1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sd.c Copyright (C) 1992 Drew Eckhardt
4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5 *
6 * Linux scsi disk driver
7 * Initial versions: Drew Eckhardt
8 * Subsequent revisions: Eric Youngdale
9 * Modification history:
10 * - Drew Eckhardt <drew@colorado.edu> original
11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12 * outstanding request, and other enhancements.
13 * Support loadable low-level scsi drivers.
14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15 * eight major numbers.
16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18 * sd_init and cleanups.
19 * - Alex Davis <letmein@erols.com> Fix problem where partition info
20 * not being read in sd_open. Fix problem where removable media
21 * could be ejected after sd_open.
22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25 * Support 32k/1M disks.
26 *
27 * Logging policy (needs CONFIG_SCSI_LOGGING defined):
28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31 * - entering other commands: SCSI_LOG_HLQUEUE level 3
32 * Note: when the logging level is set by the user, it must be greater
33 * than the level indicated above to trigger output.
34 */
35
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS 16
103 #else
104 #define SD_MINORS 0
105 #endif
106
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int sd_probe(struct device *);
112 static int sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125
126 static DEFINE_IDA(sd_index_ida);
127
128 /* This semaphore is used to mediate the 0->1 reference get in the
129 * face of object destruction (i.e. we can't allow a get on an
130 * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136
137 static const char *sd_cache_types[] = {
138 "write through", "none", "write back",
139 "write back, no read (daft)"
140 };
141
sd_set_flush_flag(struct scsi_disk * sdkp)142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 bool wc = false, fua = false;
145
146 if (sdkp->WCE) {
147 wc = true;
148 if (sdkp->DPOFUA)
149 fua = true;
150 }
151
152 blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154
155 static ssize_t
cache_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 const char *buf, size_t count)
158 {
159 int ct, rcd, wce, sp;
160 struct scsi_disk *sdkp = to_scsi_disk(dev);
161 struct scsi_device *sdp = sdkp->device;
162 char buffer[64];
163 char *buffer_data;
164 struct scsi_mode_data data;
165 struct scsi_sense_hdr sshdr;
166 static const char temp[] = "temporary ";
167 int len;
168
169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 /* no cache control on RBC devices; theoretically they
171 * can do it, but there's probably so many exceptions
172 * it's not worth the risk */
173 return -EINVAL;
174
175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 buf += sizeof(temp) - 1;
177 sdkp->cache_override = 1;
178 } else {
179 sdkp->cache_override = 0;
180 }
181
182 ct = sysfs_match_string(sd_cache_types, buf);
183 if (ct < 0)
184 return -EINVAL;
185
186 rcd = ct & 0x01 ? 1 : 0;
187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188
189 if (sdkp->cache_override) {
190 sdkp->WCE = wce;
191 sdkp->RCD = rcd;
192 sd_set_flush_flag(sdkp);
193 return count;
194 }
195
196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 sdkp->max_retries, &data, NULL))
198 return -EINVAL;
199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 data.block_descriptor_length);
201 buffer_data = buffer + data.header_length +
202 data.block_descriptor_length;
203 buffer_data[2] &= ~0x05;
204 buffer_data[2] |= wce << 2 | rcd;
205 sp = buffer_data[0] & 0x80 ? 1 : 0;
206 buffer_data[0] &= ~0x80;
207
208 /*
209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 * received mode parameter buffer before doing MODE SELECT.
211 */
212 data.device_specific = 0;
213
214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 sdkp->max_retries, &data, &sshdr)) {
216 if (scsi_sense_valid(&sshdr))
217 sd_print_sense_hdr(sdkp, &sshdr);
218 return -EINVAL;
219 }
220 sd_revalidate_disk(sdkp->disk);
221 return count;
222 }
223
224 static ssize_t
manage_start_stop_show(struct device * dev,struct device_attribute * attr,char * buf)225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 char *buf)
227 {
228 struct scsi_disk *sdkp = to_scsi_disk(dev);
229 struct scsi_device *sdp = sdkp->device;
230
231 return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233
234 static ssize_t
manage_start_stop_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 const char *buf, size_t count)
237 {
238 struct scsi_disk *sdkp = to_scsi_disk(dev);
239 struct scsi_device *sdp = sdkp->device;
240 bool v;
241
242 if (!capable(CAP_SYS_ADMIN))
243 return -EACCES;
244
245 if (kstrtobool(buf, &v))
246 return -EINVAL;
247
248 sdp->manage_start_stop = v;
249
250 return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253
254 static ssize_t
allow_restart_show(struct device * dev,struct device_attribute * attr,char * buf)255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 struct scsi_disk *sdkp = to_scsi_disk(dev);
258
259 return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261
262 static ssize_t
allow_restart_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 const char *buf, size_t count)
265 {
266 bool v;
267 struct scsi_disk *sdkp = to_scsi_disk(dev);
268 struct scsi_device *sdp = sdkp->device;
269
270 if (!capable(CAP_SYS_ADMIN))
271 return -EACCES;
272
273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 return -EINVAL;
275
276 if (kstrtobool(buf, &v))
277 return -EINVAL;
278
279 sdp->allow_restart = v;
280
281 return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284
285 static ssize_t
cache_type_show(struct device * dev,struct device_attribute * attr,char * buf)286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 struct scsi_disk *sdkp = to_scsi_disk(dev);
289 int ct = sdkp->RCD + 2*sdkp->WCE;
290
291 return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294
295 static ssize_t
FUA_show(struct device * dev,struct device_attribute * attr,char * buf)296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 struct scsi_disk *sdkp = to_scsi_disk(dev);
299
300 return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303
304 static ssize_t
protection_type_show(struct device * dev,struct device_attribute * attr,char * buf)305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 char *buf)
307 {
308 struct scsi_disk *sdkp = to_scsi_disk(dev);
309
310 return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312
313 static ssize_t
protection_type_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 const char *buf, size_t count)
316 {
317 struct scsi_disk *sdkp = to_scsi_disk(dev);
318 unsigned int val;
319 int err;
320
321 if (!capable(CAP_SYS_ADMIN))
322 return -EACCES;
323
324 err = kstrtouint(buf, 10, &val);
325
326 if (err)
327 return err;
328
329 if (val <= T10_PI_TYPE3_PROTECTION)
330 sdkp->protection_type = val;
331
332 return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335
336 static ssize_t
protection_mode_show(struct device * dev,struct device_attribute * attr,char * buf)337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 char *buf)
339 {
340 struct scsi_disk *sdkp = to_scsi_disk(dev);
341 struct scsi_device *sdp = sdkp->device;
342 unsigned int dif, dix;
343
344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346
347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 dif = 0;
349 dix = 1;
350 }
351
352 if (!dif && !dix)
353 return sprintf(buf, "none\n");
354
355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358
359 static ssize_t
app_tag_own_show(struct device * dev,struct device_attribute * attr,char * buf)360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 struct scsi_disk *sdkp = to_scsi_disk(dev);
363
364 return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367
368 static ssize_t
thin_provisioning_show(struct device * dev,struct device_attribute * attr,char * buf)369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 char *buf)
371 {
372 struct scsi_disk *sdkp = to_scsi_disk(dev);
373
374 return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 [SD_LBP_FULL] = "full",
381 [SD_LBP_UNMAP] = "unmap",
382 [SD_LBP_WS16] = "writesame_16",
383 [SD_LBP_WS10] = "writesame_10",
384 [SD_LBP_ZERO] = "writesame_zero",
385 [SD_LBP_DISABLE] = "disabled",
386 };
387
388 static ssize_t
provisioning_mode_show(struct device * dev,struct device_attribute * attr,char * buf)389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 char *buf)
391 {
392 struct scsi_disk *sdkp = to_scsi_disk(dev);
393
394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396
397 static ssize_t
provisioning_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 const char *buf, size_t count)
400 {
401 struct scsi_disk *sdkp = to_scsi_disk(dev);
402 struct scsi_device *sdp = sdkp->device;
403 int mode;
404
405 if (!capable(CAP_SYS_ADMIN))
406 return -EACCES;
407
408 if (sd_is_zoned(sdkp)) {
409 sd_config_discard(sdkp, SD_LBP_DISABLE);
410 return count;
411 }
412
413 if (sdp->type != TYPE_DISK)
414 return -EINVAL;
415
416 mode = sysfs_match_string(lbp_mode, buf);
417 if (mode < 0)
418 return -EINVAL;
419
420 sd_config_discard(sdkp, mode);
421
422 return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 [SD_ZERO_WRITE] = "write",
429 [SD_ZERO_WS] = "writesame",
430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap",
431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap",
432 };
433
434 static ssize_t
zeroing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 char *buf)
437 {
438 struct scsi_disk *sdkp = to_scsi_disk(dev);
439
440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442
443 static ssize_t
zeroing_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 const char *buf, size_t count)
446 {
447 struct scsi_disk *sdkp = to_scsi_disk(dev);
448 int mode;
449
450 if (!capable(CAP_SYS_ADMIN))
451 return -EACCES;
452
453 mode = sysfs_match_string(zeroing_mode, buf);
454 if (mode < 0)
455 return -EINVAL;
456
457 sdkp->zeroing_mode = mode;
458
459 return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462
463 static ssize_t
max_medium_access_timeouts_show(struct device * dev,struct device_attribute * attr,char * buf)464 max_medium_access_timeouts_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466 {
467 struct scsi_disk *sdkp = to_scsi_disk(dev);
468
469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471
472 static ssize_t
max_medium_access_timeouts_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)473 max_medium_access_timeouts_store(struct device *dev,
474 struct device_attribute *attr, const char *buf,
475 size_t count)
476 {
477 struct scsi_disk *sdkp = to_scsi_disk(dev);
478 int err;
479
480 if (!capable(CAP_SYS_ADMIN))
481 return -EACCES;
482
483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484
485 return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488
489 static ssize_t
max_write_same_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 char *buf)
492 {
493 struct scsi_disk *sdkp = to_scsi_disk(dev);
494
495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497
498 static ssize_t
max_write_same_blocks_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 const char *buf, size_t count)
501 {
502 struct scsi_disk *sdkp = to_scsi_disk(dev);
503 struct scsi_device *sdp = sdkp->device;
504 unsigned long max;
505 int err;
506
507 if (!capable(CAP_SYS_ADMIN))
508 return -EACCES;
509
510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 return -EINVAL;
512
513 err = kstrtoul(buf, 10, &max);
514
515 if (err)
516 return err;
517
518 if (max == 0)
519 sdp->no_write_same = 1;
520 else if (max <= SD_MAX_WS16_BLOCKS) {
521 sdp->no_write_same = 0;
522 sdkp->max_ws_blocks = max;
523 }
524
525 sd_config_write_same(sdkp);
526
527 return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530
531 static ssize_t
zoned_cap_show(struct device * dev,struct device_attribute * attr,char * buf)532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 struct scsi_disk *sdkp = to_scsi_disk(dev);
535
536 if (sdkp->device->type == TYPE_ZBC)
537 return sprintf(buf, "host-managed\n");
538 if (sdkp->zoned == 1)
539 return sprintf(buf, "host-aware\n");
540 if (sdkp->zoned == 2)
541 return sprintf(buf, "drive-managed\n");
542 return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545
546 static ssize_t
max_retries_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)547 max_retries_store(struct device *dev, struct device_attribute *attr,
548 const char *buf, size_t count)
549 {
550 struct scsi_disk *sdkp = to_scsi_disk(dev);
551 struct scsi_device *sdev = sdkp->device;
552 int retries, err;
553
554 err = kstrtoint(buf, 10, &retries);
555 if (err)
556 return err;
557
558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
559 sdkp->max_retries = retries;
560 return count;
561 }
562
563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
564 SD_MAX_RETRIES);
565 return -EINVAL;
566 }
567
568 static ssize_t
max_retries_show(struct device * dev,struct device_attribute * attr,char * buf)569 max_retries_show(struct device *dev, struct device_attribute *attr,
570 char *buf)
571 {
572 struct scsi_disk *sdkp = to_scsi_disk(dev);
573
574 return sprintf(buf, "%d\n", sdkp->max_retries);
575 }
576
577 static DEVICE_ATTR_RW(max_retries);
578
579 static struct attribute *sd_disk_attrs[] = {
580 &dev_attr_cache_type.attr,
581 &dev_attr_FUA.attr,
582 &dev_attr_allow_restart.attr,
583 &dev_attr_manage_start_stop.attr,
584 &dev_attr_protection_type.attr,
585 &dev_attr_protection_mode.attr,
586 &dev_attr_app_tag_own.attr,
587 &dev_attr_thin_provisioning.attr,
588 &dev_attr_provisioning_mode.attr,
589 &dev_attr_zeroing_mode.attr,
590 &dev_attr_max_write_same_blocks.attr,
591 &dev_attr_max_medium_access_timeouts.attr,
592 &dev_attr_zoned_cap.attr,
593 &dev_attr_max_retries.attr,
594 NULL,
595 };
596 ATTRIBUTE_GROUPS(sd_disk);
597
598 static struct class sd_disk_class = {
599 .name = "scsi_disk",
600 .owner = THIS_MODULE,
601 .dev_release = scsi_disk_release,
602 .dev_groups = sd_disk_groups,
603 };
604
605 static const struct dev_pm_ops sd_pm_ops = {
606 .suspend = sd_suspend_system,
607 .resume = sd_resume,
608 .poweroff = sd_suspend_system,
609 .restore = sd_resume,
610 .runtime_suspend = sd_suspend_runtime,
611 .runtime_resume = sd_resume,
612 };
613
614 static struct scsi_driver sd_template = {
615 .gendrv = {
616 .name = "sd",
617 .owner = THIS_MODULE,
618 .probe = sd_probe,
619 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
620 .remove = sd_remove,
621 .shutdown = sd_shutdown,
622 .pm = &sd_pm_ops,
623 },
624 .rescan = sd_rescan,
625 .init_command = sd_init_command,
626 .uninit_command = sd_uninit_command,
627 .done = sd_done,
628 .eh_action = sd_eh_action,
629 .eh_reset = sd_eh_reset,
630 };
631
632 /*
633 * Dummy kobj_map->probe function.
634 * The default ->probe function will call modprobe, which is
635 * pointless as this module is already loaded.
636 */
sd_default_probe(dev_t devt,int * partno,void * data)637 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
638 {
639 return NULL;
640 }
641
642 /*
643 * Device no to disk mapping:
644 *
645 * major disc2 disc p1
646 * |............|.............|....|....| <- dev_t
647 * 31 20 19 8 7 4 3 0
648 *
649 * Inside a major, we have 16k disks, however mapped non-
650 * contiguously. The first 16 disks are for major0, the next
651 * ones with major1, ... Disk 256 is for major0 again, disk 272
652 * for major1, ...
653 * As we stay compatible with our numbering scheme, we can reuse
654 * the well-know SCSI majors 8, 65--71, 136--143.
655 */
sd_major(int major_idx)656 static int sd_major(int major_idx)
657 {
658 switch (major_idx) {
659 case 0:
660 return SCSI_DISK0_MAJOR;
661 case 1 ... 7:
662 return SCSI_DISK1_MAJOR + major_idx - 1;
663 case 8 ... 15:
664 return SCSI_DISK8_MAJOR + major_idx - 8;
665 default:
666 BUG();
667 return 0; /* shut up gcc */
668 }
669 }
670
scsi_disk_get(struct gendisk * disk)671 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
672 {
673 struct scsi_disk *sdkp = NULL;
674
675 mutex_lock(&sd_ref_mutex);
676
677 if (disk->private_data) {
678 sdkp = scsi_disk(disk);
679 if (scsi_device_get(sdkp->device) == 0)
680 get_device(&sdkp->dev);
681 else
682 sdkp = NULL;
683 }
684 mutex_unlock(&sd_ref_mutex);
685 return sdkp;
686 }
687
scsi_disk_put(struct scsi_disk * sdkp)688 static void scsi_disk_put(struct scsi_disk *sdkp)
689 {
690 struct scsi_device *sdev = sdkp->device;
691
692 mutex_lock(&sd_ref_mutex);
693 put_device(&sdkp->dev);
694 scsi_device_put(sdev);
695 mutex_unlock(&sd_ref_mutex);
696 }
697
698 #ifdef CONFIG_BLK_SED_OPAL
sd_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)699 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
700 size_t len, bool send)
701 {
702 struct scsi_disk *sdkp = data;
703 struct scsi_device *sdev = sdkp->device;
704 u8 cdb[12] = { 0, };
705 int ret;
706
707 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
708 cdb[1] = secp;
709 put_unaligned_be16(spsp, &cdb[2]);
710 put_unaligned_be32(len, &cdb[6]);
711
712 ret = scsi_execute_req(sdev, cdb,
713 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
714 buffer, len, NULL, SD_TIMEOUT, sdkp->max_retries, NULL);
715 return ret <= 0 ? ret : -EIO;
716 }
717 #endif /* CONFIG_BLK_SED_OPAL */
718
719 /*
720 * Look up the DIX operation based on whether the command is read or
721 * write and whether dix and dif are enabled.
722 */
sd_prot_op(bool write,bool dix,bool dif)723 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
724 {
725 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
726 static const unsigned int ops[] = { /* wrt dix dif */
727 SCSI_PROT_NORMAL, /* 0 0 0 */
728 SCSI_PROT_READ_STRIP, /* 0 0 1 */
729 SCSI_PROT_READ_INSERT, /* 0 1 0 */
730 SCSI_PROT_READ_PASS, /* 0 1 1 */
731 SCSI_PROT_NORMAL, /* 1 0 0 */
732 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */
733 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */
734 SCSI_PROT_WRITE_PASS, /* 1 1 1 */
735 };
736
737 return ops[write << 2 | dix << 1 | dif];
738 }
739
740 /*
741 * Returns a mask of the protection flags that are valid for a given DIX
742 * operation.
743 */
sd_prot_flag_mask(unsigned int prot_op)744 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
745 {
746 static const unsigned int flag_mask[] = {
747 [SCSI_PROT_NORMAL] = 0,
748
749 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI |
750 SCSI_PROT_GUARD_CHECK |
751 SCSI_PROT_REF_CHECK |
752 SCSI_PROT_REF_INCREMENT,
753
754 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT |
755 SCSI_PROT_IP_CHECKSUM,
756
757 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI |
758 SCSI_PROT_GUARD_CHECK |
759 SCSI_PROT_REF_CHECK |
760 SCSI_PROT_REF_INCREMENT |
761 SCSI_PROT_IP_CHECKSUM,
762
763 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI |
764 SCSI_PROT_REF_INCREMENT,
765
766 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK |
767 SCSI_PROT_REF_CHECK |
768 SCSI_PROT_REF_INCREMENT |
769 SCSI_PROT_IP_CHECKSUM,
770
771 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI |
772 SCSI_PROT_GUARD_CHECK |
773 SCSI_PROT_REF_CHECK |
774 SCSI_PROT_REF_INCREMENT |
775 SCSI_PROT_IP_CHECKSUM,
776 };
777
778 return flag_mask[prot_op];
779 }
780
sd_setup_protect_cmnd(struct scsi_cmnd * scmd,unsigned int dix,unsigned int dif)781 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
782 unsigned int dix, unsigned int dif)
783 {
784 struct bio *bio = scmd->request->bio;
785 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
786 unsigned int protect = 0;
787
788 if (dix) { /* DIX Type 0, 1, 2, 3 */
789 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
790 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
791
792 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
793 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
794 }
795
796 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
797 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
798
799 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
800 scmd->prot_flags |= SCSI_PROT_REF_CHECK;
801 }
802
803 if (dif) { /* DIX/DIF Type 1, 2, 3 */
804 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
805
806 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
807 protect = 3 << 5; /* Disable target PI checking */
808 else
809 protect = 1 << 5; /* Enable target PI checking */
810 }
811
812 scsi_set_prot_op(scmd, prot_op);
813 scsi_set_prot_type(scmd, dif);
814 scmd->prot_flags &= sd_prot_flag_mask(prot_op);
815
816 return protect;
817 }
818
sd_config_discard(struct scsi_disk * sdkp,unsigned int mode)819 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
820 {
821 struct request_queue *q = sdkp->disk->queue;
822 unsigned int logical_block_size = sdkp->device->sector_size;
823 unsigned int max_blocks = 0;
824
825 q->limits.discard_alignment =
826 sdkp->unmap_alignment * logical_block_size;
827 q->limits.discard_granularity =
828 max(sdkp->physical_block_size,
829 sdkp->unmap_granularity * logical_block_size);
830 sdkp->provisioning_mode = mode;
831
832 switch (mode) {
833
834 case SD_LBP_FULL:
835 case SD_LBP_DISABLE:
836 blk_queue_max_discard_sectors(q, 0);
837 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
838 return;
839
840 case SD_LBP_UNMAP:
841 max_blocks = min_not_zero(sdkp->max_unmap_blocks,
842 (u32)SD_MAX_WS16_BLOCKS);
843 break;
844
845 case SD_LBP_WS16:
846 if (sdkp->device->unmap_limit_for_ws)
847 max_blocks = sdkp->max_unmap_blocks;
848 else
849 max_blocks = sdkp->max_ws_blocks;
850
851 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
852 break;
853
854 case SD_LBP_WS10:
855 if (sdkp->device->unmap_limit_for_ws)
856 max_blocks = sdkp->max_unmap_blocks;
857 else
858 max_blocks = sdkp->max_ws_blocks;
859
860 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
861 break;
862
863 case SD_LBP_ZERO:
864 max_blocks = min_not_zero(sdkp->max_ws_blocks,
865 (u32)SD_MAX_WS10_BLOCKS);
866 break;
867 }
868
869 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
870 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
871 }
872
sd_setup_unmap_cmnd(struct scsi_cmnd * cmd)873 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
874 {
875 struct scsi_device *sdp = cmd->device;
876 struct request *rq = cmd->request;
877 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
878 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
879 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
880 unsigned int data_len = 24;
881 char *buf;
882
883 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
884 if (!rq->special_vec.bv_page)
885 return BLK_STS_RESOURCE;
886 clear_highpage(rq->special_vec.bv_page);
887 rq->special_vec.bv_offset = 0;
888 rq->special_vec.bv_len = data_len;
889 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
890
891 cmd->cmd_len = 10;
892 cmd->cmnd[0] = UNMAP;
893 cmd->cmnd[8] = 24;
894
895 buf = page_address(rq->special_vec.bv_page);
896 put_unaligned_be16(6 + 16, &buf[0]);
897 put_unaligned_be16(16, &buf[2]);
898 put_unaligned_be64(lba, &buf[8]);
899 put_unaligned_be32(nr_blocks, &buf[16]);
900
901 cmd->allowed = sdkp->max_retries;
902 cmd->transfersize = data_len;
903 rq->timeout = SD_TIMEOUT;
904
905 return scsi_alloc_sgtables(cmd);
906 }
907
sd_setup_write_same16_cmnd(struct scsi_cmnd * cmd,bool unmap)908 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
909 bool unmap)
910 {
911 struct scsi_device *sdp = cmd->device;
912 struct request *rq = cmd->request;
913 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
914 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
915 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
916 u32 data_len = sdp->sector_size;
917
918 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
919 if (!rq->special_vec.bv_page)
920 return BLK_STS_RESOURCE;
921 clear_highpage(rq->special_vec.bv_page);
922 rq->special_vec.bv_offset = 0;
923 rq->special_vec.bv_len = data_len;
924 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
925
926 cmd->cmd_len = 16;
927 cmd->cmnd[0] = WRITE_SAME_16;
928 if (unmap)
929 cmd->cmnd[1] = 0x8; /* UNMAP */
930 put_unaligned_be64(lba, &cmd->cmnd[2]);
931 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
932
933 cmd->allowed = sdkp->max_retries;
934 cmd->transfersize = data_len;
935 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
936
937 return scsi_alloc_sgtables(cmd);
938 }
939
sd_setup_write_same10_cmnd(struct scsi_cmnd * cmd,bool unmap)940 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
941 bool unmap)
942 {
943 struct scsi_device *sdp = cmd->device;
944 struct request *rq = cmd->request;
945 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
946 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
947 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
948 u32 data_len = sdp->sector_size;
949
950 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
951 if (!rq->special_vec.bv_page)
952 return BLK_STS_RESOURCE;
953 clear_highpage(rq->special_vec.bv_page);
954 rq->special_vec.bv_offset = 0;
955 rq->special_vec.bv_len = data_len;
956 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
957
958 cmd->cmd_len = 10;
959 cmd->cmnd[0] = WRITE_SAME;
960 if (unmap)
961 cmd->cmnd[1] = 0x8; /* UNMAP */
962 put_unaligned_be32(lba, &cmd->cmnd[2]);
963 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
964
965 cmd->allowed = sdkp->max_retries;
966 cmd->transfersize = data_len;
967 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
968
969 return scsi_alloc_sgtables(cmd);
970 }
971
sd_setup_write_zeroes_cmnd(struct scsi_cmnd * cmd)972 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
973 {
974 struct request *rq = cmd->request;
975 struct scsi_device *sdp = cmd->device;
976 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
977 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
978 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
979
980 if (!(rq->cmd_flags & REQ_NOUNMAP)) {
981 switch (sdkp->zeroing_mode) {
982 case SD_ZERO_WS16_UNMAP:
983 return sd_setup_write_same16_cmnd(cmd, true);
984 case SD_ZERO_WS10_UNMAP:
985 return sd_setup_write_same10_cmnd(cmd, true);
986 }
987 }
988
989 if (sdp->no_write_same)
990 return BLK_STS_TARGET;
991
992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993 return sd_setup_write_same16_cmnd(cmd, false);
994
995 return sd_setup_write_same10_cmnd(cmd, false);
996 }
997
sd_config_write_same(struct scsi_disk * sdkp)998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000 struct request_queue *q = sdkp->disk->queue;
1001 unsigned int logical_block_size = sdkp->device->sector_size;
1002
1003 if (sdkp->device->no_write_same) {
1004 sdkp->max_ws_blocks = 0;
1005 goto out;
1006 }
1007
1008 /* Some devices can not handle block counts above 0xffff despite
1009 * supporting WRITE SAME(16). Consequently we default to 64k
1010 * blocks per I/O unless the device explicitly advertises a
1011 * bigger limit.
1012 */
1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 (u32)SD_MAX_WS16_BLOCKS);
1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 (u32)SD_MAX_WS10_BLOCKS);
1019 else {
1020 sdkp->device->no_write_same = 1;
1021 sdkp->max_ws_blocks = 0;
1022 }
1023
1024 if (sdkp->lbprz && sdkp->lbpws)
1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026 else if (sdkp->lbprz && sdkp->lbpws10)
1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028 else if (sdkp->max_ws_blocks)
1029 sdkp->zeroing_mode = SD_ZERO_WS;
1030 else
1031 sdkp->zeroing_mode = SD_ZERO_WRITE;
1032
1033 if (sdkp->max_ws_blocks &&
1034 sdkp->physical_block_size > logical_block_size) {
1035 /*
1036 * Reporting a maximum number of blocks that is not aligned
1037 * on the device physical size would cause a large write same
1038 * request to be split into physically unaligned chunks by
1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040 * even if the caller of these functions took care to align the
1041 * large request. So make sure the maximum reported is aligned
1042 * to the device physical block size. This is only an optional
1043 * optimization for regular disks, but this is mandatory to
1044 * avoid failure of large write same requests directed at
1045 * sequential write required zones of host-managed ZBC disks.
1046 */
1047 sdkp->max_ws_blocks =
1048 round_down(sdkp->max_ws_blocks,
1049 bytes_to_logical(sdkp->device,
1050 sdkp->physical_block_size));
1051 }
1052
1053 out:
1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055 (logical_block_size >> 9));
1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 (logical_block_size >> 9));
1058 }
1059
1060 /**
1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062 * @cmd: command to prepare
1063 *
1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065 * the preference indicated by the target device.
1066 **/
sd_setup_write_same_cmnd(struct scsi_cmnd * cmd)1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069 struct request *rq = cmd->request;
1070 struct scsi_device *sdp = cmd->device;
1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072 struct bio *bio = rq->bio;
1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075 blk_status_t ret;
1076
1077 if (sdkp->device->no_write_same)
1078 return BLK_STS_TARGET;
1079
1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1081
1082 rq->timeout = SD_WRITE_SAME_TIMEOUT;
1083
1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1085 cmd->cmd_len = 16;
1086 cmd->cmnd[0] = WRITE_SAME_16;
1087 put_unaligned_be64(lba, &cmd->cmnd[2]);
1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1089 } else {
1090 cmd->cmd_len = 10;
1091 cmd->cmnd[0] = WRITE_SAME;
1092 put_unaligned_be32(lba, &cmd->cmnd[2]);
1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1094 }
1095
1096 cmd->transfersize = sdp->sector_size;
1097 cmd->allowed = sdkp->max_retries;
1098
1099 /*
1100 * For WRITE SAME the data transferred via the DATA OUT buffer is
1101 * different from the amount of data actually written to the target.
1102 *
1103 * We set up __data_len to the amount of data transferred via the
1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1105 * to transfer a single sector of data first, but then reset it to
1106 * the amount of data to be written right after so that the I/O path
1107 * knows how much to actually write.
1108 */
1109 rq->__data_len = sdp->sector_size;
1110 ret = scsi_alloc_sgtables(cmd);
1111 rq->__data_len = blk_rq_bytes(rq);
1112
1113 return ret;
1114 }
1115
sd_setup_flush_cmnd(struct scsi_cmnd * cmd)1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1117 {
1118 struct request *rq = cmd->request;
1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1120
1121 /* flush requests don't perform I/O, zero the S/G table */
1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1123
1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1125 cmd->cmd_len = 10;
1126 cmd->transfersize = 0;
1127 cmd->allowed = sdkp->max_retries;
1128
1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1130 return BLK_STS_OK;
1131 }
1132
sd_setup_rw32_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1134 sector_t lba, unsigned int nr_blocks,
1135 unsigned char flags)
1136 {
1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1138 if (unlikely(cmd->cmnd == NULL))
1139 return BLK_STS_RESOURCE;
1140
1141 cmd->cmd_len = SD_EXT_CDB_SIZE;
1142 memset(cmd->cmnd, 0, cmd->cmd_len);
1143
1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD;
1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */
1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32;
1147 cmd->cmnd[10] = flags;
1148 put_unaligned_be64(lba, &cmd->cmnd[12]);
1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1151
1152 return BLK_STS_OK;
1153 }
1154
sd_setup_rw16_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1156 sector_t lba, unsigned int nr_blocks,
1157 unsigned char flags)
1158 {
1159 cmd->cmd_len = 16;
1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16;
1161 cmd->cmnd[1] = flags;
1162 cmd->cmnd[14] = 0;
1163 cmd->cmnd[15] = 0;
1164 put_unaligned_be64(lba, &cmd->cmnd[2]);
1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1166
1167 return BLK_STS_OK;
1168 }
1169
sd_setup_rw10_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1171 sector_t lba, unsigned int nr_blocks,
1172 unsigned char flags)
1173 {
1174 cmd->cmd_len = 10;
1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1176 cmd->cmnd[1] = flags;
1177 cmd->cmnd[6] = 0;
1178 cmd->cmnd[9] = 0;
1179 put_unaligned_be32(lba, &cmd->cmnd[2]);
1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1181
1182 return BLK_STS_OK;
1183 }
1184
sd_setup_rw6_cmnd(struct scsi_cmnd * cmd,bool write,sector_t lba,unsigned int nr_blocks,unsigned char flags)1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1186 sector_t lba, unsigned int nr_blocks,
1187 unsigned char flags)
1188 {
1189 /* Avoid that 0 blocks gets translated into 256 blocks. */
1190 if (WARN_ON_ONCE(nr_blocks == 0))
1191 return BLK_STS_IOERR;
1192
1193 if (unlikely(flags & 0x8)) {
1194 /*
1195 * This happens only if this drive failed 10byte rw
1196 * command with ILLEGAL_REQUEST during operation and
1197 * thus turned off use_10_for_rw.
1198 */
1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1200 return BLK_STS_IOERR;
1201 }
1202
1203 cmd->cmd_len = 6;
1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1205 cmd->cmnd[1] = (lba >> 16) & 0x1f;
1206 cmd->cmnd[2] = (lba >> 8) & 0xff;
1207 cmd->cmnd[3] = lba & 0xff;
1208 cmd->cmnd[4] = nr_blocks;
1209 cmd->cmnd[5] = 0;
1210
1211 return BLK_STS_OK;
1212 }
1213
sd_setup_read_write_cmnd(struct scsi_cmnd * cmd)1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1215 {
1216 struct request *rq = cmd->request;
1217 struct scsi_device *sdp = cmd->device;
1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1220 sector_t threshold;
1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1223 bool write = rq_data_dir(rq) == WRITE;
1224 unsigned char protect, fua;
1225 blk_status_t ret;
1226 unsigned int dif;
1227 bool dix;
1228
1229 ret = scsi_alloc_sgtables(cmd);
1230 if (ret != BLK_STS_OK)
1231 return ret;
1232
1233 ret = BLK_STS_IOERR;
1234 if (!scsi_device_online(sdp) || sdp->changed) {
1235 scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1236 goto fail;
1237 }
1238
1239 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1240 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1241 goto fail;
1242 }
1243
1244 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1245 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1246 goto fail;
1247 }
1248
1249 /*
1250 * Some SD card readers can't handle accesses which touch the
1251 * last one or two logical blocks. Split accesses as needed.
1252 */
1253 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1254
1255 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1256 if (lba < threshold) {
1257 /* Access up to the threshold but not beyond */
1258 nr_blocks = threshold - lba;
1259 } else {
1260 /* Access only a single logical block */
1261 nr_blocks = 1;
1262 }
1263 }
1264
1265 if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1266 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1267 if (ret)
1268 goto fail;
1269 }
1270
1271 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1272 dix = scsi_prot_sg_count(cmd);
1273 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1274
1275 if (dif || dix)
1276 protect = sd_setup_protect_cmnd(cmd, dix, dif);
1277 else
1278 protect = 0;
1279
1280 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1281 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1282 protect | fua);
1283 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1284 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1285 protect | fua);
1286 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1287 sdp->use_10_for_rw || protect) {
1288 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1289 protect | fua);
1290 } else {
1291 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1292 protect | fua);
1293 }
1294
1295 if (unlikely(ret != BLK_STS_OK))
1296 goto fail;
1297
1298 /*
1299 * We shouldn't disconnect in the middle of a sector, so with a dumb
1300 * host adapter, it's safe to assume that we can at least transfer
1301 * this many bytes between each connect / disconnect.
1302 */
1303 cmd->transfersize = sdp->sector_size;
1304 cmd->underflow = nr_blocks << 9;
1305 cmd->allowed = sdkp->max_retries;
1306 cmd->sdb.length = nr_blocks * sdp->sector_size;
1307
1308 SCSI_LOG_HLQUEUE(1,
1309 scmd_printk(KERN_INFO, cmd,
1310 "%s: block=%llu, count=%d\n", __func__,
1311 (unsigned long long)blk_rq_pos(rq),
1312 blk_rq_sectors(rq)));
1313 SCSI_LOG_HLQUEUE(2,
1314 scmd_printk(KERN_INFO, cmd,
1315 "%s %d/%u 512 byte blocks.\n",
1316 write ? "writing" : "reading", nr_blocks,
1317 blk_rq_sectors(rq)));
1318
1319 /*
1320 * This indicates that the command is ready from our end to be queued.
1321 */
1322 return BLK_STS_OK;
1323 fail:
1324 scsi_free_sgtables(cmd);
1325 return ret;
1326 }
1327
sd_init_command(struct scsi_cmnd * cmd)1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1329 {
1330 struct request *rq = cmd->request;
1331
1332 switch (req_op(rq)) {
1333 case REQ_OP_DISCARD:
1334 switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1335 case SD_LBP_UNMAP:
1336 return sd_setup_unmap_cmnd(cmd);
1337 case SD_LBP_WS16:
1338 return sd_setup_write_same16_cmnd(cmd, true);
1339 case SD_LBP_WS10:
1340 return sd_setup_write_same10_cmnd(cmd, true);
1341 case SD_LBP_ZERO:
1342 return sd_setup_write_same10_cmnd(cmd, false);
1343 default:
1344 return BLK_STS_TARGET;
1345 }
1346 case REQ_OP_WRITE_ZEROES:
1347 return sd_setup_write_zeroes_cmnd(cmd);
1348 case REQ_OP_WRITE_SAME:
1349 return sd_setup_write_same_cmnd(cmd);
1350 case REQ_OP_FLUSH:
1351 return sd_setup_flush_cmnd(cmd);
1352 case REQ_OP_READ:
1353 case REQ_OP_WRITE:
1354 case REQ_OP_ZONE_APPEND:
1355 return sd_setup_read_write_cmnd(cmd);
1356 case REQ_OP_ZONE_RESET:
1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 false);
1359 case REQ_OP_ZONE_RESET_ALL:
1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361 true);
1362 case REQ_OP_ZONE_OPEN:
1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1364 case REQ_OP_ZONE_CLOSE:
1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1366 case REQ_OP_ZONE_FINISH:
1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1368 default:
1369 WARN_ON_ONCE(1);
1370 return BLK_STS_NOTSUPP;
1371 }
1372 }
1373
sd_uninit_command(struct scsi_cmnd * SCpnt)1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1375 {
1376 struct request *rq = SCpnt->request;
1377 u8 *cmnd;
1378
1379 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1380 mempool_free(rq->special_vec.bv_page, sd_page_pool);
1381
1382 if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1383 cmnd = SCpnt->cmnd;
1384 SCpnt->cmnd = NULL;
1385 SCpnt->cmd_len = 0;
1386 mempool_free(cmnd, sd_cdb_pool);
1387 }
1388 }
1389
1390 /**
1391 * sd_open - open a scsi disk device
1392 * @bdev: Block device of the scsi disk to open
1393 * @mode: FMODE_* mask
1394 *
1395 * Returns 0 if successful. Returns a negated errno value in case
1396 * of error.
1397 *
1398 * Note: This can be called from a user context (e.g. fsck(1) )
1399 * or from within the kernel (e.g. as a result of a mount(1) ).
1400 * In the latter case @inode and @filp carry an abridged amount
1401 * of information as noted above.
1402 *
1403 * Locking: called with bdev->bd_mutex held.
1404 **/
sd_open(struct block_device * bdev,fmode_t mode)1405 static int sd_open(struct block_device *bdev, fmode_t mode)
1406 {
1407 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1408 struct scsi_device *sdev;
1409 int retval;
1410
1411 if (!sdkp)
1412 return -ENXIO;
1413
1414 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1415
1416 sdev = sdkp->device;
1417
1418 /*
1419 * If the device is in error recovery, wait until it is done.
1420 * If the device is offline, then disallow any access to it.
1421 */
1422 retval = -ENXIO;
1423 if (!scsi_block_when_processing_errors(sdev))
1424 goto error_out;
1425
1426 if (sdev->removable || sdkp->write_prot) {
1427 if (bdev_check_media_change(bdev))
1428 sd_revalidate_disk(bdev->bd_disk);
1429 }
1430
1431 /*
1432 * If the drive is empty, just let the open fail.
1433 */
1434 retval = -ENOMEDIUM;
1435 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1436 goto error_out;
1437
1438 /*
1439 * If the device has the write protect tab set, have the open fail
1440 * if the user expects to be able to write to the thing.
1441 */
1442 retval = -EROFS;
1443 if (sdkp->write_prot && (mode & FMODE_WRITE))
1444 goto error_out;
1445
1446 /*
1447 * It is possible that the disk changing stuff resulted in
1448 * the device being taken offline. If this is the case,
1449 * report this to the user, and don't pretend that the
1450 * open actually succeeded.
1451 */
1452 retval = -ENXIO;
1453 if (!scsi_device_online(sdev))
1454 goto error_out;
1455
1456 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1457 if (scsi_block_when_processing_errors(sdev))
1458 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1459 }
1460
1461 return 0;
1462
1463 error_out:
1464 scsi_disk_put(sdkp);
1465 return retval;
1466 }
1467
1468 /**
1469 * sd_release - invoked when the (last) close(2) is called on this
1470 * scsi disk.
1471 * @disk: disk to release
1472 * @mode: FMODE_* mask
1473 *
1474 * Returns 0.
1475 *
1476 * Note: may block (uninterruptible) if error recovery is underway
1477 * on this disk.
1478 *
1479 * Locking: called with bdev->bd_mutex held.
1480 **/
sd_release(struct gendisk * disk,fmode_t mode)1481 static void sd_release(struct gendisk *disk, fmode_t mode)
1482 {
1483 struct scsi_disk *sdkp = scsi_disk(disk);
1484 struct scsi_device *sdev = sdkp->device;
1485
1486 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1487
1488 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1489 if (scsi_block_when_processing_errors(sdev))
1490 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1491 }
1492
1493 scsi_disk_put(sdkp);
1494 }
1495
sd_getgeo(struct block_device * bdev,struct hd_geometry * geo)1496 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1497 {
1498 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1499 struct scsi_device *sdp = sdkp->device;
1500 struct Scsi_Host *host = sdp->host;
1501 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1502 int diskinfo[4];
1503
1504 /* default to most commonly used values */
1505 diskinfo[0] = 0x40; /* 1 << 6 */
1506 diskinfo[1] = 0x20; /* 1 << 5 */
1507 diskinfo[2] = capacity >> 11;
1508
1509 /* override with calculated, extended default, or driver values */
1510 if (host->hostt->bios_param)
1511 host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1512 else
1513 scsicam_bios_param(bdev, capacity, diskinfo);
1514
1515 geo->heads = diskinfo[0];
1516 geo->sectors = diskinfo[1];
1517 geo->cylinders = diskinfo[2];
1518 return 0;
1519 }
1520
1521 /**
1522 * sd_ioctl - process an ioctl
1523 * @bdev: target block device
1524 * @mode: FMODE_* mask
1525 * @cmd: ioctl command number
1526 * @p: this is third argument given to ioctl(2) system call.
1527 * Often contains a pointer.
1528 *
1529 * Returns 0 if successful (some ioctls return positive numbers on
1530 * success as well). Returns a negated errno value in case of error.
1531 *
1532 * Note: most ioctls are forward onto the block subsystem or further
1533 * down in the scsi subsystem.
1534 **/
sd_ioctl_common(struct block_device * bdev,fmode_t mode,unsigned int cmd,void __user * p)1535 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1536 unsigned int cmd, void __user *p)
1537 {
1538 struct gendisk *disk = bdev->bd_disk;
1539 struct scsi_disk *sdkp = scsi_disk(disk);
1540 struct scsi_device *sdp = sdkp->device;
1541 int error;
1542
1543 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1544 "cmd=0x%x\n", disk->disk_name, cmd));
1545
1546 error = scsi_verify_blk_ioctl(bdev, cmd);
1547 if (error < 0)
1548 return error;
1549
1550 /*
1551 * If we are in the middle of error recovery, don't let anyone
1552 * else try and use this device. Also, if error recovery fails, it
1553 * may try and take the device offline, in which case all further
1554 * access to the device is prohibited.
1555 */
1556 error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1557 (mode & FMODE_NDELAY) != 0);
1558 if (error)
1559 goto out;
1560
1561 if (is_sed_ioctl(cmd))
1562 return sed_ioctl(sdkp->opal_dev, cmd, p);
1563
1564 /*
1565 * Send SCSI addressing ioctls directly to mid level, send other
1566 * ioctls to block level and then onto mid level if they can't be
1567 * resolved.
1568 */
1569 switch (cmd) {
1570 case SCSI_IOCTL_GET_IDLUN:
1571 case SCSI_IOCTL_GET_BUS_NUMBER:
1572 error = scsi_ioctl(sdp, cmd, p);
1573 break;
1574 default:
1575 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1576 break;
1577 }
1578 out:
1579 return error;
1580 }
1581
set_media_not_present(struct scsi_disk * sdkp)1582 static void set_media_not_present(struct scsi_disk *sdkp)
1583 {
1584 if (sdkp->media_present)
1585 sdkp->device->changed = 1;
1586
1587 if (sdkp->device->removable) {
1588 sdkp->media_present = 0;
1589 sdkp->capacity = 0;
1590 }
1591 }
1592
media_not_present(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1593 static int media_not_present(struct scsi_disk *sdkp,
1594 struct scsi_sense_hdr *sshdr)
1595 {
1596 if (!scsi_sense_valid(sshdr))
1597 return 0;
1598
1599 /* not invoked for commands that could return deferred errors */
1600 switch (sshdr->sense_key) {
1601 case UNIT_ATTENTION:
1602 case NOT_READY:
1603 /* medium not present */
1604 if (sshdr->asc == 0x3A) {
1605 set_media_not_present(sdkp);
1606 return 1;
1607 }
1608 }
1609 return 0;
1610 }
1611
1612 /**
1613 * sd_check_events - check media events
1614 * @disk: kernel device descriptor
1615 * @clearing: disk events currently being cleared
1616 *
1617 * Returns mask of DISK_EVENT_*.
1618 *
1619 * Note: this function is invoked from the block subsystem.
1620 **/
sd_check_events(struct gendisk * disk,unsigned int clearing)1621 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1622 {
1623 struct scsi_disk *sdkp = scsi_disk_get(disk);
1624 struct scsi_device *sdp;
1625 int retval;
1626
1627 if (!sdkp)
1628 return 0;
1629
1630 sdp = sdkp->device;
1631 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1632
1633 /*
1634 * If the device is offline, don't send any commands - just pretend as
1635 * if the command failed. If the device ever comes back online, we
1636 * can deal with it then. It is only because of unrecoverable errors
1637 * that we would ever take a device offline in the first place.
1638 */
1639 if (!scsi_device_online(sdp)) {
1640 set_media_not_present(sdkp);
1641 goto out;
1642 }
1643
1644 /*
1645 * Using TEST_UNIT_READY enables differentiation between drive with
1646 * no cartridge loaded - NOT READY, drive with changed cartridge -
1647 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1648 *
1649 * Drives that auto spin down. eg iomega jaz 1G, will be started
1650 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1651 * sd_revalidate() is called.
1652 */
1653 if (scsi_block_when_processing_errors(sdp)) {
1654 struct scsi_sense_hdr sshdr = { 0, };
1655
1656 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1657 &sshdr);
1658
1659 /* failed to execute TUR, assume media not present */
1660 if (host_byte(retval)) {
1661 set_media_not_present(sdkp);
1662 goto out;
1663 }
1664
1665 if (media_not_present(sdkp, &sshdr))
1666 goto out;
1667 }
1668
1669 /*
1670 * For removable scsi disk we have to recognise the presence
1671 * of a disk in the drive.
1672 */
1673 if (!sdkp->media_present)
1674 sdp->changed = 1;
1675 sdkp->media_present = 1;
1676 out:
1677 /*
1678 * sdp->changed is set under the following conditions:
1679 *
1680 * Medium present state has changed in either direction.
1681 * Device has indicated UNIT_ATTENTION.
1682 */
1683 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1684 sdp->changed = 0;
1685 scsi_disk_put(sdkp);
1686 return retval;
1687 }
1688
sd_sync_cache(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)1689 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1690 {
1691 int retries, res;
1692 struct scsi_device *sdp = sdkp->device;
1693 const int timeout = sdp->request_queue->rq_timeout
1694 * SD_FLUSH_TIMEOUT_MULTIPLIER;
1695 struct scsi_sense_hdr my_sshdr;
1696
1697 if (!scsi_device_online(sdp))
1698 return -ENODEV;
1699
1700 /* caller might not be interested in sense, but we need it */
1701 if (!sshdr)
1702 sshdr = &my_sshdr;
1703
1704 for (retries = 3; retries > 0; --retries) {
1705 unsigned char cmd[10] = { 0 };
1706
1707 cmd[0] = SYNCHRONIZE_CACHE;
1708 /*
1709 * Leave the rest of the command zero to indicate
1710 * flush everything.
1711 */
1712 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1713 timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1714 if (res == 0)
1715 break;
1716 }
1717
1718 if (res) {
1719 sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1720
1721 if (driver_byte(res) == DRIVER_SENSE)
1722 sd_print_sense_hdr(sdkp, sshdr);
1723
1724 /* we need to evaluate the error return */
1725 if (scsi_sense_valid(sshdr) &&
1726 (sshdr->asc == 0x3a || /* medium not present */
1727 sshdr->asc == 0x20 || /* invalid command */
1728 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */
1729 /* this is no error here */
1730 return 0;
1731
1732 switch (host_byte(res)) {
1733 /* ignore errors due to racing a disconnection */
1734 case DID_BAD_TARGET:
1735 case DID_NO_CONNECT:
1736 return 0;
1737 /* signal the upper layer it might try again */
1738 case DID_BUS_BUSY:
1739 case DID_IMM_RETRY:
1740 case DID_REQUEUE:
1741 case DID_SOFT_ERROR:
1742 return -EBUSY;
1743 default:
1744 return -EIO;
1745 }
1746 }
1747 return 0;
1748 }
1749
sd_rescan(struct device * dev)1750 static void sd_rescan(struct device *dev)
1751 {
1752 struct scsi_disk *sdkp = dev_get_drvdata(dev);
1753 int ret;
1754
1755 ret = sd_revalidate_disk(sdkp->disk);
1756 revalidate_disk_size(sdkp->disk, ret == 0);
1757 }
1758
sd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1759 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1760 unsigned int cmd, unsigned long arg)
1761 {
1762 void __user *p = (void __user *)arg;
1763 int ret;
1764
1765 ret = sd_ioctl_common(bdev, mode, cmd, p);
1766 if (ret != -ENOTTY)
1767 return ret;
1768
1769 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1770 }
1771
1772 #ifdef CONFIG_COMPAT
sd_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1773 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1774 unsigned int cmd, unsigned long arg)
1775 {
1776 void __user *p = compat_ptr(arg);
1777 int ret;
1778
1779 ret = sd_ioctl_common(bdev, mode, cmd, p);
1780 if (ret != -ENOTTY)
1781 return ret;
1782
1783 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1784 }
1785 #endif
1786
sd_pr_type(enum pr_type type)1787 static char sd_pr_type(enum pr_type type)
1788 {
1789 switch (type) {
1790 case PR_WRITE_EXCLUSIVE:
1791 return 0x01;
1792 case PR_EXCLUSIVE_ACCESS:
1793 return 0x03;
1794 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1795 return 0x05;
1796 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1797 return 0x06;
1798 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1799 return 0x07;
1800 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1801 return 0x08;
1802 default:
1803 return 0;
1804 }
1805 };
1806
sd_pr_command(struct block_device * bdev,u8 sa,u64 key,u64 sa_key,u8 type,u8 flags)1807 static int sd_pr_command(struct block_device *bdev, u8 sa,
1808 u64 key, u64 sa_key, u8 type, u8 flags)
1809 {
1810 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1811 struct scsi_device *sdev = sdkp->device;
1812 struct scsi_sense_hdr sshdr;
1813 int result;
1814 u8 cmd[16] = { 0, };
1815 u8 data[24] = { 0, };
1816
1817 cmd[0] = PERSISTENT_RESERVE_OUT;
1818 cmd[1] = sa;
1819 cmd[2] = type;
1820 put_unaligned_be32(sizeof(data), &cmd[5]);
1821
1822 put_unaligned_be64(key, &data[0]);
1823 put_unaligned_be64(sa_key, &data[8]);
1824 data[20] = flags;
1825
1826 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1827 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1828
1829 if (driver_byte(result) == DRIVER_SENSE &&
1830 scsi_sense_valid(&sshdr)) {
1831 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1832 scsi_print_sense_hdr(sdev, NULL, &sshdr);
1833 }
1834
1835 return result;
1836 }
1837
sd_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)1838 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1839 u32 flags)
1840 {
1841 if (flags & ~PR_FL_IGNORE_KEY)
1842 return -EOPNOTSUPP;
1843 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1844 old_key, new_key, 0,
1845 (1 << 0) /* APTPL */);
1846 }
1847
sd_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)1848 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1849 u32 flags)
1850 {
1851 if (flags)
1852 return -EOPNOTSUPP;
1853 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1854 }
1855
sd_pr_release(struct block_device * bdev,u64 key,enum pr_type type)1856 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1857 {
1858 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1859 }
1860
sd_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)1861 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1862 enum pr_type type, bool abort)
1863 {
1864 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1865 sd_pr_type(type), 0);
1866 }
1867
sd_pr_clear(struct block_device * bdev,u64 key)1868 static int sd_pr_clear(struct block_device *bdev, u64 key)
1869 {
1870 return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1871 }
1872
1873 static const struct pr_ops sd_pr_ops = {
1874 .pr_register = sd_pr_register,
1875 .pr_reserve = sd_pr_reserve,
1876 .pr_release = sd_pr_release,
1877 .pr_preempt = sd_pr_preempt,
1878 .pr_clear = sd_pr_clear,
1879 };
1880
1881 static const struct block_device_operations sd_fops = {
1882 .owner = THIS_MODULE,
1883 .open = sd_open,
1884 .release = sd_release,
1885 .ioctl = sd_ioctl,
1886 .getgeo = sd_getgeo,
1887 #ifdef CONFIG_COMPAT
1888 .compat_ioctl = sd_compat_ioctl,
1889 #endif
1890 .check_events = sd_check_events,
1891 .unlock_native_capacity = sd_unlock_native_capacity,
1892 .report_zones = sd_zbc_report_zones,
1893 .pr_ops = &sd_pr_ops,
1894 };
1895
1896 /**
1897 * sd_eh_reset - reset error handling callback
1898 * @scmd: sd-issued command that has failed
1899 *
1900 * This function is called by the SCSI midlayer before starting
1901 * SCSI EH. When counting medium access failures we have to be
1902 * careful to register it only only once per device and SCSI EH run;
1903 * there might be several timed out commands which will cause the
1904 * 'max_medium_access_timeouts' counter to trigger after the first
1905 * SCSI EH run already and set the device to offline.
1906 * So this function resets the internal counter before starting SCSI EH.
1907 **/
sd_eh_reset(struct scsi_cmnd * scmd)1908 static void sd_eh_reset(struct scsi_cmnd *scmd)
1909 {
1910 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1911
1912 /* New SCSI EH run, reset gate variable */
1913 sdkp->ignore_medium_access_errors = false;
1914 }
1915
1916 /**
1917 * sd_eh_action - error handling callback
1918 * @scmd: sd-issued command that has failed
1919 * @eh_disp: The recovery disposition suggested by the midlayer
1920 *
1921 * This function is called by the SCSI midlayer upon completion of an
1922 * error test command (currently TEST UNIT READY). The result of sending
1923 * the eh command is passed in eh_disp. We're looking for devices that
1924 * fail medium access commands but are OK with non access commands like
1925 * test unit ready (so wrongly see the device as having a successful
1926 * recovery)
1927 **/
sd_eh_action(struct scsi_cmnd * scmd,int eh_disp)1928 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1929 {
1930 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1931 struct scsi_device *sdev = scmd->device;
1932
1933 if (!scsi_device_online(sdev) ||
1934 !scsi_medium_access_command(scmd) ||
1935 host_byte(scmd->result) != DID_TIME_OUT ||
1936 eh_disp != SUCCESS)
1937 return eh_disp;
1938
1939 /*
1940 * The device has timed out executing a medium access command.
1941 * However, the TEST UNIT READY command sent during error
1942 * handling completed successfully. Either the device is in the
1943 * process of recovering or has it suffered an internal failure
1944 * that prevents access to the storage medium.
1945 */
1946 if (!sdkp->ignore_medium_access_errors) {
1947 sdkp->medium_access_timed_out++;
1948 sdkp->ignore_medium_access_errors = true;
1949 }
1950
1951 /*
1952 * If the device keeps failing read/write commands but TEST UNIT
1953 * READY always completes successfully we assume that medium
1954 * access is no longer possible and take the device offline.
1955 */
1956 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1957 scmd_printk(KERN_ERR, scmd,
1958 "Medium access timeout failure. Offlining disk!\n");
1959 mutex_lock(&sdev->state_mutex);
1960 scsi_device_set_state(sdev, SDEV_OFFLINE);
1961 mutex_unlock(&sdev->state_mutex);
1962
1963 return SUCCESS;
1964 }
1965
1966 return eh_disp;
1967 }
1968
sd_completed_bytes(struct scsi_cmnd * scmd)1969 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1970 {
1971 struct request *req = scmd->request;
1972 struct scsi_device *sdev = scmd->device;
1973 unsigned int transferred, good_bytes;
1974 u64 start_lba, end_lba, bad_lba;
1975
1976 /*
1977 * Some commands have a payload smaller than the device logical
1978 * block size (e.g. INQUIRY on a 4K disk).
1979 */
1980 if (scsi_bufflen(scmd) <= sdev->sector_size)
1981 return 0;
1982
1983 /* Check if we have a 'bad_lba' information */
1984 if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1985 SCSI_SENSE_BUFFERSIZE,
1986 &bad_lba))
1987 return 0;
1988
1989 /*
1990 * If the bad lba was reported incorrectly, we have no idea where
1991 * the error is.
1992 */
1993 start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1994 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1995 if (bad_lba < start_lba || bad_lba >= end_lba)
1996 return 0;
1997
1998 /*
1999 * resid is optional but mostly filled in. When it's unused,
2000 * its value is zero, so we assume the whole buffer transferred
2001 */
2002 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2003
2004 /* This computation should always be done in terms of the
2005 * resolution of the device's medium.
2006 */
2007 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2008
2009 return min(good_bytes, transferred);
2010 }
2011
2012 /**
2013 * sd_done - bottom half handler: called when the lower level
2014 * driver has completed (successfully or otherwise) a scsi command.
2015 * @SCpnt: mid-level's per command structure.
2016 *
2017 * Note: potentially run from within an ISR. Must not block.
2018 **/
sd_done(struct scsi_cmnd * SCpnt)2019 static int sd_done(struct scsi_cmnd *SCpnt)
2020 {
2021 int result = SCpnt->result;
2022 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2023 unsigned int sector_size = SCpnt->device->sector_size;
2024 unsigned int resid;
2025 struct scsi_sense_hdr sshdr;
2026 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2027 struct request *req = SCpnt->request;
2028 int sense_valid = 0;
2029 int sense_deferred = 0;
2030
2031 switch (req_op(req)) {
2032 case REQ_OP_DISCARD:
2033 case REQ_OP_WRITE_ZEROES:
2034 case REQ_OP_WRITE_SAME:
2035 case REQ_OP_ZONE_RESET:
2036 case REQ_OP_ZONE_RESET_ALL:
2037 case REQ_OP_ZONE_OPEN:
2038 case REQ_OP_ZONE_CLOSE:
2039 case REQ_OP_ZONE_FINISH:
2040 if (!result) {
2041 good_bytes = blk_rq_bytes(req);
2042 scsi_set_resid(SCpnt, 0);
2043 } else {
2044 good_bytes = 0;
2045 scsi_set_resid(SCpnt, blk_rq_bytes(req));
2046 }
2047 break;
2048 default:
2049 /*
2050 * In case of bogus fw or device, we could end up having
2051 * an unaligned partial completion. Check this here and force
2052 * alignment.
2053 */
2054 resid = scsi_get_resid(SCpnt);
2055 if (resid & (sector_size - 1)) {
2056 sd_printk(KERN_INFO, sdkp,
2057 "Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2058 resid, sector_size);
2059 scsi_print_command(SCpnt);
2060 resid = min(scsi_bufflen(SCpnt),
2061 round_up(resid, sector_size));
2062 scsi_set_resid(SCpnt, resid);
2063 }
2064 }
2065
2066 if (result) {
2067 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2068 if (sense_valid)
2069 sense_deferred = scsi_sense_is_deferred(&sshdr);
2070 }
2071 sdkp->medium_access_timed_out = 0;
2072
2073 if (driver_byte(result) != DRIVER_SENSE &&
2074 (!sense_valid || sense_deferred))
2075 goto out;
2076
2077 switch (sshdr.sense_key) {
2078 case HARDWARE_ERROR:
2079 case MEDIUM_ERROR:
2080 good_bytes = sd_completed_bytes(SCpnt);
2081 break;
2082 case RECOVERED_ERROR:
2083 good_bytes = scsi_bufflen(SCpnt);
2084 break;
2085 case NO_SENSE:
2086 /* This indicates a false check condition, so ignore it. An
2087 * unknown amount of data was transferred so treat it as an
2088 * error.
2089 */
2090 SCpnt->result = 0;
2091 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2092 break;
2093 case ABORTED_COMMAND:
2094 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
2095 good_bytes = sd_completed_bytes(SCpnt);
2096 break;
2097 case ILLEGAL_REQUEST:
2098 switch (sshdr.asc) {
2099 case 0x10: /* DIX: Host detected corruption */
2100 good_bytes = sd_completed_bytes(SCpnt);
2101 break;
2102 case 0x20: /* INVALID COMMAND OPCODE */
2103 case 0x24: /* INVALID FIELD IN CDB */
2104 switch (SCpnt->cmnd[0]) {
2105 case UNMAP:
2106 sd_config_discard(sdkp, SD_LBP_DISABLE);
2107 break;
2108 case WRITE_SAME_16:
2109 case WRITE_SAME:
2110 if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2111 sd_config_discard(sdkp, SD_LBP_DISABLE);
2112 } else {
2113 sdkp->device->no_write_same = 1;
2114 sd_config_write_same(sdkp);
2115 req->rq_flags |= RQF_QUIET;
2116 }
2117 break;
2118 }
2119 }
2120 break;
2121 default:
2122 break;
2123 }
2124
2125 out:
2126 if (sd_is_zoned(sdkp))
2127 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2128
2129 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2130 "sd_done: completed %d of %d bytes\n",
2131 good_bytes, scsi_bufflen(SCpnt)));
2132
2133 return good_bytes;
2134 }
2135
2136 /*
2137 * spinup disk - called only in sd_revalidate_disk()
2138 */
2139 static void
sd_spinup_disk(struct scsi_disk * sdkp)2140 sd_spinup_disk(struct scsi_disk *sdkp)
2141 {
2142 unsigned char cmd[10];
2143 unsigned long spintime_expire = 0;
2144 int retries, spintime;
2145 unsigned int the_result;
2146 struct scsi_sense_hdr sshdr;
2147 int sense_valid = 0;
2148
2149 spintime = 0;
2150
2151 /* Spin up drives, as required. Only do this at boot time */
2152 /* Spinup needs to be done for module loads too. */
2153 do {
2154 retries = 0;
2155
2156 do {
2157 cmd[0] = TEST_UNIT_READY;
2158 memset((void *) &cmd[1], 0, 9);
2159
2160 the_result = scsi_execute_req(sdkp->device, cmd,
2161 DMA_NONE, NULL, 0,
2162 &sshdr, SD_TIMEOUT,
2163 sdkp->max_retries, NULL);
2164
2165 /*
2166 * If the drive has indicated to us that it
2167 * doesn't have any media in it, don't bother
2168 * with any more polling.
2169 */
2170 if (media_not_present(sdkp, &sshdr))
2171 return;
2172
2173 if (the_result)
2174 sense_valid = scsi_sense_valid(&sshdr);
2175 retries++;
2176 } while (retries < 3 &&
2177 (!scsi_status_is_good(the_result) ||
2178 ((driver_byte(the_result) == DRIVER_SENSE) &&
2179 sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2180
2181 if (driver_byte(the_result) != DRIVER_SENSE) {
2182 /* no sense, TUR either succeeded or failed
2183 * with a status error */
2184 if(!spintime && !scsi_status_is_good(the_result)) {
2185 sd_print_result(sdkp, "Test Unit Ready failed",
2186 the_result);
2187 }
2188 break;
2189 }
2190
2191 /*
2192 * The device does not want the automatic start to be issued.
2193 */
2194 if (sdkp->device->no_start_on_add)
2195 break;
2196
2197 if (sense_valid && sshdr.sense_key == NOT_READY) {
2198 if (sshdr.asc == 4 && sshdr.ascq == 3)
2199 break; /* manual intervention required */
2200 if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2201 break; /* standby */
2202 if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2203 break; /* unavailable */
2204 if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2205 break; /* sanitize in progress */
2206 /*
2207 * Issue command to spin up drive when not ready
2208 */
2209 if (!spintime) {
2210 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2211 cmd[0] = START_STOP;
2212 cmd[1] = 1; /* Return immediately */
2213 memset((void *) &cmd[2], 0, 8);
2214 cmd[4] = 1; /* Start spin cycle */
2215 if (sdkp->device->start_stop_pwr_cond)
2216 cmd[4] |= 1 << 4;
2217 scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2218 NULL, 0, &sshdr,
2219 SD_TIMEOUT, sdkp->max_retries,
2220 NULL);
2221 spintime_expire = jiffies + 100 * HZ;
2222 spintime = 1;
2223 }
2224 /* Wait 1 second for next try */
2225 msleep(1000);
2226 printk(KERN_CONT ".");
2227
2228 /*
2229 * Wait for USB flash devices with slow firmware.
2230 * Yes, this sense key/ASC combination shouldn't
2231 * occur here. It's characteristic of these devices.
2232 */
2233 } else if (sense_valid &&
2234 sshdr.sense_key == UNIT_ATTENTION &&
2235 sshdr.asc == 0x28) {
2236 if (!spintime) {
2237 spintime_expire = jiffies + 5 * HZ;
2238 spintime = 1;
2239 }
2240 /* Wait 1 second for next try */
2241 msleep(1000);
2242 } else {
2243 /* we don't understand the sense code, so it's
2244 * probably pointless to loop */
2245 if(!spintime) {
2246 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2247 sd_print_sense_hdr(sdkp, &sshdr);
2248 }
2249 break;
2250 }
2251
2252 } while (spintime && time_before_eq(jiffies, spintime_expire));
2253
2254 if (spintime) {
2255 if (scsi_status_is_good(the_result))
2256 printk(KERN_CONT "ready\n");
2257 else
2258 printk(KERN_CONT "not responding...\n");
2259 }
2260 }
2261
2262 /*
2263 * Determine whether disk supports Data Integrity Field.
2264 */
sd_read_protection_type(struct scsi_disk * sdkp,unsigned char * buffer)2265 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2266 {
2267 struct scsi_device *sdp = sdkp->device;
2268 u8 type;
2269 int ret = 0;
2270
2271 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2272 sdkp->protection_type = 0;
2273 return ret;
2274 }
2275
2276 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2277
2278 if (type > T10_PI_TYPE3_PROTECTION)
2279 ret = -ENODEV;
2280 else if (scsi_host_dif_capable(sdp->host, type))
2281 ret = 1;
2282
2283 if (sdkp->first_scan || type != sdkp->protection_type)
2284 switch (ret) {
2285 case -ENODEV:
2286 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2287 " protection type %u. Disabling disk!\n",
2288 type);
2289 break;
2290 case 1:
2291 sd_printk(KERN_NOTICE, sdkp,
2292 "Enabling DIF Type %u protection\n", type);
2293 break;
2294 case 0:
2295 sd_printk(KERN_NOTICE, sdkp,
2296 "Disabling DIF Type %u protection\n", type);
2297 break;
2298 }
2299
2300 sdkp->protection_type = type;
2301
2302 return ret;
2303 }
2304
read_capacity_error(struct scsi_disk * sdkp,struct scsi_device * sdp,struct scsi_sense_hdr * sshdr,int sense_valid,int the_result)2305 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2306 struct scsi_sense_hdr *sshdr, int sense_valid,
2307 int the_result)
2308 {
2309 if (driver_byte(the_result) == DRIVER_SENSE)
2310 sd_print_sense_hdr(sdkp, sshdr);
2311 else
2312 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2313
2314 /*
2315 * Set dirty bit for removable devices if not ready -
2316 * sometimes drives will not report this properly.
2317 */
2318 if (sdp->removable &&
2319 sense_valid && sshdr->sense_key == NOT_READY)
2320 set_media_not_present(sdkp);
2321
2322 /*
2323 * We used to set media_present to 0 here to indicate no media
2324 * in the drive, but some drives fail read capacity even with
2325 * media present, so we can't do that.
2326 */
2327 sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2328 }
2329
2330 #define RC16_LEN 32
2331 #if RC16_LEN > SD_BUF_SIZE
2332 #error RC16_LEN must not be more than SD_BUF_SIZE
2333 #endif
2334
2335 #define READ_CAPACITY_RETRIES_ON_RESET 10
2336
read_capacity_16(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2337 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2338 unsigned char *buffer)
2339 {
2340 unsigned char cmd[16];
2341 struct scsi_sense_hdr sshdr;
2342 int sense_valid = 0;
2343 int the_result;
2344 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2345 unsigned int alignment;
2346 unsigned long long lba;
2347 unsigned sector_size;
2348
2349 if (sdp->no_read_capacity_16)
2350 return -EINVAL;
2351
2352 do {
2353 memset(cmd, 0, 16);
2354 cmd[0] = SERVICE_ACTION_IN_16;
2355 cmd[1] = SAI_READ_CAPACITY_16;
2356 cmd[13] = RC16_LEN;
2357 memset(buffer, 0, RC16_LEN);
2358
2359 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2360 buffer, RC16_LEN, &sshdr,
2361 SD_TIMEOUT, sdkp->max_retries, NULL);
2362
2363 if (media_not_present(sdkp, &sshdr))
2364 return -ENODEV;
2365
2366 if (the_result) {
2367 sense_valid = scsi_sense_valid(&sshdr);
2368 if (sense_valid &&
2369 sshdr.sense_key == ILLEGAL_REQUEST &&
2370 (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2371 sshdr.ascq == 0x00)
2372 /* Invalid Command Operation Code or
2373 * Invalid Field in CDB, just retry
2374 * silently with RC10 */
2375 return -EINVAL;
2376 if (sense_valid &&
2377 sshdr.sense_key == UNIT_ATTENTION &&
2378 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2379 /* Device reset might occur several times,
2380 * give it one more chance */
2381 if (--reset_retries > 0)
2382 continue;
2383 }
2384 retries--;
2385
2386 } while (the_result && retries);
2387
2388 if (the_result) {
2389 sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2390 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2391 return -EINVAL;
2392 }
2393
2394 sector_size = get_unaligned_be32(&buffer[8]);
2395 lba = get_unaligned_be64(&buffer[0]);
2396
2397 if (sd_read_protection_type(sdkp, buffer) < 0) {
2398 sdkp->capacity = 0;
2399 return -ENODEV;
2400 }
2401
2402 /* Logical blocks per physical block exponent */
2403 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2404
2405 /* RC basis */
2406 sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2407
2408 /* Lowest aligned logical block */
2409 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2410 blk_queue_alignment_offset(sdp->request_queue, alignment);
2411 if (alignment && sdkp->first_scan)
2412 sd_printk(KERN_NOTICE, sdkp,
2413 "physical block alignment offset: %u\n", alignment);
2414
2415 if (buffer[14] & 0x80) { /* LBPME */
2416 sdkp->lbpme = 1;
2417
2418 if (buffer[14] & 0x40) /* LBPRZ */
2419 sdkp->lbprz = 1;
2420
2421 sd_config_discard(sdkp, SD_LBP_WS16);
2422 }
2423
2424 sdkp->capacity = lba + 1;
2425 return sector_size;
2426 }
2427
read_capacity_10(struct scsi_disk * sdkp,struct scsi_device * sdp,unsigned char * buffer)2428 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2429 unsigned char *buffer)
2430 {
2431 unsigned char cmd[16];
2432 struct scsi_sense_hdr sshdr;
2433 int sense_valid = 0;
2434 int the_result;
2435 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2436 sector_t lba;
2437 unsigned sector_size;
2438
2439 do {
2440 cmd[0] = READ_CAPACITY;
2441 memset(&cmd[1], 0, 9);
2442 memset(buffer, 0, 8);
2443
2444 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2445 buffer, 8, &sshdr,
2446 SD_TIMEOUT, sdkp->max_retries, NULL);
2447
2448 if (media_not_present(sdkp, &sshdr))
2449 return -ENODEV;
2450
2451 if (the_result) {
2452 sense_valid = scsi_sense_valid(&sshdr);
2453 if (sense_valid &&
2454 sshdr.sense_key == UNIT_ATTENTION &&
2455 sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2456 /* Device reset might occur several times,
2457 * give it one more chance */
2458 if (--reset_retries > 0)
2459 continue;
2460 }
2461 retries--;
2462
2463 } while (the_result && retries);
2464
2465 if (the_result) {
2466 sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2467 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2468 return -EINVAL;
2469 }
2470
2471 sector_size = get_unaligned_be32(&buffer[4]);
2472 lba = get_unaligned_be32(&buffer[0]);
2473
2474 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2475 /* Some buggy (usb cardreader) devices return an lba of
2476 0xffffffff when the want to report a size of 0 (with
2477 which they really mean no media is present) */
2478 sdkp->capacity = 0;
2479 sdkp->physical_block_size = sector_size;
2480 return sector_size;
2481 }
2482
2483 sdkp->capacity = lba + 1;
2484 sdkp->physical_block_size = sector_size;
2485 return sector_size;
2486 }
2487
sd_try_rc16_first(struct scsi_device * sdp)2488 static int sd_try_rc16_first(struct scsi_device *sdp)
2489 {
2490 if (sdp->host->max_cmd_len < 16)
2491 return 0;
2492 if (sdp->try_rc_10_first)
2493 return 0;
2494 if (sdp->scsi_level > SCSI_SPC_2)
2495 return 1;
2496 if (scsi_device_protection(sdp))
2497 return 1;
2498 return 0;
2499 }
2500
2501 /*
2502 * read disk capacity
2503 */
2504 static void
sd_read_capacity(struct scsi_disk * sdkp,unsigned char * buffer)2505 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2506 {
2507 int sector_size;
2508 struct scsi_device *sdp = sdkp->device;
2509
2510 if (sd_try_rc16_first(sdp)) {
2511 sector_size = read_capacity_16(sdkp, sdp, buffer);
2512 if (sector_size == -EOVERFLOW)
2513 goto got_data;
2514 if (sector_size == -ENODEV)
2515 return;
2516 if (sector_size < 0)
2517 sector_size = read_capacity_10(sdkp, sdp, buffer);
2518 if (sector_size < 0)
2519 return;
2520 } else {
2521 sector_size = read_capacity_10(sdkp, sdp, buffer);
2522 if (sector_size == -EOVERFLOW)
2523 goto got_data;
2524 if (sector_size < 0)
2525 return;
2526 if ((sizeof(sdkp->capacity) > 4) &&
2527 (sdkp->capacity > 0xffffffffULL)) {
2528 int old_sector_size = sector_size;
2529 sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2530 "Trying to use READ CAPACITY(16).\n");
2531 sector_size = read_capacity_16(sdkp, sdp, buffer);
2532 if (sector_size < 0) {
2533 sd_printk(KERN_NOTICE, sdkp,
2534 "Using 0xffffffff as device size\n");
2535 sdkp->capacity = 1 + (sector_t) 0xffffffff;
2536 sector_size = old_sector_size;
2537 goto got_data;
2538 }
2539 /* Remember that READ CAPACITY(16) succeeded */
2540 sdp->try_rc_10_first = 0;
2541 }
2542 }
2543
2544 /* Some devices are known to return the total number of blocks,
2545 * not the highest block number. Some devices have versions
2546 * which do this and others which do not. Some devices we might
2547 * suspect of doing this but we don't know for certain.
2548 *
2549 * If we know the reported capacity is wrong, decrement it. If
2550 * we can only guess, then assume the number of blocks is even
2551 * (usually true but not always) and err on the side of lowering
2552 * the capacity.
2553 */
2554 if (sdp->fix_capacity ||
2555 (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2556 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2557 "from its reported value: %llu\n",
2558 (unsigned long long) sdkp->capacity);
2559 --sdkp->capacity;
2560 }
2561
2562 got_data:
2563 if (sector_size == 0) {
2564 sector_size = 512;
2565 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2566 "assuming 512.\n");
2567 }
2568
2569 if (sector_size != 512 &&
2570 sector_size != 1024 &&
2571 sector_size != 2048 &&
2572 sector_size != 4096) {
2573 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2574 sector_size);
2575 /*
2576 * The user might want to re-format the drive with
2577 * a supported sectorsize. Once this happens, it
2578 * would be relatively trivial to set the thing up.
2579 * For this reason, we leave the thing in the table.
2580 */
2581 sdkp->capacity = 0;
2582 /*
2583 * set a bogus sector size so the normal read/write
2584 * logic in the block layer will eventually refuse any
2585 * request on this device without tripping over power
2586 * of two sector size assumptions
2587 */
2588 sector_size = 512;
2589 }
2590 blk_queue_logical_block_size(sdp->request_queue, sector_size);
2591 blk_queue_physical_block_size(sdp->request_queue,
2592 sdkp->physical_block_size);
2593 sdkp->device->sector_size = sector_size;
2594
2595 if (sdkp->capacity > 0xffffffff)
2596 sdp->use_16_for_rw = 1;
2597
2598 }
2599
2600 /*
2601 * Print disk capacity
2602 */
2603 static void
sd_print_capacity(struct scsi_disk * sdkp,sector_t old_capacity)2604 sd_print_capacity(struct scsi_disk *sdkp,
2605 sector_t old_capacity)
2606 {
2607 int sector_size = sdkp->device->sector_size;
2608 char cap_str_2[10], cap_str_10[10];
2609
2610 if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2611 return;
2612
2613 string_get_size(sdkp->capacity, sector_size,
2614 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2615 string_get_size(sdkp->capacity, sector_size,
2616 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2617
2618 sd_printk(KERN_NOTICE, sdkp,
2619 "%llu %d-byte logical blocks: (%s/%s)\n",
2620 (unsigned long long)sdkp->capacity,
2621 sector_size, cap_str_10, cap_str_2);
2622
2623 if (sdkp->physical_block_size != sector_size)
2624 sd_printk(KERN_NOTICE, sdkp,
2625 "%u-byte physical blocks\n",
2626 sdkp->physical_block_size);
2627 }
2628
2629 /* called with buffer of length 512 */
2630 static inline int
sd_do_mode_sense(struct scsi_disk * sdkp,int dbd,int modepage,unsigned char * buffer,int len,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2631 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2632 unsigned char *buffer, int len, struct scsi_mode_data *data,
2633 struct scsi_sense_hdr *sshdr)
2634 {
2635 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2636 SD_TIMEOUT, sdkp->max_retries, data,
2637 sshdr);
2638 }
2639
2640 /*
2641 * read write protect setting, if possible - called only in sd_revalidate_disk()
2642 * called with buffer of length SD_BUF_SIZE
2643 */
2644 static void
sd_read_write_protect_flag(struct scsi_disk * sdkp,unsigned char * buffer)2645 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2646 {
2647 int res;
2648 struct scsi_device *sdp = sdkp->device;
2649 struct scsi_mode_data data;
2650 int old_wp = sdkp->write_prot;
2651
2652 set_disk_ro(sdkp->disk, 0);
2653 if (sdp->skip_ms_page_3f) {
2654 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2655 return;
2656 }
2657
2658 if (sdp->use_192_bytes_for_3f) {
2659 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2660 } else {
2661 /*
2662 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2663 * We have to start carefully: some devices hang if we ask
2664 * for more than is available.
2665 */
2666 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2667
2668 /*
2669 * Second attempt: ask for page 0 When only page 0 is
2670 * implemented, a request for page 3F may return Sense Key
2671 * 5: Illegal Request, Sense Code 24: Invalid field in
2672 * CDB.
2673 */
2674 if (!scsi_status_is_good(res))
2675 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2676
2677 /*
2678 * Third attempt: ask 255 bytes, as we did earlier.
2679 */
2680 if (!scsi_status_is_good(res))
2681 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2682 &data, NULL);
2683 }
2684
2685 if (!scsi_status_is_good(res)) {
2686 sd_first_printk(KERN_WARNING, sdkp,
2687 "Test WP failed, assume Write Enabled\n");
2688 } else {
2689 sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2690 set_disk_ro(sdkp->disk, sdkp->write_prot);
2691 if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2692 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2693 sdkp->write_prot ? "on" : "off");
2694 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2695 }
2696 }
2697 }
2698
2699 /*
2700 * sd_read_cache_type - called only from sd_revalidate_disk()
2701 * called with buffer of length SD_BUF_SIZE
2702 */
2703 static void
sd_read_cache_type(struct scsi_disk * sdkp,unsigned char * buffer)2704 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2705 {
2706 int len = 0, res;
2707 struct scsi_device *sdp = sdkp->device;
2708
2709 int dbd;
2710 int modepage;
2711 int first_len;
2712 struct scsi_mode_data data;
2713 struct scsi_sense_hdr sshdr;
2714 int old_wce = sdkp->WCE;
2715 int old_rcd = sdkp->RCD;
2716 int old_dpofua = sdkp->DPOFUA;
2717
2718
2719 if (sdkp->cache_override)
2720 return;
2721
2722 first_len = 4;
2723 if (sdp->skip_ms_page_8) {
2724 if (sdp->type == TYPE_RBC)
2725 goto defaults;
2726 else {
2727 if (sdp->skip_ms_page_3f)
2728 goto defaults;
2729 modepage = 0x3F;
2730 if (sdp->use_192_bytes_for_3f)
2731 first_len = 192;
2732 dbd = 0;
2733 }
2734 } else if (sdp->type == TYPE_RBC) {
2735 modepage = 6;
2736 dbd = 8;
2737 } else {
2738 modepage = 8;
2739 dbd = 0;
2740 }
2741
2742 /* cautiously ask */
2743 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2744 &data, &sshdr);
2745
2746 if (!scsi_status_is_good(res))
2747 goto bad_sense;
2748
2749 if (!data.header_length) {
2750 modepage = 6;
2751 first_len = 0;
2752 sd_first_printk(KERN_ERR, sdkp,
2753 "Missing header in MODE_SENSE response\n");
2754 }
2755
2756 /* that went OK, now ask for the proper length */
2757 len = data.length;
2758
2759 /*
2760 * We're only interested in the first three bytes, actually.
2761 * But the data cache page is defined for the first 20.
2762 */
2763 if (len < 3)
2764 goto bad_sense;
2765 else if (len > SD_BUF_SIZE) {
2766 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2767 "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2768 len = SD_BUF_SIZE;
2769 }
2770 if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2771 len = 192;
2772
2773 /* Get the data */
2774 if (len > first_len)
2775 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2776 &data, &sshdr);
2777
2778 if (scsi_status_is_good(res)) {
2779 int offset = data.header_length + data.block_descriptor_length;
2780
2781 while (offset < len) {
2782 u8 page_code = buffer[offset] & 0x3F;
2783 u8 spf = buffer[offset] & 0x40;
2784
2785 if (page_code == 8 || page_code == 6) {
2786 /* We're interested only in the first 3 bytes.
2787 */
2788 if (len - offset <= 2) {
2789 sd_first_printk(KERN_ERR, sdkp,
2790 "Incomplete mode parameter "
2791 "data\n");
2792 goto defaults;
2793 } else {
2794 modepage = page_code;
2795 goto Page_found;
2796 }
2797 } else {
2798 /* Go to the next page */
2799 if (spf && len - offset > 3)
2800 offset += 4 + (buffer[offset+2] << 8) +
2801 buffer[offset+3];
2802 else if (!spf && len - offset > 1)
2803 offset += 2 + buffer[offset+1];
2804 else {
2805 sd_first_printk(KERN_ERR, sdkp,
2806 "Incomplete mode "
2807 "parameter data\n");
2808 goto defaults;
2809 }
2810 }
2811 }
2812
2813 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2814 goto defaults;
2815
2816 Page_found:
2817 if (modepage == 8) {
2818 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2819 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2820 } else {
2821 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2822 sdkp->RCD = 0;
2823 }
2824
2825 sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2826 if (sdp->broken_fua) {
2827 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2828 sdkp->DPOFUA = 0;
2829 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2830 !sdkp->device->use_16_for_rw) {
2831 sd_first_printk(KERN_NOTICE, sdkp,
2832 "Uses READ/WRITE(6), disabling FUA\n");
2833 sdkp->DPOFUA = 0;
2834 }
2835
2836 /* No cache flush allowed for write protected devices */
2837 if (sdkp->WCE && sdkp->write_prot)
2838 sdkp->WCE = 0;
2839
2840 if (sdkp->first_scan || old_wce != sdkp->WCE ||
2841 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2842 sd_printk(KERN_NOTICE, sdkp,
2843 "Write cache: %s, read cache: %s, %s\n",
2844 sdkp->WCE ? "enabled" : "disabled",
2845 sdkp->RCD ? "disabled" : "enabled",
2846 sdkp->DPOFUA ? "supports DPO and FUA"
2847 : "doesn't support DPO or FUA");
2848
2849 return;
2850 }
2851
2852 bad_sense:
2853 if (scsi_sense_valid(&sshdr) &&
2854 sshdr.sense_key == ILLEGAL_REQUEST &&
2855 sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2856 /* Invalid field in CDB */
2857 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2858 else
2859 sd_first_printk(KERN_ERR, sdkp,
2860 "Asking for cache data failed\n");
2861
2862 defaults:
2863 if (sdp->wce_default_on) {
2864 sd_first_printk(KERN_NOTICE, sdkp,
2865 "Assuming drive cache: write back\n");
2866 sdkp->WCE = 1;
2867 } else {
2868 sd_first_printk(KERN_ERR, sdkp,
2869 "Assuming drive cache: write through\n");
2870 sdkp->WCE = 0;
2871 }
2872 sdkp->RCD = 0;
2873 sdkp->DPOFUA = 0;
2874 }
2875
2876 /*
2877 * The ATO bit indicates whether the DIF application tag is available
2878 * for use by the operating system.
2879 */
sd_read_app_tag_own(struct scsi_disk * sdkp,unsigned char * buffer)2880 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2881 {
2882 int res, offset;
2883 struct scsi_device *sdp = sdkp->device;
2884 struct scsi_mode_data data;
2885 struct scsi_sense_hdr sshdr;
2886
2887 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2888 return;
2889
2890 if (sdkp->protection_type == 0)
2891 return;
2892
2893 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2894 sdkp->max_retries, &data, &sshdr);
2895
2896 if (!scsi_status_is_good(res) || !data.header_length ||
2897 data.length < 6) {
2898 sd_first_printk(KERN_WARNING, sdkp,
2899 "getting Control mode page failed, assume no ATO\n");
2900
2901 if (scsi_sense_valid(&sshdr))
2902 sd_print_sense_hdr(sdkp, &sshdr);
2903
2904 return;
2905 }
2906
2907 offset = data.header_length + data.block_descriptor_length;
2908
2909 if ((buffer[offset] & 0x3f) != 0x0a) {
2910 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2911 return;
2912 }
2913
2914 if ((buffer[offset + 5] & 0x80) == 0)
2915 return;
2916
2917 sdkp->ATO = 1;
2918
2919 return;
2920 }
2921
2922 /**
2923 * sd_read_block_limits - Query disk device for preferred I/O sizes.
2924 * @sdkp: disk to query
2925 */
sd_read_block_limits(struct scsi_disk * sdkp)2926 static void sd_read_block_limits(struct scsi_disk *sdkp)
2927 {
2928 unsigned int sector_sz = sdkp->device->sector_size;
2929 const int vpd_len = 64;
2930 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2931
2932 if (!buffer ||
2933 /* Block Limits VPD */
2934 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2935 goto out;
2936
2937 blk_queue_io_min(sdkp->disk->queue,
2938 get_unaligned_be16(&buffer[6]) * sector_sz);
2939
2940 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2941 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2942
2943 if (buffer[3] == 0x3c) {
2944 unsigned int lba_count, desc_count;
2945
2946 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2947
2948 if (!sdkp->lbpme)
2949 goto out;
2950
2951 lba_count = get_unaligned_be32(&buffer[20]);
2952 desc_count = get_unaligned_be32(&buffer[24]);
2953
2954 if (lba_count && desc_count)
2955 sdkp->max_unmap_blocks = lba_count;
2956
2957 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2958
2959 if (buffer[32] & 0x80)
2960 sdkp->unmap_alignment =
2961 get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2962
2963 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2964
2965 if (sdkp->max_unmap_blocks)
2966 sd_config_discard(sdkp, SD_LBP_UNMAP);
2967 else
2968 sd_config_discard(sdkp, SD_LBP_WS16);
2969
2970 } else { /* LBP VPD page tells us what to use */
2971 if (sdkp->lbpu && sdkp->max_unmap_blocks)
2972 sd_config_discard(sdkp, SD_LBP_UNMAP);
2973 else if (sdkp->lbpws)
2974 sd_config_discard(sdkp, SD_LBP_WS16);
2975 else if (sdkp->lbpws10)
2976 sd_config_discard(sdkp, SD_LBP_WS10);
2977 else
2978 sd_config_discard(sdkp, SD_LBP_DISABLE);
2979 }
2980 }
2981
2982 out:
2983 kfree(buffer);
2984 }
2985
2986 /**
2987 * sd_read_block_characteristics - Query block dev. characteristics
2988 * @sdkp: disk to query
2989 */
sd_read_block_characteristics(struct scsi_disk * sdkp)2990 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2991 {
2992 struct request_queue *q = sdkp->disk->queue;
2993 unsigned char *buffer;
2994 u16 rot;
2995 const int vpd_len = 64;
2996
2997 buffer = kmalloc(vpd_len, GFP_KERNEL);
2998
2999 if (!buffer ||
3000 /* Block Device Characteristics VPD */
3001 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3002 goto out;
3003
3004 rot = get_unaligned_be16(&buffer[4]);
3005
3006 if (rot == 1) {
3007 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3008 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3009 }
3010
3011 if (sdkp->device->type == TYPE_ZBC) {
3012 /* Host-managed */
3013 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3014 } else {
3015 sdkp->zoned = (buffer[8] >> 4) & 3;
3016 if (sdkp->zoned == 1) {
3017 /* Host-aware */
3018 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3019 } else {
3020 /* Regular disk or drive managed disk */
3021 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3022 }
3023 }
3024
3025 if (!sdkp->first_scan)
3026 goto out;
3027
3028 if (blk_queue_is_zoned(q)) {
3029 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3030 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3031 } else {
3032 if (sdkp->zoned == 1)
3033 sd_printk(KERN_NOTICE, sdkp,
3034 "Host-aware SMR disk used as regular disk\n");
3035 else if (sdkp->zoned == 2)
3036 sd_printk(KERN_NOTICE, sdkp,
3037 "Drive-managed SMR disk\n");
3038 }
3039
3040 out:
3041 kfree(buffer);
3042 }
3043
3044 /**
3045 * sd_read_block_provisioning - Query provisioning VPD page
3046 * @sdkp: disk to query
3047 */
sd_read_block_provisioning(struct scsi_disk * sdkp)3048 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3049 {
3050 unsigned char *buffer;
3051 const int vpd_len = 8;
3052
3053 if (sdkp->lbpme == 0)
3054 return;
3055
3056 buffer = kmalloc(vpd_len, GFP_KERNEL);
3057
3058 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3059 goto out;
3060
3061 sdkp->lbpvpd = 1;
3062 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
3063 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
3064 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
3065
3066 out:
3067 kfree(buffer);
3068 }
3069
sd_read_write_same(struct scsi_disk * sdkp,unsigned char * buffer)3070 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3071 {
3072 struct scsi_device *sdev = sdkp->device;
3073
3074 if (sdev->host->no_write_same) {
3075 sdev->no_write_same = 1;
3076
3077 return;
3078 }
3079
3080 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3081 /* too large values might cause issues with arcmsr */
3082 int vpd_buf_len = 64;
3083
3084 sdev->no_report_opcodes = 1;
3085
3086 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3087 * CODES is unsupported and the device has an ATA
3088 * Information VPD page (SAT).
3089 */
3090 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3091 sdev->no_write_same = 1;
3092 }
3093
3094 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3095 sdkp->ws16 = 1;
3096
3097 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3098 sdkp->ws10 = 1;
3099 }
3100
sd_read_security(struct scsi_disk * sdkp,unsigned char * buffer)3101 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3102 {
3103 struct scsi_device *sdev = sdkp->device;
3104
3105 if (!sdev->security_supported)
3106 return;
3107
3108 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3109 SECURITY_PROTOCOL_IN) == 1 &&
3110 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3111 SECURITY_PROTOCOL_OUT) == 1)
3112 sdkp->security = 1;
3113 }
3114
3115 /*
3116 * Determine the device's preferred I/O size for reads and writes
3117 * unless the reported value is unreasonably small, large, not a
3118 * multiple of the physical block size, or simply garbage.
3119 */
sd_validate_opt_xfer_size(struct scsi_disk * sdkp,unsigned int dev_max)3120 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3121 unsigned int dev_max)
3122 {
3123 struct scsi_device *sdp = sdkp->device;
3124 unsigned int opt_xfer_bytes =
3125 logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3126
3127 if (sdkp->opt_xfer_blocks == 0)
3128 return false;
3129
3130 if (sdkp->opt_xfer_blocks > dev_max) {
3131 sd_first_printk(KERN_WARNING, sdkp,
3132 "Optimal transfer size %u logical blocks " \
3133 "> dev_max (%u logical blocks)\n",
3134 sdkp->opt_xfer_blocks, dev_max);
3135 return false;
3136 }
3137
3138 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3139 sd_first_printk(KERN_WARNING, sdkp,
3140 "Optimal transfer size %u logical blocks " \
3141 "> sd driver limit (%u logical blocks)\n",
3142 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3143 return false;
3144 }
3145
3146 if (opt_xfer_bytes < PAGE_SIZE) {
3147 sd_first_printk(KERN_WARNING, sdkp,
3148 "Optimal transfer size %u bytes < " \
3149 "PAGE_SIZE (%u bytes)\n",
3150 opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3151 return false;
3152 }
3153
3154 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3155 sd_first_printk(KERN_WARNING, sdkp,
3156 "Optimal transfer size %u bytes not a " \
3157 "multiple of physical block size (%u bytes)\n",
3158 opt_xfer_bytes, sdkp->physical_block_size);
3159 return false;
3160 }
3161
3162 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3163 opt_xfer_bytes);
3164 return true;
3165 }
3166
3167 /**
3168 * sd_revalidate_disk - called the first time a new disk is seen,
3169 * performs disk spin up, read_capacity, etc.
3170 * @disk: struct gendisk we care about
3171 **/
sd_revalidate_disk(struct gendisk * disk)3172 static int sd_revalidate_disk(struct gendisk *disk)
3173 {
3174 struct scsi_disk *sdkp = scsi_disk(disk);
3175 struct scsi_device *sdp = sdkp->device;
3176 struct request_queue *q = sdkp->disk->queue;
3177 sector_t old_capacity = sdkp->capacity;
3178 unsigned char *buffer;
3179 unsigned int dev_max, rw_max;
3180
3181 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3182 "sd_revalidate_disk\n"));
3183
3184 /*
3185 * If the device is offline, don't try and read capacity or any
3186 * of the other niceties.
3187 */
3188 if (!scsi_device_online(sdp))
3189 goto out;
3190
3191 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3192 if (!buffer) {
3193 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3194 "allocation failure.\n");
3195 goto out;
3196 }
3197
3198 sd_spinup_disk(sdkp);
3199
3200 /*
3201 * Without media there is no reason to ask; moreover, some devices
3202 * react badly if we do.
3203 */
3204 if (sdkp->media_present) {
3205 sd_read_capacity(sdkp, buffer);
3206
3207 /*
3208 * set the default to rotational. All non-rotational devices
3209 * support the block characteristics VPD page, which will
3210 * cause this to be updated correctly and any device which
3211 * doesn't support it should be treated as rotational.
3212 */
3213 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3214 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3215
3216 if (scsi_device_supports_vpd(sdp)) {
3217 sd_read_block_provisioning(sdkp);
3218 sd_read_block_limits(sdkp);
3219 sd_read_block_characteristics(sdkp);
3220 sd_zbc_read_zones(sdkp, buffer);
3221 }
3222
3223 sd_print_capacity(sdkp, old_capacity);
3224
3225 sd_read_write_protect_flag(sdkp, buffer);
3226 sd_read_cache_type(sdkp, buffer);
3227 sd_read_app_tag_own(sdkp, buffer);
3228 sd_read_write_same(sdkp, buffer);
3229 sd_read_security(sdkp, buffer);
3230 }
3231
3232 /*
3233 * We now have all cache related info, determine how we deal
3234 * with flush requests.
3235 */
3236 sd_set_flush_flag(sdkp);
3237
3238 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3239 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3240
3241 /* Some devices report a maximum block count for READ/WRITE requests. */
3242 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3243 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3244
3245 if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3246 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3247 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3248 } else {
3249 q->limits.io_opt = 0;
3250 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3251 (sector_t)BLK_DEF_MAX_SECTORS);
3252 }
3253
3254 /* Do not exceed controller limit */
3255 rw_max = min(rw_max, queue_max_hw_sectors(q));
3256
3257 /*
3258 * Only update max_sectors if previously unset or if the current value
3259 * exceeds the capabilities of the hardware.
3260 */
3261 if (sdkp->first_scan ||
3262 q->limits.max_sectors > q->limits.max_dev_sectors ||
3263 q->limits.max_sectors > q->limits.max_hw_sectors)
3264 q->limits.max_sectors = rw_max;
3265
3266 sdkp->first_scan = 0;
3267
3268 set_capacity_revalidate_and_notify(disk,
3269 logical_to_sectors(sdp, sdkp->capacity), false);
3270 sd_config_write_same(sdkp);
3271 kfree(buffer);
3272
3273 /*
3274 * For a zoned drive, revalidating the zones can be done only once
3275 * the gendisk capacity is set. So if this fails, set back the gendisk
3276 * capacity to 0.
3277 */
3278 if (sd_zbc_revalidate_zones(sdkp))
3279 set_capacity_revalidate_and_notify(disk, 0, false);
3280
3281 out:
3282 return 0;
3283 }
3284
3285 /**
3286 * sd_unlock_native_capacity - unlock native capacity
3287 * @disk: struct gendisk to set capacity for
3288 *
3289 * Block layer calls this function if it detects that partitions
3290 * on @disk reach beyond the end of the device. If the SCSI host
3291 * implements ->unlock_native_capacity() method, it's invoked to
3292 * give it a chance to adjust the device capacity.
3293 *
3294 * CONTEXT:
3295 * Defined by block layer. Might sleep.
3296 */
sd_unlock_native_capacity(struct gendisk * disk)3297 static void sd_unlock_native_capacity(struct gendisk *disk)
3298 {
3299 struct scsi_device *sdev = scsi_disk(disk)->device;
3300
3301 if (sdev->host->hostt->unlock_native_capacity)
3302 sdev->host->hostt->unlock_native_capacity(sdev);
3303 }
3304
3305 /**
3306 * sd_format_disk_name - format disk name
3307 * @prefix: name prefix - ie. "sd" for SCSI disks
3308 * @index: index of the disk to format name for
3309 * @buf: output buffer
3310 * @buflen: length of the output buffer
3311 *
3312 * SCSI disk names starts at sda. The 26th device is sdz and the
3313 * 27th is sdaa. The last one for two lettered suffix is sdzz
3314 * which is followed by sdaaa.
3315 *
3316 * This is basically 26 base counting with one extra 'nil' entry
3317 * at the beginning from the second digit on and can be
3318 * determined using similar method as 26 base conversion with the
3319 * index shifted -1 after each digit is computed.
3320 *
3321 * CONTEXT:
3322 * Don't care.
3323 *
3324 * RETURNS:
3325 * 0 on success, -errno on failure.
3326 */
sd_format_disk_name(char * prefix,int index,char * buf,int buflen)3327 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3328 {
3329 const int base = 'z' - 'a' + 1;
3330 char *begin = buf + strlen(prefix);
3331 char *end = buf + buflen;
3332 char *p;
3333 int unit;
3334
3335 p = end - 1;
3336 *p = '\0';
3337 unit = base;
3338 do {
3339 if (p == begin)
3340 return -EINVAL;
3341 *--p = 'a' + (index % unit);
3342 index = (index / unit) - 1;
3343 } while (index >= 0);
3344
3345 memmove(begin, p, end - p);
3346 memcpy(buf, prefix, strlen(prefix));
3347
3348 return 0;
3349 }
3350
3351 /**
3352 * sd_probe - called during driver initialization and whenever a
3353 * new scsi device is attached to the system. It is called once
3354 * for each scsi device (not just disks) present.
3355 * @dev: pointer to device object
3356 *
3357 * Returns 0 if successful (or not interested in this scsi device
3358 * (e.g. scanner)); 1 when there is an error.
3359 *
3360 * Note: this function is invoked from the scsi mid-level.
3361 * This function sets up the mapping between a given
3362 * <host,channel,id,lun> (found in sdp) and new device name
3363 * (e.g. /dev/sda). More precisely it is the block device major
3364 * and minor number that is chosen here.
3365 *
3366 * Assume sd_probe is not re-entrant (for time being)
3367 * Also think about sd_probe() and sd_remove() running coincidentally.
3368 **/
sd_probe(struct device * dev)3369 static int sd_probe(struct device *dev)
3370 {
3371 struct scsi_device *sdp = to_scsi_device(dev);
3372 struct scsi_disk *sdkp;
3373 struct gendisk *gd;
3374 int index;
3375 int error;
3376
3377 scsi_autopm_get_device(sdp);
3378 error = -ENODEV;
3379 if (sdp->type != TYPE_DISK &&
3380 sdp->type != TYPE_ZBC &&
3381 sdp->type != TYPE_MOD &&
3382 sdp->type != TYPE_RBC)
3383 goto out;
3384
3385 #ifndef CONFIG_BLK_DEV_ZONED
3386 if (sdp->type == TYPE_ZBC)
3387 goto out;
3388 #endif
3389 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3390 "sd_probe\n"));
3391
3392 error = -ENOMEM;
3393 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3394 if (!sdkp)
3395 goto out;
3396
3397 gd = alloc_disk(SD_MINORS);
3398 if (!gd)
3399 goto out_free;
3400
3401 index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3402 if (index < 0) {
3403 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3404 goto out_put;
3405 }
3406
3407 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3408 if (error) {
3409 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3410 goto out_free_index;
3411 }
3412
3413 sdkp->device = sdp;
3414 sdkp->driver = &sd_template;
3415 sdkp->disk = gd;
3416 sdkp->index = index;
3417 sdkp->max_retries = SD_MAX_RETRIES;
3418 atomic_set(&sdkp->openers, 0);
3419 atomic_set(&sdkp->device->ioerr_cnt, 0);
3420
3421 if (!sdp->request_queue->rq_timeout) {
3422 if (sdp->type != TYPE_MOD)
3423 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3424 else
3425 blk_queue_rq_timeout(sdp->request_queue,
3426 SD_MOD_TIMEOUT);
3427 }
3428
3429 device_initialize(&sdkp->dev);
3430 sdkp->dev.parent = dev;
3431 sdkp->dev.class = &sd_disk_class;
3432 dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3433
3434 error = device_add(&sdkp->dev);
3435 if (error)
3436 goto out_free_index;
3437
3438 get_device(dev);
3439 dev_set_drvdata(dev, sdkp);
3440
3441 gd->major = sd_major((index & 0xf0) >> 4);
3442 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3443
3444 gd->fops = &sd_fops;
3445 gd->private_data = &sdkp->driver;
3446 gd->queue = sdkp->device->request_queue;
3447
3448 /* defaults, until the device tells us otherwise */
3449 sdp->sector_size = 512;
3450 sdkp->capacity = 0;
3451 sdkp->media_present = 1;
3452 sdkp->write_prot = 0;
3453 sdkp->cache_override = 0;
3454 sdkp->WCE = 0;
3455 sdkp->RCD = 0;
3456 sdkp->ATO = 0;
3457 sdkp->first_scan = 1;
3458 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3459
3460 sd_revalidate_disk(gd);
3461
3462 gd->flags = GENHD_FL_EXT_DEVT;
3463 if (sdp->removable) {
3464 gd->flags |= GENHD_FL_REMOVABLE;
3465 gd->events |= DISK_EVENT_MEDIA_CHANGE;
3466 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3467 }
3468
3469 blk_pm_runtime_init(sdp->request_queue, dev);
3470 if (sdp->rpm_autosuspend) {
3471 pm_runtime_set_autosuspend_delay(dev,
3472 sdp->host->hostt->rpm_autosuspend_delay);
3473 }
3474 device_add_disk(dev, gd, NULL);
3475 if (sdkp->capacity)
3476 sd_dif_config_host(sdkp);
3477
3478 sd_revalidate_disk(gd);
3479
3480 if (sdkp->security) {
3481 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3482 if (sdkp->opal_dev)
3483 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3484 }
3485
3486 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3487 sdp->removable ? "removable " : "");
3488 scsi_autopm_put_device(sdp);
3489
3490 return 0;
3491
3492 out_free_index:
3493 ida_free(&sd_index_ida, index);
3494 out_put:
3495 put_disk(gd);
3496 out_free:
3497 sd_zbc_release_disk(sdkp);
3498 kfree(sdkp);
3499 out:
3500 scsi_autopm_put_device(sdp);
3501 return error;
3502 }
3503
3504 /**
3505 * sd_remove - called whenever a scsi disk (previously recognized by
3506 * sd_probe) is detached from the system. It is called (potentially
3507 * multiple times) during sd module unload.
3508 * @dev: pointer to device object
3509 *
3510 * Note: this function is invoked from the scsi mid-level.
3511 * This function potentially frees up a device name (e.g. /dev/sdc)
3512 * that could be re-used by a subsequent sd_probe().
3513 * This function is not called when the built-in sd driver is "exit-ed".
3514 **/
sd_remove(struct device * dev)3515 static int sd_remove(struct device *dev)
3516 {
3517 struct scsi_disk *sdkp;
3518 dev_t devt;
3519
3520 sdkp = dev_get_drvdata(dev);
3521 devt = disk_devt(sdkp->disk);
3522 scsi_autopm_get_device(sdkp->device);
3523
3524 async_synchronize_full_domain(&scsi_sd_pm_domain);
3525 device_del(&sdkp->dev);
3526 del_gendisk(sdkp->disk);
3527 sd_shutdown(dev);
3528
3529 free_opal_dev(sdkp->opal_dev);
3530
3531 blk_register_region(devt, SD_MINORS, NULL,
3532 sd_default_probe, NULL, NULL);
3533
3534 mutex_lock(&sd_ref_mutex);
3535 dev_set_drvdata(dev, NULL);
3536 put_device(&sdkp->dev);
3537 mutex_unlock(&sd_ref_mutex);
3538
3539 return 0;
3540 }
3541
3542 /**
3543 * scsi_disk_release - Called to free the scsi_disk structure
3544 * @dev: pointer to embedded class device
3545 *
3546 * sd_ref_mutex must be held entering this routine. Because it is
3547 * called on last put, you should always use the scsi_disk_get()
3548 * scsi_disk_put() helpers which manipulate the semaphore directly
3549 * and never do a direct put_device.
3550 **/
scsi_disk_release(struct device * dev)3551 static void scsi_disk_release(struct device *dev)
3552 {
3553 struct scsi_disk *sdkp = to_scsi_disk(dev);
3554 struct gendisk *disk = sdkp->disk;
3555 struct request_queue *q = disk->queue;
3556
3557 ida_free(&sd_index_ida, sdkp->index);
3558
3559 /*
3560 * Wait until all requests that are in progress have completed.
3561 * This is necessary to avoid that e.g. scsi_end_request() crashes
3562 * due to clearing the disk->private_data pointer. Wait from inside
3563 * scsi_disk_release() instead of from sd_release() to avoid that
3564 * freezing and unfreezing the request queue affects user space I/O
3565 * in case multiple processes open a /dev/sd... node concurrently.
3566 */
3567 blk_mq_freeze_queue(q);
3568 blk_mq_unfreeze_queue(q);
3569
3570 disk->private_data = NULL;
3571 put_disk(disk);
3572 put_device(&sdkp->device->sdev_gendev);
3573
3574 sd_zbc_release_disk(sdkp);
3575
3576 kfree(sdkp);
3577 }
3578
sd_start_stop_device(struct scsi_disk * sdkp,int start)3579 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3580 {
3581 unsigned char cmd[6] = { START_STOP }; /* START_VALID */
3582 struct scsi_sense_hdr sshdr;
3583 struct scsi_device *sdp = sdkp->device;
3584 int res;
3585
3586 if (start)
3587 cmd[4] |= 1; /* START */
3588
3589 if (sdp->start_stop_pwr_cond)
3590 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */
3591
3592 if (!scsi_device_online(sdp))
3593 return -ENODEV;
3594
3595 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3596 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3597 if (res) {
3598 sd_print_result(sdkp, "Start/Stop Unit failed", res);
3599 if (driver_byte(res) == DRIVER_SENSE)
3600 sd_print_sense_hdr(sdkp, &sshdr);
3601 if (scsi_sense_valid(&sshdr) &&
3602 /* 0x3a is medium not present */
3603 sshdr.asc == 0x3a)
3604 res = 0;
3605 }
3606
3607 /* SCSI error codes must not go to the generic layer */
3608 if (res)
3609 return -EIO;
3610
3611 return 0;
3612 }
3613
3614 /*
3615 * Send a SYNCHRONIZE CACHE instruction down to the device through
3616 * the normal SCSI command structure. Wait for the command to
3617 * complete.
3618 */
sd_shutdown(struct device * dev)3619 static void sd_shutdown(struct device *dev)
3620 {
3621 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3622
3623 if (!sdkp)
3624 return; /* this can happen */
3625
3626 if (pm_runtime_suspended(dev))
3627 return;
3628
3629 if (sdkp->WCE && sdkp->media_present) {
3630 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3631 sd_sync_cache(sdkp, NULL);
3632 }
3633
3634 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3635 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3636 sd_start_stop_device(sdkp, 0);
3637 }
3638 }
3639
sd_suspend_common(struct device * dev,bool ignore_stop_errors)3640 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3641 {
3642 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3643 struct scsi_sense_hdr sshdr;
3644 int ret = 0;
3645
3646 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */
3647 return 0;
3648
3649 if (sdkp->WCE && sdkp->media_present) {
3650 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3651 ret = sd_sync_cache(sdkp, &sshdr);
3652
3653 if (ret) {
3654 /* ignore OFFLINE device */
3655 if (ret == -ENODEV)
3656 return 0;
3657
3658 if (!scsi_sense_valid(&sshdr) ||
3659 sshdr.sense_key != ILLEGAL_REQUEST)
3660 return ret;
3661
3662 /*
3663 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3664 * doesn't support sync. There's not much to do and
3665 * suspend shouldn't fail.
3666 */
3667 ret = 0;
3668 }
3669 }
3670
3671 if (sdkp->device->manage_start_stop) {
3672 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3673 /* an error is not worth aborting a system sleep */
3674 ret = sd_start_stop_device(sdkp, 0);
3675 if (ignore_stop_errors)
3676 ret = 0;
3677 }
3678
3679 return ret;
3680 }
3681
sd_suspend_system(struct device * dev)3682 static int sd_suspend_system(struct device *dev)
3683 {
3684 return sd_suspend_common(dev, true);
3685 }
3686
sd_suspend_runtime(struct device * dev)3687 static int sd_suspend_runtime(struct device *dev)
3688 {
3689 return sd_suspend_common(dev, false);
3690 }
3691
sd_resume(struct device * dev)3692 static int sd_resume(struct device *dev)
3693 {
3694 struct scsi_disk *sdkp = dev_get_drvdata(dev);
3695 int ret;
3696
3697 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */
3698 return 0;
3699
3700 if (!sdkp->device->manage_start_stop)
3701 return 0;
3702
3703 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3704 ret = sd_start_stop_device(sdkp, 1);
3705 if (!ret)
3706 opal_unlock_from_suspend(sdkp->opal_dev);
3707 return ret;
3708 }
3709
3710 /**
3711 * init_sd - entry point for this driver (both when built in or when
3712 * a module).
3713 *
3714 * Note: this function registers this driver with the scsi mid-level.
3715 **/
init_sd(void)3716 static int __init init_sd(void)
3717 {
3718 int majors = 0, i, err;
3719
3720 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3721
3722 for (i = 0; i < SD_MAJORS; i++) {
3723 if (register_blkdev(sd_major(i), "sd") != 0)
3724 continue;
3725 majors++;
3726 blk_register_region(sd_major(i), SD_MINORS, NULL,
3727 sd_default_probe, NULL, NULL);
3728 }
3729
3730 if (!majors)
3731 return -ENODEV;
3732
3733 err = class_register(&sd_disk_class);
3734 if (err)
3735 goto err_out;
3736
3737 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3738 0, 0, NULL);
3739 if (!sd_cdb_cache) {
3740 printk(KERN_ERR "sd: can't init extended cdb cache\n");
3741 err = -ENOMEM;
3742 goto err_out_class;
3743 }
3744
3745 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3746 if (!sd_cdb_pool) {
3747 printk(KERN_ERR "sd: can't init extended cdb pool\n");
3748 err = -ENOMEM;
3749 goto err_out_cache;
3750 }
3751
3752 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3753 if (!sd_page_pool) {
3754 printk(KERN_ERR "sd: can't init discard page pool\n");
3755 err = -ENOMEM;
3756 goto err_out_ppool;
3757 }
3758
3759 err = scsi_register_driver(&sd_template.gendrv);
3760 if (err)
3761 goto err_out_driver;
3762
3763 return 0;
3764
3765 err_out_driver:
3766 mempool_destroy(sd_page_pool);
3767
3768 err_out_ppool:
3769 mempool_destroy(sd_cdb_pool);
3770
3771 err_out_cache:
3772 kmem_cache_destroy(sd_cdb_cache);
3773
3774 err_out_class:
3775 class_unregister(&sd_disk_class);
3776 err_out:
3777 for (i = 0; i < SD_MAJORS; i++)
3778 unregister_blkdev(sd_major(i), "sd");
3779 return err;
3780 }
3781
3782 /**
3783 * exit_sd - exit point for this driver (when it is a module).
3784 *
3785 * Note: this function unregisters this driver from the scsi mid-level.
3786 **/
exit_sd(void)3787 static void __exit exit_sd(void)
3788 {
3789 int i;
3790
3791 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3792
3793 scsi_unregister_driver(&sd_template.gendrv);
3794 mempool_destroy(sd_cdb_pool);
3795 mempool_destroy(sd_page_pool);
3796 kmem_cache_destroy(sd_cdb_cache);
3797
3798 class_unregister(&sd_disk_class);
3799
3800 for (i = 0; i < SD_MAJORS; i++) {
3801 blk_unregister_region(sd_major(i), SD_MINORS);
3802 unregister_blkdev(sd_major(i), "sd");
3803 }
3804 }
3805
3806 module_init(init_sd);
3807 module_exit(exit_sd);
3808
sd_print_sense_hdr(struct scsi_disk * sdkp,struct scsi_sense_hdr * sshdr)3809 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3810 {
3811 scsi_print_sense_hdr(sdkp->device,
3812 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3813 }
3814
sd_print_result(const struct scsi_disk * sdkp,const char * msg,int result)3815 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3816 {
3817 const char *hb_string = scsi_hostbyte_string(result);
3818 const char *db_string = scsi_driverbyte_string(result);
3819
3820 if (hb_string || db_string)
3821 sd_printk(KERN_INFO, sdkp,
3822 "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3823 hb_string ? hb_string : "invalid",
3824 db_string ? db_string : "invalid");
3825 else
3826 sd_printk(KERN_INFO, sdkp,
3827 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3828 msg, host_byte(result), driver_byte(result));
3829 }
3830