 0, new_uV;
752
753 mutex_lock(&drv->lock);
754
755 dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
756 __func__, state, cpr_get_cur_perf_state(drv));
757
758 /*
759 * Determine new corner we're going to.
760 * Remove one since lowest performance state is 1.
761 */
762 corner = drv->corners + state - 1;
763 end = &drv->corners[drv->num_corners - 1];
764 if (corner > end || corner < drv->corners) {
765 ret = -EINVAL;
766 goto unlock;
767 }
768
769 /* Determine direction */
770 if (drv->corner > corner)
771 dir = DOWN;
772 else if (drv->corner < corner)
773 dir = UP;
774 else
775 dir = NO_CHANGE;
776
777 if (cpr_is_allowed(drv))
778 new_uV = corner->last_uV;
779 else
780 new_uV = corner->uV;
781
782 if (cpr_is_allowed(drv))
783 cpr_ctl_disable(drv);
784
785 ret = cpr_scale_voltage(drv, corner, new_uV, dir);
786 if (ret)
787 goto unlock;
788
789 if (cpr_is_allowed(drv)) {
790 cpr_irq_clr(drv);
791 if (drv->corner != corner)
792 cpr_corner_restore(drv, corner);
793 cpr_ctl_enable(drv, corner);
794 }
795
796 drv->corner = corner;
797
798 unlock:
799 mutex_unlock(&drv->lock);
800
801 return ret;
802 }
803
cpr_read_efuse(struct device * dev,const char * cname,u32 * data)804 static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
805 {
806 struct nvmem_cell *cell;
807 ssize_t len;
808 char *ret;
809 int i;
810
811 *data = 0;
812
813 cell = nvmem_cell_get(dev, cname);
814 if (IS_ERR(cell)) {
815 if (PTR_ERR(cell) != -EPROBE_DEFER)
816 dev_err(dev, "undefined cell %s\n", cname);
817 return PTR_ERR(cell);
818 }
819
820 ret = nvmem_cell_read(cell, &len);
821 nvmem_cell_put(cell);
822 if (IS_ERR(ret)) {
823 dev_err(dev, "can't read cell %s\n", cname);
824 return PTR_ERR(ret);
825 }
826
827 for (i = 0; i < len; i++)
828 *data |= ret[i] << (8 * i);
829
830 kfree(ret);
831 dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
832
833 return 0;
834 }
835
836 static int
cpr_populate_ring_osc_idx(struct cpr_drv * drv)837 cpr_populate_ring_osc_idx(struct cpr_drv *drv)
838 {
839 struct fuse_corner *fuse = drv->fuse_corners;
840 struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
841 const struct cpr_fuse *fuses = drv->cpr_fuses;
842 u32 data;
843 int ret;
844
845 for (; fuse < end; fuse++, fuses++) {
846 ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
847 &data);
848 if (ret)
849 return ret;
850 fuse->ring_osc_idx = data;
851 }
852
853 return 0;
854 }
855
cpr_read_fuse_uV(const struct cpr_desc * desc,const struct fuse_corner_data * fdata,const char * init_v_efuse,int step_volt,struct cpr_drv * drv)856 static int cpr_read_fuse_uV(const struct cpr_desc *desc,
857 const struct fuse_corner_data *fdata,
858 const char *init_v_efuse,
859 int step_volt,
860 struct cpr_drv *drv)
861 {
862 int step_size_uV, steps, uV;
863 u32 bits = 0;
864 int ret;
865
866 ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
867 if (ret)
868 return ret;
869
870 steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
871 /* Not two's complement.. instead highest bit is sign bit */
872 if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
873 steps = -steps;
874
875 step_size_uV = desc->cpr_fuses.init_voltage_step;
876
877 uV = fdata->ref_uV + steps * step_size_uV;
878 return DIV_ROUND_UP(uV, step_volt) * step_volt;
879 }
880
cpr_fuse_corner_init(struct cpr_drv * drv)881 static int cpr_fuse_corner_init(struct cpr_drv *drv)
882 {
883 const struct cpr_desc *desc = drv->desc;
884 const struct cpr_fuse *fuses = drv->cpr_fuses;
885 const struct acc_desc *acc_desc = drv->acc_desc;
886 int i;
887 unsigned int step_volt;
888 struct fuse_corner_data *fdata;
889 struct fuse_corner *fuse, *end;
890 int uV;
891 const struct reg_sequence *accs;
892 int ret;
893
894 accs = acc_desc->settings;
895
896 step_volt = regulator_get_linear_step(drv->vdd_apc);
897 if (!step_volt)
898 return -EINVAL;
899
900 /* Populate fuse_corner members */
901 fuse = drv->fuse_corners;
902 end = &fuse[desc->num_fuse_corners - 1];
903 fdata = desc->cpr_fuses.fuse_corner_data;
904
905 for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
906 /*
907 * Update SoC voltages: platforms might choose a different
908 * regulators than the one used to characterize the algorithms
909 * (ie, init_voltage_step).
910 */
911 fdata->min_uV = roundup(fdata->min_uV, step_volt);
912 fdata->max_uV = roundup(fdata->max_uV, step_volt);
913
914 /* Populate uV */
915 uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
916 step_volt, drv);
917 if (uV < 0)
918 return uV;
919
920 fuse->min_uV = fdata->min_uV;
921 fuse->max_uV = fdata->max_uV;
922 fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
923
924 if (fuse == end) {
925 /*
926 * Allow the highest fuse corner's PVS voltage to
927 * define the ceiling voltage for that corner in order
928 * to support SoC's in which variable ceiling values
929 * are required.
930 */
931 end->max_uV = max(end->max_uV, end->uV);
932 }
933
934 /* Populate target quotient by scaling */
935 ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
936 if (ret)
937 return ret;
938
939 fuse->quot *= fdata->quot_scale;
940 fuse->quot += fdata->quot_offset;
941 fuse->quot += fdata->quot_adjust;
942 fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
943
944 /* Populate acc settings */
945 fuse->accs = accs;
946 fuse->num_accs = acc_desc->num_regs_per_fuse;
947 accs += acc_desc->num_regs_per_fuse;
948 }
949
950 /*
951 * Restrict all fuse corner PVS voltages based upon per corner
952 * ceiling and floor voltages.
953 */
954 for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
955 if (fuse->uV > fuse->max_uV)
956 fuse->uV = fuse->max_uV;
957 else if (fuse->uV < fuse->min_uV)
958 fuse->uV = fuse->min_uV;
959
960 ret = regulator_is_supported_voltage(drv->vdd_apc,
961 fuse->min_uV,
962 fuse->min_uV);
963 if (!ret) {
964 dev_err(drv->dev,
965 "min uV: %d (fuse corner: %d) not supported by regulator\n",
966 fuse->min_uV, i);
967 return -EINVAL;
968 }
969
970 ret = regulator_is_supported_voltage(drv->vdd_apc,
971 fuse->max_uV,
972 fuse->max_uV);
973 if (!ret) {
974 dev_err(drv->dev,
975 "max uV: %d (fuse corner: %d) not supported by regulator\n",
976 fuse->max_uV, i);
977 return -EINVAL;
978 }
979
980 dev_dbg(drv->dev,
981 "fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
982 i, fuse->min_uV, fuse->uV, fuse->max_uV,
983 fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
984 }
985
986 return 0;
987 }
988
cpr_calculate_scaling(const char * quot_offset,struct cpr_drv * drv,const struct fuse_corner_data * fdata,const struct corner * corner)989 static int cpr_calculate_scaling(const char *quot_offset,
990 struct cpr_drv *drv,
991 const struct fuse_corner_data *fdata,
992 const struct corner *corner)
993 {
994 u32 quot_diff = 0;
995 unsigned long freq_diff;
996 int scaling;
997 const struct fuse_corner *fuse, *prev_fuse;
998 int ret;
999
1000 fuse = corner->fuse_corner;
1001 prev_fuse = fuse - 1;
1002
1003 if (quot_offset) {
1004 ret = cpr_read_efuse(drv->dev, quot_offset, "_diff);
1005 if (ret)
1006 return ret;
1007
1008 quot_diff *= fdata->quot_offset_scale;
1009 quot_diff += fdata->quot_offset_adjust;
1010 } else {
1011 quot_diff = fuse->quot - prev_fuse->quot;
1012 }
1013
1014 freq_diff = fuse->max_freq - prev_fuse->max_freq;
1015 freq_diff /= 1000000; /* Convert to MHz */
1016 scaling = 1000 * quot_diff / freq_diff;
1017 return min(scaling, fdata->max_quot_scale);
1018 }
1019
cpr_interpolate(const struct corner * corner,int step_volt,const struct fuse_corner_data * fdata)1020 static int cpr_interpolate(const struct corner *corner, int step_volt,
1021 const struct fuse_corner_data *fdata)
1022 {
1023 unsigned long f_high, f_low, f_diff;
1024 int uV_high, uV_low, uV;
1025 u64 temp, temp_limit;
1026 const struct fuse_corner *fuse, *prev_fuse;
1027
1028 fuse = corner->fuse_corner;
1029 prev_fuse = fuse - 1;
1030
1031 f_high = fuse->max_freq;
1032 f_low = prev_fuse->max_freq;
1033 uV_high = fuse->uV;
1034 uV_low = prev_fuse->uV;
1035 f_diff = fuse->max_freq - corner->freq;
1036
1037 /*
1038 * Don't interpolate in the wrong direction. This could happen
1039 * if the adjusted fuse voltage overlaps with the previous fuse's
1040 * adjusted voltage.
1041 */
1042 if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
1043 return corner->uV;
1044
1045 temp = f_diff * (uV_high - uV_low);
1046 do_div(temp, f_high - f_low);
1047
1048 /*
1049 * max_volt_scale has units of uV/MHz while freq values
1050 * have units of Hz. Divide by 1000000 to convert to.
1051 */
1052 temp_limit = f_diff * fdata->max_volt_scale;
1053 do_div(temp_limit, 1000000);
1054
1055 uV = uV_high - min(temp, temp_limit);
1056 return roundup(uV, step_volt);
1057 }
1058
cpr_get_fuse_corner(struct dev_pm_opp * opp)1059 static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
1060 {
1061 struct device_node *np;
1062 unsigned int fuse_corner = 0;
1063
1064 np = dev_pm_opp_get_of_node(opp);
1065 if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
1066 pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
1067 __func__);
1068
1069 of_node_put(np);
1070
1071 return fuse_corner;
1072 }
1073
cpr_get_opp_hz_for_req(struct dev_pm_opp * ref,struct device * cpu_dev)1074 static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
1075 struct device *cpu_dev)
1076 {
1077 u64 rate = 0;
1078 struct device_node *ref_np;
1079 struct device_node *desc_np;
1080 struct device_node *child_np = NULL;
1081 struct device_node *child_req_np = NULL;
1082
1083 desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1084 if (!desc_np)
1085 return 0;
1086
1087 ref_np = dev_pm_opp_get_of_node(ref);
1088 if (!ref_np)
1089 goto out_ref;
1090
1091 do {
1092 of_node_put(child_req_np);
1093 child_np = of_get_next_available_child(desc_np, child_np);
1094 child_req_np = of_parse_phandle(child_np, "required-opps", 0);
1095 } while (child_np && child_req_np != ref_np);
1096
1097 if (child_np && child_req_np == ref_np)
1098 of_property_read_u64(child_np, "opp-hz", &rate);
1099
1100 of_node_put(child_req_np);
1101 of_node_put(child_np);
1102 of_node_put(ref_np);
1103 out_ref:
1104 of_node_put(desc_np);
1105
1106 return (unsigned long) rate;
1107 }
1108
cpr_corner_init(struct cpr_drv * drv)1109 static int cpr_corner_init(struct cpr_drv *drv)
1110 {
1111 const struct cpr_desc *desc = drv->desc;
1112 const struct cpr_fuse *fuses = drv->cpr_fuses;
1113 int i, level, scaling = 0;
1114 unsigned int fnum, fc;
1115 const char *quot_offset;
1116 struct fuse_corner *fuse, *prev_fuse;
1117 struct corner *corner, *end;
1118 struct corner_data *cdata;
1119 const struct fuse_corner_data *fdata;
1120 bool apply_scaling;
1121 unsigned long freq_diff, freq_diff_mhz;
1122 unsigned long freq;
1123 int step_volt = regulator_get_linear_step(drv->vdd_apc);
1124 struct dev_pm_opp *opp;
1125
1126 if (!step_volt)
1127 return -EINVAL;
1128
1129 corner = drv->corners;
1130 end = &corner[drv->num_corners - 1];
1131
1132 cdata = devm_kcalloc(drv->dev, drv->num_corners,
1133 sizeof(struct corner_data),
1134 GFP_KERNEL);
1135 if (!cdata)
1136 return -ENOMEM;
1137
1138 /*
1139 * Store maximum frequency for each fuse corner based on the frequency
1140 * plan
1141 */
1142 for (level = 1; level <= drv->num_corners; level++) {
1143 opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
1144 if (IS_ERR(opp))
1145 return -EINVAL;
1146 fc = cpr_get_fuse_corner(opp);
1147 if (!fc) {
1148 dev_pm_opp_put(opp);
1149 return -EINVAL;
1150 }
1151 fnum = fc - 1;
1152 freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
1153 if (!freq) {
1154 dev_pm_opp_put(opp);
1155 return -EINVAL;
1156 }
1157 cdata[level - 1].fuse_corner = fnum;
1158 cdata[level - 1].freq = freq;
1159
1160 fuse = &drv->fuse_corners[fnum];
1161 dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
1162 freq, dev_pm_opp_get_level(opp) - 1, fnum);
1163 if (freq > fuse->max_freq)
1164 fuse->max_freq = freq;
1165 dev_pm_opp_put(opp);
1166 }
1167
1168 /*
1169 * Get the quotient adjustment scaling factor, according to:
1170 *
1171 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
1172 * / (freq(corner_N) - freq(corner_N-1)), max_factor)
1173 *
1174 * QUOT(corner_N): quotient read from fuse for fuse corner N
1175 * QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
1176 * freq(corner_N): max frequency in MHz supported by fuse corner N
1177 * freq(corner_N-1): max frequency in MHz supported by fuse corner
1178 * (N - 1)
1179 *
1180 * Then walk through the corners mapped to each fuse corner
1181 * and calculate the quotient adjustment for each one using the
1182 * following formula:
1183 *
1184 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
1185 *
1186 * freq_max: max frequency in MHz supported by the fuse corner
1187 * freq_corner: frequency in MHz corresponding to the corner
1188 * scaling: calculated from above equation
1189 *
1190 *
1191 * + +
1192 * | v |
1193 * q | f c o | f c
1194 * u | c l | c
1195 * o | f t | f
1196 * t | c a | c
1197 * | c f g | c f
1198 * | e |
1199 * +--------------- +----------------
1200 * 0 1 2 3 4 5 6 0 1 2 3 4 5 6
1201 * corner corner
1202 *
1203 * c = corner
1204 * f = fuse corner
1205 *
1206 */
1207 for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
1208 fnum = cdata[i].fuse_corner;
1209 fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
1210 quot_offset = fuses[fnum].quotient_offset;
1211 fuse = &drv->fuse_corners[fnum];
1212 if (fnum)
1213 prev_fuse = &drv->fuse_corners[fnum - 1];
1214 else
1215 prev_fuse = NULL;
1216
1217 corner->fuse_corner = fuse;
1218 corner->freq = cdata[i].freq;
1219 corner->uV = fuse->uV;
1220
1221 if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
1222 scaling = cpr_calculate_scaling(quot_offset, drv,
1223 fdata, corner);
1224 if (scaling < 0)
1225 return scaling;
1226
1227 apply_scaling = true;
1228 } else if (corner->freq == fuse->max_freq) {
1229 /* This is a fuse corner; don't scale anything */
1230 apply_scaling = false;
1231 }
1232
1233 if (apply_scaling) {
1234 freq_diff = fuse->max_freq - corner->freq;
1235 freq_diff_mhz = freq_diff / 1000000;
1236 corner->quot_adjust = scaling * freq_diff_mhz / 1000;
1237
1238 corner->uV = cpr_interpolate(corner, step_volt, fdata);
1239 }
1240
1241 corner->max_uV = fuse->max_uV;
1242 corner->min_uV = fuse->min_uV;
1243 corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
1244 corner->last_uV = corner->uV;
1245
1246 /* Reduce the ceiling voltage if needed */
1247 if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
1248 corner->max_uV = corner->uV;
1249 else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
1250 corner->max_uV = max(corner->min_uV, fuse->uV);
1251
1252 dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
1253 corner->min_uV, corner->uV, corner->max_uV,
1254 fuse->quot - corner->quot_adjust);
1255 }
1256
1257 return 0;
1258 }
1259
cpr_get_fuses(struct cpr_drv * drv)1260 static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
1261 {
1262 const struct cpr_desc *desc = drv->desc;
1263 struct cpr_fuse *fuses;
1264 int i;
1265
1266 fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
1267 sizeof(struct cpr_fuse),
1268 GFP_KERNEL);
1269 if (!fuses)
1270 return ERR_PTR(-ENOMEM);
1271
1272 for (i = 0; i < desc->num_fuse_corners; i++) {
1273 char tbuf[32];
1274
1275 snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
1276 fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1277 if (!fuses[i].ring_osc)
1278 return ERR_PTR(-ENOMEM);
1279
1280 snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
1281 fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
1282 GFP_KERNEL);
1283 if (!fuses[i].init_voltage)
1284 return ERR_PTR(-ENOMEM);
1285
1286 snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
1287 fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
1288 if (!fuses[i].quotient)
1289 return ERR_PTR(-ENOMEM);
1290
1291 snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
1292 fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
1293 GFP_KERNEL);
1294 if (!fuses[i].quotient_offset)
1295 return ERR_PTR(-ENOMEM);
1296 }
1297
1298 return fuses;
1299 }
1300
cpr_set_loop_allowed(struct cpr_drv * drv)1301 static void cpr_set_loop_allowed(struct cpr_drv *drv)
1302 {
1303 drv->loop_disabled = false;
1304 }
1305
cpr_init_parameters(struct cpr_drv * drv)1306 static int cpr_init_parameters(struct cpr_drv *drv)
1307 {
1308 const struct cpr_desc *desc = drv->desc;
1309 struct clk *clk;
1310
1311 clk = clk_get(drv->dev, "ref");
1312 if (IS_ERR(clk))
1313 return PTR_ERR(clk);
1314
1315 drv->ref_clk_khz = clk_get_rate(clk) / 1000;
1316 clk_put(clk);
1317
1318 if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
1319 desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
1320 desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
1321 desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
1322 desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
1323 desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
1324 return -EINVAL;
1325
1326 dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
1327 desc->up_threshold, desc->down_threshold);
1328
1329 return 0;
1330 }
1331
cpr_find_initial_corner(struct cpr_drv * drv)1332 static int cpr_find_initial_corner(struct cpr_drv *drv)
1333 {
1334 unsigned long rate;
1335 const struct corner *end;
1336 struct corner *iter;
1337 unsigned int i = 0;
1338
1339 if (!drv->cpu_clk) {
1340 dev_err(drv->dev, "cannot get rate from NULL clk\n");
1341 return -EINVAL;
1342 }
1343
1344 end = &drv->corners[drv->num_corners - 1];
1345 rate = clk_get_rate(drv->cpu_clk);
1346
1347 /*
1348 * Some bootloaders set a CPU clock frequency that is not defined
1349 * in the OPP table. When running at an unlisted frequency,
1350 * cpufreq_online() will change to the OPP which has the lowest
1351 * frequency, at or above the unlisted frequency.
1352 * Since cpufreq_online() always "rounds up" in the case of an
1353 * unlisted frequency, this function always "rounds down" in case
1354 * of an unlisted frequency. That way, when cpufreq_online()
1355 * triggers the first ever call to cpr_set_performance_state(),
1356 * it will correctly determine the direction as UP.
1357 */
1358 for (iter = drv->corners; iter <= end; iter++) {
1359 if (iter->freq > rate)
1360 break;
1361 i++;
1362 if (iter->freq == rate) {
1363 drv->corner = iter;
1364 break;
1365 }
1366 if (iter->freq < rate)
1367 drv->corner = iter;
1368 }
1369
1370 if (!drv->corner) {
1371 dev_err(drv->dev, "boot up corner not found\n");
1372 return -EINVAL;
1373 }
1374
1375 dev_dbg(drv->dev, "boot up perf state: %u\n", i);
1376
1377 return 0;
1378 }
1379
1380 static const struct cpr_desc qcs404_cpr_desc = {
1381 .num_fuse_corners = 3,
1382 .min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
1383 .step_quot = (int []){ 25, 25, 25, },
1384 .timer_delay_us = 5000,
1385 .timer_cons_up = 0,
1386 .timer_cons_down = 2,
1387 .up_threshold = 1,
1388 .down_threshold = 3,
1389 .idle_clocks = 15,
1390 .gcnt_us = 1,
1391 .vdd_apc_step_up_limit = 1,
1392 .vdd_apc_step_down_limit = 1,
1393 .cpr_fuses = {
1394 .init_voltage_step = 8000,
1395 .init_voltage_width = 6,
1396 .fuse_corner_data = (struct fuse_corner_data[]){
1397 /* fuse corner 0 */
1398 {
1399 .ref_uV = 1224000,
1400 .max_uV = 1224000,
1401 .min_uV = 1048000,
1402 .max_volt_scale = 0,
1403 .max_quot_scale = 0,
1404 .quot_offset = 0,
1405 .quot_scale = 1,
1406 .quot_adjust = 0,
1407 .quot_offset_scale = 5,
1408 .quot_offset_adjust = 0,
1409 },
1410 /* fuse corner 1 */
1411 {
1412 .ref_uV = 1288000,
1413 .max_uV = 1288000,
1414 .min_uV = 1048000,
1415 .max_volt_scale = 2000,
1416 .max_quot_scale = 1400,
1417 .quot_offset = 0,
1418 .quot_scale = 1,
1419 .quot_adjust = -20,
1420 .quot_offset_scale = 5,
1421 .quot_offset_adjust = 0,
1422 },
1423 /* fuse corner 2 */
1424 {
1425 .ref_uV = 1352000,
1426 .max_uV = 1384000,
1427 .min_uV = 1088000,
1428 .max_volt_scale = 2000,
1429 .max_quot_scale = 1400,
1430 .quot_offset = 0,
1431 .quot_scale = 1,
1432 .quot_adjust = 0,
1433 .quot_offset_scale = 5,
1434 .quot_offset_adjust = 0,
1435 },
1436 },
1437 },
1438 };
1439
1440 static const struct acc_desc qcs404_acc_desc = {
1441 .settings = (struct reg_sequence[]){
1442 { 0xb120, 0x1041040 },
1443 { 0xb124, 0x41 },
1444 { 0xb120, 0x0 },
1445 { 0xb124, 0x0 },
1446 { 0xb120, 0x0 },
1447 { 0xb124, 0x0 },
1448 },
1449 .config = (struct reg_sequence[]){
1450 { 0xb138, 0xff },
1451 { 0xb130, 0x5555 },
1452 },
1453 .num_regs_per_fuse = 2,
1454 };
1455
1456 static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
1457 .cpr_desc = &qcs404_cpr_desc,
1458 .acc_desc = &qcs404_acc_desc,
1459 };
1460
cpr_get_performance_state(struct generic_pm_domain * genpd,struct dev_pm_opp * opp)1461 static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
1462 struct dev_pm_opp *opp)
1463 {
1464 return dev_pm_opp_get_level(opp);
1465 }
1466
cpr_power_off(struct generic_pm_domain * domain)1467 static int cpr_power_off(struct generic_pm_domain *domain)
1468 {
1469 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1470
1471 return cpr_disable(drv);
1472 }
1473
cpr_power_on(struct generic_pm_domain * domain)1474 static int cpr_power_on(struct generic_pm_domain *domain)
1475 {
1476 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1477
1478 return cpr_enable(drv);
1479 }
1480
cpr_pd_attach_dev(struct generic_pm_domain * domain,struct device * dev)1481 static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
1482 struct device *dev)
1483 {
1484 struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
1485 const struct acc_desc *acc_desc = drv->acc_desc;
1486 int ret = 0;
1487
1488 mutex_lock(&drv->lock);
1489
1490 dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
1491
1492 /*
1493 * This driver only supports scaling voltage for a CPU cluster
1494 * where all CPUs in the cluster share a single regulator.
1495 * Therefore, save the struct device pointer only for the first
1496 * CPU device that gets attached. There is no need to do any
1497 * additional initialization when further CPUs get attached.
1498 */
1499 if (drv->attached_cpu_dev)
1500 goto unlock;
1501
1502 /*
1503 * cpr_scale_voltage() requires the direction (if we are changing
1504 * to a higher or lower OPP). The first time
1505 * cpr_set_performance_state() is called, there is no previous
1506 * performance state defined. Therefore, we call
1507 * cpr_find_initial_corner() that gets the CPU clock frequency
1508 * set by the bootloader, so that we can determine the direction
1509 * the first time cpr_set_performance_state() is called.
1510 */
1511 drv->cpu_clk = devm_clk_get(dev, NULL);
1512 if (IS_ERR(drv->cpu_clk)) {
1513 ret = PTR_ERR(drv->cpu_clk);
1514 if (ret != -EPROBE_DEFER)
1515 dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
1516 goto unlock;
1517 }
1518 drv->attached_cpu_dev = dev;
1519
1520 dev_dbg(drv->dev, "using cpu clk from: %s\n",
1521 dev_name(drv->attached_cpu_dev));
1522
1523 /*
1524 * Everything related to (virtual) corners has to be initialized
1525 * here, when attaching to the power domain, since we need to know
1526 * the maximum frequency for each fuse corner, and this is only
1527 * available after the cpufreq driver has attached to us.
1528 * The reason for this is that we need to know the highest
1529 * frequency associated with each fuse corner.
1530 */
1531 ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
1532 if (ret < 0) {
1533 dev_err(drv->dev, "could not get OPP count\n");
1534 goto unlock;
1535 }
1536 drv->num_corners = ret;
1537
1538 if (drv->num_corners < 2) {
1539 dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
1540 ret = -EINVAL;
1541 goto unlock;
1542 }
1543
1544 drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
1545 sizeof(*drv->corners),
1546 GFP_KERNEL);
1547 if (!drv->corners) {
1548 ret = -ENOMEM;
1549 goto unlock;
1550 }
1551
1552 ret = cpr_corner_init(drv);
1553 if (ret)
1554 goto unlock;
1555
1556 cpr_set_loop_allowed(drv);
1557
1558 ret = cpr_init_parameters(drv);
1559 if (ret)
1560 goto unlock;
1561
1562 /* Configure CPR HW but keep it disabled */
1563 ret = cpr_config(drv);
1564 if (ret)
1565 goto unlock;
1566
1567 ret = cpr_find_initial_corner(drv);
1568 if (ret)
1569 goto unlock;
1570
1571 if (acc_desc->config)
1572 regmap_multi_reg_write(drv->tcsr, acc_desc->config,
1573 acc_desc->num_regs_per_fuse);
1574
1575 /* Enable ACC if required */
1576 if (acc_desc->enable_mask)
1577 regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
1578 acc_desc->enable_mask,
1579 acc_desc->enable_mask);
1580
1581 dev_info(drv->dev, "driver initialized with %u OPPs\n",
1582 drv->num_corners);
1583
1584 unlock:
1585 mutex_unlock(&drv->lock);
1586
1587 return ret;
1588 }
1589
cpr_debug_info_show(struct seq_file * s,void * unused)1590 static int cpr_debug_info_show(struct seq_file *s, void *unused)
1591 {
1592 u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
1593 u32 step_dn, step_up, error, error_lt0, busy;
1594 struct cpr_drv *drv = s->private;
1595 struct fuse_corner *fuse_corner;
1596 struct corner *corner;
1597
1598 corner = drv->corner;
1599 fuse_corner = corner->fuse_corner;
1600
1601 seq_printf(s, "corner, current_volt = %d uV\n",
1602 corner->last_uV);
1603
1604 ro_sel = fuse_corner->ring_osc_idx;
1605 gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
1606 seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
1607
1608 ctl = cpr_read(drv, REG_RBCPR_CTL);
1609 seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
1610
1611 irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
1612 seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
1613
1614 reg = cpr_read(drv, REG_RBCPR_RESULT_0);
1615 seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
1616
1617 step_dn = reg & 0x01;
1618 step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
1619 seq_printf(s, " [step_dn = %u", step_dn);
1620
1621 seq_printf(s, ", step_up = %u", step_up);
1622
1623 error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
1624 & RBCPR_RESULT0_ERROR_STEPS_MASK;
1625 seq_printf(s, ", error_steps = %u", error_steps);
1626
1627 error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
1628 seq_printf(s, ", error = %u", error);
1629
1630 error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
1631 seq_printf(s, ", error_lt_0 = %u", error_lt0);
1632
1633 busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
1634 seq_printf(s, ", busy = %u]\n", busy);
1635
1636 return 0;
1637 }
1638 DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
1639
cpr_debugfs_init(struct cpr_drv * drv)1640 static void cpr_debugfs_init(struct cpr_drv *drv)
1641 {
1642 drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
1643
1644 debugfs_create_file("debug_info", 0444, drv->debugfs,
1645 drv, &cpr_debug_info_fops);
1646 }
1647
cpr_probe(struct platform_device * pdev)1648 static int cpr_probe(struct platform_device *pdev)
1649 {
1650 struct resource *res;
1651 struct device *dev = &pdev->dev;
1652 struct cpr_drv *drv;
1653 int irq, ret;
1654 const struct cpr_acc_desc *data;
1655 struct device_node *np;
1656 u32 cpr_rev = FUSE_REVISION_UNKNOWN;
1657
1658 data = of_device_get_match_data(dev);
1659 if (!data || !data->cpr_desc || !data->acc_desc)
1660 return -EINVAL;
1661
1662 drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
1663 if (!drv)
1664 return -ENOMEM;
1665 drv->dev = dev;
1666 drv->desc = data->cpr_desc;
1667 drv->acc_desc = data->acc_desc;
1668
1669 drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
1670 sizeof(*drv->fuse_corners),
1671 GFP_KERNEL);
1672 if (!drv->fuse_corners)
1673 return -ENOMEM;
1674
1675 np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
1676 if (!np)
1677 return -ENODEV;
1678
1679 drv->tcsr = syscon_node_to_regmap(np);
1680 of_node_put(np);
1681 if (IS_ERR(drv->tcsr))
1682 return PTR_ERR(drv->tcsr);
1683
1684 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1685 drv->base = devm_ioremap_resource(dev, res);
1686 if (IS_ERR(drv->base))
1687 return PTR_ERR(drv->base);
1688
1689 irq = platform_get_irq(pdev, 0);
1690 if (irq < 0)
1691 return -EINVAL;
1692
1693 drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
1694 if (IS_ERR(drv->vdd_apc))
1695 return PTR_ERR(drv->vdd_apc);
1696
1697 /*
1698 * Initialize fuse corners, since it simply depends
1699 * on data in efuses.
1700 * Everything related to (virtual) corners has to be
1701 * initialized after attaching to the power domain,
1702 * since it depends on the CPU's OPP table.
1703 */
1704 ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
1705 if (ret)
1706 return ret;
1707
1708 drv->cpr_fuses = cpr_get_fuses(drv);
1709 if (IS_ERR(drv->cpr_fuses))
1710 return PTR_ERR(drv->cpr_fuses);
1711
1712 ret = cpr_populate_ring_osc_idx(drv);
1713 if (ret)
1714 return ret;
1715
1716 ret = cpr_fuse_corner_init(drv);
1717 if (ret)
1718 return ret;
1719
1720 mutex_init(&drv->lock);
1721
1722 ret = devm_request_threaded_irq(dev, irq, NULL,
1723 cpr_irq_handler,
1724 IRQF_ONESHOT | IRQF_TRIGGER_RISING,
1725 "cpr", drv);
1726 if (ret)
1727 return ret;
1728
1729 drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
1730 GFP_KERNEL);
1731 if (!drv->pd.name)
1732 return -EINVAL;
1733
1734 drv->pd.power_off = cpr_power_off;
1735 drv->pd.power_on = cpr_power_on;
1736 drv->pd.set_performance_state = cpr_set_performance_state;
1737 drv->pd.opp_to_performance_state = cpr_get_performance_state;
1738 drv->pd.attach_dev = cpr_pd_attach_dev;
1739
1740 ret = pm_genpd_init(&drv->pd, NULL, true);
1741 if (ret)
1742 return ret;
1743
1744 ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
1745 if (ret)
1746 return ret;
1747
1748 platform_set_drvdata(pdev, drv);
1749 cpr_debugfs_init(drv);
1750
1751 return 0;
1752 }
1753
cpr_remove(struct platform_device * pdev)1754 static int cpr_remove(struct platform_device *pdev)
1755 {
1756 struct cpr_drv *drv = platform_get_drvdata(pdev);
1757
1758 if (cpr_is_allowed(drv)) {
1759 cpr_ctl_disable(drv);
1760 cpr_irq_set(drv, 0);
1761 }
1762
1763 of_genpd_del_provider(pdev->dev.of_node);
1764 pm_genpd_remove(&drv->pd);
1765
1766 debugfs_remove_recursive(drv->debugfs);
1767
1768 return 0;
1769 }
1770
1771 static const struct of_device_id cpr_match_table[] = {
1772 { .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
1773 { }
1774 };
1775 MODULE_DEVICE_TABLE(of, cpr_match_table);
1776
1777 static struct platform_driver cpr_driver = {
1778 .probe = cpr_probe,
1779 .remove = cpr_remove,
1780 .driver = {
1781 .name = "qcom-cpr",
1782 .of_match_table = cpr_match_table,
1783 },
1784 };
1785 module_platform_driver(cpr_driver);
1786
1787 MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
1788 MODULE_LICENSE("GPL v2");
1789