1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2018-2019 NXP.
4 *
5 * Limitations:
6 * - The TPM counter and period counter are shared between
7 * multiple channels, so all channels should use same period
8 * settings.
9 * - Changes to polarity cannot be latched at the time of the
10 * next period start.
11 * - Changing period and duty cycle together isn't atomic,
12 * with the wrong timing it might happen that a period is
13 * produced with old duty cycle but new period settings.
14 */
15
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/clk.h>
19 #include <linux/err.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/pwm.h>
25 #include <linux/slab.h>
26
27 #define PWM_IMX_TPM_PARAM 0x4
28 #define PWM_IMX_TPM_GLOBAL 0x8
29 #define PWM_IMX_TPM_SC 0x10
30 #define PWM_IMX_TPM_CNT 0x14
31 #define PWM_IMX_TPM_MOD 0x18
32 #define PWM_IMX_TPM_CnSC(n) (0x20 + (n) * 0x8)
33 #define PWM_IMX_TPM_CnV(n) (0x24 + (n) * 0x8)
34
35 #define PWM_IMX_TPM_PARAM_CHAN GENMASK(7, 0)
36
37 #define PWM_IMX_TPM_SC_PS GENMASK(2, 0)
38 #define PWM_IMX_TPM_SC_CMOD GENMASK(4, 3)
39 #define PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK FIELD_PREP(PWM_IMX_TPM_SC_CMOD, 1)
40 #define PWM_IMX_TPM_SC_CPWMS BIT(5)
41
42 #define PWM_IMX_TPM_CnSC_CHF BIT(7)
43 #define PWM_IMX_TPM_CnSC_MSB BIT(5)
44 #define PWM_IMX_TPM_CnSC_MSA BIT(4)
45
46 /*
47 * The reference manual describes this field as two separate bits. The
48 * semantic of the two bits isn't orthogonal though, so they are treated
49 * together as a 2-bit field here.
50 */
51 #define PWM_IMX_TPM_CnSC_ELS GENMASK(3, 2)
52 #define PWM_IMX_TPM_CnSC_ELS_INVERSED FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 1)
53 #define PWM_IMX_TPM_CnSC_ELS_NORMAL FIELD_PREP(PWM_IMX_TPM_CnSC_ELS, 2)
54
55
56 #define PWM_IMX_TPM_MOD_WIDTH 16
57 #define PWM_IMX_TPM_MOD_MOD GENMASK(PWM_IMX_TPM_MOD_WIDTH - 1, 0)
58
59 struct imx_tpm_pwm_chip {
60 struct pwm_chip chip;
61 struct clk *clk;
62 void __iomem *base;
63 struct mutex lock;
64 u32 user_count;
65 u32 enable_count;
66 u32 real_period;
67 };
68
69 struct imx_tpm_pwm_param {
70 u8 prescale;
71 u32 mod;
72 u32 val;
73 };
74
75 static inline struct imx_tpm_pwm_chip *
to_imx_tpm_pwm_chip(struct pwm_chip * chip)76 to_imx_tpm_pwm_chip(struct pwm_chip *chip)
77 {
78 return container_of(chip, struct imx_tpm_pwm_chip, chip);
79 }
80
81 /*
82 * This function determines for a given pwm_state *state that a consumer
83 * might request the pwm_state *real_state that eventually is implemented
84 * by the hardware and the necessary register values (in *p) to achieve
85 * this.
86 */
pwm_imx_tpm_round_state(struct pwm_chip * chip,struct imx_tpm_pwm_param * p,struct pwm_state * real_state,const struct pwm_state * state)87 static int pwm_imx_tpm_round_state(struct pwm_chip *chip,
88 struct imx_tpm_pwm_param *p,
89 struct pwm_state *real_state,
90 const struct pwm_state *state)
91 {
92 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
93 u32 rate, prescale, period_count, clock_unit;
94 u64 tmp;
95
96 rate = clk_get_rate(tpm->clk);
97 tmp = (u64)state->period * rate;
98 clock_unit = DIV_ROUND_CLOSEST_ULL(tmp, NSEC_PER_SEC);
99 if (clock_unit <= PWM_IMX_TPM_MOD_MOD)
100 prescale = 0;
101 else
102 prescale = ilog2(clock_unit) + 1 - PWM_IMX_TPM_MOD_WIDTH;
103
104 if ((!FIELD_FIT(PWM_IMX_TPM_SC_PS, prescale)))
105 return -ERANGE;
106 p->prescale = prescale;
107
108 period_count = (clock_unit + ((1 << prescale) >> 1)) >> prescale;
109 p->mod = period_count;
110
111 /* calculate real period HW can support */
112 tmp = (u64)period_count << prescale;
113 tmp *= NSEC_PER_SEC;
114 real_state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
115
116 /*
117 * if eventually the PWM output is inactive, either
118 * duty cycle is 0 or status is disabled, need to
119 * make sure the output pin is inactive.
120 */
121 if (!state->enabled)
122 real_state->duty_cycle = 0;
123 else
124 real_state->duty_cycle = state->duty_cycle;
125
126 tmp = (u64)p->mod * real_state->duty_cycle;
127 p->val = DIV64_U64_ROUND_CLOSEST(tmp, real_state->period);
128
129 real_state->polarity = state->polarity;
130 real_state->enabled = state->enabled;
131
132 return 0;
133 }
134
pwm_imx_tpm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)135 static void pwm_imx_tpm_get_state(struct pwm_chip *chip,
136 struct pwm_device *pwm,
137 struct pwm_state *state)
138 {
139 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
140 u32 rate, val, prescale;
141 u64 tmp;
142
143 /* get period */
144 state->period = tpm->real_period;
145
146 /* get duty cycle */
147 rate = clk_get_rate(tpm->clk);
148 val = readl(tpm->base + PWM_IMX_TPM_SC);
149 prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
150 tmp = readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
151 tmp = (tmp << prescale) * NSEC_PER_SEC;
152 state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
153
154 /* get polarity */
155 val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
156 if ((val & PWM_IMX_TPM_CnSC_ELS) == PWM_IMX_TPM_CnSC_ELS_INVERSED)
157 state->polarity = PWM_POLARITY_INVERSED;
158 else
159 /*
160 * Assume reserved values (2b00 and 2b11) to yield
161 * normal polarity.
162 */
163 state->polarity = PWM_POLARITY_NORMAL;
164
165 /* get channel status */
166 state->enabled = FIELD_GET(PWM_IMX_TPM_CnSC_ELS, val) ? true : false;
167 }
168
169 /* this function is supposed to be called with mutex hold */
pwm_imx_tpm_apply_hw(struct pwm_chip * chip,struct imx_tpm_pwm_param * p,struct pwm_state * state,struct pwm_device * pwm)170 static int pwm_imx_tpm_apply_hw(struct pwm_chip *chip,
171 struct imx_tpm_pwm_param *p,
172 struct pwm_state *state,
173 struct pwm_device *pwm)
174 {
175 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
176 bool period_update = false;
177 bool duty_update = false;
178 u32 val, cmod, cur_prescale;
179 unsigned long timeout;
180 struct pwm_state c;
181
182 if (state->period != tpm->real_period) {
183 /*
184 * TPM counter is shared by multiple channels, so
185 * prescale and period can NOT be modified when
186 * there are multiple channels in use with different
187 * period settings.
188 */
189 if (tpm->user_count > 1)
190 return -EBUSY;
191
192 val = readl(tpm->base + PWM_IMX_TPM_SC);
193 cmod = FIELD_GET(PWM_IMX_TPM_SC_CMOD, val);
194 cur_prescale = FIELD_GET(PWM_IMX_TPM_SC_PS, val);
195 if (cmod && cur_prescale != p->prescale)
196 return -EBUSY;
197
198 /* set TPM counter prescale */
199 val &= ~PWM_IMX_TPM_SC_PS;
200 val |= FIELD_PREP(PWM_IMX_TPM_SC_PS, p->prescale);
201 writel(val, tpm->base + PWM_IMX_TPM_SC);
202
203 /*
204 * set period count:
205 * if the PWM is disabled (CMOD[1:0] = 2b00), then MOD register
206 * is updated when MOD register is written.
207 *
208 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the period length
209 * is latched into hardware when the next period starts.
210 */
211 writel(p->mod, tpm->base + PWM_IMX_TPM_MOD);
212 tpm->real_period = state->period;
213 period_update = true;
214 }
215
216 pwm_imx_tpm_get_state(chip, pwm, &c);
217
218 /* polarity is NOT allowed to be changed if PWM is active */
219 if (c.enabled && c.polarity != state->polarity)
220 return -EBUSY;
221
222 if (state->duty_cycle != c.duty_cycle) {
223 /*
224 * set channel value:
225 * if the PWM is disabled (CMOD[1:0] = 2b00), then CnV register
226 * is updated when CnV register is written.
227 *
228 * if the PWM is enabled (CMOD[1:0] ≠ 2b00), the duty length
229 * is latched into hardware when the next period starts.
230 */
231 writel(p->val, tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm));
232 duty_update = true;
233 }
234
235 /* make sure MOD & CnV registers are updated */
236 if (period_update || duty_update) {
237 timeout = jiffies + msecs_to_jiffies(tpm->real_period /
238 NSEC_PER_MSEC + 1);
239 while (readl(tpm->base + PWM_IMX_TPM_MOD) != p->mod
240 || readl(tpm->base + PWM_IMX_TPM_CnV(pwm->hwpwm))
241 != p->val) {
242 if (time_after(jiffies, timeout))
243 return -ETIME;
244 cpu_relax();
245 }
246 }
247
248 /*
249 * polarity settings will enabled/disable output status
250 * immediately, so if the channel is disabled, need to
251 * make sure MSA/MSB/ELS are set to 0 which means channel
252 * disabled.
253 */
254 val = readl(tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
255 val &= ~(PWM_IMX_TPM_CnSC_ELS | PWM_IMX_TPM_CnSC_MSA |
256 PWM_IMX_TPM_CnSC_MSB);
257 if (state->enabled) {
258 /*
259 * set polarity (for edge-aligned PWM modes)
260 *
261 * ELS[1:0] = 2b10 yields normal polarity behaviour,
262 * ELS[1:0] = 2b01 yields inversed polarity.
263 * The other values are reserved.
264 */
265 val |= PWM_IMX_TPM_CnSC_MSB;
266 val |= (state->polarity == PWM_POLARITY_NORMAL) ?
267 PWM_IMX_TPM_CnSC_ELS_NORMAL :
268 PWM_IMX_TPM_CnSC_ELS_INVERSED;
269 }
270 writel(val, tpm->base + PWM_IMX_TPM_CnSC(pwm->hwpwm));
271
272 /* control the counter status */
273 if (state->enabled != c.enabled) {
274 val = readl(tpm->base + PWM_IMX_TPM_SC);
275 if (state->enabled) {
276 if (++tpm->enable_count == 1)
277 val |= PWM_IMX_TPM_SC_CMOD_INC_EVERY_CLK;
278 } else {
279 if (--tpm->enable_count == 0)
280 val &= ~PWM_IMX_TPM_SC_CMOD;
281 }
282 writel(val, tpm->base + PWM_IMX_TPM_SC);
283 }
284
285 return 0;
286 }
287
pwm_imx_tpm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)288 static int pwm_imx_tpm_apply(struct pwm_chip *chip,
289 struct pwm_device *pwm,
290 const struct pwm_state *state)
291 {
292 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
293 struct imx_tpm_pwm_param param;
294 struct pwm_state real_state;
295 int ret;
296
297 ret = pwm_imx_tpm_round_state(chip, ¶m, &real_state, state);
298 if (ret)
299 return ret;
300
301 mutex_lock(&tpm->lock);
302 ret = pwm_imx_tpm_apply_hw(chip, ¶m, &real_state, pwm);
303 mutex_unlock(&tpm->lock);
304
305 return ret;
306 }
307
pwm_imx_tpm_request(struct pwm_chip * chip,struct pwm_device * pwm)308 static int pwm_imx_tpm_request(struct pwm_chip *chip, struct pwm_device *pwm)
309 {
310 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
311
312 mutex_lock(&tpm->lock);
313 tpm->user_count++;
314 mutex_unlock(&tpm->lock);
315
316 return 0;
317 }
318
pwm_imx_tpm_free(struct pwm_chip * chip,struct pwm_device * pwm)319 static void pwm_imx_tpm_free(struct pwm_chip *chip, struct pwm_device *pwm)
320 {
321 struct imx_tpm_pwm_chip *tpm = to_imx_tpm_pwm_chip(chip);
322
323 mutex_lock(&tpm->lock);
324 tpm->user_count--;
325 mutex_unlock(&tpm->lock);
326 }
327
328 static const struct pwm_ops imx_tpm_pwm_ops = {
329 .request = pwm_imx_tpm_request,
330 .free = pwm_imx_tpm_free,
331 .get_state = pwm_imx_tpm_get_state,
332 .apply = pwm_imx_tpm_apply,
333 .owner = THIS_MODULE,
334 };
335
pwm_imx_tpm_probe(struct platform_device * pdev)336 static int pwm_imx_tpm_probe(struct platform_device *pdev)
337 {
338 struct imx_tpm_pwm_chip *tpm;
339 int ret;
340 u32 val;
341
342 tpm = devm_kzalloc(&pdev->dev, sizeof(*tpm), GFP_KERNEL);
343 if (!tpm)
344 return -ENOMEM;
345
346 platform_set_drvdata(pdev, tpm);
347
348 tpm->base = devm_platform_ioremap_resource(pdev, 0);
349 if (IS_ERR(tpm->base))
350 return PTR_ERR(tpm->base);
351
352 tpm->clk = devm_clk_get(&pdev->dev, NULL);
353 if (IS_ERR(tpm->clk)) {
354 ret = PTR_ERR(tpm->clk);
355 if (ret != -EPROBE_DEFER)
356 dev_err(&pdev->dev,
357 "failed to get PWM clock: %d\n", ret);
358 return ret;
359 }
360
361 ret = clk_prepare_enable(tpm->clk);
362 if (ret) {
363 dev_err(&pdev->dev,
364 "failed to prepare or enable clock: %d\n", ret);
365 return ret;
366 }
367
368 tpm->chip.dev = &pdev->dev;
369 tpm->chip.ops = &imx_tpm_pwm_ops;
370 tpm->chip.base = -1;
371 tpm->chip.of_xlate = of_pwm_xlate_with_flags;
372 tpm->chip.of_pwm_n_cells = 3;
373
374 /* get number of channels */
375 val = readl(tpm->base + PWM_IMX_TPM_PARAM);
376 tpm->chip.npwm = FIELD_GET(PWM_IMX_TPM_PARAM_CHAN, val);
377
378 mutex_init(&tpm->lock);
379
380 ret = pwmchip_add(&tpm->chip);
381 if (ret) {
382 dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
383 clk_disable_unprepare(tpm->clk);
384 }
385
386 return ret;
387 }
388
pwm_imx_tpm_remove(struct platform_device * pdev)389 static int pwm_imx_tpm_remove(struct platform_device *pdev)
390 {
391 struct imx_tpm_pwm_chip *tpm = platform_get_drvdata(pdev);
392 int ret = pwmchip_remove(&tpm->chip);
393
394 clk_disable_unprepare(tpm->clk);
395
396 return ret;
397 }
398
pwm_imx_tpm_suspend(struct device * dev)399 static int __maybe_unused pwm_imx_tpm_suspend(struct device *dev)
400 {
401 struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
402
403 if (tpm->enable_count > 0)
404 return -EBUSY;
405
406 clk_disable_unprepare(tpm->clk);
407
408 return 0;
409 }
410
pwm_imx_tpm_resume(struct device * dev)411 static int __maybe_unused pwm_imx_tpm_resume(struct device *dev)
412 {
413 struct imx_tpm_pwm_chip *tpm = dev_get_drvdata(dev);
414 int ret = 0;
415
416 ret = clk_prepare_enable(tpm->clk);
417 if (ret)
418 dev_err(dev,
419 "failed to prepare or enable clock: %d\n",
420 ret);
421
422 return ret;
423 }
424
425 static SIMPLE_DEV_PM_OPS(imx_tpm_pwm_pm,
426 pwm_imx_tpm_suspend, pwm_imx_tpm_resume);
427
428 static const struct of_device_id imx_tpm_pwm_dt_ids[] = {
429 { .compatible = "fsl,imx7ulp-pwm", },
430 { /* sentinel */ }
431 };
432 MODULE_DEVICE_TABLE(of, imx_tpm_pwm_dt_ids);
433
434 static struct platform_driver imx_tpm_pwm_driver = {
435 .driver = {
436 .name = "imx7ulp-tpm-pwm",
437 .of_match_table = imx_tpm_pwm_dt_ids,
438 .pm = &imx_tpm_pwm_pm,
439 },
440 .probe = pwm_imx_tpm_probe,
441 .remove = pwm_imx_tpm_remove,
442 };
443 module_platform_driver(imx_tpm_pwm_driver);
444
445 MODULE_AUTHOR("Anson Huang <Anson.Huang@nxp.com>");
446 MODULE_DESCRIPTION("i.MX TPM PWM Driver");
447 MODULE_LICENSE("GPL v2");
448