1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2016
4 *
5 * Author: Gerald Baeza <gerald.baeza@st.com>
6 *
7 * Inspired by timer-stm32.c from Maxime Coquelin
8 * pwm-atmel.c from Bo Shen
9 */
10
11 #include <linux/bitfield.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pinctrl/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/pwm.h>
18
19 #define CCMR_CHANNEL_SHIFT 8
20 #define CCMR_CHANNEL_MASK 0xFF
21 #define MAX_BREAKINPUT 2
22
23 struct stm32_breakinput {
24 u32 index;
25 u32 level;
26 u32 filter;
27 };
28
29 struct stm32_pwm {
30 struct pwm_chip chip;
31 struct mutex lock; /* protect pwm config/enable */
32 struct clk *clk;
33 struct regmap *regmap;
34 u32 max_arr;
35 bool have_complementary_output;
36 struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
37 unsigned int num_breakinputs;
38 u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
39 };
40
to_stm32_pwm_dev(struct pwm_chip * chip)41 static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
42 {
43 return container_of(chip, struct stm32_pwm, chip);
44 }
45
active_channels(struct stm32_pwm * dev)46 static u32 active_channels(struct stm32_pwm *dev)
47 {
48 u32 ccer;
49
50 regmap_read(dev->regmap, TIM_CCER, &ccer);
51
52 return ccer & TIM_CCER_CCXE;
53 }
54
write_ccrx(struct stm32_pwm * dev,int ch,u32 value)55 static int write_ccrx(struct stm32_pwm *dev, int ch, u32 value)
56 {
57 switch (ch) {
58 case 0:
59 return regmap_write(dev->regmap, TIM_CCR1, value);
60 case 1:
61 return regmap_write(dev->regmap, TIM_CCR2, value);
62 case 2:
63 return regmap_write(dev->regmap, TIM_CCR3, value);
64 case 3:
65 return regmap_write(dev->regmap, TIM_CCR4, value);
66 }
67 return -EINVAL;
68 }
69
70 #define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
71 #define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
72 #define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
73 #define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
74
75 /*
76 * Capture using PWM input mode:
77 * ___ ___
78 * TI[1, 2, 3 or 4]: ........._| |________|
79 * ^0 ^1 ^2
80 * . . .
81 * . . XXXXX
82 * . . XXXXX |
83 * . XXXXX . |
84 * XXXXX . . |
85 * COUNTER: ______XXXXX . . . |_XXX
86 * start^ . . . ^stop
87 * . . . .
88 * v v . v
89 * v
90 * CCR1/CCR3: tx..........t0...........t2
91 * CCR2/CCR4: tx..............t1.........
92 *
93 * DMA burst transfer: | |
94 * v v
95 * DMA buffer: { t0, tx } { t2, t1 }
96 * DMA done: ^
97 *
98 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
99 * + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
100 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
101 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
102 * + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
103 *
104 * DMA done, compute:
105 * - Period = t2 - t0
106 * - Duty cycle = t1 - t0
107 */
stm32_pwm_raw_capture(struct stm32_pwm * priv,struct pwm_device * pwm,unsigned long tmo_ms,u32 * raw_prd,u32 * raw_dty)108 static int stm32_pwm_raw_capture(struct stm32_pwm *priv, struct pwm_device *pwm,
109 unsigned long tmo_ms, u32 *raw_prd,
110 u32 *raw_dty)
111 {
112 struct device *parent = priv->chip.dev->parent;
113 enum stm32_timers_dmas dma_id;
114 u32 ccen, ccr;
115 int ret;
116
117 /* Ensure registers have been updated, enable counter and capture */
118 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
119 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
120
121 /* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
122 dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
123 ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
124 ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
125 regmap_update_bits(priv->regmap, TIM_CCER, ccen, ccen);
126
127 /*
128 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
129 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
130 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
131 * or { CCR3, CCR4 }, { CCR3, CCR4 }
132 */
133 ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
134 2, tmo_ms);
135 if (ret)
136 goto stop;
137
138 /* Period: t2 - t0 (take care of counter overflow) */
139 if (priv->capture[0] <= priv->capture[2])
140 *raw_prd = priv->capture[2] - priv->capture[0];
141 else
142 *raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
143
144 /* Duty cycle capture requires at least two capture units */
145 if (pwm->chip->npwm < 2)
146 *raw_dty = 0;
147 else if (priv->capture[0] <= priv->capture[3])
148 *raw_dty = priv->capture[3] - priv->capture[0];
149 else
150 *raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
151
152 if (*raw_dty > *raw_prd) {
153 /*
154 * Race beetween PWM input and DMA: it may happen
155 * falling edge triggers new capture on TI2/4 before DMA
156 * had a chance to read CCR2/4. It means capture[1]
157 * contains period + duty_cycle. So, subtract period.
158 */
159 *raw_dty -= *raw_prd;
160 }
161
162 stop:
163 regmap_update_bits(priv->regmap, TIM_CCER, ccen, 0);
164 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
165
166 return ret;
167 }
168
stm32_pwm_capture(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_capture * result,unsigned long tmo_ms)169 static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
170 struct pwm_capture *result, unsigned long tmo_ms)
171 {
172 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
173 unsigned long long prd, div, dty;
174 unsigned long rate;
175 unsigned int psc = 0, icpsc, scale;
176 u32 raw_prd = 0, raw_dty = 0;
177 int ret = 0;
178
179 mutex_lock(&priv->lock);
180
181 if (active_channels(priv)) {
182 ret = -EBUSY;
183 goto unlock;
184 }
185
186 ret = clk_enable(priv->clk);
187 if (ret) {
188 dev_err(priv->chip.dev, "failed to enable counter clock\n");
189 goto unlock;
190 }
191
192 rate = clk_get_rate(priv->clk);
193 if (!rate) {
194 ret = -EINVAL;
195 goto clk_dis;
196 }
197
198 /* prescaler: fit timeout window provided by upper layer */
199 div = (unsigned long long)rate * (unsigned long long)tmo_ms;
200 do_div(div, MSEC_PER_SEC);
201 prd = div;
202 while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
203 psc++;
204 div = prd;
205 do_div(div, psc + 1);
206 }
207 regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
208 regmap_write(priv->regmap, TIM_PSC, psc);
209
210 /* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
211 regmap_update_bits(priv->regmap,
212 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
213 TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
214 TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
215 TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
216
217 /* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
218 regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
219 TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
220 TIM_CCER_CC2P : TIM_CCER_CC4P);
221
222 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
223 if (ret)
224 goto stop;
225
226 /*
227 * Got a capture. Try to improve accuracy at high rates:
228 * - decrease counter clock prescaler, scale up to max rate.
229 * - use input prescaler, capture once every /2 /4 or /8 edges.
230 */
231 if (raw_prd) {
232 u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
233
234 scale = max_arr / min(max_arr, raw_prd);
235 } else {
236 scale = priv->max_arr; /* bellow resolution, use max scale */
237 }
238
239 if (psc && scale > 1) {
240 /* 2nd measure with new scale */
241 psc /= scale;
242 regmap_write(priv->regmap, TIM_PSC, psc);
243 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd,
244 &raw_dty);
245 if (ret)
246 goto stop;
247 }
248
249 /* Compute intermediate period not to exceed timeout at low rates */
250 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
251 do_div(prd, rate);
252
253 for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
254 /* input prescaler: also keep arbitrary margin */
255 if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
256 break;
257 if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
258 break;
259 }
260
261 if (!icpsc)
262 goto done;
263
264 /* Last chance to improve period accuracy, using input prescaler */
265 regmap_update_bits(priv->regmap,
266 pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
267 TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
268 FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
269 FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
270
271 ret = stm32_pwm_raw_capture(priv, pwm, tmo_ms, &raw_prd, &raw_dty);
272 if (ret)
273 goto stop;
274
275 if (raw_dty >= (raw_prd >> icpsc)) {
276 /*
277 * We may fall here using input prescaler, when input
278 * capture starts on high side (before falling edge).
279 * Example with icpsc to capture on each 4 events:
280 *
281 * start 1st capture 2nd capture
282 * v v v
283 * ___ _____ _____ _____ _____ ____
284 * TI1..4 |__| |__| |__| |__| |__|
285 * v v . . . . . v v
286 * icpsc1/3: . 0 . 1 . 2 . 3 . 0
287 * icpsc2/4: 0 1 2 3 0
288 * v v v v
289 * CCR1/3 ......t0..............................t2
290 * CCR2/4 ..t1..............................t1'...
291 * . . .
292 * Capture0: .<----------------------------->.
293 * Capture1: .<-------------------------->. .
294 * . . .
295 * Period: .<------> . .
296 * Low side: .<>.
297 *
298 * Result:
299 * - Period = Capture0 / icpsc
300 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
301 */
302 raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
303 }
304
305 done:
306 prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
307 result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
308 dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
309 result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
310 stop:
311 regmap_write(priv->regmap, TIM_CCER, 0);
312 regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
313 regmap_write(priv->regmap, TIM_PSC, 0);
314 clk_dis:
315 clk_disable(priv->clk);
316 unlock:
317 mutex_unlock(&priv->lock);
318
319 return ret;
320 }
321
stm32_pwm_config(struct stm32_pwm * priv,int ch,int duty_ns,int period_ns)322 static int stm32_pwm_config(struct stm32_pwm *priv, int ch,
323 int duty_ns, int period_ns)
324 {
325 unsigned long long prd, div, dty;
326 unsigned int prescaler = 0;
327 u32 ccmr, mask, shift;
328
329 /* Period and prescaler values depends on clock rate */
330 div = (unsigned long long)clk_get_rate(priv->clk) * period_ns;
331
332 do_div(div, NSEC_PER_SEC);
333 prd = div;
334
335 while (div > priv->max_arr) {
336 prescaler++;
337 div = prd;
338 do_div(div, prescaler + 1);
339 }
340
341 prd = div;
342
343 if (prescaler > MAX_TIM_PSC)
344 return -EINVAL;
345
346 /*
347 * All channels share the same prescaler and counter so when two
348 * channels are active at the same time we can't change them
349 */
350 if (active_channels(priv) & ~(1 << ch * 4)) {
351 u32 psc, arr;
352
353 regmap_read(priv->regmap, TIM_PSC, &psc);
354 regmap_read(priv->regmap, TIM_ARR, &arr);
355
356 if ((psc != prescaler) || (arr != prd - 1))
357 return -EBUSY;
358 }
359
360 regmap_write(priv->regmap, TIM_PSC, prescaler);
361 regmap_write(priv->regmap, TIM_ARR, prd - 1);
362 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
363
364 /* Calculate the duty cycles */
365 dty = prd * duty_ns;
366 do_div(dty, period_ns);
367
368 write_ccrx(priv, ch, dty);
369
370 /* Configure output mode */
371 shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
372 ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
373 mask = CCMR_CHANNEL_MASK << shift;
374
375 if (ch < 2)
376 regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
377 else
378 regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
379
380 regmap_update_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE, TIM_BDTR_MOE);
381
382 return 0;
383 }
384
stm32_pwm_set_polarity(struct stm32_pwm * priv,int ch,enum pwm_polarity polarity)385 static int stm32_pwm_set_polarity(struct stm32_pwm *priv, int ch,
386 enum pwm_polarity polarity)
387 {
388 u32 mask;
389
390 mask = TIM_CCER_CC1P << (ch * 4);
391 if (priv->have_complementary_output)
392 mask |= TIM_CCER_CC1NP << (ch * 4);
393
394 regmap_update_bits(priv->regmap, TIM_CCER, mask,
395 polarity == PWM_POLARITY_NORMAL ? 0 : mask);
396
397 return 0;
398 }
399
stm32_pwm_enable(struct stm32_pwm * priv,int ch)400 static int stm32_pwm_enable(struct stm32_pwm *priv, int ch)
401 {
402 u32 mask;
403 int ret;
404
405 ret = clk_enable(priv->clk);
406 if (ret)
407 return ret;
408
409 /* Enable channel */
410 mask = TIM_CCER_CC1E << (ch * 4);
411 if (priv->have_complementary_output)
412 mask |= TIM_CCER_CC1NE << (ch * 4);
413
414 regmap_update_bits(priv->regmap, TIM_CCER, mask, mask);
415
416 /* Make sure that registers are updated */
417 regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
418
419 /* Enable controller */
420 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
421
422 return 0;
423 }
424
stm32_pwm_disable(struct stm32_pwm * priv,int ch)425 static void stm32_pwm_disable(struct stm32_pwm *priv, int ch)
426 {
427 u32 mask;
428
429 /* Disable channel */
430 mask = TIM_CCER_CC1E << (ch * 4);
431 if (priv->have_complementary_output)
432 mask |= TIM_CCER_CC1NE << (ch * 4);
433
434 regmap_update_bits(priv->regmap, TIM_CCER, mask, 0);
435
436 /* When all channels are disabled, we can disable the controller */
437 if (!active_channels(priv))
438 regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
439
440 clk_disable(priv->clk);
441 }
442
stm32_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)443 static int stm32_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
444 const struct pwm_state *state)
445 {
446 bool enabled;
447 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
448 int ret;
449
450 enabled = pwm->state.enabled;
451
452 if (enabled && !state->enabled) {
453 stm32_pwm_disable(priv, pwm->hwpwm);
454 return 0;
455 }
456
457 if (state->polarity != pwm->state.polarity)
458 stm32_pwm_set_polarity(priv, pwm->hwpwm, state->polarity);
459
460 ret = stm32_pwm_config(priv, pwm->hwpwm,
461 state->duty_cycle, state->period);
462 if (ret)
463 return ret;
464
465 if (!enabled && state->enabled)
466 ret = stm32_pwm_enable(priv, pwm->hwpwm);
467
468 return ret;
469 }
470
stm32_pwm_apply_locked(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)471 static int stm32_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm,
472 const struct pwm_state *state)
473 {
474 struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
475 int ret;
476
477 /* protect common prescaler for all active channels */
478 mutex_lock(&priv->lock);
479 ret = stm32_pwm_apply(chip, pwm, state);
480 mutex_unlock(&priv->lock);
481
482 return ret;
483 }
484
485 static const struct pwm_ops stm32pwm_ops = {
486 .owner = THIS_MODULE,
487 .apply = stm32_pwm_apply_locked,
488 .capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
489 };
490
stm32_pwm_set_breakinput(struct stm32_pwm * priv,const struct stm32_breakinput * bi)491 static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
492 const struct stm32_breakinput *bi)
493 {
494 u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
495 u32 bke = TIM_BDTR_BKE(bi->index);
496 u32 bkp = TIM_BDTR_BKP(bi->index);
497 u32 bkf = TIM_BDTR_BKF(bi->index);
498 u32 mask = bkf | bkp | bke;
499 u32 bdtr;
500
501 bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
502
503 if (bi->level)
504 bdtr |= bkp;
505
506 regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
507
508 regmap_read(priv->regmap, TIM_BDTR, &bdtr);
509
510 return (bdtr & bke) ? 0 : -EINVAL;
511 }
512
stm32_pwm_apply_breakinputs(struct stm32_pwm * priv)513 static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
514 {
515 unsigned int i;
516 int ret;
517
518 for (i = 0; i < priv->num_breakinputs; i++) {
519 ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
520 if (ret < 0)
521 return ret;
522 }
523
524 return 0;
525 }
526
stm32_pwm_probe_breakinputs(struct stm32_pwm * priv,struct device_node * np)527 static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
528 struct device_node *np)
529 {
530 int nb, ret, array_size;
531 unsigned int i;
532
533 nb = of_property_count_elems_of_size(np, "st,breakinput",
534 sizeof(struct stm32_breakinput));
535
536 /*
537 * Because "st,breakinput" parameter is optional do not make probe
538 * failed if it doesn't exist.
539 */
540 if (nb <= 0)
541 return 0;
542
543 if (nb > MAX_BREAKINPUT)
544 return -EINVAL;
545
546 priv->num_breakinputs = nb;
547 array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
548 ret = of_property_read_u32_array(np, "st,breakinput",
549 (u32 *)priv->breakinputs, array_size);
550 if (ret)
551 return ret;
552
553 for (i = 0; i < priv->num_breakinputs; i++) {
554 if (priv->breakinputs[i].index > 1 ||
555 priv->breakinputs[i].level > 1 ||
556 priv->breakinputs[i].filter > 15)
557 return -EINVAL;
558 }
559
560 return stm32_pwm_apply_breakinputs(priv);
561 }
562
stm32_pwm_detect_complementary(struct stm32_pwm * priv)563 static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
564 {
565 u32 ccer;
566
567 /*
568 * If complementary bit doesn't exist writing 1 will have no
569 * effect so we can detect it.
570 */
571 regmap_update_bits(priv->regmap,
572 TIM_CCER, TIM_CCER_CC1NE, TIM_CCER_CC1NE);
573 regmap_read(priv->regmap, TIM_CCER, &ccer);
574 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE, 0);
575
576 priv->have_complementary_output = (ccer != 0);
577 }
578
stm32_pwm_detect_channels(struct stm32_pwm * priv)579 static int stm32_pwm_detect_channels(struct stm32_pwm *priv)
580 {
581 u32 ccer;
582 int npwm = 0;
583
584 /*
585 * If channels enable bits don't exist writing 1 will have no
586 * effect so we can detect and count them.
587 */
588 regmap_update_bits(priv->regmap,
589 TIM_CCER, TIM_CCER_CCXE, TIM_CCER_CCXE);
590 regmap_read(priv->regmap, TIM_CCER, &ccer);
591 regmap_update_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE, 0);
592
593 if (ccer & TIM_CCER_CC1E)
594 npwm++;
595
596 if (ccer & TIM_CCER_CC2E)
597 npwm++;
598
599 if (ccer & TIM_CCER_CC3E)
600 npwm++;
601
602 if (ccer & TIM_CCER_CC4E)
603 npwm++;
604
605 return npwm;
606 }
607
stm32_pwm_probe(struct platform_device * pdev)608 static int stm32_pwm_probe(struct platform_device *pdev)
609 {
610 struct device *dev = &pdev->dev;
611 struct device_node *np = dev->of_node;
612 struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
613 struct stm32_pwm *priv;
614 int ret;
615
616 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
617 if (!priv)
618 return -ENOMEM;
619
620 mutex_init(&priv->lock);
621 priv->regmap = ddata->regmap;
622 priv->clk = ddata->clk;
623 priv->max_arr = ddata->max_arr;
624 priv->chip.of_xlate = of_pwm_xlate_with_flags;
625 priv->chip.of_pwm_n_cells = 3;
626
627 if (!priv->regmap || !priv->clk)
628 return -EINVAL;
629
630 ret = stm32_pwm_probe_breakinputs(priv, np);
631 if (ret)
632 return ret;
633
634 stm32_pwm_detect_complementary(priv);
635
636 priv->chip.base = -1;
637 priv->chip.dev = dev;
638 priv->chip.ops = &stm32pwm_ops;
639 priv->chip.npwm = stm32_pwm_detect_channels(priv);
640
641 ret = pwmchip_add(&priv->chip);
642 if (ret < 0)
643 return ret;
644
645 platform_set_drvdata(pdev, priv);
646
647 return 0;
648 }
649
stm32_pwm_remove(struct platform_device * pdev)650 static int stm32_pwm_remove(struct platform_device *pdev)
651 {
652 struct stm32_pwm *priv = platform_get_drvdata(pdev);
653 unsigned int i;
654
655 for (i = 0; i < priv->chip.npwm; i++)
656 pwm_disable(&priv->chip.pwms[i]);
657
658 pwmchip_remove(&priv->chip);
659
660 return 0;
661 }
662
stm32_pwm_suspend(struct device * dev)663 static int __maybe_unused stm32_pwm_suspend(struct device *dev)
664 {
665 struct stm32_pwm *priv = dev_get_drvdata(dev);
666 unsigned int i;
667 u32 ccer, mask;
668
669 /* Look for active channels */
670 ccer = active_channels(priv);
671
672 for (i = 0; i < priv->chip.npwm; i++) {
673 mask = TIM_CCER_CC1E << (i * 4);
674 if (ccer & mask) {
675 dev_err(dev, "PWM %u still in use by consumer %s\n",
676 i, priv->chip.pwms[i].label);
677 return -EBUSY;
678 }
679 }
680
681 return pinctrl_pm_select_sleep_state(dev);
682 }
683
stm32_pwm_resume(struct device * dev)684 static int __maybe_unused stm32_pwm_resume(struct device *dev)
685 {
686 struct stm32_pwm *priv = dev_get_drvdata(dev);
687 int ret;
688
689 ret = pinctrl_pm_select_default_state(dev);
690 if (ret)
691 return ret;
692
693 /* restore breakinput registers that may have been lost in low power */
694 return stm32_pwm_apply_breakinputs(priv);
695 }
696
697 static SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
698
699 static const struct of_device_id stm32_pwm_of_match[] = {
700 { .compatible = "st,stm32-pwm", },
701 { /* end node */ },
702 };
703 MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
704
705 static struct platform_driver stm32_pwm_driver = {
706 .probe = stm32_pwm_probe,
707 .remove = stm32_pwm_remove,
708 .driver = {
709 .name = "stm32-pwm",
710 .of_match_table = stm32_pwm_of_match,
711 .pm = &stm32_pwm_pm_ops,
712 },
713 };
714 module_platform_driver(stm32_pwm_driver);
715
716 MODULE_ALIAS("platform:stm32-pwm");
717 MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
718 MODULE_LICENSE("GPL v2");
719