1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * An rtc driver for the Dallas/Maxim DS1685/DS1687 and related real-time
4 * chips.
5 *
6 * Copyright (C) 2011-2014 Joshua Kinard <kumba@gentoo.org>.
7 * Copyright (C) 2009 Matthias Fuchs <matthias.fuchs@esd-electronics.com>.
8 *
9 * References:
10 * DS1685/DS1687 3V/5V Real-Time Clocks, 19-5215, Rev 4/10.
11 * DS17x85/DS17x87 3V/5V Real-Time Clocks, 19-5222, Rev 4/10.
12 * DS1689/DS1693 3V/5V Serialized Real-Time Clocks, Rev 112105.
13 * Application Note 90, Using the Multiplex Bus RTC Extended Features.
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/bcd.h>
19 #include <linux/delay.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/rtc.h>
24 #include <linux/workqueue.h>
25
26 #include <linux/rtc/ds1685.h>
27
28 #ifdef CONFIG_PROC_FS
29 #include <linux/proc_fs.h>
30 #endif
31
32
33 /* ----------------------------------------------------------------------- */
34 /*
35 * Standard read/write
36 * all registers are mapped in CPU address space
37 */
38
39 /**
40 * ds1685_read - read a value from an rtc register.
41 * @rtc: pointer to the ds1685 rtc structure.
42 * @reg: the register address to read.
43 */
44 static u8
ds1685_read(struct ds1685_priv * rtc,int reg)45 ds1685_read(struct ds1685_priv *rtc, int reg)
46 {
47 return readb((u8 __iomem *)rtc->regs +
48 (reg * rtc->regstep));
49 }
50
51 /**
52 * ds1685_write - write a value to an rtc register.
53 * @rtc: pointer to the ds1685 rtc structure.
54 * @reg: the register address to write.
55 * @value: value to write to the register.
56 */
57 static void
ds1685_write(struct ds1685_priv * rtc,int reg,u8 value)58 ds1685_write(struct ds1685_priv *rtc, int reg, u8 value)
59 {
60 writeb(value, ((u8 __iomem *)rtc->regs +
61 (reg * rtc->regstep)));
62 }
63 /* ----------------------------------------------------------------------- */
64
65 /*
66 * Indirect read/write functions
67 * access happens via address and data register mapped in CPU address space
68 */
69
70 /**
71 * ds1685_indirect_read - read a value from an rtc register.
72 * @rtc: pointer to the ds1685 rtc structure.
73 * @reg: the register address to read.
74 */
75 static u8
ds1685_indirect_read(struct ds1685_priv * rtc,int reg)76 ds1685_indirect_read(struct ds1685_priv *rtc, int reg)
77 {
78 writeb(reg, rtc->regs);
79 return readb(rtc->data);
80 }
81
82 /**
83 * ds1685_indirect_write - write a value to an rtc register.
84 * @rtc: pointer to the ds1685 rtc structure.
85 * @reg: the register address to write.
86 * @value: value to write to the register.
87 */
88 static void
ds1685_indirect_write(struct ds1685_priv * rtc,int reg,u8 value)89 ds1685_indirect_write(struct ds1685_priv *rtc, int reg, u8 value)
90 {
91 writeb(reg, rtc->regs);
92 writeb(value, rtc->data);
93 }
94
95 /* ----------------------------------------------------------------------- */
96 /* Inlined functions */
97
98 /**
99 * ds1685_rtc_bcd2bin - bcd2bin wrapper in case platform doesn't support BCD.
100 * @rtc: pointer to the ds1685 rtc structure.
101 * @val: u8 time value to consider converting.
102 * @bcd_mask: u8 mask value if BCD mode is used.
103 * @bin_mask: u8 mask value if BIN mode is used.
104 *
105 * Returns the value, converted to BIN if originally in BCD and bcd_mode TRUE.
106 */
107 static inline u8
ds1685_rtc_bcd2bin(struct ds1685_priv * rtc,u8 val,u8 bcd_mask,u8 bin_mask)108 ds1685_rtc_bcd2bin(struct ds1685_priv *rtc, u8 val, u8 bcd_mask, u8 bin_mask)
109 {
110 if (rtc->bcd_mode)
111 return (bcd2bin(val) & bcd_mask);
112
113 return (val & bin_mask);
114 }
115
116 /**
117 * ds1685_rtc_bin2bcd - bin2bcd wrapper in case platform doesn't support BCD.
118 * @rtc: pointer to the ds1685 rtc structure.
119 * @val: u8 time value to consider converting.
120 * @bin_mask: u8 mask value if BIN mode is used.
121 * @bcd_mask: u8 mask value if BCD mode is used.
122 *
123 * Returns the value, converted to BCD if originally in BIN and bcd_mode TRUE.
124 */
125 static inline u8
ds1685_rtc_bin2bcd(struct ds1685_priv * rtc,u8 val,u8 bin_mask,u8 bcd_mask)126 ds1685_rtc_bin2bcd(struct ds1685_priv *rtc, u8 val, u8 bin_mask, u8 bcd_mask)
127 {
128 if (rtc->bcd_mode)
129 return (bin2bcd(val) & bcd_mask);
130
131 return (val & bin_mask);
132 }
133
134 /**
135 * s1685_rtc_check_mday - check validity of the day of month.
136 * @rtc: pointer to the ds1685 rtc structure.
137 * @mday: day of month.
138 *
139 * Returns -EDOM if the day of month is not within 1..31 range.
140 */
141 static inline int
ds1685_rtc_check_mday(struct ds1685_priv * rtc,u8 mday)142 ds1685_rtc_check_mday(struct ds1685_priv *rtc, u8 mday)
143 {
144 if (rtc->bcd_mode) {
145 if (mday < 0x01 || mday > 0x31 || (mday & 0x0f) > 0x09)
146 return -EDOM;
147 } else {
148 if (mday < 1 || mday > 31)
149 return -EDOM;
150 }
151 return 0;
152 }
153
154 /**
155 * ds1685_rtc_switch_to_bank0 - switch the rtc to bank 0.
156 * @rtc: pointer to the ds1685 rtc structure.
157 */
158 static inline void
ds1685_rtc_switch_to_bank0(struct ds1685_priv * rtc)159 ds1685_rtc_switch_to_bank0(struct ds1685_priv *rtc)
160 {
161 rtc->write(rtc, RTC_CTRL_A,
162 (rtc->read(rtc, RTC_CTRL_A) & ~(RTC_CTRL_A_DV0)));
163 }
164
165 /**
166 * ds1685_rtc_switch_to_bank1 - switch the rtc to bank 1.
167 * @rtc: pointer to the ds1685 rtc structure.
168 */
169 static inline void
ds1685_rtc_switch_to_bank1(struct ds1685_priv * rtc)170 ds1685_rtc_switch_to_bank1(struct ds1685_priv *rtc)
171 {
172 rtc->write(rtc, RTC_CTRL_A,
173 (rtc->read(rtc, RTC_CTRL_A) | RTC_CTRL_A_DV0));
174 }
175
176 /**
177 * ds1685_rtc_begin_data_access - prepare the rtc for data access.
178 * @rtc: pointer to the ds1685 rtc structure.
179 *
180 * This takes several steps to prepare the rtc for access to get/set time
181 * and alarm values from the rtc registers:
182 * - Sets the SET bit in Control Register B.
183 * - Reads Ext Control Register 4A and checks the INCR bit.
184 * - If INCR is active, a short delay is added before Ext Control Register 4A
185 * is read again in a loop until INCR is inactive.
186 * - Switches the rtc to bank 1. This allows access to all relevant
187 * data for normal rtc operation, as bank 0 contains only the nvram.
188 */
189 static inline void
ds1685_rtc_begin_data_access(struct ds1685_priv * rtc)190 ds1685_rtc_begin_data_access(struct ds1685_priv *rtc)
191 {
192 /* Set the SET bit in Ctrl B */
193 rtc->write(rtc, RTC_CTRL_B,
194 (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
195
196 /* Switch to Bank 1 */
197 ds1685_rtc_switch_to_bank1(rtc);
198
199 /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
200 while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
201 cpu_relax();
202 }
203
204 /**
205 * ds1685_rtc_end_data_access - end data access on the rtc.
206 * @rtc: pointer to the ds1685 rtc structure.
207 *
208 * This ends what was started by ds1685_rtc_begin_data_access:
209 * - Switches the rtc back to bank 0.
210 * - Clears the SET bit in Control Register B.
211 */
212 static inline void
ds1685_rtc_end_data_access(struct ds1685_priv * rtc)213 ds1685_rtc_end_data_access(struct ds1685_priv *rtc)
214 {
215 /* Switch back to Bank 0 */
216 ds1685_rtc_switch_to_bank0(rtc);
217
218 /* Clear the SET bit in Ctrl B */
219 rtc->write(rtc, RTC_CTRL_B,
220 (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
221 }
222
223 /**
224 * ds1685_rtc_get_ssn - retrieve the silicon serial number.
225 * @rtc: pointer to the ds1685 rtc structure.
226 * @ssn: u8 array to hold the bits of the silicon serial number.
227 *
228 * This number starts at 0x40, and is 8-bytes long, ending at 0x47. The
229 * first byte is the model number, the next six bytes are the serial number
230 * digits, and the final byte is a CRC check byte. Together, they form the
231 * silicon serial number.
232 *
233 * These values are stored in bank1, so ds1685_rtc_switch_to_bank1 must be
234 * called first before calling this function, else data will be read out of
235 * the bank0 NVRAM. Be sure to call ds1685_rtc_switch_to_bank0 when done.
236 */
237 static inline void
ds1685_rtc_get_ssn(struct ds1685_priv * rtc,u8 * ssn)238 ds1685_rtc_get_ssn(struct ds1685_priv *rtc, u8 *ssn)
239 {
240 ssn[0] = rtc->read(rtc, RTC_BANK1_SSN_MODEL);
241 ssn[1] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_1);
242 ssn[2] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_2);
243 ssn[3] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_3);
244 ssn[4] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_4);
245 ssn[5] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_5);
246 ssn[6] = rtc->read(rtc, RTC_BANK1_SSN_BYTE_6);
247 ssn[7] = rtc->read(rtc, RTC_BANK1_SSN_CRC);
248 }
249 /* ----------------------------------------------------------------------- */
250
251
252 /* ----------------------------------------------------------------------- */
253 /* Read/Set Time & Alarm functions */
254
255 /**
256 * ds1685_rtc_read_time - reads the time registers.
257 * @dev: pointer to device structure.
258 * @tm: pointer to rtc_time structure.
259 */
260 static int
ds1685_rtc_read_time(struct device * dev,struct rtc_time * tm)261 ds1685_rtc_read_time(struct device *dev, struct rtc_time *tm)
262 {
263 struct ds1685_priv *rtc = dev_get_drvdata(dev);
264 u8 century;
265 u8 seconds, minutes, hours, wday, mday, month, years;
266
267 /* Fetch the time info from the RTC registers. */
268 ds1685_rtc_begin_data_access(rtc);
269 seconds = rtc->read(rtc, RTC_SECS);
270 minutes = rtc->read(rtc, RTC_MINS);
271 hours = rtc->read(rtc, RTC_HRS);
272 wday = rtc->read(rtc, RTC_WDAY);
273 mday = rtc->read(rtc, RTC_MDAY);
274 month = rtc->read(rtc, RTC_MONTH);
275 years = rtc->read(rtc, RTC_YEAR);
276 century = rtc->read(rtc, RTC_CENTURY);
277 ds1685_rtc_end_data_access(rtc);
278
279 /* bcd2bin if needed, perform fixups, and store to rtc_time. */
280 years = ds1685_rtc_bcd2bin(rtc, years, RTC_YEAR_BCD_MASK,
281 RTC_YEAR_BIN_MASK);
282 century = ds1685_rtc_bcd2bin(rtc, century, RTC_CENTURY_MASK,
283 RTC_CENTURY_MASK);
284 tm->tm_sec = ds1685_rtc_bcd2bin(rtc, seconds, RTC_SECS_BCD_MASK,
285 RTC_SECS_BIN_MASK);
286 tm->tm_min = ds1685_rtc_bcd2bin(rtc, minutes, RTC_MINS_BCD_MASK,
287 RTC_MINS_BIN_MASK);
288 tm->tm_hour = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_24_BCD_MASK,
289 RTC_HRS_24_BIN_MASK);
290 tm->tm_wday = (ds1685_rtc_bcd2bin(rtc, wday, RTC_WDAY_MASK,
291 RTC_WDAY_MASK) - 1);
292 tm->tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
293 RTC_MDAY_BIN_MASK);
294 tm->tm_mon = (ds1685_rtc_bcd2bin(rtc, month, RTC_MONTH_BCD_MASK,
295 RTC_MONTH_BIN_MASK) - 1);
296 tm->tm_year = ((years + (century * 100)) - 1900);
297 tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
298 tm->tm_isdst = 0; /* RTC has hardcoded timezone, so don't use. */
299
300 return 0;
301 }
302
303 /**
304 * ds1685_rtc_set_time - sets the time registers.
305 * @dev: pointer to device structure.
306 * @tm: pointer to rtc_time structure.
307 */
308 static int
ds1685_rtc_set_time(struct device * dev,struct rtc_time * tm)309 ds1685_rtc_set_time(struct device *dev, struct rtc_time *tm)
310 {
311 struct ds1685_priv *rtc = dev_get_drvdata(dev);
312 u8 ctrlb, seconds, minutes, hours, wday, mday, month, years, century;
313
314 /* Fetch the time info from rtc_time. */
315 seconds = ds1685_rtc_bin2bcd(rtc, tm->tm_sec, RTC_SECS_BIN_MASK,
316 RTC_SECS_BCD_MASK);
317 minutes = ds1685_rtc_bin2bcd(rtc, tm->tm_min, RTC_MINS_BIN_MASK,
318 RTC_MINS_BCD_MASK);
319 hours = ds1685_rtc_bin2bcd(rtc, tm->tm_hour, RTC_HRS_24_BIN_MASK,
320 RTC_HRS_24_BCD_MASK);
321 wday = ds1685_rtc_bin2bcd(rtc, (tm->tm_wday + 1), RTC_WDAY_MASK,
322 RTC_WDAY_MASK);
323 mday = ds1685_rtc_bin2bcd(rtc, tm->tm_mday, RTC_MDAY_BIN_MASK,
324 RTC_MDAY_BCD_MASK);
325 month = ds1685_rtc_bin2bcd(rtc, (tm->tm_mon + 1), RTC_MONTH_BIN_MASK,
326 RTC_MONTH_BCD_MASK);
327 years = ds1685_rtc_bin2bcd(rtc, (tm->tm_year % 100),
328 RTC_YEAR_BIN_MASK, RTC_YEAR_BCD_MASK);
329 century = ds1685_rtc_bin2bcd(rtc, ((tm->tm_year + 1900) / 100),
330 RTC_CENTURY_MASK, RTC_CENTURY_MASK);
331
332 /*
333 * Perform Sanity Checks:
334 * - Months: !> 12, Month Day != 0.
335 * - Month Day !> Max days in current month.
336 * - Hours !>= 24, Mins !>= 60, Secs !>= 60, & Weekday !> 7.
337 */
338 if ((tm->tm_mon > 11) || (mday == 0))
339 return -EDOM;
340
341 if (tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year))
342 return -EDOM;
343
344 if ((tm->tm_hour >= 24) || (tm->tm_min >= 60) ||
345 (tm->tm_sec >= 60) || (wday > 7))
346 return -EDOM;
347
348 /*
349 * Set the data mode to use and store the time values in the
350 * RTC registers.
351 */
352 ds1685_rtc_begin_data_access(rtc);
353 ctrlb = rtc->read(rtc, RTC_CTRL_B);
354 if (rtc->bcd_mode)
355 ctrlb &= ~(RTC_CTRL_B_DM);
356 else
357 ctrlb |= RTC_CTRL_B_DM;
358 rtc->write(rtc, RTC_CTRL_B, ctrlb);
359 rtc->write(rtc, RTC_SECS, seconds);
360 rtc->write(rtc, RTC_MINS, minutes);
361 rtc->write(rtc, RTC_HRS, hours);
362 rtc->write(rtc, RTC_WDAY, wday);
363 rtc->write(rtc, RTC_MDAY, mday);
364 rtc->write(rtc, RTC_MONTH, month);
365 rtc->write(rtc, RTC_YEAR, years);
366 rtc->write(rtc, RTC_CENTURY, century);
367 ds1685_rtc_end_data_access(rtc);
368
369 return 0;
370 }
371
372 /**
373 * ds1685_rtc_read_alarm - reads the alarm registers.
374 * @dev: pointer to device structure.
375 * @alrm: pointer to rtc_wkalrm structure.
376 *
377 * There are three primary alarm registers: seconds, minutes, and hours.
378 * A fourth alarm register for the month date is also available in bank1 for
379 * kickstart/wakeup features. The DS1685/DS1687 manual states that a
380 * "don't care" value ranging from 0xc0 to 0xff may be written into one or
381 * more of the three alarm bytes to act as a wildcard value. The fourth
382 * byte doesn't support a "don't care" value.
383 */
384 static int
ds1685_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * alrm)385 ds1685_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
386 {
387 struct ds1685_priv *rtc = dev_get_drvdata(dev);
388 u8 seconds, minutes, hours, mday, ctrlb, ctrlc;
389 int ret;
390
391 /* Fetch the alarm info from the RTC alarm registers. */
392 ds1685_rtc_begin_data_access(rtc);
393 seconds = rtc->read(rtc, RTC_SECS_ALARM);
394 minutes = rtc->read(rtc, RTC_MINS_ALARM);
395 hours = rtc->read(rtc, RTC_HRS_ALARM);
396 mday = rtc->read(rtc, RTC_MDAY_ALARM);
397 ctrlb = rtc->read(rtc, RTC_CTRL_B);
398 ctrlc = rtc->read(rtc, RTC_CTRL_C);
399 ds1685_rtc_end_data_access(rtc);
400
401 /* Check the month date for validity. */
402 ret = ds1685_rtc_check_mday(rtc, mday);
403 if (ret)
404 return ret;
405
406 /*
407 * Check the three alarm bytes.
408 *
409 * The Linux RTC system doesn't support the "don't care" capability
410 * of this RTC chip. We check for it anyways in case support is
411 * added in the future and only assign when we care.
412 */
413 if (likely(seconds < 0xc0))
414 alrm->time.tm_sec = ds1685_rtc_bcd2bin(rtc, seconds,
415 RTC_SECS_BCD_MASK,
416 RTC_SECS_BIN_MASK);
417
418 if (likely(minutes < 0xc0))
419 alrm->time.tm_min = ds1685_rtc_bcd2bin(rtc, minutes,
420 RTC_MINS_BCD_MASK,
421 RTC_MINS_BIN_MASK);
422
423 if (likely(hours < 0xc0))
424 alrm->time.tm_hour = ds1685_rtc_bcd2bin(rtc, hours,
425 RTC_HRS_24_BCD_MASK,
426 RTC_HRS_24_BIN_MASK);
427
428 /* Write the data to rtc_wkalrm. */
429 alrm->time.tm_mday = ds1685_rtc_bcd2bin(rtc, mday, RTC_MDAY_BCD_MASK,
430 RTC_MDAY_BIN_MASK);
431 alrm->enabled = !!(ctrlb & RTC_CTRL_B_AIE);
432 alrm->pending = !!(ctrlc & RTC_CTRL_C_AF);
433
434 return 0;
435 }
436
437 /**
438 * ds1685_rtc_set_alarm - sets the alarm in registers.
439 * @dev: pointer to device structure.
440 * @alrm: pointer to rtc_wkalrm structure.
441 */
442 static int
ds1685_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * alrm)443 ds1685_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
444 {
445 struct ds1685_priv *rtc = dev_get_drvdata(dev);
446 u8 ctrlb, seconds, minutes, hours, mday;
447 int ret;
448
449 /* Fetch the alarm info and convert to BCD. */
450 seconds = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_sec,
451 RTC_SECS_BIN_MASK,
452 RTC_SECS_BCD_MASK);
453 minutes = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_min,
454 RTC_MINS_BIN_MASK,
455 RTC_MINS_BCD_MASK);
456 hours = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_hour,
457 RTC_HRS_24_BIN_MASK,
458 RTC_HRS_24_BCD_MASK);
459 mday = ds1685_rtc_bin2bcd(rtc, alrm->time.tm_mday,
460 RTC_MDAY_BIN_MASK,
461 RTC_MDAY_BCD_MASK);
462
463 /* Check the month date for validity. */
464 ret = ds1685_rtc_check_mday(rtc, mday);
465 if (ret)
466 return ret;
467
468 /*
469 * Check the three alarm bytes.
470 *
471 * The Linux RTC system doesn't support the "don't care" capability
472 * of this RTC chip because rtc_valid_tm tries to validate every
473 * field, and we only support four fields. We put the support
474 * here anyways for the future.
475 */
476 if (unlikely(seconds >= 0xc0))
477 seconds = 0xff;
478
479 if (unlikely(minutes >= 0xc0))
480 minutes = 0xff;
481
482 if (unlikely(hours >= 0xc0))
483 hours = 0xff;
484
485 alrm->time.tm_mon = -1;
486 alrm->time.tm_year = -1;
487 alrm->time.tm_wday = -1;
488 alrm->time.tm_yday = -1;
489 alrm->time.tm_isdst = -1;
490
491 /* Disable the alarm interrupt first. */
492 ds1685_rtc_begin_data_access(rtc);
493 ctrlb = rtc->read(rtc, RTC_CTRL_B);
494 rtc->write(rtc, RTC_CTRL_B, (ctrlb & ~(RTC_CTRL_B_AIE)));
495
496 /* Read ctrlc to clear RTC_CTRL_C_AF. */
497 rtc->read(rtc, RTC_CTRL_C);
498
499 /*
500 * Set the data mode to use and store the time values in the
501 * RTC registers.
502 */
503 ctrlb = rtc->read(rtc, RTC_CTRL_B);
504 if (rtc->bcd_mode)
505 ctrlb &= ~(RTC_CTRL_B_DM);
506 else
507 ctrlb |= RTC_CTRL_B_DM;
508 rtc->write(rtc, RTC_CTRL_B, ctrlb);
509 rtc->write(rtc, RTC_SECS_ALARM, seconds);
510 rtc->write(rtc, RTC_MINS_ALARM, minutes);
511 rtc->write(rtc, RTC_HRS_ALARM, hours);
512 rtc->write(rtc, RTC_MDAY_ALARM, mday);
513
514 /* Re-enable the alarm if needed. */
515 if (alrm->enabled) {
516 ctrlb = rtc->read(rtc, RTC_CTRL_B);
517 ctrlb |= RTC_CTRL_B_AIE;
518 rtc->write(rtc, RTC_CTRL_B, ctrlb);
519 }
520
521 /* Done! */
522 ds1685_rtc_end_data_access(rtc);
523
524 return 0;
525 }
526 /* ----------------------------------------------------------------------- */
527
528
529 /* ----------------------------------------------------------------------- */
530 /* /dev/rtcX Interface functions */
531
532 /**
533 * ds1685_rtc_alarm_irq_enable - replaces ioctl() RTC_AIE on/off.
534 * @dev: pointer to device structure.
535 * @enabled: flag indicating whether to enable or disable.
536 */
537 static int
ds1685_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)538 ds1685_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
539 {
540 struct ds1685_priv *rtc = dev_get_drvdata(dev);
541
542 /* Flip the requisite interrupt-enable bit. */
543 if (enabled)
544 rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) |
545 RTC_CTRL_B_AIE));
546 else
547 rtc->write(rtc, RTC_CTRL_B, (rtc->read(rtc, RTC_CTRL_B) &
548 ~(RTC_CTRL_B_AIE)));
549
550 /* Read Control C to clear all the flag bits. */
551 rtc->read(rtc, RTC_CTRL_C);
552
553 return 0;
554 }
555 /* ----------------------------------------------------------------------- */
556
557
558 /* ----------------------------------------------------------------------- */
559 /* IRQ handler */
560
561 /**
562 * ds1685_rtc_extended_irq - take care of extended interrupts
563 * @rtc: pointer to the ds1685 rtc structure.
564 * @pdev: platform device pointer.
565 */
566 static void
ds1685_rtc_extended_irq(struct ds1685_priv * rtc,struct platform_device * pdev)567 ds1685_rtc_extended_irq(struct ds1685_priv *rtc, struct platform_device *pdev)
568 {
569 u8 ctrl4a, ctrl4b;
570
571 ds1685_rtc_switch_to_bank1(rtc);
572 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
573 ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
574
575 /*
576 * Check for a kickstart interrupt. With Vcc applied, this
577 * typically means that the power button was pressed, so we
578 * begin the shutdown sequence.
579 */
580 if ((ctrl4b & RTC_CTRL_4B_KSE) && (ctrl4a & RTC_CTRL_4A_KF)) {
581 /* Briefly disable kickstarts to debounce button presses. */
582 rtc->write(rtc, RTC_EXT_CTRL_4B,
583 (rtc->read(rtc, RTC_EXT_CTRL_4B) &
584 ~(RTC_CTRL_4B_KSE)));
585
586 /* Clear the kickstart flag. */
587 rtc->write(rtc, RTC_EXT_CTRL_4A,
588 (ctrl4a & ~(RTC_CTRL_4A_KF)));
589
590
591 /*
592 * Sleep 500ms before re-enabling kickstarts. This allows
593 * adequate time to avoid reading signal jitter as additional
594 * button presses.
595 */
596 msleep(500);
597 rtc->write(rtc, RTC_EXT_CTRL_4B,
598 (rtc->read(rtc, RTC_EXT_CTRL_4B) |
599 RTC_CTRL_4B_KSE));
600
601 /* Call the platform pre-poweroff function. Else, shutdown. */
602 if (rtc->prepare_poweroff != NULL)
603 rtc->prepare_poweroff();
604 else
605 ds1685_rtc_poweroff(pdev);
606 }
607
608 /*
609 * Check for a wake-up interrupt. With Vcc applied, this is
610 * essentially a second alarm interrupt, except it takes into
611 * account the 'date' register in bank1 in addition to the
612 * standard three alarm registers.
613 */
614 if ((ctrl4b & RTC_CTRL_4B_WIE) && (ctrl4a & RTC_CTRL_4A_WF)) {
615 rtc->write(rtc, RTC_EXT_CTRL_4A,
616 (ctrl4a & ~(RTC_CTRL_4A_WF)));
617
618 /* Call the platform wake_alarm function if defined. */
619 if (rtc->wake_alarm != NULL)
620 rtc->wake_alarm();
621 else
622 dev_warn(&pdev->dev,
623 "Wake Alarm IRQ just occurred!\n");
624 }
625
626 /*
627 * Check for a ram-clear interrupt. This happens if RIE=1 and RF=0
628 * when RCE=1 in 4B. This clears all NVRAM bytes in bank0 by setting
629 * each byte to a logic 1. This has no effect on any extended
630 * NV-SRAM that might be present, nor on the time/calendar/alarm
631 * registers. After a ram-clear is completed, there is a minimum
632 * recovery time of ~150ms in which all reads/writes are locked out.
633 * NOTE: A ram-clear can still occur if RCE=1 and RIE=0. We cannot
634 * catch this scenario.
635 */
636 if ((ctrl4b & RTC_CTRL_4B_RIE) && (ctrl4a & RTC_CTRL_4A_RF)) {
637 rtc->write(rtc, RTC_EXT_CTRL_4A,
638 (ctrl4a & ~(RTC_CTRL_4A_RF)));
639 msleep(150);
640
641 /* Call the platform post_ram_clear function if defined. */
642 if (rtc->post_ram_clear != NULL)
643 rtc->post_ram_clear();
644 else
645 dev_warn(&pdev->dev,
646 "RAM-Clear IRQ just occurred!\n");
647 }
648 ds1685_rtc_switch_to_bank0(rtc);
649 }
650
651 /**
652 * ds1685_rtc_irq_handler - IRQ handler.
653 * @irq: IRQ number.
654 * @dev_id: platform device pointer.
655 */
656 static irqreturn_t
ds1685_rtc_irq_handler(int irq,void * dev_id)657 ds1685_rtc_irq_handler(int irq, void *dev_id)
658 {
659 struct platform_device *pdev = dev_id;
660 struct ds1685_priv *rtc = platform_get_drvdata(pdev);
661 struct mutex *rtc_mutex;
662 u8 ctrlb, ctrlc;
663 unsigned long events = 0;
664 u8 num_irqs = 0;
665
666 /* Abort early if the device isn't ready yet (i.e., DEBUG_SHIRQ). */
667 if (unlikely(!rtc))
668 return IRQ_HANDLED;
669
670 rtc_mutex = &rtc->dev->ops_lock;
671 mutex_lock(rtc_mutex);
672
673 /* Ctrlb holds the interrupt-enable bits and ctrlc the flag bits. */
674 ctrlb = rtc->read(rtc, RTC_CTRL_B);
675 ctrlc = rtc->read(rtc, RTC_CTRL_C);
676
677 /* Is the IRQF bit set? */
678 if (likely(ctrlc & RTC_CTRL_C_IRQF)) {
679 /*
680 * We need to determine if it was one of the standard
681 * events: PF, AF, or UF. If so, we handle them and
682 * update the RTC core.
683 */
684 if (likely(ctrlc & RTC_CTRL_B_PAU_MASK)) {
685 events = RTC_IRQF;
686
687 /* Check for a periodic interrupt. */
688 if ((ctrlb & RTC_CTRL_B_PIE) &&
689 (ctrlc & RTC_CTRL_C_PF)) {
690 events |= RTC_PF;
691 num_irqs++;
692 }
693
694 /* Check for an alarm interrupt. */
695 if ((ctrlb & RTC_CTRL_B_AIE) &&
696 (ctrlc & RTC_CTRL_C_AF)) {
697 events |= RTC_AF;
698 num_irqs++;
699 }
700
701 /* Check for an update interrupt. */
702 if ((ctrlb & RTC_CTRL_B_UIE) &&
703 (ctrlc & RTC_CTRL_C_UF)) {
704 events |= RTC_UF;
705 num_irqs++;
706 }
707 } else {
708 /*
709 * One of the "extended" interrupts was received that
710 * is not recognized by the RTC core.
711 */
712 ds1685_rtc_extended_irq(rtc, pdev);
713 }
714 }
715 rtc_update_irq(rtc->dev, num_irqs, events);
716 mutex_unlock(rtc_mutex);
717
718 return events ? IRQ_HANDLED : IRQ_NONE;
719 }
720 /* ----------------------------------------------------------------------- */
721
722
723 /* ----------------------------------------------------------------------- */
724 /* ProcFS interface */
725
726 #ifdef CONFIG_PROC_FS
727 #define NUM_REGS 6 /* Num of control registers. */
728 #define NUM_BITS 8 /* Num bits per register. */
729 #define NUM_SPACES 4 /* Num spaces between each bit. */
730
731 /*
732 * Periodic Interrupt Rates.
733 */
734 static const char *ds1685_rtc_pirq_rate[16] = {
735 "none", "3.90625ms", "7.8125ms", "0.122070ms", "0.244141ms",
736 "0.488281ms", "0.9765625ms", "1.953125ms", "3.90625ms", "7.8125ms",
737 "15.625ms", "31.25ms", "62.5ms", "125ms", "250ms", "500ms"
738 };
739
740 /*
741 * Square-Wave Output Frequencies.
742 */
743 static const char *ds1685_rtc_sqw_freq[16] = {
744 "none", "256Hz", "128Hz", "8192Hz", "4096Hz", "2048Hz", "1024Hz",
745 "512Hz", "256Hz", "128Hz", "64Hz", "32Hz", "16Hz", "8Hz", "4Hz", "2Hz"
746 };
747
748 /**
749 * ds1685_rtc_proc - procfs access function.
750 * @dev: pointer to device structure.
751 * @seq: pointer to seq_file structure.
752 */
753 static int
ds1685_rtc_proc(struct device * dev,struct seq_file * seq)754 ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
755 {
756 struct ds1685_priv *rtc = dev_get_drvdata(dev);
757 u8 ctrla, ctrlb, ctrld, ctrl4a, ctrl4b, ssn[8];
758 char *model;
759
760 /* Read all the relevant data from the control registers. */
761 ds1685_rtc_switch_to_bank1(rtc);
762 ds1685_rtc_get_ssn(rtc, ssn);
763 ctrla = rtc->read(rtc, RTC_CTRL_A);
764 ctrlb = rtc->read(rtc, RTC_CTRL_B);
765 ctrld = rtc->read(rtc, RTC_CTRL_D);
766 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
767 ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
768 ds1685_rtc_switch_to_bank0(rtc);
769
770 /* Determine the RTC model. */
771 switch (ssn[0]) {
772 case RTC_MODEL_DS1685:
773 model = "DS1685/DS1687\0";
774 break;
775 case RTC_MODEL_DS1689:
776 model = "DS1689/DS1693\0";
777 break;
778 case RTC_MODEL_DS17285:
779 model = "DS17285/DS17287\0";
780 break;
781 case RTC_MODEL_DS17485:
782 model = "DS17485/DS17487\0";
783 break;
784 case RTC_MODEL_DS17885:
785 model = "DS17885/DS17887\0";
786 break;
787 default:
788 model = "Unknown\0";
789 break;
790 }
791
792 /* Print out the information. */
793 seq_printf(seq,
794 "Model\t\t: %s\n"
795 "Oscillator\t: %s\n"
796 "12/24hr\t\t: %s\n"
797 "DST\t\t: %s\n"
798 "Data mode\t: %s\n"
799 "Battery\t\t: %s\n"
800 "Aux batt\t: %s\n"
801 "Update IRQ\t: %s\n"
802 "Periodic IRQ\t: %s\n"
803 "Periodic Rate\t: %s\n"
804 "SQW Freq\t: %s\n"
805 "Serial #\t: %8phC\n",
806 model,
807 ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"),
808 ((ctrlb & RTC_CTRL_B_2412) ? "24-hour" : "12-hour"),
809 ((ctrlb & RTC_CTRL_B_DSE) ? "enabled" : "disabled"),
810 ((ctrlb & RTC_CTRL_B_DM) ? "binary" : "BCD"),
811 ((ctrld & RTC_CTRL_D_VRT) ? "ok" : "exhausted or n/a"),
812 ((ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "exhausted or n/a"),
813 ((ctrlb & RTC_CTRL_B_UIE) ? "yes" : "no"),
814 ((ctrlb & RTC_CTRL_B_PIE) ? "yes" : "no"),
815 (!(ctrl4b & RTC_CTRL_4B_E32K) ?
816 ds1685_rtc_pirq_rate[(ctrla & RTC_CTRL_A_RS_MASK)] : "none"),
817 (!((ctrl4b & RTC_CTRL_4B_E32K)) ?
818 ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"),
819 ssn);
820 return 0;
821 }
822 #else
823 #define ds1685_rtc_proc NULL
824 #endif /* CONFIG_PROC_FS */
825 /* ----------------------------------------------------------------------- */
826
827
828 /* ----------------------------------------------------------------------- */
829 /* RTC Class operations */
830
831 static const struct rtc_class_ops
832 ds1685_rtc_ops = {
833 .proc = ds1685_rtc_proc,
834 .read_time = ds1685_rtc_read_time,
835 .set_time = ds1685_rtc_set_time,
836 .read_alarm = ds1685_rtc_read_alarm,
837 .set_alarm = ds1685_rtc_set_alarm,
838 .alarm_irq_enable = ds1685_rtc_alarm_irq_enable,
839 };
840 /* ----------------------------------------------------------------------- */
841
ds1685_nvram_read(void * priv,unsigned int pos,void * val,size_t size)842 static int ds1685_nvram_read(void *priv, unsigned int pos, void *val,
843 size_t size)
844 {
845 struct ds1685_priv *rtc = priv;
846 struct mutex *rtc_mutex = &rtc->dev->ops_lock;
847 ssize_t count;
848 u8 *buf = val;
849 int err;
850
851 err = mutex_lock_interruptible(rtc_mutex);
852 if (err)
853 return err;
854
855 ds1685_rtc_switch_to_bank0(rtc);
856
857 /* Read NVRAM in time and bank0 registers. */
858 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
859 count++, size--) {
860 if (count < NVRAM_SZ_TIME)
861 *buf++ = rtc->read(rtc, (NVRAM_TIME_BASE + pos++));
862 else
863 *buf++ = rtc->read(rtc, (NVRAM_BANK0_BASE + pos++));
864 }
865
866 #ifndef CONFIG_RTC_DRV_DS1689
867 if (size > 0) {
868 ds1685_rtc_switch_to_bank1(rtc);
869
870 #ifndef CONFIG_RTC_DRV_DS1685
871 /* Enable burst-mode on DS17x85/DS17x87 */
872 rtc->write(rtc, RTC_EXT_CTRL_4A,
873 (rtc->read(rtc, RTC_EXT_CTRL_4A) |
874 RTC_CTRL_4A_BME));
875
876 /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
877 * reading with burst-mode */
878 rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
879 (pos - NVRAM_TOTAL_SZ_BANK0));
880 #endif
881
882 /* Read NVRAM in bank1 registers. */
883 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
884 count++, size--) {
885 #ifdef CONFIG_RTC_DRV_DS1685
886 /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
887 * before each read. */
888 rtc->write(rtc, RTC_BANK1_RAM_ADDR,
889 (pos - NVRAM_TOTAL_SZ_BANK0));
890 #endif
891 *buf++ = rtc->read(rtc, RTC_BANK1_RAM_DATA_PORT);
892 pos++;
893 }
894
895 #ifndef CONFIG_RTC_DRV_DS1685
896 /* Disable burst-mode on DS17x85/DS17x87 */
897 rtc->write(rtc, RTC_EXT_CTRL_4A,
898 (rtc->read(rtc, RTC_EXT_CTRL_4A) &
899 ~(RTC_CTRL_4A_BME)));
900 #endif
901 ds1685_rtc_switch_to_bank0(rtc);
902 }
903 #endif /* !CONFIG_RTC_DRV_DS1689 */
904 mutex_unlock(rtc_mutex);
905
906 return 0;
907 }
908
ds1685_nvram_write(void * priv,unsigned int pos,void * val,size_t size)909 static int ds1685_nvram_write(void *priv, unsigned int pos, void *val,
910 size_t size)
911 {
912 struct ds1685_priv *rtc = priv;
913 struct mutex *rtc_mutex = &rtc->dev->ops_lock;
914 ssize_t count;
915 u8 *buf = val;
916 int err;
917
918 err = mutex_lock_interruptible(rtc_mutex);
919 if (err)
920 return err;
921
922 ds1685_rtc_switch_to_bank0(rtc);
923
924 /* Write NVRAM in time and bank0 registers. */
925 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ_BANK0;
926 count++, size--)
927 if (count < NVRAM_SZ_TIME)
928 rtc->write(rtc, (NVRAM_TIME_BASE + pos++),
929 *buf++);
930 else
931 rtc->write(rtc, (NVRAM_BANK0_BASE), *buf++);
932
933 #ifndef CONFIG_RTC_DRV_DS1689
934 if (size > 0) {
935 ds1685_rtc_switch_to_bank1(rtc);
936
937 #ifndef CONFIG_RTC_DRV_DS1685
938 /* Enable burst-mode on DS17x85/DS17x87 */
939 rtc->write(rtc, RTC_EXT_CTRL_4A,
940 (rtc->read(rtc, RTC_EXT_CTRL_4A) |
941 RTC_CTRL_4A_BME));
942
943 /* We need one write to RTC_BANK1_RAM_ADDR_LSB to start
944 * writing with burst-mode */
945 rtc->write(rtc, RTC_BANK1_RAM_ADDR_LSB,
946 (pos - NVRAM_TOTAL_SZ_BANK0));
947 #endif
948
949 /* Write NVRAM in bank1 registers. */
950 for (count = 0; size > 0 && pos < NVRAM_TOTAL_SZ;
951 count++, size--) {
952 #ifdef CONFIG_RTC_DRV_DS1685
953 /* DS1685/DS1687 has to write to RTC_BANK1_RAM_ADDR
954 * before each read. */
955 rtc->write(rtc, RTC_BANK1_RAM_ADDR,
956 (pos - NVRAM_TOTAL_SZ_BANK0));
957 #endif
958 rtc->write(rtc, RTC_BANK1_RAM_DATA_PORT, *buf++);
959 pos++;
960 }
961
962 #ifndef CONFIG_RTC_DRV_DS1685
963 /* Disable burst-mode on DS17x85/DS17x87 */
964 rtc->write(rtc, RTC_EXT_CTRL_4A,
965 (rtc->read(rtc, RTC_EXT_CTRL_4A) &
966 ~(RTC_CTRL_4A_BME)));
967 #endif
968 ds1685_rtc_switch_to_bank0(rtc);
969 }
970 #endif /* !CONFIG_RTC_DRV_DS1689 */
971 mutex_unlock(rtc_mutex);
972
973 return 0;
974 }
975
976 /* ----------------------------------------------------------------------- */
977 /* SysFS interface */
978
979 /**
980 * ds1685_rtc_sysfs_battery_show - sysfs file for main battery status.
981 * @dev: pointer to device structure.
982 * @attr: pointer to device_attribute structure.
983 * @buf: pointer to char array to hold the output.
984 */
985 static ssize_t
ds1685_rtc_sysfs_battery_show(struct device * dev,struct device_attribute * attr,char * buf)986 ds1685_rtc_sysfs_battery_show(struct device *dev,
987 struct device_attribute *attr, char *buf)
988 {
989 struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
990 u8 ctrld;
991
992 ctrld = rtc->read(rtc, RTC_CTRL_D);
993
994 return sprintf(buf, "%s\n",
995 (ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A");
996 }
997 static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL);
998
999 /**
1000 * ds1685_rtc_sysfs_auxbatt_show - sysfs file for aux battery status.
1001 * @dev: pointer to device structure.
1002 * @attr: pointer to device_attribute structure.
1003 * @buf: pointer to char array to hold the output.
1004 */
1005 static ssize_t
ds1685_rtc_sysfs_auxbatt_show(struct device * dev,struct device_attribute * attr,char * buf)1006 ds1685_rtc_sysfs_auxbatt_show(struct device *dev,
1007 struct device_attribute *attr, char *buf)
1008 {
1009 struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
1010 u8 ctrl4a;
1011
1012 ds1685_rtc_switch_to_bank1(rtc);
1013 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
1014 ds1685_rtc_switch_to_bank0(rtc);
1015
1016 return sprintf(buf, "%s\n",
1017 (ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A");
1018 }
1019 static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL);
1020
1021 /**
1022 * ds1685_rtc_sysfs_serial_show - sysfs file for silicon serial number.
1023 * @dev: pointer to device structure.
1024 * @attr: pointer to device_attribute structure.
1025 * @buf: pointer to char array to hold the output.
1026 */
1027 static ssize_t
ds1685_rtc_sysfs_serial_show(struct device * dev,struct device_attribute * attr,char * buf)1028 ds1685_rtc_sysfs_serial_show(struct device *dev,
1029 struct device_attribute *attr, char *buf)
1030 {
1031 struct ds1685_priv *rtc = dev_get_drvdata(dev->parent);
1032 u8 ssn[8];
1033
1034 ds1685_rtc_switch_to_bank1(rtc);
1035 ds1685_rtc_get_ssn(rtc, ssn);
1036 ds1685_rtc_switch_to_bank0(rtc);
1037
1038 return sprintf(buf, "%8phC\n", ssn);
1039 }
1040 static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL);
1041
1042 /*
1043 * struct ds1685_rtc_sysfs_misc_attrs - list for misc RTC features.
1044 */
1045 static struct attribute*
1046 ds1685_rtc_sysfs_misc_attrs[] = {
1047 &dev_attr_battery.attr,
1048 &dev_attr_auxbatt.attr,
1049 &dev_attr_serial.attr,
1050 NULL,
1051 };
1052
1053 /*
1054 * struct ds1685_rtc_sysfs_misc_grp - attr group for misc RTC features.
1055 */
1056 static const struct attribute_group
1057 ds1685_rtc_sysfs_misc_grp = {
1058 .name = "misc",
1059 .attrs = ds1685_rtc_sysfs_misc_attrs,
1060 };
1061
1062 /* ----------------------------------------------------------------------- */
1063 /* Driver Probe/Removal */
1064
1065 /**
1066 * ds1685_rtc_probe - initializes rtc driver.
1067 * @pdev: pointer to platform_device structure.
1068 */
1069 static int
ds1685_rtc_probe(struct platform_device * pdev)1070 ds1685_rtc_probe(struct platform_device *pdev)
1071 {
1072 struct rtc_device *rtc_dev;
1073 struct ds1685_priv *rtc;
1074 struct ds1685_rtc_platform_data *pdata;
1075 u8 ctrla, ctrlb, hours;
1076 unsigned char am_pm;
1077 int ret = 0;
1078 struct nvmem_config nvmem_cfg = {
1079 .name = "ds1685_nvram",
1080 .size = NVRAM_TOTAL_SZ,
1081 .reg_read = ds1685_nvram_read,
1082 .reg_write = ds1685_nvram_write,
1083 };
1084
1085 /* Get the platform data. */
1086 pdata = (struct ds1685_rtc_platform_data *) pdev->dev.platform_data;
1087 if (!pdata)
1088 return -ENODEV;
1089
1090 /* Allocate memory for the rtc device. */
1091 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
1092 if (!rtc)
1093 return -ENOMEM;
1094
1095 /* Setup resources and access functions */
1096 switch (pdata->access_type) {
1097 case ds1685_reg_direct:
1098 rtc->regs = devm_platform_ioremap_resource(pdev, 0);
1099 if (IS_ERR(rtc->regs))
1100 return PTR_ERR(rtc->regs);
1101 rtc->read = ds1685_read;
1102 rtc->write = ds1685_write;
1103 break;
1104 case ds1685_reg_indirect:
1105 rtc->regs = devm_platform_ioremap_resource(pdev, 0);
1106 if (IS_ERR(rtc->regs))
1107 return PTR_ERR(rtc->regs);
1108 rtc->data = devm_platform_ioremap_resource(pdev, 1);
1109 if (IS_ERR(rtc->data))
1110 return PTR_ERR(rtc->data);
1111 rtc->read = ds1685_indirect_read;
1112 rtc->write = ds1685_indirect_write;
1113 break;
1114 }
1115
1116 if (!rtc->read || !rtc->write)
1117 return -ENXIO;
1118
1119 /* Get the register step size. */
1120 if (pdata->regstep > 0)
1121 rtc->regstep = pdata->regstep;
1122 else
1123 rtc->regstep = 1;
1124
1125 /* Platform pre-shutdown function, if defined. */
1126 if (pdata->plat_prepare_poweroff)
1127 rtc->prepare_poweroff = pdata->plat_prepare_poweroff;
1128
1129 /* Platform wake_alarm function, if defined. */
1130 if (pdata->plat_wake_alarm)
1131 rtc->wake_alarm = pdata->plat_wake_alarm;
1132
1133 /* Platform post_ram_clear function, if defined. */
1134 if (pdata->plat_post_ram_clear)
1135 rtc->post_ram_clear = pdata->plat_post_ram_clear;
1136
1137 /* set the driver data. */
1138 platform_set_drvdata(pdev, rtc);
1139
1140 /* Turn the oscillator on if is not already on (DV1 = 1). */
1141 ctrla = rtc->read(rtc, RTC_CTRL_A);
1142 if (!(ctrla & RTC_CTRL_A_DV1))
1143 ctrla |= RTC_CTRL_A_DV1;
1144
1145 /* Enable the countdown chain (DV2 = 0) */
1146 ctrla &= ~(RTC_CTRL_A_DV2);
1147
1148 /* Clear RS3-RS0 in Control A. */
1149 ctrla &= ~(RTC_CTRL_A_RS_MASK);
1150
1151 /*
1152 * All done with Control A. Switch to Bank 1 for the remainder of
1153 * the RTC setup so we have access to the extended functions.
1154 */
1155 ctrla |= RTC_CTRL_A_DV0;
1156 rtc->write(rtc, RTC_CTRL_A, ctrla);
1157
1158 /* Default to 32768kHz output. */
1159 rtc->write(rtc, RTC_EXT_CTRL_4B,
1160 (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_E32K));
1161
1162 /* Set the SET bit in Control B so we can do some housekeeping. */
1163 rtc->write(rtc, RTC_CTRL_B,
1164 (rtc->read(rtc, RTC_CTRL_B) | RTC_CTRL_B_SET));
1165
1166 /* Read Ext Ctrl 4A and check the INCR bit to avoid a lockout. */
1167 while (rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_INCR)
1168 cpu_relax();
1169
1170 /*
1171 * If the platform supports BCD mode, then set DM=0 in Control B.
1172 * Otherwise, set DM=1 for BIN mode.
1173 */
1174 ctrlb = rtc->read(rtc, RTC_CTRL_B);
1175 if (pdata->bcd_mode)
1176 ctrlb &= ~(RTC_CTRL_B_DM);
1177 else
1178 ctrlb |= RTC_CTRL_B_DM;
1179 rtc->bcd_mode = pdata->bcd_mode;
1180
1181 /*
1182 * Disable Daylight Savings Time (DSE = 0).
1183 * The RTC has hardcoded timezone information that is rendered
1184 * obselete. We'll let the OS deal with DST settings instead.
1185 */
1186 if (ctrlb & RTC_CTRL_B_DSE)
1187 ctrlb &= ~(RTC_CTRL_B_DSE);
1188
1189 /* Force 24-hour mode (2412 = 1). */
1190 if (!(ctrlb & RTC_CTRL_B_2412)) {
1191 /* Reinitialize the time hours. */
1192 hours = rtc->read(rtc, RTC_HRS);
1193 am_pm = hours & RTC_HRS_AMPM_MASK;
1194 hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
1195 RTC_HRS_12_BIN_MASK);
1196 hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
1197
1198 /* Enable 24-hour mode. */
1199 ctrlb |= RTC_CTRL_B_2412;
1200
1201 /* Write back to Control B, including DM & DSE bits. */
1202 rtc->write(rtc, RTC_CTRL_B, ctrlb);
1203
1204 /* Write the time hours back. */
1205 rtc->write(rtc, RTC_HRS,
1206 ds1685_rtc_bin2bcd(rtc, hours,
1207 RTC_HRS_24_BIN_MASK,
1208 RTC_HRS_24_BCD_MASK));
1209
1210 /* Reinitialize the alarm hours. */
1211 hours = rtc->read(rtc, RTC_HRS_ALARM);
1212 am_pm = hours & RTC_HRS_AMPM_MASK;
1213 hours = ds1685_rtc_bcd2bin(rtc, hours, RTC_HRS_12_BCD_MASK,
1214 RTC_HRS_12_BIN_MASK);
1215 hours = ((hours == 12) ? 0 : ((am_pm) ? hours + 12 : hours));
1216
1217 /* Write the alarm hours back. */
1218 rtc->write(rtc, RTC_HRS_ALARM,
1219 ds1685_rtc_bin2bcd(rtc, hours,
1220 RTC_HRS_24_BIN_MASK,
1221 RTC_HRS_24_BCD_MASK));
1222 } else {
1223 /* 24-hour mode is already set, so write Control B back. */
1224 rtc->write(rtc, RTC_CTRL_B, ctrlb);
1225 }
1226
1227 /* Unset the SET bit in Control B so the RTC can update. */
1228 rtc->write(rtc, RTC_CTRL_B,
1229 (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_SET)));
1230
1231 /* Check the main battery. */
1232 if (!(rtc->read(rtc, RTC_CTRL_D) & RTC_CTRL_D_VRT))
1233 dev_warn(&pdev->dev,
1234 "Main battery is exhausted! RTC may be invalid!\n");
1235
1236 /* Check the auxillary battery. It is optional. */
1237 if (!(rtc->read(rtc, RTC_EXT_CTRL_4A) & RTC_CTRL_4A_VRT2))
1238 dev_warn(&pdev->dev,
1239 "Aux battery is exhausted or not available.\n");
1240
1241 /* Read Ctrl B and clear PIE/AIE/UIE. */
1242 rtc->write(rtc, RTC_CTRL_B,
1243 (rtc->read(rtc, RTC_CTRL_B) & ~(RTC_CTRL_B_PAU_MASK)));
1244
1245 /* Reading Ctrl C auto-clears PF/AF/UF. */
1246 rtc->read(rtc, RTC_CTRL_C);
1247
1248 /* Read Ctrl 4B and clear RIE/WIE/KSE. */
1249 rtc->write(rtc, RTC_EXT_CTRL_4B,
1250 (rtc->read(rtc, RTC_EXT_CTRL_4B) & ~(RTC_CTRL_4B_RWK_MASK)));
1251
1252 /* Clear RF/WF/KF in Ctrl 4A. */
1253 rtc->write(rtc, RTC_EXT_CTRL_4A,
1254 (rtc->read(rtc, RTC_EXT_CTRL_4A) & ~(RTC_CTRL_4A_RWK_MASK)));
1255
1256 /*
1257 * Re-enable KSE to handle power button events. We do not enable
1258 * WIE or RIE by default.
1259 */
1260 rtc->write(rtc, RTC_EXT_CTRL_4B,
1261 (rtc->read(rtc, RTC_EXT_CTRL_4B) | RTC_CTRL_4B_KSE));
1262
1263 rtc_dev = devm_rtc_allocate_device(&pdev->dev);
1264 if (IS_ERR(rtc_dev))
1265 return PTR_ERR(rtc_dev);
1266
1267 rtc_dev->ops = &ds1685_rtc_ops;
1268
1269 /* Century bit is useless because leap year fails in 1900 and 2100 */
1270 rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
1271 rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
1272
1273 /* Maximum periodic rate is 8192Hz (0.122070ms). */
1274 rtc_dev->max_user_freq = RTC_MAX_USER_FREQ;
1275
1276 /* See if the platform doesn't support UIE. */
1277 if (pdata->uie_unsupported)
1278 rtc_dev->uie_unsupported = 1;
1279
1280 rtc->dev = rtc_dev;
1281
1282 /*
1283 * Fetch the IRQ and setup the interrupt handler.
1284 *
1285 * Not all platforms have the IRQF pin tied to something. If not, the
1286 * RTC will still set the *IE / *F flags and raise IRQF in ctrlc, but
1287 * there won't be an automatic way of notifying the kernel about it,
1288 * unless ctrlc is explicitly polled.
1289 */
1290 if (!pdata->no_irq) {
1291 ret = platform_get_irq(pdev, 0);
1292 if (ret <= 0)
1293 return ret;
1294
1295 rtc->irq_num = ret;
1296
1297 /* Request an IRQ. */
1298 ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_num,
1299 NULL, ds1685_rtc_irq_handler,
1300 IRQF_SHARED | IRQF_ONESHOT,
1301 pdev->name, pdev);
1302
1303 /* Check to see if something came back. */
1304 if (unlikely(ret)) {
1305 dev_warn(&pdev->dev,
1306 "RTC interrupt not available\n");
1307 rtc->irq_num = 0;
1308 }
1309 }
1310 rtc->no_irq = pdata->no_irq;
1311
1312 /* Setup complete. */
1313 ds1685_rtc_switch_to_bank0(rtc);
1314
1315 ret = rtc_add_group(rtc_dev, &ds1685_rtc_sysfs_misc_grp);
1316 if (ret)
1317 return ret;
1318
1319 rtc_dev->nvram_old_abi = true;
1320 nvmem_cfg.priv = rtc;
1321 ret = rtc_nvmem_register(rtc_dev, &nvmem_cfg);
1322 if (ret)
1323 return ret;
1324
1325 return rtc_register_device(rtc_dev);
1326 }
1327
1328 /**
1329 * ds1685_rtc_remove - removes rtc driver.
1330 * @pdev: pointer to platform_device structure.
1331 */
1332 static int
ds1685_rtc_remove(struct platform_device * pdev)1333 ds1685_rtc_remove(struct platform_device *pdev)
1334 {
1335 struct ds1685_priv *rtc = platform_get_drvdata(pdev);
1336
1337 /* Read Ctrl B and clear PIE/AIE/UIE. */
1338 rtc->write(rtc, RTC_CTRL_B,
1339 (rtc->read(rtc, RTC_CTRL_B) &
1340 ~(RTC_CTRL_B_PAU_MASK)));
1341
1342 /* Reading Ctrl C auto-clears PF/AF/UF. */
1343 rtc->read(rtc, RTC_CTRL_C);
1344
1345 /* Read Ctrl 4B and clear RIE/WIE/KSE. */
1346 rtc->write(rtc, RTC_EXT_CTRL_4B,
1347 (rtc->read(rtc, RTC_EXT_CTRL_4B) &
1348 ~(RTC_CTRL_4B_RWK_MASK)));
1349
1350 /* Manually clear RF/WF/KF in Ctrl 4A. */
1351 rtc->write(rtc, RTC_EXT_CTRL_4A,
1352 (rtc->read(rtc, RTC_EXT_CTRL_4A) &
1353 ~(RTC_CTRL_4A_RWK_MASK)));
1354
1355 return 0;
1356 }
1357
1358 /*
1359 * ds1685_rtc_driver - rtc driver properties.
1360 */
1361 static struct platform_driver ds1685_rtc_driver = {
1362 .driver = {
1363 .name = "rtc-ds1685",
1364 },
1365 .probe = ds1685_rtc_probe,
1366 .remove = ds1685_rtc_remove,
1367 };
1368 module_platform_driver(ds1685_rtc_driver);
1369 /* ----------------------------------------------------------------------- */
1370
1371
1372 /* ----------------------------------------------------------------------- */
1373 /* Poweroff function */
1374
1375 /**
1376 * ds1685_rtc_poweroff - uses the RTC chip to power the system off.
1377 * @pdev: pointer to platform_device structure.
1378 */
1379 void __noreturn
ds1685_rtc_poweroff(struct platform_device * pdev)1380 ds1685_rtc_poweroff(struct platform_device *pdev)
1381 {
1382 u8 ctrla, ctrl4a, ctrl4b;
1383 struct ds1685_priv *rtc;
1384
1385 /* Check for valid RTC data, else, spin forever. */
1386 if (unlikely(!pdev)) {
1387 pr_emerg("platform device data not available, spinning forever ...\n");
1388 while(1);
1389 unreachable();
1390 } else {
1391 /* Get the rtc data. */
1392 rtc = platform_get_drvdata(pdev);
1393
1394 /*
1395 * Disable our IRQ. We're powering down, so we're not
1396 * going to worry about cleaning up. Most of that should
1397 * have been taken care of by the shutdown scripts and this
1398 * is the final function call.
1399 */
1400 if (!rtc->no_irq)
1401 disable_irq_nosync(rtc->irq_num);
1402
1403 /* Oscillator must be on and the countdown chain enabled. */
1404 ctrla = rtc->read(rtc, RTC_CTRL_A);
1405 ctrla |= RTC_CTRL_A_DV1;
1406 ctrla &= ~(RTC_CTRL_A_DV2);
1407 rtc->write(rtc, RTC_CTRL_A, ctrla);
1408
1409 /*
1410 * Read Control 4A and check the status of the auxillary
1411 * battery. This must be present and working (VRT2 = 1)
1412 * for wakeup and kickstart functionality to be useful.
1413 */
1414 ds1685_rtc_switch_to_bank1(rtc);
1415 ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
1416 if (ctrl4a & RTC_CTRL_4A_VRT2) {
1417 /* Clear all of the interrupt flags on Control 4A. */
1418 ctrl4a &= ~(RTC_CTRL_4A_RWK_MASK);
1419 rtc->write(rtc, RTC_EXT_CTRL_4A, ctrl4a);
1420
1421 /*
1422 * The auxillary battery is present and working.
1423 * Enable extended functions (ABE=1), enable
1424 * wake-up (WIE=1), and enable kickstart (KSE=1)
1425 * in Control 4B.
1426 */
1427 ctrl4b = rtc->read(rtc, RTC_EXT_CTRL_4B);
1428 ctrl4b |= (RTC_CTRL_4B_ABE | RTC_CTRL_4B_WIE |
1429 RTC_CTRL_4B_KSE);
1430 rtc->write(rtc, RTC_EXT_CTRL_4B, ctrl4b);
1431 }
1432
1433 /* Set PAB to 1 in Control 4A to power the system down. */
1434 dev_warn(&pdev->dev, "Powerdown.\n");
1435 msleep(20);
1436 rtc->write(rtc, RTC_EXT_CTRL_4A,
1437 (ctrl4a | RTC_CTRL_4A_PAB));
1438
1439 /* Spin ... we do not switch back to bank0. */
1440 while(1);
1441 unreachable();
1442 }
1443 }
1444 EXPORT_SYMBOL(ds1685_rtc_poweroff);
1445 /* ----------------------------------------------------------------------- */
1446
1447
1448 MODULE_AUTHOR("Joshua Kinard <kumba@gentoo.org>");
1449 MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd-electronics.com>");
1450 MODULE_DESCRIPTION("Dallas/Maxim DS1685/DS1687-series RTC driver");
1451 MODULE_LICENSE("GPL");
1452 MODULE_ALIAS("platform:rtc-ds1685");
1453