1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI probing code for ARM performance counters.
4 *
5 * Copyright (C) 2017 ARM Ltd.
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/cpumask.h>
10 #include <linux/init.h>
11 #include <linux/irq.h>
12 #include <linux/irqdesc.h>
13 #include <linux/percpu.h>
14 #include <linux/perf/arm_pmu.h>
15
16 #include <asm/cputype.h>
17
18 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
19 static DEFINE_PER_CPU(int, pmu_irqs);
20
arm_pmu_acpi_register_irq(int cpu)21 static int arm_pmu_acpi_register_irq(int cpu)
22 {
23 struct acpi_madt_generic_interrupt *gicc;
24 int gsi, trigger;
25
26 gicc = acpi_cpu_get_madt_gicc(cpu);
27
28 gsi = gicc->performance_interrupt;
29
30 /*
31 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
32 * have an interrupt. QEMU advertises this by using a GSI of zero,
33 * which is not known to be valid on any hardware despite being
34 * valid per the spec. Take the pragmatic approach and reject a
35 * GSI of zero for now.
36 */
37 if (!gsi)
38 return 0;
39
40 if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
41 trigger = ACPI_EDGE_SENSITIVE;
42 else
43 trigger = ACPI_LEVEL_SENSITIVE;
44
45 /*
46 * Helpfully, the MADT GICC doesn't have a polarity flag for the
47 * "performance interrupt". Luckily, on compliant GICs the polarity is
48 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
49 * from SW.
50 *
51 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
52 * may not match the real polarity, but that should not matter.
53 *
54 * Other interrupt controllers are not supported with ACPI.
55 */
56 return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
57 }
58
arm_pmu_acpi_unregister_irq(int cpu)59 static void arm_pmu_acpi_unregister_irq(int cpu)
60 {
61 struct acpi_madt_generic_interrupt *gicc;
62 int gsi;
63
64 gicc = acpi_cpu_get_madt_gicc(cpu);
65
66 gsi = gicc->performance_interrupt;
67 if (gsi)
68 acpi_unregister_gsi(gsi);
69 }
70
71 #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
72 static struct resource spe_resources[] = {
73 {
74 /* irq */
75 .flags = IORESOURCE_IRQ,
76 }
77 };
78
79 static struct platform_device spe_dev = {
80 .name = ARMV8_SPE_PDEV_NAME,
81 .id = -1,
82 .resource = spe_resources,
83 .num_resources = ARRAY_SIZE(spe_resources)
84 };
85
86 /*
87 * For lack of a better place, hook the normal PMU MADT walk
88 * and create a SPE device if we detect a recent MADT with
89 * a homogeneous PPI mapping.
90 */
arm_spe_acpi_register_device(void)91 static void arm_spe_acpi_register_device(void)
92 {
93 int cpu, hetid, irq, ret;
94 bool first = true;
95 u16 gsi = 0;
96
97 /*
98 * Sanity check all the GICC tables for the same interrupt number.
99 * For now, we only support homogeneous ACPI/SPE machines.
100 */
101 for_each_possible_cpu(cpu) {
102 struct acpi_madt_generic_interrupt *gicc;
103
104 gicc = acpi_cpu_get_madt_gicc(cpu);
105 if (gicc->header.length < ACPI_MADT_GICC_SPE)
106 return;
107
108 if (first) {
109 gsi = gicc->spe_interrupt;
110 if (!gsi)
111 return;
112 hetid = find_acpi_cpu_topology_hetero_id(cpu);
113 first = false;
114 } else if ((gsi != gicc->spe_interrupt) ||
115 (hetid != find_acpi_cpu_topology_hetero_id(cpu))) {
116 pr_warn("ACPI: SPE must be homogeneous\n");
117 return;
118 }
119 }
120
121 irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE,
122 ACPI_ACTIVE_HIGH);
123 if (irq < 0) {
124 pr_warn("ACPI: SPE Unable to register interrupt: %d\n", gsi);
125 return;
126 }
127
128 spe_resources[0].start = irq;
129 ret = platform_device_register(&spe_dev);
130 if (ret < 0) {
131 pr_warn("ACPI: SPE: Unable to register device\n");
132 acpi_unregister_gsi(gsi);
133 }
134 }
135 #else
arm_spe_acpi_register_device(void)136 static inline void arm_spe_acpi_register_device(void)
137 {
138 }
139 #endif /* CONFIG_ARM_SPE_PMU */
140
arm_pmu_acpi_parse_irqs(void)141 static int arm_pmu_acpi_parse_irqs(void)
142 {
143 int irq, cpu, irq_cpu, err;
144
145 for_each_possible_cpu(cpu) {
146 irq = arm_pmu_acpi_register_irq(cpu);
147 if (irq < 0) {
148 err = irq;
149 pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
150 cpu, err);
151 goto out_err;
152 } else if (irq == 0) {
153 pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
154 }
155
156 /*
157 * Log and request the IRQ so the core arm_pmu code can manage
158 * it. We'll have to sanity-check IRQs later when we associate
159 * them with their PMUs.
160 */
161 per_cpu(pmu_irqs, cpu) = irq;
162 armpmu_request_irq(irq, cpu);
163 }
164
165 return 0;
166
167 out_err:
168 for_each_possible_cpu(cpu) {
169 irq = per_cpu(pmu_irqs, cpu);
170 if (!irq)
171 continue;
172
173 arm_pmu_acpi_unregister_irq(cpu);
174
175 /*
176 * Blat all copies of the IRQ so that we only unregister the
177 * corresponding GSI once (e.g. when we have PPIs).
178 */
179 for_each_possible_cpu(irq_cpu) {
180 if (per_cpu(pmu_irqs, irq_cpu) == irq)
181 per_cpu(pmu_irqs, irq_cpu) = 0;
182 }
183 }
184
185 return err;
186 }
187
arm_pmu_acpi_find_alloc_pmu(void)188 static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
189 {
190 unsigned long cpuid = read_cpuid_id();
191 struct arm_pmu *pmu;
192 int cpu;
193
194 for_each_possible_cpu(cpu) {
195 pmu = per_cpu(probed_pmus, cpu);
196 if (!pmu || pmu->acpi_cpuid != cpuid)
197 continue;
198
199 return pmu;
200 }
201
202 pmu = armpmu_alloc_atomic();
203 if (!pmu) {
204 pr_warn("Unable to allocate PMU for CPU%d\n",
205 smp_processor_id());
206 return NULL;
207 }
208
209 pmu->acpi_cpuid = cpuid;
210
211 return pmu;
212 }
213
214 /*
215 * Check whether the new IRQ is compatible with those already associated with
216 * the PMU (e.g. we don't have mismatched PPIs).
217 */
pmu_irq_matches(struct arm_pmu * pmu,int irq)218 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
219 {
220 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
221 int cpu;
222
223 if (!irq)
224 return true;
225
226 for_each_cpu(cpu, &pmu->supported_cpus) {
227 int other_irq = per_cpu(hw_events->irq, cpu);
228 if (!other_irq)
229 continue;
230
231 if (irq == other_irq)
232 continue;
233 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
234 continue;
235
236 pr_warn("mismatched PPIs detected\n");
237 return false;
238 }
239
240 return true;
241 }
242
243 /*
244 * This must run before the common arm_pmu hotplug logic, so that we can
245 * associate a CPU and its interrupt before the common code tries to manage the
246 * affinity and so on.
247 *
248 * Note that hotplug events are serialized, so we cannot race with another CPU
249 * coming up. The perf core won't open events while a hotplug event is in
250 * progress.
251 */
arm_pmu_acpi_cpu_starting(unsigned int cpu)252 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
253 {
254 struct arm_pmu *pmu;
255 struct pmu_hw_events __percpu *hw_events;
256 int irq;
257
258 /* If we've already probed this CPU, we have nothing to do */
259 if (per_cpu(probed_pmus, cpu))
260 return 0;
261
262 irq = per_cpu(pmu_irqs, cpu);
263
264 pmu = arm_pmu_acpi_find_alloc_pmu();
265 if (!pmu)
266 return -ENOMEM;
267
268 per_cpu(probed_pmus, cpu) = pmu;
269
270 if (pmu_irq_matches(pmu, irq)) {
271 hw_events = pmu->hw_events;
272 per_cpu(hw_events->irq, cpu) = irq;
273 }
274
275 cpumask_set_cpu(cpu, &pmu->supported_cpus);
276
277 /*
278 * Ideally, we'd probe the PMU here when we find the first matching
279 * CPU. We can't do that for several reasons; see the comment in
280 * arm_pmu_acpi_init().
281 *
282 * So for the time being, we're done.
283 */
284 return 0;
285 }
286
arm_pmu_acpi_probe(armpmu_init_fn init_fn)287 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
288 {
289 int pmu_idx = 0;
290 int cpu, ret;
291
292 /*
293 * Initialise and register the set of PMUs which we know about right
294 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
295 * could handle late hotplug, but this may lead to deadlock since we
296 * might try to register a hotplug notifier instance from within a
297 * hotplug notifier.
298 *
299 * There's also the problem of having access to the right init_fn,
300 * without tying this too deeply into the "real" PMU driver.
301 *
302 * For the moment, as with the platform/DT case, we need at least one
303 * of a PMU's CPUs to be online at probe time.
304 */
305 for_each_possible_cpu(cpu) {
306 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
307 char *base_name;
308
309 if (!pmu || pmu->name)
310 continue;
311
312 ret = init_fn(pmu);
313 if (ret == -ENODEV) {
314 /* PMU not handled by this driver, or not present */
315 continue;
316 } else if (ret) {
317 pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
318 return ret;
319 }
320
321 base_name = pmu->name;
322 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
323 if (!pmu->name) {
324 pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
325 return -ENOMEM;
326 }
327
328 ret = armpmu_register(pmu);
329 if (ret) {
330 pr_warn("Failed to register PMU for CPU%d\n", cpu);
331 kfree(pmu->name);
332 return ret;
333 }
334 }
335
336 return 0;
337 }
338
arm_pmu_acpi_init(void)339 static int arm_pmu_acpi_init(void)
340 {
341 int ret;
342
343 if (acpi_disabled)
344 return 0;
345
346 arm_spe_acpi_register_device();
347
348 ret = arm_pmu_acpi_parse_irqs();
349 if (ret)
350 return ret;
351
352 ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
353 "perf/arm/pmu_acpi:starting",
354 arm_pmu_acpi_cpu_starting, NULL);
355
356 return ret;
357 }
358 subsys_initcall(arm_pmu_acpi_init)
359