1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device tree based initialization code for reserved memory.
4 *
5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7 * http://www.samsung.com
8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9 * Author: Josh Cartwright <joshc@codeaurora.org>
10 */
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS 64
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)29 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31 phys_addr_t *res_base)
32 {
33 phys_addr_t base;
34
35 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
36 align = !align ? SMP_CACHE_BYTES : align;
37 base = memblock_find_in_range(start, end, size, align);
38 if (!base)
39 return -ENOMEM;
40
41 *res_base = base;
42 if (nomap)
43 return memblock_remove(base, size);
44
45 return memblock_reserve(base, size);
46 }
47
48 /**
49 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
50 */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)51 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
52 phys_addr_t base, phys_addr_t size)
53 {
54 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
55
56 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
57 pr_err("not enough space for all defined regions.\n");
58 return;
59 }
60
61 rmem->fdt_node = node;
62 rmem->name = uname;
63 rmem->base = base;
64 rmem->size = size;
65
66 reserved_mem_count++;
67 return;
68 }
69
70 /**
71 * __reserved_mem_alloc_size() - allocate reserved memory described by
72 * 'size', 'alignment' and 'alloc-ranges' properties.
73 */
__reserved_mem_alloc_size(unsigned long node,const char * uname,phys_addr_t * res_base,phys_addr_t * res_size)74 static int __init __reserved_mem_alloc_size(unsigned long node,
75 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
76 {
77 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
78 phys_addr_t start = 0, end = 0;
79 phys_addr_t base = 0, align = 0, size;
80 int len;
81 const __be32 *prop;
82 bool nomap;
83 int ret;
84
85 prop = of_get_flat_dt_prop(node, "size", &len);
86 if (!prop)
87 return -EINVAL;
88
89 if (len != dt_root_size_cells * sizeof(__be32)) {
90 pr_err("invalid size property in '%s' node.\n", uname);
91 return -EINVAL;
92 }
93 size = dt_mem_next_cell(dt_root_size_cells, &prop);
94
95 prop = of_get_flat_dt_prop(node, "alignment", &len);
96 if (prop) {
97 if (len != dt_root_addr_cells * sizeof(__be32)) {
98 pr_err("invalid alignment property in '%s' node.\n",
99 uname);
100 return -EINVAL;
101 }
102 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
103 }
104
105 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
106
107 /* Need adjust the alignment to satisfy the CMA requirement */
108 if (IS_ENABLED(CONFIG_CMA)
109 && of_flat_dt_is_compatible(node, "shared-dma-pool")
110 && of_get_flat_dt_prop(node, "reusable", NULL)
111 && !nomap) {
112 unsigned long order =
113 max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114
115 align = max(align, (phys_addr_t)PAGE_SIZE << order);
116 }
117
118 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119 if (prop) {
120
121 if (len % t_len != 0) {
122 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123 uname);
124 return -EINVAL;
125 }
126
127 base = 0;
128
129 while (len > 0) {
130 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131 end = start + dt_mem_next_cell(dt_root_size_cells,
132 &prop);
133
134 ret = early_init_dt_alloc_reserved_memory_arch(size,
135 align, start, end, nomap, &base);
136 if (ret == 0) {
137 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138 uname, &base,
139 (unsigned long)size / SZ_1M);
140 break;
141 }
142 len -= t_len;
143 }
144
145 } else {
146 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147 0, 0, nomap, &base);
148 if (ret == 0)
149 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150 uname, &base, (unsigned long)size / SZ_1M);
151 }
152
153 if (base == 0) {
154 pr_info("failed to allocate memory for node '%s'\n", uname);
155 return -ENOMEM;
156 }
157
158 *res_base = base;
159 *res_size = size;
160
161 return 0;
162 }
163
164 static const struct of_device_id __rmem_of_table_sentinel
165 __used __section("__reservedmem_of_table_end");
166
167 /**
168 * __reserved_mem_init_node() - call region specific reserved memory init code
169 */
__reserved_mem_init_node(struct reserved_mem * rmem)170 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171 {
172 extern const struct of_device_id __reservedmem_of_table[];
173 const struct of_device_id *i;
174 int ret = -ENOENT;
175
176 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
177 reservedmem_of_init_fn initfn = i->data;
178 const char *compat = i->compatible;
179
180 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
181 continue;
182
183 ret = initfn(rmem);
184 if (ret == 0) {
185 pr_info("initialized node %s, compatible id %s\n",
186 rmem->name, compat);
187 break;
188 }
189 }
190 return ret;
191 }
192
__rmem_cmp(const void * a,const void * b)193 static int __init __rmem_cmp(const void *a, const void *b)
194 {
195 const struct reserved_mem *ra = a, *rb = b;
196
197 if (ra->base < rb->base)
198 return -1;
199
200 if (ra->base > rb->base)
201 return 1;
202
203 /*
204 * Put the dynamic allocations (address == 0, size == 0) before static
205 * allocations at address 0x0 so that overlap detection works
206 * correctly.
207 */
208 if (ra->size < rb->size)
209 return -1;
210 if (ra->size > rb->size)
211 return 1;
212
213 return 0;
214 }
215
__rmem_check_for_overlap(void)216 static void __init __rmem_check_for_overlap(void)
217 {
218 int i;
219
220 if (reserved_mem_count < 2)
221 return;
222
223 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
224 __rmem_cmp, NULL);
225 for (i = 0; i < reserved_mem_count - 1; i++) {
226 struct reserved_mem *this, *next;
227
228 this = &reserved_mem[i];
229 next = &reserved_mem[i + 1];
230
231 if (this->base + this->size > next->base) {
232 phys_addr_t this_end, next_end;
233
234 this_end = this->base + this->size;
235 next_end = next->base + next->size;
236 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
237 this->name, &this->base, &this_end,
238 next->name, &next->base, &next_end);
239 }
240 }
241 }
242
243 /**
244 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
245 */
fdt_init_reserved_mem(void)246 void __init fdt_init_reserved_mem(void)
247 {
248 int i;
249
250 /* check for overlapping reserved regions */
251 __rmem_check_for_overlap();
252
253 for (i = 0; i < reserved_mem_count; i++) {
254 struct reserved_mem *rmem = &reserved_mem[i];
255 unsigned long node = rmem->fdt_node;
256 int len;
257 const __be32 *prop;
258 int err = 0;
259 bool nomap;
260
261 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
262 prop = of_get_flat_dt_prop(node, "phandle", &len);
263 if (!prop)
264 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
265 if (prop)
266 rmem->phandle = of_read_number(prop, len/4);
267
268 if (rmem->size == 0)
269 err = __reserved_mem_alloc_size(node, rmem->name,
270 &rmem->base, &rmem->size);
271 if (err == 0) {
272 err = __reserved_mem_init_node(rmem);
273 if (err != 0 && err != -ENOENT) {
274 pr_info("node %s compatible matching fail\n",
275 rmem->name);
276 memblock_free(rmem->base, rmem->size);
277 if (nomap)
278 memblock_add(rmem->base, rmem->size);
279 }
280 }
281 }
282 }
283
__find_rmem(struct device_node * node)284 static inline struct reserved_mem *__find_rmem(struct device_node *node)
285 {
286 unsigned int i;
287
288 if (!node->phandle)
289 return NULL;
290
291 for (i = 0; i < reserved_mem_count; i++)
292 if (reserved_mem[i].phandle == node->phandle)
293 return &reserved_mem[i];
294 return NULL;
295 }
296
297 struct rmem_assigned_device {
298 struct device *dev;
299 struct reserved_mem *rmem;
300 struct list_head list;
301 };
302
303 static LIST_HEAD(of_rmem_assigned_device_list);
304 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
305
306 /**
307 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
308 * given device
309 * @dev: Pointer to the device to configure
310 * @np: Pointer to the device_node with 'reserved-memory' property
311 * @idx: Index of selected region
312 *
313 * This function assigns respective DMA-mapping operations based on reserved
314 * memory region specified by 'memory-region' property in @np node to the @dev
315 * device. When driver needs to use more than one reserved memory region, it
316 * should allocate child devices and initialize regions by name for each of
317 * child device.
318 *
319 * Returns error code or zero on success.
320 */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)321 int of_reserved_mem_device_init_by_idx(struct device *dev,
322 struct device_node *np, int idx)
323 {
324 struct rmem_assigned_device *rd;
325 struct device_node *target;
326 struct reserved_mem *rmem;
327 int ret;
328
329 if (!np || !dev)
330 return -EINVAL;
331
332 target = of_parse_phandle(np, "memory-region", idx);
333 if (!target)
334 return -ENODEV;
335
336 if (!of_device_is_available(target)) {
337 of_node_put(target);
338 return 0;
339 }
340
341 rmem = __find_rmem(target);
342 of_node_put(target);
343
344 if (!rmem || !rmem->ops || !rmem->ops->device_init)
345 return -EINVAL;
346
347 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
348 if (!rd)
349 return -ENOMEM;
350
351 ret = rmem->ops->device_init(rmem, dev);
352 if (ret == 0) {
353 rd->dev = dev;
354 rd->rmem = rmem;
355
356 mutex_lock(&of_rmem_assigned_device_mutex);
357 list_add(&rd->list, &of_rmem_assigned_device_list);
358 mutex_unlock(&of_rmem_assigned_device_mutex);
359
360 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
361 } else {
362 kfree(rd);
363 }
364
365 return ret;
366 }
367 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
368
369 /**
370 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
371 * to given device
372 * @dev: pointer to the device to configure
373 * @np: pointer to the device node with 'memory-region' property
374 * @name: name of the selected memory region
375 *
376 * Returns: 0 on success or a negative error-code on failure.
377 */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)378 int of_reserved_mem_device_init_by_name(struct device *dev,
379 struct device_node *np,
380 const char *name)
381 {
382 int idx = of_property_match_string(np, "memory-region-names", name);
383
384 return of_reserved_mem_device_init_by_idx(dev, np, idx);
385 }
386 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
387
388 /**
389 * of_reserved_mem_device_release() - release reserved memory device structures
390 * @dev: Pointer to the device to deconfigure
391 *
392 * This function releases structures allocated for memory region handling for
393 * the given device.
394 */
of_reserved_mem_device_release(struct device * dev)395 void of_reserved_mem_device_release(struct device *dev)
396 {
397 struct rmem_assigned_device *rd, *tmp;
398 LIST_HEAD(release_list);
399
400 mutex_lock(&of_rmem_assigned_device_mutex);
401 list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
402 if (rd->dev == dev)
403 list_move_tail(&rd->list, &release_list);
404 }
405 mutex_unlock(&of_rmem_assigned_device_mutex);
406
407 list_for_each_entry_safe(rd, tmp, &release_list, list) {
408 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
409 rd->rmem->ops->device_release(rd->rmem, dev);
410
411 kfree(rd);
412 }
413 }
414 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
415
416 /**
417 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
418 * @np: node pointer of the desired reserved-memory region
419 *
420 * This function allows drivers to acquire a reference to the reserved_mem
421 * struct based on a device node handle.
422 *
423 * Returns a reserved_mem reference, or NULL on error.
424 */
of_reserved_mem_lookup(struct device_node * np)425 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
426 {
427 const char *name;
428 int i;
429
430 if (!np->full_name)
431 return NULL;
432
433 name = kbasename(np->full_name);
434 for (i = 0; i < reserved_mem_count; i++)
435 if (!strcmp(reserved_mem[i].name, name))
436 return &reserved_mem[i];
437
438 return NULL;
439 }
440 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
441