1 /*
2 * This file is provided under a GPLv2 license. When using or
3 * redistributing this file, you may do so under that license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright (C) 2016-2018 T-Platforms JSC All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
16 * Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, one can be found http://www.gnu.org/licenses/.
20 *
21 * The full GNU General Public License is included in this distribution in
22 * the file called "COPYING".
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 *
36 * IDT PCIe-switch NTB Linux driver
37 *
38 * Contact Information:
39 * Serge Semin <fancer.lancer@gmail.com>, <Sergey.Semin@t-platforms.ru>
40 */
41
42 #include <linux/stddef.h>
43 #include <linux/types.h>
44 #include <linux/kernel.h>
45 #include <linux/bitops.h>
46 #include <linux/sizes.h>
47 #include <linux/module.h>
48 #include <linux/moduleparam.h>
49 #include <linux/init.h>
50 #include <linux/interrupt.h>
51 #include <linux/spinlock.h>
52 #include <linux/mutex.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/slab.h>
56 #include <linux/list.h>
57 #include <linux/debugfs.h>
58 #include <linux/hwmon.h>
59 #include <linux/hwmon-sysfs.h>
60 #include <linux/ntb.h>
61
62 #include "ntb_hw_idt.h"
63
64 #define NTB_NAME "ntb_hw_idt"
65 #define NTB_DESC "IDT PCI-E Non-Transparent Bridge Driver"
66 #define NTB_VER "2.0"
67 #define NTB_IRQNAME "ntb_irq_idt"
68
69 MODULE_DESCRIPTION(NTB_DESC);
70 MODULE_VERSION(NTB_VER);
71 MODULE_LICENSE("GPL v2");
72 MODULE_AUTHOR("T-platforms");
73
74 /*
75 * NT Endpoint registers table simplifying a loop access to the functionally
76 * related registers
77 */
78 static const struct idt_ntb_regs ntdata_tbl = {
79 { {IDT_NT_BARSETUP0, IDT_NT_BARLIMIT0,
80 IDT_NT_BARLTBASE0, IDT_NT_BARUTBASE0},
81 {IDT_NT_BARSETUP1, IDT_NT_BARLIMIT1,
82 IDT_NT_BARLTBASE1, IDT_NT_BARUTBASE1},
83 {IDT_NT_BARSETUP2, IDT_NT_BARLIMIT2,
84 IDT_NT_BARLTBASE2, IDT_NT_BARUTBASE2},
85 {IDT_NT_BARSETUP3, IDT_NT_BARLIMIT3,
86 IDT_NT_BARLTBASE3, IDT_NT_BARUTBASE3},
87 {IDT_NT_BARSETUP4, IDT_NT_BARLIMIT4,
88 IDT_NT_BARLTBASE4, IDT_NT_BARUTBASE4},
89 {IDT_NT_BARSETUP5, IDT_NT_BARLIMIT5,
90 IDT_NT_BARLTBASE5, IDT_NT_BARUTBASE5} },
91 { {IDT_NT_INMSG0, IDT_NT_OUTMSG0, IDT_NT_INMSGSRC0},
92 {IDT_NT_INMSG1, IDT_NT_OUTMSG1, IDT_NT_INMSGSRC1},
93 {IDT_NT_INMSG2, IDT_NT_OUTMSG2, IDT_NT_INMSGSRC2},
94 {IDT_NT_INMSG3, IDT_NT_OUTMSG3, IDT_NT_INMSGSRC3} }
95 };
96
97 /*
98 * NT Endpoint ports data table with the corresponding pcie command, link
99 * status, control and BAR-related registers
100 */
101 static const struct idt_ntb_port portdata_tbl[IDT_MAX_NR_PORTS] = {
102 /*0*/ { IDT_SW_NTP0_PCIECMDSTS, IDT_SW_NTP0_PCIELCTLSTS,
103 IDT_SW_NTP0_NTCTL,
104 IDT_SW_SWPORT0CTL, IDT_SW_SWPORT0STS,
105 { {IDT_SW_NTP0_BARSETUP0, IDT_SW_NTP0_BARLIMIT0,
106 IDT_SW_NTP0_BARLTBASE0, IDT_SW_NTP0_BARUTBASE0},
107 {IDT_SW_NTP0_BARSETUP1, IDT_SW_NTP0_BARLIMIT1,
108 IDT_SW_NTP0_BARLTBASE1, IDT_SW_NTP0_BARUTBASE1},
109 {IDT_SW_NTP0_BARSETUP2, IDT_SW_NTP0_BARLIMIT2,
110 IDT_SW_NTP0_BARLTBASE2, IDT_SW_NTP0_BARUTBASE2},
111 {IDT_SW_NTP0_BARSETUP3, IDT_SW_NTP0_BARLIMIT3,
112 IDT_SW_NTP0_BARLTBASE3, IDT_SW_NTP0_BARUTBASE3},
113 {IDT_SW_NTP0_BARSETUP4, IDT_SW_NTP0_BARLIMIT4,
114 IDT_SW_NTP0_BARLTBASE4, IDT_SW_NTP0_BARUTBASE4},
115 {IDT_SW_NTP0_BARSETUP5, IDT_SW_NTP0_BARLIMIT5,
116 IDT_SW_NTP0_BARLTBASE5, IDT_SW_NTP0_BARUTBASE5} } },
117 /*1*/ {0},
118 /*2*/ { IDT_SW_NTP2_PCIECMDSTS, IDT_SW_NTP2_PCIELCTLSTS,
119 IDT_SW_NTP2_NTCTL,
120 IDT_SW_SWPORT2CTL, IDT_SW_SWPORT2STS,
121 { {IDT_SW_NTP2_BARSETUP0, IDT_SW_NTP2_BARLIMIT0,
122 IDT_SW_NTP2_BARLTBASE0, IDT_SW_NTP2_BARUTBASE0},
123 {IDT_SW_NTP2_BARSETUP1, IDT_SW_NTP2_BARLIMIT1,
124 IDT_SW_NTP2_BARLTBASE1, IDT_SW_NTP2_BARUTBASE1},
125 {IDT_SW_NTP2_BARSETUP2, IDT_SW_NTP2_BARLIMIT2,
126 IDT_SW_NTP2_BARLTBASE2, IDT_SW_NTP2_BARUTBASE2},
127 {IDT_SW_NTP2_BARSETUP3, IDT_SW_NTP2_BARLIMIT3,
128 IDT_SW_NTP2_BARLTBASE3, IDT_SW_NTP2_BARUTBASE3},
129 {IDT_SW_NTP2_BARSETUP4, IDT_SW_NTP2_BARLIMIT4,
130 IDT_SW_NTP2_BARLTBASE4, IDT_SW_NTP2_BARUTBASE4},
131 {IDT_SW_NTP2_BARSETUP5, IDT_SW_NTP2_BARLIMIT5,
132 IDT_SW_NTP2_BARLTBASE5, IDT_SW_NTP2_BARUTBASE5} } },
133 /*3*/ {0},
134 /*4*/ { IDT_SW_NTP4_PCIECMDSTS, IDT_SW_NTP4_PCIELCTLSTS,
135 IDT_SW_NTP4_NTCTL,
136 IDT_SW_SWPORT4CTL, IDT_SW_SWPORT4STS,
137 { {IDT_SW_NTP4_BARSETUP0, IDT_SW_NTP4_BARLIMIT0,
138 IDT_SW_NTP4_BARLTBASE0, IDT_SW_NTP4_BARUTBASE0},
139 {IDT_SW_NTP4_BARSETUP1, IDT_SW_NTP4_BARLIMIT1,
140 IDT_SW_NTP4_BARLTBASE1, IDT_SW_NTP4_BARUTBASE1},
141 {IDT_SW_NTP4_BARSETUP2, IDT_SW_NTP4_BARLIMIT2,
142 IDT_SW_NTP4_BARLTBASE2, IDT_SW_NTP4_BARUTBASE2},
143 {IDT_SW_NTP4_BARSETUP3, IDT_SW_NTP4_BARLIMIT3,
144 IDT_SW_NTP4_BARLTBASE3, IDT_SW_NTP4_BARUTBASE3},
145 {IDT_SW_NTP4_BARSETUP4, IDT_SW_NTP4_BARLIMIT4,
146 IDT_SW_NTP4_BARLTBASE4, IDT_SW_NTP4_BARUTBASE4},
147 {IDT_SW_NTP4_BARSETUP5, IDT_SW_NTP4_BARLIMIT5,
148 IDT_SW_NTP4_BARLTBASE5, IDT_SW_NTP4_BARUTBASE5} } },
149 /*5*/ {0},
150 /*6*/ { IDT_SW_NTP6_PCIECMDSTS, IDT_SW_NTP6_PCIELCTLSTS,
151 IDT_SW_NTP6_NTCTL,
152 IDT_SW_SWPORT6CTL, IDT_SW_SWPORT6STS,
153 { {IDT_SW_NTP6_BARSETUP0, IDT_SW_NTP6_BARLIMIT0,
154 IDT_SW_NTP6_BARLTBASE0, IDT_SW_NTP6_BARUTBASE0},
155 {IDT_SW_NTP6_BARSETUP1, IDT_SW_NTP6_BARLIMIT1,
156 IDT_SW_NTP6_BARLTBASE1, IDT_SW_NTP6_BARUTBASE1},
157 {IDT_SW_NTP6_BARSETUP2, IDT_SW_NTP6_BARLIMIT2,
158 IDT_SW_NTP6_BARLTBASE2, IDT_SW_NTP6_BARUTBASE2},
159 {IDT_SW_NTP6_BARSETUP3, IDT_SW_NTP6_BARLIMIT3,
160 IDT_SW_NTP6_BARLTBASE3, IDT_SW_NTP6_BARUTBASE3},
161 {IDT_SW_NTP6_BARSETUP4, IDT_SW_NTP6_BARLIMIT4,
162 IDT_SW_NTP6_BARLTBASE4, IDT_SW_NTP6_BARUTBASE4},
163 {IDT_SW_NTP6_BARSETUP5, IDT_SW_NTP6_BARLIMIT5,
164 IDT_SW_NTP6_BARLTBASE5, IDT_SW_NTP6_BARUTBASE5} } },
165 /*7*/ {0},
166 /*8*/ { IDT_SW_NTP8_PCIECMDSTS, IDT_SW_NTP8_PCIELCTLSTS,
167 IDT_SW_NTP8_NTCTL,
168 IDT_SW_SWPORT8CTL, IDT_SW_SWPORT8STS,
169 { {IDT_SW_NTP8_BARSETUP0, IDT_SW_NTP8_BARLIMIT0,
170 IDT_SW_NTP8_BARLTBASE0, IDT_SW_NTP8_BARUTBASE0},
171 {IDT_SW_NTP8_BARSETUP1, IDT_SW_NTP8_BARLIMIT1,
172 IDT_SW_NTP8_BARLTBASE1, IDT_SW_NTP8_BARUTBASE1},
173 {IDT_SW_NTP8_BARSETUP2, IDT_SW_NTP8_BARLIMIT2,
174 IDT_SW_NTP8_BARLTBASE2, IDT_SW_NTP8_BARUTBASE2},
175 {IDT_SW_NTP8_BARSETUP3, IDT_SW_NTP8_BARLIMIT3,
176 IDT_SW_NTP8_BARLTBASE3, IDT_SW_NTP8_BARUTBASE3},
177 {IDT_SW_NTP8_BARSETUP4, IDT_SW_NTP8_BARLIMIT4,
178 IDT_SW_NTP8_BARLTBASE4, IDT_SW_NTP8_BARUTBASE4},
179 {IDT_SW_NTP8_BARSETUP5, IDT_SW_NTP8_BARLIMIT5,
180 IDT_SW_NTP8_BARLTBASE5, IDT_SW_NTP8_BARUTBASE5} } },
181 /*9*/ {0},
182 /*10*/ {0},
183 /*11*/ {0},
184 /*12*/ { IDT_SW_NTP12_PCIECMDSTS, IDT_SW_NTP12_PCIELCTLSTS,
185 IDT_SW_NTP12_NTCTL,
186 IDT_SW_SWPORT12CTL, IDT_SW_SWPORT12STS,
187 { {IDT_SW_NTP12_BARSETUP0, IDT_SW_NTP12_BARLIMIT0,
188 IDT_SW_NTP12_BARLTBASE0, IDT_SW_NTP12_BARUTBASE0},
189 {IDT_SW_NTP12_BARSETUP1, IDT_SW_NTP12_BARLIMIT1,
190 IDT_SW_NTP12_BARLTBASE1, IDT_SW_NTP12_BARUTBASE1},
191 {IDT_SW_NTP12_BARSETUP2, IDT_SW_NTP12_BARLIMIT2,
192 IDT_SW_NTP12_BARLTBASE2, IDT_SW_NTP12_BARUTBASE2},
193 {IDT_SW_NTP12_BARSETUP3, IDT_SW_NTP12_BARLIMIT3,
194 IDT_SW_NTP12_BARLTBASE3, IDT_SW_NTP12_BARUTBASE3},
195 {IDT_SW_NTP12_BARSETUP4, IDT_SW_NTP12_BARLIMIT4,
196 IDT_SW_NTP12_BARLTBASE4, IDT_SW_NTP12_BARUTBASE4},
197 {IDT_SW_NTP12_BARSETUP5, IDT_SW_NTP12_BARLIMIT5,
198 IDT_SW_NTP12_BARLTBASE5, IDT_SW_NTP12_BARUTBASE5} } },
199 /*13*/ {0},
200 /*14*/ {0},
201 /*15*/ {0},
202 /*16*/ { IDT_SW_NTP16_PCIECMDSTS, IDT_SW_NTP16_PCIELCTLSTS,
203 IDT_SW_NTP16_NTCTL,
204 IDT_SW_SWPORT16CTL, IDT_SW_SWPORT16STS,
205 { {IDT_SW_NTP16_BARSETUP0, IDT_SW_NTP16_BARLIMIT0,
206 IDT_SW_NTP16_BARLTBASE0, IDT_SW_NTP16_BARUTBASE0},
207 {IDT_SW_NTP16_BARSETUP1, IDT_SW_NTP16_BARLIMIT1,
208 IDT_SW_NTP16_BARLTBASE1, IDT_SW_NTP16_BARUTBASE1},
209 {IDT_SW_NTP16_BARSETUP2, IDT_SW_NTP16_BARLIMIT2,
210 IDT_SW_NTP16_BARLTBASE2, IDT_SW_NTP16_BARUTBASE2},
211 {IDT_SW_NTP16_BARSETUP3, IDT_SW_NTP16_BARLIMIT3,
212 IDT_SW_NTP16_BARLTBASE3, IDT_SW_NTP16_BARUTBASE3},
213 {IDT_SW_NTP16_BARSETUP4, IDT_SW_NTP16_BARLIMIT4,
214 IDT_SW_NTP16_BARLTBASE4, IDT_SW_NTP16_BARUTBASE4},
215 {IDT_SW_NTP16_BARSETUP5, IDT_SW_NTP16_BARLIMIT5,
216 IDT_SW_NTP16_BARLTBASE5, IDT_SW_NTP16_BARUTBASE5} } },
217 /*17*/ {0},
218 /*18*/ {0},
219 /*19*/ {0},
220 /*20*/ { IDT_SW_NTP20_PCIECMDSTS, IDT_SW_NTP20_PCIELCTLSTS,
221 IDT_SW_NTP20_NTCTL,
222 IDT_SW_SWPORT20CTL, IDT_SW_SWPORT20STS,
223 { {IDT_SW_NTP20_BARSETUP0, IDT_SW_NTP20_BARLIMIT0,
224 IDT_SW_NTP20_BARLTBASE0, IDT_SW_NTP20_BARUTBASE0},
225 {IDT_SW_NTP20_BARSETUP1, IDT_SW_NTP20_BARLIMIT1,
226 IDT_SW_NTP20_BARLTBASE1, IDT_SW_NTP20_BARUTBASE1},
227 {IDT_SW_NTP20_BARSETUP2, IDT_SW_NTP20_BARLIMIT2,
228 IDT_SW_NTP20_BARLTBASE2, IDT_SW_NTP20_BARUTBASE2},
229 {IDT_SW_NTP20_BARSETUP3, IDT_SW_NTP20_BARLIMIT3,
230 IDT_SW_NTP20_BARLTBASE3, IDT_SW_NTP20_BARUTBASE3},
231 {IDT_SW_NTP20_BARSETUP4, IDT_SW_NTP20_BARLIMIT4,
232 IDT_SW_NTP20_BARLTBASE4, IDT_SW_NTP20_BARUTBASE4},
233 {IDT_SW_NTP20_BARSETUP5, IDT_SW_NTP20_BARLIMIT5,
234 IDT_SW_NTP20_BARLTBASE5, IDT_SW_NTP20_BARUTBASE5} } },
235 /*21*/ {0},
236 /*22*/ {0},
237 /*23*/ {0}
238 };
239
240 /*
241 * IDT PCIe-switch partitions table with the corresponding control, status
242 * and messages control registers
243 */
244 static const struct idt_ntb_part partdata_tbl[IDT_MAX_NR_PARTS] = {
245 /*0*/ { IDT_SW_SWPART0CTL, IDT_SW_SWPART0STS,
246 {IDT_SW_SWP0MSGCTL0, IDT_SW_SWP0MSGCTL1,
247 IDT_SW_SWP0MSGCTL2, IDT_SW_SWP0MSGCTL3} },
248 /*1*/ { IDT_SW_SWPART1CTL, IDT_SW_SWPART1STS,
249 {IDT_SW_SWP1MSGCTL0, IDT_SW_SWP1MSGCTL1,
250 IDT_SW_SWP1MSGCTL2, IDT_SW_SWP1MSGCTL3} },
251 /*2*/ { IDT_SW_SWPART2CTL, IDT_SW_SWPART2STS,
252 {IDT_SW_SWP2MSGCTL0, IDT_SW_SWP2MSGCTL1,
253 IDT_SW_SWP2MSGCTL2, IDT_SW_SWP2MSGCTL3} },
254 /*3*/ { IDT_SW_SWPART3CTL, IDT_SW_SWPART3STS,
255 {IDT_SW_SWP3MSGCTL0, IDT_SW_SWP3MSGCTL1,
256 IDT_SW_SWP3MSGCTL2, IDT_SW_SWP3MSGCTL3} },
257 /*4*/ { IDT_SW_SWPART4CTL, IDT_SW_SWPART4STS,
258 {IDT_SW_SWP4MSGCTL0, IDT_SW_SWP4MSGCTL1,
259 IDT_SW_SWP4MSGCTL2, IDT_SW_SWP4MSGCTL3} },
260 /*5*/ { IDT_SW_SWPART5CTL, IDT_SW_SWPART5STS,
261 {IDT_SW_SWP5MSGCTL0, IDT_SW_SWP5MSGCTL1,
262 IDT_SW_SWP5MSGCTL2, IDT_SW_SWP5MSGCTL3} },
263 /*6*/ { IDT_SW_SWPART6CTL, IDT_SW_SWPART6STS,
264 {IDT_SW_SWP6MSGCTL0, IDT_SW_SWP6MSGCTL1,
265 IDT_SW_SWP6MSGCTL2, IDT_SW_SWP6MSGCTL3} },
266 /*7*/ { IDT_SW_SWPART7CTL, IDT_SW_SWPART7STS,
267 {IDT_SW_SWP7MSGCTL0, IDT_SW_SWP7MSGCTL1,
268 IDT_SW_SWP7MSGCTL2, IDT_SW_SWP7MSGCTL3} }
269 };
270
271 /*
272 * DebugFS directory to place the driver debug file
273 */
274 static struct dentry *dbgfs_topdir;
275
276 /*=============================================================================
277 * 1. IDT PCIe-switch registers IO-functions
278 *
279 * Beside ordinary configuration space registers IDT PCIe-switch expose
280 * global configuration registers, which are used to determine state of other
281 * device ports as well as being notified of some switch-related events.
282 * Additionally all the configuration space registers of all the IDT
283 * PCIe-switch functions are mapped to the Global Address space, so each
284 * function can determine a configuration of any other PCI-function.
285 * Functions declared in this chapter are created to encapsulate access
286 * to configuration and global registers, so the driver code just need to
287 * provide IDT NTB hardware descriptor and a register address.
288 *=============================================================================
289 */
290
291 /*
292 * idt_nt_write() - PCI configuration space registers write method
293 * @ndev: IDT NTB hardware driver descriptor
294 * @reg: Register to write data to
295 * @data: Value to write to the register
296 *
297 * IDT PCIe-switch registers are all Little endian.
298 */
idt_nt_write(struct idt_ntb_dev * ndev,const unsigned int reg,const u32 data)299 static void idt_nt_write(struct idt_ntb_dev *ndev,
300 const unsigned int reg, const u32 data)
301 {
302 /*
303 * It's obvious bug to request a register exceeding the maximum possible
304 * value as well as to have it unaligned.
305 */
306 if (WARN_ON(reg > IDT_REG_PCI_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
307 return;
308
309 /* Just write the value to the specified register */
310 iowrite32(data, ndev->cfgspc + (ptrdiff_t)reg);
311 }
312
313 /*
314 * idt_nt_read() - PCI configuration space registers read method
315 * @ndev: IDT NTB hardware driver descriptor
316 * @reg: Register to write data to
317 *
318 * IDT PCIe-switch Global configuration registers are all Little endian.
319 *
320 * Return: register value
321 */
idt_nt_read(struct idt_ntb_dev * ndev,const unsigned int reg)322 static u32 idt_nt_read(struct idt_ntb_dev *ndev, const unsigned int reg)
323 {
324 /*
325 * It's obvious bug to request a register exceeding the maximum possible
326 * value as well as to have it unaligned.
327 */
328 if (WARN_ON(reg > IDT_REG_PCI_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
329 return ~0;
330
331 /* Just read the value from the specified register */
332 return ioread32(ndev->cfgspc + (ptrdiff_t)reg);
333 }
334
335 /*
336 * idt_sw_write() - Global registers write method
337 * @ndev: IDT NTB hardware driver descriptor
338 * @reg: Register to write data to
339 * @data: Value to write to the register
340 *
341 * IDT PCIe-switch Global configuration registers are all Little endian.
342 */
idt_sw_write(struct idt_ntb_dev * ndev,const unsigned int reg,const u32 data)343 static void idt_sw_write(struct idt_ntb_dev *ndev,
344 const unsigned int reg, const u32 data)
345 {
346 unsigned long irqflags;
347
348 /*
349 * It's obvious bug to request a register exceeding the maximum possible
350 * value as well as to have it unaligned.
351 */
352 if (WARN_ON(reg > IDT_REG_SW_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
353 return;
354
355 /* Lock GASA registers operations */
356 spin_lock_irqsave(&ndev->gasa_lock, irqflags);
357 /* Set the global register address */
358 iowrite32((u32)reg, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASAADDR);
359 /* Put the new value of the register */
360 iowrite32(data, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASADATA);
361 /* Unlock GASA registers operations */
362 spin_unlock_irqrestore(&ndev->gasa_lock, irqflags);
363 }
364
365 /*
366 * idt_sw_read() - Global registers read method
367 * @ndev: IDT NTB hardware driver descriptor
368 * @reg: Register to write data to
369 *
370 * IDT PCIe-switch Global configuration registers are all Little endian.
371 *
372 * Return: register value
373 */
idt_sw_read(struct idt_ntb_dev * ndev,const unsigned int reg)374 static u32 idt_sw_read(struct idt_ntb_dev *ndev, const unsigned int reg)
375 {
376 unsigned long irqflags;
377 u32 data;
378
379 /*
380 * It's obvious bug to request a register exceeding the maximum possible
381 * value as well as to have it unaligned.
382 */
383 if (WARN_ON(reg > IDT_REG_SW_MAX || !IS_ALIGNED(reg, IDT_REG_ALIGN)))
384 return ~0;
385
386 /* Lock GASA registers operations */
387 spin_lock_irqsave(&ndev->gasa_lock, irqflags);
388 /* Set the global register address */
389 iowrite32((u32)reg, ndev->cfgspc + (ptrdiff_t)IDT_NT_GASAADDR);
390 /* Get the data of the register (read ops acts as MMIO barrier) */
391 data = ioread32(ndev->cfgspc + (ptrdiff_t)IDT_NT_GASADATA);
392 /* Unlock GASA registers operations */
393 spin_unlock_irqrestore(&ndev->gasa_lock, irqflags);
394
395 return data;
396 }
397
398 /*
399 * idt_reg_set_bits() - set bits of a passed register
400 * @ndev: IDT NTB hardware driver descriptor
401 * @reg: Register to change bits of
402 * @reg_lock: Register access spin lock
403 * @valid_mask: Mask of valid bits
404 * @set_bits: Bitmask to set
405 *
406 * Helper method to check whether a passed bitfield is valid and set
407 * corresponding bits of a register.
408 *
409 * WARNING! Make sure the passed register isn't accessed over plane
410 * idt_nt_write() method (read method is ok to be used concurrently).
411 *
412 * Return: zero on success, negative error on invalid bitmask.
413 */
idt_reg_set_bits(struct idt_ntb_dev * ndev,unsigned int reg,spinlock_t * reg_lock,u64 valid_mask,u64 set_bits)414 static inline int idt_reg_set_bits(struct idt_ntb_dev *ndev, unsigned int reg,
415 spinlock_t *reg_lock,
416 u64 valid_mask, u64 set_bits)
417 {
418 unsigned long irqflags;
419 u32 data;
420
421 if (set_bits & ~(u64)valid_mask)
422 return -EINVAL;
423
424 /* Lock access to the register unless the change is written back */
425 spin_lock_irqsave(reg_lock, irqflags);
426 data = idt_nt_read(ndev, reg) | (u32)set_bits;
427 idt_nt_write(ndev, reg, data);
428 /* Unlock the register */
429 spin_unlock_irqrestore(reg_lock, irqflags);
430
431 return 0;
432 }
433
434 /*
435 * idt_reg_clear_bits() - clear bits of a passed register
436 * @ndev: IDT NTB hardware driver descriptor
437 * @reg: Register to change bits of
438 * @reg_lock: Register access spin lock
439 * @set_bits: Bitmask to clear
440 *
441 * Helper method to check whether a passed bitfield is valid and clear
442 * corresponding bits of a register.
443 *
444 * NOTE! Invalid bits are always considered cleared so it's not an error
445 * to clear them over.
446 *
447 * WARNING! Make sure the passed register isn't accessed over plane
448 * idt_nt_write() method (read method is ok to use concurrently).
449 */
idt_reg_clear_bits(struct idt_ntb_dev * ndev,unsigned int reg,spinlock_t * reg_lock,u64 clear_bits)450 static inline void idt_reg_clear_bits(struct idt_ntb_dev *ndev,
451 unsigned int reg, spinlock_t *reg_lock,
452 u64 clear_bits)
453 {
454 unsigned long irqflags;
455 u32 data;
456
457 /* Lock access to the register unless the change is written back */
458 spin_lock_irqsave(reg_lock, irqflags);
459 data = idt_nt_read(ndev, reg) & ~(u32)clear_bits;
460 idt_nt_write(ndev, reg, data);
461 /* Unlock the register */
462 spin_unlock_irqrestore(reg_lock, irqflags);
463 }
464
465 /*===========================================================================
466 * 2. Ports operations
467 *
468 * IDT PCIe-switches can have from 3 up to 8 ports with possible
469 * NT-functions enabled. So all the possible ports need to be scanned looking
470 * for NTB activated. NTB API will have enumerated only the ports with NTB.
471 *===========================================================================
472 */
473
474 /*
475 * idt_scan_ports() - scan IDT PCIe-switch ports collecting info in the tables
476 * @ndev: Pointer to the PCI device descriptor
477 *
478 * Return: zero on success, otherwise a negative error number.
479 */
idt_scan_ports(struct idt_ntb_dev * ndev)480 static int idt_scan_ports(struct idt_ntb_dev *ndev)
481 {
482 unsigned char pidx, port, part;
483 u32 data, portsts, partsts;
484
485 /* Retrieve the local port number */
486 data = idt_nt_read(ndev, IDT_NT_PCIELCAP);
487 ndev->port = GET_FIELD(PCIELCAP_PORTNUM, data);
488
489 /* Retrieve the local partition number */
490 portsts = idt_sw_read(ndev, portdata_tbl[ndev->port].sts);
491 ndev->part = GET_FIELD(SWPORTxSTS_SWPART, portsts);
492
493 /* Initialize port/partition -> index tables with invalid values */
494 memset(ndev->port_idx_map, -EINVAL, sizeof(ndev->port_idx_map));
495 memset(ndev->part_idx_map, -EINVAL, sizeof(ndev->part_idx_map));
496
497 /*
498 * Walk over all the possible ports checking whether any of them has
499 * NT-function activated
500 */
501 ndev->peer_cnt = 0;
502 for (pidx = 0; pidx < ndev->swcfg->port_cnt; pidx++) {
503 port = ndev->swcfg->ports[pidx];
504 /* Skip local port */
505 if (port == ndev->port)
506 continue;
507
508 /* Read the port status register to get it partition */
509 portsts = idt_sw_read(ndev, portdata_tbl[port].sts);
510 part = GET_FIELD(SWPORTxSTS_SWPART, portsts);
511
512 /* Retrieve the partition status */
513 partsts = idt_sw_read(ndev, partdata_tbl[part].sts);
514 /* Check if partition state is active and port has NTB */
515 if (IS_FLD_SET(SWPARTxSTS_STATE, partsts, ACT) &&
516 (IS_FLD_SET(SWPORTxSTS_MODE, portsts, NT) ||
517 IS_FLD_SET(SWPORTxSTS_MODE, portsts, USNT) ||
518 IS_FLD_SET(SWPORTxSTS_MODE, portsts, USNTDMA) ||
519 IS_FLD_SET(SWPORTxSTS_MODE, portsts, NTDMA))) {
520 /* Save the port and partition numbers */
521 ndev->peers[ndev->peer_cnt].port = port;
522 ndev->peers[ndev->peer_cnt].part = part;
523 /* Fill in the port/partition -> index tables */
524 ndev->port_idx_map[port] = ndev->peer_cnt;
525 ndev->part_idx_map[part] = ndev->peer_cnt;
526 ndev->peer_cnt++;
527 }
528 }
529
530 dev_dbg(&ndev->ntb.pdev->dev, "Local port: %hhu, num of peers: %hhu\n",
531 ndev->port, ndev->peer_cnt);
532
533 /* It's useless to have this driver loaded if there is no any peer */
534 if (ndev->peer_cnt == 0) {
535 dev_warn(&ndev->ntb.pdev->dev, "No active peer found\n");
536 return -ENODEV;
537 }
538
539 return 0;
540 }
541
542 /*
543 * idt_ntb_port_number() - get the local port number
544 * @ntb: NTB device context.
545 *
546 * Return: the local port number
547 */
idt_ntb_port_number(struct ntb_dev * ntb)548 static int idt_ntb_port_number(struct ntb_dev *ntb)
549 {
550 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
551
552 return ndev->port;
553 }
554
555 /*
556 * idt_ntb_peer_port_count() - get the number of peer ports
557 * @ntb: NTB device context.
558 *
559 * Return the count of detected peer NT-functions.
560 *
561 * Return: number of peer ports
562 */
idt_ntb_peer_port_count(struct ntb_dev * ntb)563 static int idt_ntb_peer_port_count(struct ntb_dev *ntb)
564 {
565 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
566
567 return ndev->peer_cnt;
568 }
569
570 /*
571 * idt_ntb_peer_port_number() - get peer port by given index
572 * @ntb: NTB device context.
573 * @pidx: Peer port index.
574 *
575 * Return: peer port or negative error
576 */
idt_ntb_peer_port_number(struct ntb_dev * ntb,int pidx)577 static int idt_ntb_peer_port_number(struct ntb_dev *ntb, int pidx)
578 {
579 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
580
581 if (pidx < 0 || ndev->peer_cnt <= pidx)
582 return -EINVAL;
583
584 /* Return the detected NT-function port number */
585 return ndev->peers[pidx].port;
586 }
587
588 /*
589 * idt_ntb_peer_port_idx() - get peer port index by given port number
590 * @ntb: NTB device context.
591 * @port: Peer port number.
592 *
593 * Internal port -> index table is pre-initialized with -EINVAL values,
594 * so we just need to return it value
595 *
596 * Return: peer NT-function port index or negative error
597 */
idt_ntb_peer_port_idx(struct ntb_dev * ntb,int port)598 static int idt_ntb_peer_port_idx(struct ntb_dev *ntb, int port)
599 {
600 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
601
602 if (port < 0 || IDT_MAX_NR_PORTS <= port)
603 return -EINVAL;
604
605 return ndev->port_idx_map[port];
606 }
607
608 /*===========================================================================
609 * 3. Link status operations
610 * There is no any ready-to-use method to have peer ports notified if NTB
611 * link is set up or got down. Instead global signal can be used instead.
612 * In case if any one of ports changes local NTB link state, it sends
613 * global signal and clears corresponding global state bit. Then all the ports
614 * receive a notification of that, so to make client driver being aware of
615 * possible NTB link change.
616 * Additionally each of active NT-functions is subscribed to PCIe-link
617 * state changes of peer ports.
618 *===========================================================================
619 */
620
621 static void idt_ntb_local_link_disable(struct idt_ntb_dev *ndev);
622
623 /*
624 * idt_init_link() - Initialize NTB link state notification subsystem
625 * @ndev: IDT NTB hardware driver descriptor
626 *
627 * Function performs the basic initialization of some global registers
628 * needed to enable IRQ-based notifications of PCIe Link Up/Down and
629 * Global Signal events.
630 * NOTE Since it's not possible to determine when all the NTB peer drivers are
631 * unloaded as well as have those registers accessed concurrently, we must
632 * preinitialize them with the same value and leave it uncleared on local
633 * driver unload.
634 */
idt_init_link(struct idt_ntb_dev * ndev)635 static void idt_init_link(struct idt_ntb_dev *ndev)
636 {
637 u32 part_mask, port_mask, se_mask;
638 unsigned char pidx;
639
640 /* Initialize spin locker of Mapping Table access registers */
641 spin_lock_init(&ndev->mtbl_lock);
642
643 /* Walk over all detected peers collecting port and partition masks */
644 port_mask = ~BIT(ndev->port);
645 part_mask = ~BIT(ndev->part);
646 for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
647 port_mask &= ~BIT(ndev->peers[pidx].port);
648 part_mask &= ~BIT(ndev->peers[pidx].part);
649 }
650
651 /* Clean the Link Up/Down and GLobal Signal status registers */
652 idt_sw_write(ndev, IDT_SW_SELINKUPSTS, (u32)-1);
653 idt_sw_write(ndev, IDT_SW_SELINKDNSTS, (u32)-1);
654 idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)-1);
655
656 /* Unmask NT-activated partitions to receive Global Switch events */
657 idt_sw_write(ndev, IDT_SW_SEPMSK, part_mask);
658
659 /* Enable PCIe Link Up events of NT-activated ports */
660 idt_sw_write(ndev, IDT_SW_SELINKUPMSK, port_mask);
661
662 /* Enable PCIe Link Down events of NT-activated ports */
663 idt_sw_write(ndev, IDT_SW_SELINKDNMSK, port_mask);
664
665 /* Unmask NT-activated partitions to receive Global Signal events */
666 idt_sw_write(ndev, IDT_SW_SEGSIGMSK, part_mask);
667
668 /* Unmask Link Up/Down and Global Switch Events */
669 se_mask = ~(IDT_SEMSK_LINKUP | IDT_SEMSK_LINKDN | IDT_SEMSK_GSIGNAL);
670 idt_sw_write(ndev, IDT_SW_SEMSK, se_mask);
671
672 dev_dbg(&ndev->ntb.pdev->dev, "NTB link status events initialized");
673 }
674
675 /*
676 * idt_deinit_link() - deinitialize link subsystem
677 * @ndev: IDT NTB hardware driver descriptor
678 *
679 * Just disable the link back.
680 */
idt_deinit_link(struct idt_ntb_dev * ndev)681 static void idt_deinit_link(struct idt_ntb_dev *ndev)
682 {
683 /* Disable the link */
684 idt_ntb_local_link_disable(ndev);
685
686 dev_dbg(&ndev->ntb.pdev->dev, "NTB link status events deinitialized");
687 }
688
689 /*
690 * idt_se_isr() - switch events ISR
691 * @ndev: IDT NTB hardware driver descriptor
692 * @ntint_sts: NT-function interrupt status
693 *
694 * This driver doesn't support IDT PCIe-switch dynamic reconfigurations,
695 * Failover capability, etc, so switch events are utilized to notify of
696 * PCIe and NTB link events.
697 * The method is called from PCIe ISR bottom-half routine.
698 */
idt_se_isr(struct idt_ntb_dev * ndev,u32 ntint_sts)699 static void idt_se_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
700 {
701 u32 sests;
702
703 /* Read Switch Events status */
704 sests = idt_sw_read(ndev, IDT_SW_SESTS);
705
706 /* Clean the Link Up/Down and Global Signal status registers */
707 idt_sw_write(ndev, IDT_SW_SELINKUPSTS, (u32)-1);
708 idt_sw_write(ndev, IDT_SW_SELINKDNSTS, (u32)-1);
709 idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)-1);
710
711 /* Clean the corresponding interrupt bit */
712 idt_nt_write(ndev, IDT_NT_NTINTSTS, IDT_NTINTSTS_SEVENT);
713
714 dev_dbg(&ndev->ntb.pdev->dev, "SE IRQ detected %#08x (SESTS %#08x)",
715 ntint_sts, sests);
716
717 /* Notify the client driver of possible link state change */
718 ntb_link_event(&ndev->ntb);
719 }
720
721 /*
722 * idt_ntb_local_link_enable() - enable the local NTB link.
723 * @ndev: IDT NTB hardware driver descriptor
724 *
725 * In order to enable the NTB link we need:
726 * - enable Completion TLPs translation
727 * - initialize mapping table to enable the Request ID translation
728 * - notify peers of NTB link state change
729 */
idt_ntb_local_link_enable(struct idt_ntb_dev * ndev)730 static void idt_ntb_local_link_enable(struct idt_ntb_dev *ndev)
731 {
732 u32 reqid, mtbldata = 0;
733 unsigned long irqflags;
734
735 /* Enable the ID protection and Completion TLPs translation */
736 idt_nt_write(ndev, IDT_NT_NTCTL, IDT_NTCTL_CPEN);
737
738 /* Retrieve the current Requester ID (Bus:Device:Function) */
739 reqid = idt_nt_read(ndev, IDT_NT_REQIDCAP);
740
741 /*
742 * Set the corresponding NT Mapping table entry of port partition index
743 * with the data to perform the Request ID translation
744 */
745 mtbldata = SET_FIELD(NTMTBLDATA_REQID, 0, reqid) |
746 SET_FIELD(NTMTBLDATA_PART, 0, ndev->part) |
747 IDT_NTMTBLDATA_VALID;
748 spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
749 idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
750 idt_nt_write(ndev, IDT_NT_NTMTBLDATA, mtbldata);
751 spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
752
753 /* Notify the peers by setting and clearing the global signal bit */
754 idt_nt_write(ndev, IDT_NT_NTGSIGNAL, IDT_NTGSIGNAL_SET);
755 idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)1 << ndev->part);
756 }
757
758 /*
759 * idt_ntb_local_link_disable() - disable the local NTB link.
760 * @ndev: IDT NTB hardware driver descriptor
761 *
762 * In order to enable the NTB link we need:
763 * - disable Completion TLPs translation
764 * - clear corresponding mapping table entry
765 * - notify peers of NTB link state change
766 */
idt_ntb_local_link_disable(struct idt_ntb_dev * ndev)767 static void idt_ntb_local_link_disable(struct idt_ntb_dev *ndev)
768 {
769 unsigned long irqflags;
770
771 /* Disable Completion TLPs translation */
772 idt_nt_write(ndev, IDT_NT_NTCTL, 0);
773
774 /* Clear the corresponding NT Mapping table entry */
775 spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
776 idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
777 idt_nt_write(ndev, IDT_NT_NTMTBLDATA, 0);
778 spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
779
780 /* Notify the peers by setting and clearing the global signal bit */
781 idt_nt_write(ndev, IDT_NT_NTGSIGNAL, IDT_NTGSIGNAL_SET);
782 idt_sw_write(ndev, IDT_SW_SEGSIGSTS, (u32)1 << ndev->part);
783 }
784
785 /*
786 * idt_ntb_local_link_is_up() - test wethter local NTB link is up
787 * @ndev: IDT NTB hardware driver descriptor
788 *
789 * Local link is up under the following conditions:
790 * - Bus mastering is enabled
791 * - NTCTL has Completion TLPs translation enabled
792 * - Mapping table permits Request TLPs translation
793 * NOTE: We don't need to check PCIe link state since it's obviously
794 * up while we are able to communicate with IDT PCIe-switch
795 *
796 * Return: true if link is up, otherwise false
797 */
idt_ntb_local_link_is_up(struct idt_ntb_dev * ndev)798 static bool idt_ntb_local_link_is_up(struct idt_ntb_dev *ndev)
799 {
800 unsigned long irqflags;
801 u32 data;
802
803 /* Read the local Bus Master Enable status */
804 data = idt_nt_read(ndev, IDT_NT_PCICMDSTS);
805 if (!(data & IDT_PCICMDSTS_BME))
806 return false;
807
808 /* Read the local Completion TLPs translation enable status */
809 data = idt_nt_read(ndev, IDT_NT_NTCTL);
810 if (!(data & IDT_NTCTL_CPEN))
811 return false;
812
813 /* Read Mapping table entry corresponding to the local partition */
814 spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
815 idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->part);
816 data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
817 spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
818
819 return !!(data & IDT_NTMTBLDATA_VALID);
820 }
821
822 /*
823 * idt_ntb_peer_link_is_up() - test whether peer NTB link is up
824 * @ndev: IDT NTB hardware driver descriptor
825 * @pidx: Peer port index
826 *
827 * Peer link is up under the following conditions:
828 * - PCIe link is up
829 * - Bus mastering is enabled
830 * - NTCTL has Completion TLPs translation enabled
831 * - Mapping table permits Request TLPs translation
832 *
833 * Return: true if link is up, otherwise false
834 */
idt_ntb_peer_link_is_up(struct idt_ntb_dev * ndev,int pidx)835 static bool idt_ntb_peer_link_is_up(struct idt_ntb_dev *ndev, int pidx)
836 {
837 unsigned long irqflags;
838 unsigned char port;
839 u32 data;
840
841 /* Retrieve the device port number */
842 port = ndev->peers[pidx].port;
843
844 /* Check whether PCIe link is up */
845 data = idt_sw_read(ndev, portdata_tbl[port].sts);
846 if (!(data & IDT_SWPORTxSTS_LINKUP))
847 return false;
848
849 /* Check whether bus mastering is enabled on the peer port */
850 data = idt_sw_read(ndev, portdata_tbl[port].pcicmdsts);
851 if (!(data & IDT_PCICMDSTS_BME))
852 return false;
853
854 /* Check if Completion TLPs translation is enabled on the peer port */
855 data = idt_sw_read(ndev, portdata_tbl[port].ntctl);
856 if (!(data & IDT_NTCTL_CPEN))
857 return false;
858
859 /* Read Mapping table entry corresponding to the peer partition */
860 spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
861 idt_nt_write(ndev, IDT_NT_NTMTBLADDR, ndev->peers[pidx].part);
862 data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
863 spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
864
865 return !!(data & IDT_NTMTBLDATA_VALID);
866 }
867
868 /*
869 * idt_ntb_link_is_up() - get the current ntb link state (NTB API callback)
870 * @ntb: NTB device context.
871 * @speed: OUT - The link speed expressed as PCIe generation number.
872 * @width: OUT - The link width expressed as the number of PCIe lanes.
873 *
874 * Get the bitfield of NTB link states for all peer ports
875 *
876 * Return: bitfield of indexed ports link state: bit is set/cleared if the
877 * link is up/down respectively.
878 */
idt_ntb_link_is_up(struct ntb_dev * ntb,enum ntb_speed * speed,enum ntb_width * width)879 static u64 idt_ntb_link_is_up(struct ntb_dev *ntb,
880 enum ntb_speed *speed, enum ntb_width *width)
881 {
882 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
883 unsigned char pidx;
884 u64 status;
885 u32 data;
886
887 /* Retrieve the local link speed and width */
888 if (speed != NULL || width != NULL) {
889 data = idt_nt_read(ndev, IDT_NT_PCIELCTLSTS);
890 if (speed != NULL)
891 *speed = GET_FIELD(PCIELCTLSTS_CLS, data);
892 if (width != NULL)
893 *width = GET_FIELD(PCIELCTLSTS_NLW, data);
894 }
895
896 /* If local NTB link isn't up then all the links are considered down */
897 if (!idt_ntb_local_link_is_up(ndev))
898 return 0;
899
900 /* Collect all the peer ports link states into the bitfield */
901 status = 0;
902 for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
903 if (idt_ntb_peer_link_is_up(ndev, pidx))
904 status |= ((u64)1 << pidx);
905 }
906
907 return status;
908 }
909
910 /*
911 * idt_ntb_link_enable() - enable local port ntb link (NTB API callback)
912 * @ntb: NTB device context.
913 * @max_speed: The maximum link speed expressed as PCIe generation number.
914 * @max_width: The maximum link width expressed as the number of PCIe lanes.
915 *
916 * Enable just local NTB link. PCIe link parameters are ignored.
917 *
918 * Return: always zero.
919 */
idt_ntb_link_enable(struct ntb_dev * ntb,enum ntb_speed speed,enum ntb_width width)920 static int idt_ntb_link_enable(struct ntb_dev *ntb, enum ntb_speed speed,
921 enum ntb_width width)
922 {
923 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
924
925 /* Just enable the local NTB link */
926 idt_ntb_local_link_enable(ndev);
927
928 dev_dbg(&ndev->ntb.pdev->dev, "Local NTB link enabled");
929
930 return 0;
931 }
932
933 /*
934 * idt_ntb_link_disable() - disable local port ntb link (NTB API callback)
935 * @ntb: NTB device context.
936 *
937 * Disable just local NTB link.
938 *
939 * Return: always zero.
940 */
idt_ntb_link_disable(struct ntb_dev * ntb)941 static int idt_ntb_link_disable(struct ntb_dev *ntb)
942 {
943 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
944
945 /* Just disable the local NTB link */
946 idt_ntb_local_link_disable(ndev);
947
948 dev_dbg(&ndev->ntb.pdev->dev, "Local NTB link disabled");
949
950 return 0;
951 }
952
953 /*=============================================================================
954 * 4. Memory Window operations
955 *
956 * IDT PCIe-switches have two types of memory windows: MWs with direct
957 * address translation and MWs with LUT based translation. The first type of
958 * MWs is simple map of corresponding BAR address space to a memory space
959 * of specified target port. So it implemets just ont-to-one mapping. Lookup
960 * table in its turn can map one BAR address space to up to 24 different
961 * memory spaces of different ports.
962 * NT-functions BARs can be turned on to implement either direct or lookup
963 * table based address translations, so:
964 * BAR0 - NT configuration registers space/direct address translation
965 * BAR1 - direct address translation/upper address of BAR0x64
966 * BAR2 - direct address translation/Lookup table with either 12 or 24 entries
967 * BAR3 - direct address translation/upper address of BAR2x64
968 * BAR4 - direct address translation/Lookup table with either 12 or 24 entries
969 * BAR5 - direct address translation/upper address of BAR4x64
970 * Additionally BAR2 and BAR4 can't have 24-entries LUT enabled at the same
971 * time. Since the BARs setup can be rather complicated this driver implements
972 * a scanning algorithm to have all the possible memory windows configuration
973 * covered.
974 *
975 * NOTE 1 BAR setup must be done before Linux kernel enumerated NT-function
976 * of any port, so this driver would have memory windows configurations fixed.
977 * In this way all initializations must be performed either by platform BIOS
978 * or using EEPROM connected to IDT PCIe-switch master SMBus.
979 *
980 * NOTE 2 This driver expects BAR0 mapping NT-function configuration space.
981 * Easy calculation can give us an upper boundary of 29 possible memory windows
982 * per each NT-function if all the BARs are of 32bit type.
983 *=============================================================================
984 */
985
986 /*
987 * idt_get_mw_count() - get memory window count
988 * @mw_type: Memory window type
989 *
990 * Return: number of memory windows with respect to the BAR type
991 */
idt_get_mw_count(enum idt_mw_type mw_type)992 static inline unsigned char idt_get_mw_count(enum idt_mw_type mw_type)
993 {
994 switch (mw_type) {
995 case IDT_MW_DIR:
996 return 1;
997 case IDT_MW_LUT12:
998 return 12;
999 case IDT_MW_LUT24:
1000 return 24;
1001 default:
1002 break;
1003 }
1004
1005 return 0;
1006 }
1007
1008 /*
1009 * idt_get_mw_name() - get memory window name
1010 * @mw_type: Memory window type
1011 *
1012 * Return: pointer to a string with name
1013 */
idt_get_mw_name(enum idt_mw_type mw_type)1014 static inline char *idt_get_mw_name(enum idt_mw_type mw_type)
1015 {
1016 switch (mw_type) {
1017 case IDT_MW_DIR:
1018 return "DIR ";
1019 case IDT_MW_LUT12:
1020 return "LUT12";
1021 case IDT_MW_LUT24:
1022 return "LUT24";
1023 default:
1024 break;
1025 }
1026
1027 return "unknown";
1028 }
1029
1030 /*
1031 * idt_scan_mws() - scan memory windows of the port
1032 * @ndev: IDT NTB hardware driver descriptor
1033 * @port: Port to get number of memory windows for
1034 * @mw_cnt: Out - number of memory windows
1035 *
1036 * It walks over BAR setup registers of the specified port and determines
1037 * the memory windows parameters if any activated.
1038 *
1039 * Return: array of memory windows
1040 */
idt_scan_mws(struct idt_ntb_dev * ndev,int port,unsigned char * mw_cnt)1041 static struct idt_mw_cfg *idt_scan_mws(struct idt_ntb_dev *ndev, int port,
1042 unsigned char *mw_cnt)
1043 {
1044 struct idt_mw_cfg mws[IDT_MAX_NR_MWS], *ret_mws;
1045 const struct idt_ntb_bar *bars;
1046 enum idt_mw_type mw_type;
1047 unsigned char widx, bidx, en_cnt;
1048 bool bar_64bit = false;
1049 int aprt_size;
1050 u32 data;
1051
1052 /* Retrieve the array of the BARs registers */
1053 bars = portdata_tbl[port].bars;
1054
1055 /* Scan all the BARs belonging to the port */
1056 *mw_cnt = 0;
1057 for (bidx = 0; bidx < IDT_BAR_CNT; bidx += 1 + bar_64bit) {
1058 /* Read BARSETUP register value */
1059 data = idt_sw_read(ndev, bars[bidx].setup);
1060
1061 /* Skip disabled BARs */
1062 if (!(data & IDT_BARSETUP_EN)) {
1063 bar_64bit = false;
1064 continue;
1065 }
1066
1067 /* Skip next BARSETUP if current one has 64bit addressing */
1068 bar_64bit = IS_FLD_SET(BARSETUP_TYPE, data, 64);
1069
1070 /* Skip configuration space mapping BARs */
1071 if (data & IDT_BARSETUP_MODE_CFG)
1072 continue;
1073
1074 /* Retrieve MW type/entries count and aperture size */
1075 mw_type = GET_FIELD(BARSETUP_ATRAN, data);
1076 en_cnt = idt_get_mw_count(mw_type);
1077 aprt_size = (u64)1 << GET_FIELD(BARSETUP_SIZE, data);
1078
1079 /* Save configurations of all available memory windows */
1080 for (widx = 0; widx < en_cnt; widx++, (*mw_cnt)++) {
1081 /*
1082 * IDT can expose a limited number of MWs, so it's bug
1083 * to have more than the driver expects
1084 */
1085 if (*mw_cnt >= IDT_MAX_NR_MWS)
1086 return ERR_PTR(-EINVAL);
1087
1088 /* Save basic MW info */
1089 mws[*mw_cnt].type = mw_type;
1090 mws[*mw_cnt].bar = bidx;
1091 mws[*mw_cnt].idx = widx;
1092 /* It's always DWORD aligned */
1093 mws[*mw_cnt].addr_align = IDT_TRANS_ALIGN;
1094 /* DIR and LUT approachs differently configure MWs */
1095 if (mw_type == IDT_MW_DIR)
1096 mws[*mw_cnt].size_max = aprt_size;
1097 else if (mw_type == IDT_MW_LUT12)
1098 mws[*mw_cnt].size_max = aprt_size / 16;
1099 else
1100 mws[*mw_cnt].size_max = aprt_size / 32;
1101 mws[*mw_cnt].size_align = (mw_type == IDT_MW_DIR) ?
1102 IDT_DIR_SIZE_ALIGN : mws[*mw_cnt].size_max;
1103 }
1104 }
1105
1106 /* Allocate memory for memory window descriptors */
1107 ret_mws = devm_kcalloc(&ndev->ntb.pdev->dev, *mw_cnt, sizeof(*ret_mws),
1108 GFP_KERNEL);
1109 if (!ret_mws)
1110 return ERR_PTR(-ENOMEM);
1111
1112 /* Copy the info of detected memory windows */
1113 memcpy(ret_mws, mws, (*mw_cnt)*sizeof(*ret_mws));
1114
1115 return ret_mws;
1116 }
1117
1118 /*
1119 * idt_init_mws() - initialize memory windows subsystem
1120 * @ndev: IDT NTB hardware driver descriptor
1121 *
1122 * Scan BAR setup registers of local and peer ports to determine the
1123 * outbound and inbound memory windows parameters
1124 *
1125 * Return: zero on success, otherwise a negative error number
1126 */
idt_init_mws(struct idt_ntb_dev * ndev)1127 static int idt_init_mws(struct idt_ntb_dev *ndev)
1128 {
1129 struct idt_ntb_peer *peer;
1130 unsigned char pidx;
1131
1132 /* Scan memory windows of the local port */
1133 ndev->mws = idt_scan_mws(ndev, ndev->port, &ndev->mw_cnt);
1134 if (IS_ERR(ndev->mws)) {
1135 dev_err(&ndev->ntb.pdev->dev,
1136 "Failed to scan mws of local port %hhu", ndev->port);
1137 return PTR_ERR(ndev->mws);
1138 }
1139
1140 /* Scan memory windows of the peer ports */
1141 for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
1142 peer = &ndev->peers[pidx];
1143 peer->mws = idt_scan_mws(ndev, peer->port, &peer->mw_cnt);
1144 if (IS_ERR(peer->mws)) {
1145 dev_err(&ndev->ntb.pdev->dev,
1146 "Failed to scan mws of port %hhu", peer->port);
1147 return PTR_ERR(peer->mws);
1148 }
1149 }
1150
1151 /* Initialize spin locker of the LUT registers */
1152 spin_lock_init(&ndev->lut_lock);
1153
1154 dev_dbg(&ndev->ntb.pdev->dev, "Outbound and inbound MWs initialized");
1155
1156 return 0;
1157 }
1158
1159 /*
1160 * idt_ntb_mw_count() - number of inbound memory windows (NTB API callback)
1161 * @ntb: NTB device context.
1162 * @pidx: Port index of peer device.
1163 *
1164 * The value is returned for the specified peer, so generally speaking it can
1165 * be different for different port depending on the IDT PCIe-switch
1166 * initialization.
1167 *
1168 * Return: the number of memory windows.
1169 */
idt_ntb_mw_count(struct ntb_dev * ntb,int pidx)1170 static int idt_ntb_mw_count(struct ntb_dev *ntb, int pidx)
1171 {
1172 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1173
1174 if (pidx < 0 || ndev->peer_cnt <= pidx)
1175 return -EINVAL;
1176
1177 return ndev->peers[pidx].mw_cnt;
1178 }
1179
1180 /*
1181 * idt_ntb_mw_get_align() - inbound memory window parameters (NTB API callback)
1182 * @ntb: NTB device context.
1183 * @pidx: Port index of peer device.
1184 * @widx: Memory window index.
1185 * @addr_align: OUT - the base alignment for translating the memory window
1186 * @size_align: OUT - the size alignment for translating the memory window
1187 * @size_max: OUT - the maximum size of the memory window
1188 *
1189 * The peer memory window parameters have already been determined, so just
1190 * return the corresponding values, which mustn't change within session.
1191 *
1192 * Return: Zero on success, otherwise a negative error number.
1193 */
idt_ntb_mw_get_align(struct ntb_dev * ntb,int pidx,int widx,resource_size_t * addr_align,resource_size_t * size_align,resource_size_t * size_max)1194 static int idt_ntb_mw_get_align(struct ntb_dev *ntb, int pidx, int widx,
1195 resource_size_t *addr_align,
1196 resource_size_t *size_align,
1197 resource_size_t *size_max)
1198 {
1199 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1200 struct idt_ntb_peer *peer;
1201
1202 if (pidx < 0 || ndev->peer_cnt <= pidx)
1203 return -EINVAL;
1204
1205 peer = &ndev->peers[pidx];
1206
1207 if (widx < 0 || peer->mw_cnt <= widx)
1208 return -EINVAL;
1209
1210 if (addr_align != NULL)
1211 *addr_align = peer->mws[widx].addr_align;
1212
1213 if (size_align != NULL)
1214 *size_align = peer->mws[widx].size_align;
1215
1216 if (size_max != NULL)
1217 *size_max = peer->mws[widx].size_max;
1218
1219 return 0;
1220 }
1221
1222 /*
1223 * idt_ntb_peer_mw_count() - number of outbound memory windows
1224 * (NTB API callback)
1225 * @ntb: NTB device context.
1226 *
1227 * Outbound memory windows parameters have been determined based on the
1228 * BAR setup registers value, which are mostly constants within one session.
1229 *
1230 * Return: the number of memory windows.
1231 */
idt_ntb_peer_mw_count(struct ntb_dev * ntb)1232 static int idt_ntb_peer_mw_count(struct ntb_dev *ntb)
1233 {
1234 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1235
1236 return ndev->mw_cnt;
1237 }
1238
1239 /*
1240 * idt_ntb_peer_mw_get_addr() - get map address of an outbound memory window
1241 * (NTB API callback)
1242 * @ntb: NTB device context.
1243 * @widx: Memory window index (within ntb_peer_mw_count() return value).
1244 * @base: OUT - the base address of mapping region.
1245 * @size: OUT - the size of mapping region.
1246 *
1247 * Return just parameters of BAR resources mapping. Size reflects just the size
1248 * of the resource
1249 *
1250 * Return: Zero on success, otherwise a negative error number.
1251 */
idt_ntb_peer_mw_get_addr(struct ntb_dev * ntb,int widx,phys_addr_t * base,resource_size_t * size)1252 static int idt_ntb_peer_mw_get_addr(struct ntb_dev *ntb, int widx,
1253 phys_addr_t *base, resource_size_t *size)
1254 {
1255 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1256
1257 if (widx < 0 || ndev->mw_cnt <= widx)
1258 return -EINVAL;
1259
1260 /* Mapping address is just properly shifted BAR resource start */
1261 if (base != NULL)
1262 *base = pci_resource_start(ntb->pdev, ndev->mws[widx].bar) +
1263 ndev->mws[widx].idx * ndev->mws[widx].size_max;
1264
1265 /* Mapping size has already been calculated at MWs scanning */
1266 if (size != NULL)
1267 *size = ndev->mws[widx].size_max;
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * idt_ntb_peer_mw_set_trans() - set a translation address of a memory window
1274 * (NTB API callback)
1275 * @ntb: NTB device context.
1276 * @pidx: Port index of peer device the translation address received from.
1277 * @widx: Memory window index.
1278 * @addr: The dma address of the shared memory to access.
1279 * @size: The size of the shared memory to access.
1280 *
1281 * The Direct address translation and LUT base translation is initialized a
1282 * bit differenet. Although the parameters restriction are now determined by
1283 * the same code.
1284 *
1285 * Return: Zero on success, otherwise an error number.
1286 */
idt_ntb_peer_mw_set_trans(struct ntb_dev * ntb,int pidx,int widx,u64 addr,resource_size_t size)1287 static int idt_ntb_peer_mw_set_trans(struct ntb_dev *ntb, int pidx, int widx,
1288 u64 addr, resource_size_t size)
1289 {
1290 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1291 struct idt_mw_cfg *mw_cfg;
1292 u32 data = 0, lutoff = 0;
1293
1294 if (pidx < 0 || ndev->peer_cnt <= pidx)
1295 return -EINVAL;
1296
1297 if (widx < 0 || ndev->mw_cnt <= widx)
1298 return -EINVAL;
1299
1300 /*
1301 * Retrieve the memory window config to make sure the passed arguments
1302 * fit it restrictions
1303 */
1304 mw_cfg = &ndev->mws[widx];
1305 if (!IS_ALIGNED(addr, mw_cfg->addr_align))
1306 return -EINVAL;
1307 if (!IS_ALIGNED(size, mw_cfg->size_align) || size > mw_cfg->size_max)
1308 return -EINVAL;
1309
1310 /* DIR and LUT based translations are initialized differently */
1311 if (mw_cfg->type == IDT_MW_DIR) {
1312 const struct idt_ntb_bar *bar = &ntdata_tbl.bars[mw_cfg->bar];
1313 u64 limit;
1314 /* Set destination partition of translation */
1315 data = idt_nt_read(ndev, bar->setup);
1316 data = SET_FIELD(BARSETUP_TPART, data, ndev->peers[pidx].part);
1317 idt_nt_write(ndev, bar->setup, data);
1318 /* Set translation base address */
1319 idt_nt_write(ndev, bar->ltbase, (u32)addr);
1320 idt_nt_write(ndev, bar->utbase, (u32)(addr >> 32));
1321 /* Set the custom BAR aperture limit */
1322 limit = pci_bus_address(ntb->pdev, mw_cfg->bar) + size;
1323 idt_nt_write(ndev, bar->limit, (u32)limit);
1324 if (IS_FLD_SET(BARSETUP_TYPE, data, 64))
1325 idt_nt_write(ndev, (bar + 1)->limit, (limit >> 32));
1326 } else {
1327 unsigned long irqflags;
1328 /* Initialize corresponding LUT entry */
1329 lutoff = SET_FIELD(LUTOFFSET_INDEX, 0, mw_cfg->idx) |
1330 SET_FIELD(LUTOFFSET_BAR, 0, mw_cfg->bar);
1331 data = SET_FIELD(LUTUDATA_PART, 0, ndev->peers[pidx].part) |
1332 IDT_LUTUDATA_VALID;
1333 spin_lock_irqsave(&ndev->lut_lock, irqflags);
1334 idt_nt_write(ndev, IDT_NT_LUTOFFSET, lutoff);
1335 idt_nt_write(ndev, IDT_NT_LUTLDATA, (u32)addr);
1336 idt_nt_write(ndev, IDT_NT_LUTMDATA, (u32)(addr >> 32));
1337 idt_nt_write(ndev, IDT_NT_LUTUDATA, data);
1338 spin_unlock_irqrestore(&ndev->lut_lock, irqflags);
1339 /* Limit address isn't specified since size is fixed for LUT */
1340 }
1341
1342 return 0;
1343 }
1344
1345 /*
1346 * idt_ntb_peer_mw_clear_trans() - clear the outbound MW translation address
1347 * (NTB API callback)
1348 * @ntb: NTB device context.
1349 * @pidx: Port index of peer device.
1350 * @widx: Memory window index.
1351 *
1352 * It effectively disables the translation over the specified outbound MW.
1353 *
1354 * Return: Zero on success, otherwise an error number.
1355 */
idt_ntb_peer_mw_clear_trans(struct ntb_dev * ntb,int pidx,int widx)1356 static int idt_ntb_peer_mw_clear_trans(struct ntb_dev *ntb, int pidx,
1357 int widx)
1358 {
1359 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1360 struct idt_mw_cfg *mw_cfg;
1361
1362 if (pidx < 0 || ndev->peer_cnt <= pidx)
1363 return -EINVAL;
1364
1365 if (widx < 0 || ndev->mw_cnt <= widx)
1366 return -EINVAL;
1367
1368 mw_cfg = &ndev->mws[widx];
1369
1370 /* DIR and LUT based translations are initialized differently */
1371 if (mw_cfg->type == IDT_MW_DIR) {
1372 const struct idt_ntb_bar *bar = &ntdata_tbl.bars[mw_cfg->bar];
1373 u32 data;
1374 /* Read BARSETUP to check BAR type */
1375 data = idt_nt_read(ndev, bar->setup);
1376 /* Disable translation by specifying zero BAR limit */
1377 idt_nt_write(ndev, bar->limit, 0);
1378 if (IS_FLD_SET(BARSETUP_TYPE, data, 64))
1379 idt_nt_write(ndev, (bar + 1)->limit, 0);
1380 } else {
1381 unsigned long irqflags;
1382 u32 lutoff;
1383 /* Clear the corresponding LUT entry up */
1384 lutoff = SET_FIELD(LUTOFFSET_INDEX, 0, mw_cfg->idx) |
1385 SET_FIELD(LUTOFFSET_BAR, 0, mw_cfg->bar);
1386 spin_lock_irqsave(&ndev->lut_lock, irqflags);
1387 idt_nt_write(ndev, IDT_NT_LUTOFFSET, lutoff);
1388 idt_nt_write(ndev, IDT_NT_LUTLDATA, 0);
1389 idt_nt_write(ndev, IDT_NT_LUTMDATA, 0);
1390 idt_nt_write(ndev, IDT_NT_LUTUDATA, 0);
1391 spin_unlock_irqrestore(&ndev->lut_lock, irqflags);
1392 }
1393
1394 return 0;
1395 }
1396
1397 /*=============================================================================
1398 * 5. Doorbell operations
1399 *
1400 * Doorbell functionality of IDT PCIe-switches is pretty unusual. First of
1401 * all there is global doorbell register which state can be changed by any
1402 * NT-function of the IDT device in accordance with global permissions. These
1403 * permissions configs are not supported by NTB API, so it must be done by
1404 * either BIOS or EEPROM settings. In the same way the state of the global
1405 * doorbell is reflected to the NT-functions local inbound doorbell registers.
1406 * It can lead to situations when client driver sets some peer doorbell bits
1407 * and get them bounced back to local inbound doorbell if permissions are
1408 * granted.
1409 * Secondly there is just one IRQ vector for Doorbell, Message, Temperature
1410 * and Switch events, so if client driver left any of Doorbell bits set and
1411 * some other event occurred, the driver will be notified of Doorbell event
1412 * again.
1413 *=============================================================================
1414 */
1415
1416 /*
1417 * idt_db_isr() - doorbell event ISR
1418 * @ndev: IDT NTB hardware driver descriptor
1419 * @ntint_sts: NT-function interrupt status
1420 *
1421 * Doorbell event happans when DBELL bit of NTINTSTS switches from 0 to 1.
1422 * It happens only when unmasked doorbell bits are set to ones on completely
1423 * zeroed doorbell register.
1424 * The method is called from PCIe ISR bottom-half routine.
1425 */
idt_db_isr(struct idt_ntb_dev * ndev,u32 ntint_sts)1426 static void idt_db_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
1427 {
1428 /*
1429 * Doorbell IRQ status will be cleaned only when client
1430 * driver unsets all the doorbell bits.
1431 */
1432 dev_dbg(&ndev->ntb.pdev->dev, "DB IRQ detected %#08x", ntint_sts);
1433
1434 /* Notify the client driver of possible doorbell state change */
1435 ntb_db_event(&ndev->ntb, 0);
1436 }
1437
1438 /*
1439 * idt_ntb_db_valid_mask() - get a mask of doorbell bits supported by the ntb
1440 * (NTB API callback)
1441 * @ntb: NTB device context.
1442 *
1443 * IDT PCIe-switches expose just one Doorbell register of DWORD size.
1444 *
1445 * Return: A mask of doorbell bits supported by the ntb.
1446 */
idt_ntb_db_valid_mask(struct ntb_dev * ntb)1447 static u64 idt_ntb_db_valid_mask(struct ntb_dev *ntb)
1448 {
1449 return IDT_DBELL_MASK;
1450 }
1451
1452 /*
1453 * idt_ntb_db_read() - read the local doorbell register (NTB API callback)
1454 * @ntb: NTB device context.
1455 *
1456 * There is just on inbound doorbell register of each NT-function, so
1457 * this method return it value.
1458 *
1459 * Return: The bits currently set in the local doorbell register.
1460 */
idt_ntb_db_read(struct ntb_dev * ntb)1461 static u64 idt_ntb_db_read(struct ntb_dev *ntb)
1462 {
1463 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1464
1465 return idt_nt_read(ndev, IDT_NT_INDBELLSTS);
1466 }
1467
1468 /*
1469 * idt_ntb_db_clear() - clear bits in the local doorbell register
1470 * (NTB API callback)
1471 * @ntb: NTB device context.
1472 * @db_bits: Doorbell bits to clear.
1473 *
1474 * Clear bits of inbound doorbell register by writing ones to it.
1475 *
1476 * NOTE! Invalid bits are always considered cleared so it's not an error
1477 * to clear them over.
1478 *
1479 * Return: always zero as success.
1480 */
idt_ntb_db_clear(struct ntb_dev * ntb,u64 db_bits)1481 static int idt_ntb_db_clear(struct ntb_dev *ntb, u64 db_bits)
1482 {
1483 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1484
1485 idt_nt_write(ndev, IDT_NT_INDBELLSTS, (u32)db_bits);
1486
1487 return 0;
1488 }
1489
1490 /*
1491 * idt_ntb_db_read_mask() - read the local doorbell mask (NTB API callback)
1492 * @ntb: NTB device context.
1493 *
1494 * Each inbound doorbell bit can be masked from generating IRQ by setting
1495 * the corresponding bit in inbound doorbell mask. So this method returns
1496 * the value of the register.
1497 *
1498 * Return: The bits currently set in the local doorbell mask register.
1499 */
idt_ntb_db_read_mask(struct ntb_dev * ntb)1500 static u64 idt_ntb_db_read_mask(struct ntb_dev *ntb)
1501 {
1502 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1503
1504 return idt_nt_read(ndev, IDT_NT_INDBELLMSK);
1505 }
1506
1507 /*
1508 * idt_ntb_db_set_mask() - set bits in the local doorbell mask
1509 * (NTB API callback)
1510 * @ntb: NTB device context.
1511 * @db_bits: Doorbell mask bits to set.
1512 *
1513 * The inbound doorbell register mask value must be read, then OR'ed with
1514 * passed field and only then set back.
1515 *
1516 * Return: zero on success, negative error if invalid argument passed.
1517 */
idt_ntb_db_set_mask(struct ntb_dev * ntb,u64 db_bits)1518 static int idt_ntb_db_set_mask(struct ntb_dev *ntb, u64 db_bits)
1519 {
1520 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1521
1522 return idt_reg_set_bits(ndev, IDT_NT_INDBELLMSK, &ndev->db_mask_lock,
1523 IDT_DBELL_MASK, db_bits);
1524 }
1525
1526 /*
1527 * idt_ntb_db_clear_mask() - clear bits in the local doorbell mask
1528 * (NTB API callback)
1529 * @ntb: NTB device context.
1530 * @db_bits: Doorbell bits to clear.
1531 *
1532 * The method just clears the set bits up in accordance with the passed
1533 * bitfield. IDT PCIe-switch shall generate an interrupt if there hasn't
1534 * been any unmasked bit set before current unmasking. Otherwise IRQ won't
1535 * be generated since there is only one IRQ vector for all doorbells.
1536 *
1537 * Return: always zero as success
1538 */
idt_ntb_db_clear_mask(struct ntb_dev * ntb,u64 db_bits)1539 static int idt_ntb_db_clear_mask(struct ntb_dev *ntb, u64 db_bits)
1540 {
1541 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1542
1543 idt_reg_clear_bits(ndev, IDT_NT_INDBELLMSK, &ndev->db_mask_lock,
1544 db_bits);
1545
1546 return 0;
1547 }
1548
1549 /*
1550 * idt_ntb_peer_db_set() - set bits in the peer doorbell register
1551 * (NTB API callback)
1552 * @ntb: NTB device context.
1553 * @db_bits: Doorbell bits to set.
1554 *
1555 * IDT PCIe-switches exposes local outbound doorbell register to change peer
1556 * inbound doorbell register state.
1557 *
1558 * Return: zero on success, negative error if invalid argument passed.
1559 */
idt_ntb_peer_db_set(struct ntb_dev * ntb,u64 db_bits)1560 static int idt_ntb_peer_db_set(struct ntb_dev *ntb, u64 db_bits)
1561 {
1562 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1563
1564 if (db_bits & ~(u64)IDT_DBELL_MASK)
1565 return -EINVAL;
1566
1567 idt_nt_write(ndev, IDT_NT_OUTDBELLSET, (u32)db_bits);
1568 return 0;
1569 }
1570
1571 /*=============================================================================
1572 * 6. Messaging operations
1573 *
1574 * Each NT-function of IDT PCIe-switch has four inbound and four outbound
1575 * message registers. Each outbound message register can be connected to one or
1576 * even more than one peer inbound message registers by setting global
1577 * configurations. Since NTB API permits one-on-one message registers mapping
1578 * only, the driver acts in according with that restriction.
1579 *=============================================================================
1580 */
1581
1582 /*
1583 * idt_init_msg() - initialize messaging interface
1584 * @ndev: IDT NTB hardware driver descriptor
1585 *
1586 * Just initialize the message registers routing tables locker.
1587 */
idt_init_msg(struct idt_ntb_dev * ndev)1588 static void idt_init_msg(struct idt_ntb_dev *ndev)
1589 {
1590 unsigned char midx;
1591
1592 /* Init the messages routing table lockers */
1593 for (midx = 0; midx < IDT_MSG_CNT; midx++)
1594 spin_lock_init(&ndev->msg_locks[midx]);
1595
1596 dev_dbg(&ndev->ntb.pdev->dev, "NTB Messaging initialized");
1597 }
1598
1599 /*
1600 * idt_msg_isr() - message event ISR
1601 * @ndev: IDT NTB hardware driver descriptor
1602 * @ntint_sts: NT-function interrupt status
1603 *
1604 * Message event happens when MSG bit of NTINTSTS switches from 0 to 1.
1605 * It happens only when unmasked message status bits are set to ones on
1606 * completely zeroed message status register.
1607 * The method is called from PCIe ISR bottom-half routine.
1608 */
idt_msg_isr(struct idt_ntb_dev * ndev,u32 ntint_sts)1609 static void idt_msg_isr(struct idt_ntb_dev *ndev, u32 ntint_sts)
1610 {
1611 /*
1612 * Message IRQ status will be cleaned only when client
1613 * driver unsets all the message status bits.
1614 */
1615 dev_dbg(&ndev->ntb.pdev->dev, "Message IRQ detected %#08x", ntint_sts);
1616
1617 /* Notify the client driver of possible message status change */
1618 ntb_msg_event(&ndev->ntb);
1619 }
1620
1621 /*
1622 * idt_ntb_msg_count() - get the number of message registers (NTB API callback)
1623 * @ntb: NTB device context.
1624 *
1625 * IDT PCIe-switches support four message registers.
1626 *
1627 * Return: the number of message registers.
1628 */
idt_ntb_msg_count(struct ntb_dev * ntb)1629 static int idt_ntb_msg_count(struct ntb_dev *ntb)
1630 {
1631 return IDT_MSG_CNT;
1632 }
1633
1634 /*
1635 * idt_ntb_msg_inbits() - get a bitfield of inbound message registers status
1636 * (NTB API callback)
1637 * @ntb: NTB device context.
1638 *
1639 * NT message status register is shared between inbound and outbound message
1640 * registers status
1641 *
1642 * Return: bitfield of inbound message registers.
1643 */
idt_ntb_msg_inbits(struct ntb_dev * ntb)1644 static u64 idt_ntb_msg_inbits(struct ntb_dev *ntb)
1645 {
1646 return (u64)IDT_INMSG_MASK;
1647 }
1648
1649 /*
1650 * idt_ntb_msg_outbits() - get a bitfield of outbound message registers status
1651 * (NTB API callback)
1652 * @ntb: NTB device context.
1653 *
1654 * NT message status register is shared between inbound and outbound message
1655 * registers status
1656 *
1657 * Return: bitfield of outbound message registers.
1658 */
idt_ntb_msg_outbits(struct ntb_dev * ntb)1659 static u64 idt_ntb_msg_outbits(struct ntb_dev *ntb)
1660 {
1661 return (u64)IDT_OUTMSG_MASK;
1662 }
1663
1664 /*
1665 * idt_ntb_msg_read_sts() - read the message registers status (NTB API callback)
1666 * @ntb: NTB device context.
1667 *
1668 * IDT PCIe-switches expose message status registers to notify drivers of
1669 * incoming data and failures in case if peer message register isn't freed.
1670 *
1671 * Return: status bits of message registers
1672 */
idt_ntb_msg_read_sts(struct ntb_dev * ntb)1673 static u64 idt_ntb_msg_read_sts(struct ntb_dev *ntb)
1674 {
1675 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1676
1677 return idt_nt_read(ndev, IDT_NT_MSGSTS);
1678 }
1679
1680 /*
1681 * idt_ntb_msg_clear_sts() - clear status bits of message registers
1682 * (NTB API callback)
1683 * @ntb: NTB device context.
1684 * @sts_bits: Status bits to clear.
1685 *
1686 * Clear bits in the status register by writing ones.
1687 *
1688 * NOTE! Invalid bits are always considered cleared so it's not an error
1689 * to clear them over.
1690 *
1691 * Return: always zero as success.
1692 */
idt_ntb_msg_clear_sts(struct ntb_dev * ntb,u64 sts_bits)1693 static int idt_ntb_msg_clear_sts(struct ntb_dev *ntb, u64 sts_bits)
1694 {
1695 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1696
1697 idt_nt_write(ndev, IDT_NT_MSGSTS, sts_bits);
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * idt_ntb_msg_set_mask() - set mask of message register status bits
1704 * (NTB API callback)
1705 * @ntb: NTB device context.
1706 * @mask_bits: Mask bits.
1707 *
1708 * Mask the message status bits from raising an IRQ.
1709 *
1710 * Return: zero on success, negative error if invalid argument passed.
1711 */
idt_ntb_msg_set_mask(struct ntb_dev * ntb,u64 mask_bits)1712 static int idt_ntb_msg_set_mask(struct ntb_dev *ntb, u64 mask_bits)
1713 {
1714 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1715
1716 return idt_reg_set_bits(ndev, IDT_NT_MSGSTSMSK, &ndev->msg_mask_lock,
1717 IDT_MSG_MASK, mask_bits);
1718 }
1719
1720 /*
1721 * idt_ntb_msg_clear_mask() - clear message registers mask
1722 * (NTB API callback)
1723 * @ntb: NTB device context.
1724 * @mask_bits: Mask bits.
1725 *
1726 * Clear mask of message status bits IRQs.
1727 *
1728 * Return: always zero as success.
1729 */
idt_ntb_msg_clear_mask(struct ntb_dev * ntb,u64 mask_bits)1730 static int idt_ntb_msg_clear_mask(struct ntb_dev *ntb, u64 mask_bits)
1731 {
1732 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1733
1734 idt_reg_clear_bits(ndev, IDT_NT_MSGSTSMSK, &ndev->msg_mask_lock,
1735 mask_bits);
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * idt_ntb_msg_read() - read message register with specified index
1742 * (NTB API callback)
1743 * @ntb: NTB device context.
1744 * @pidx: OUT - Port index of peer device a message retrieved from
1745 * @midx: Message register index
1746 *
1747 * Read data from the specified message register and source register.
1748 *
1749 * Return: inbound message register value.
1750 */
idt_ntb_msg_read(struct ntb_dev * ntb,int * pidx,int midx)1751 static u32 idt_ntb_msg_read(struct ntb_dev *ntb, int *pidx, int midx)
1752 {
1753 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1754
1755 if (midx < 0 || IDT_MSG_CNT <= midx)
1756 return ~(u32)0;
1757
1758 /* Retrieve source port index of the message */
1759 if (pidx != NULL) {
1760 u32 srcpart;
1761
1762 srcpart = idt_nt_read(ndev, ntdata_tbl.msgs[midx].src);
1763 *pidx = ndev->part_idx_map[srcpart];
1764
1765 /* Sanity check partition index (for initial case) */
1766 if (*pidx == -EINVAL)
1767 *pidx = 0;
1768 }
1769
1770 /* Retrieve data of the corresponding message register */
1771 return idt_nt_read(ndev, ntdata_tbl.msgs[midx].in);
1772 }
1773
1774 /*
1775 * idt_ntb_peer_msg_write() - write data to the specified message register
1776 * (NTB API callback)
1777 * @ntb: NTB device context.
1778 * @pidx: Port index of peer device a message being sent to
1779 * @midx: Message register index
1780 * @msg: Data to send
1781 *
1782 * Just try to send data to a peer. Message status register should be
1783 * checked by client driver.
1784 *
1785 * Return: zero on success, negative error if invalid argument passed.
1786 */
idt_ntb_peer_msg_write(struct ntb_dev * ntb,int pidx,int midx,u32 msg)1787 static int idt_ntb_peer_msg_write(struct ntb_dev *ntb, int pidx, int midx,
1788 u32 msg)
1789 {
1790 struct idt_ntb_dev *ndev = to_ndev_ntb(ntb);
1791 unsigned long irqflags;
1792 u32 swpmsgctl = 0;
1793
1794 if (midx < 0 || IDT_MSG_CNT <= midx)
1795 return -EINVAL;
1796
1797 if (pidx < 0 || ndev->peer_cnt <= pidx)
1798 return -EINVAL;
1799
1800 /* Collect the routing information */
1801 swpmsgctl = SET_FIELD(SWPxMSGCTL_REG, 0, midx) |
1802 SET_FIELD(SWPxMSGCTL_PART, 0, ndev->peers[pidx].part);
1803
1804 /* Lock the messages routing table of the specified register */
1805 spin_lock_irqsave(&ndev->msg_locks[midx], irqflags);
1806 /* Set the route and send the data */
1807 idt_sw_write(ndev, partdata_tbl[ndev->part].msgctl[midx], swpmsgctl);
1808 idt_nt_write(ndev, ntdata_tbl.msgs[midx].out, msg);
1809 /* Unlock the messages routing table */
1810 spin_unlock_irqrestore(&ndev->msg_locks[midx], irqflags);
1811
1812 /* Client driver shall check the status register */
1813 return 0;
1814 }
1815
1816 /*=============================================================================
1817 * 7. Temperature sensor operations
1818 *
1819 * IDT PCIe-switch has an embedded temperature sensor, which can be used to
1820 * check current chip core temperature. Since a workload environment can be
1821 * different on different platforms, an offset and ADC/filter settings can be
1822 * specified. Although the offset configuration is only exposed to the sysfs
1823 * hwmon interface at the moment. The rest of the settings can be adjusted
1824 * for instance by the BIOS/EEPROM firmware.
1825 *=============================================================================
1826 */
1827
1828 /*
1829 * idt_get_deg() - convert millidegree Celsius value to just degree
1830 * @mdegC: IN - millidegree Celsius value
1831 *
1832 * Return: Degree corresponding to the passed millidegree value
1833 */
idt_get_deg(long mdegC)1834 static inline s8 idt_get_deg(long mdegC)
1835 {
1836 return mdegC / 1000;
1837 }
1838
1839 /*
1840 * idt_get_frac() - retrieve 0/0.5 fraction of the millidegree Celsius value
1841 * @mdegC: IN - millidegree Celsius value
1842 *
1843 * Return: 0/0.5 degree fraction of the passed millidegree value
1844 */
idt_get_deg_frac(long mdegC)1845 static inline u8 idt_get_deg_frac(long mdegC)
1846 {
1847 return (mdegC % 1000) >= 500 ? 5 : 0;
1848 }
1849
1850 /*
1851 * idt_get_temp_fmt() - convert millidegree Celsius value to 0:7:1 format
1852 * @mdegC: IN - millidegree Celsius value
1853 *
1854 * Return: 0:7:1 format acceptable by the IDT temperature sensor
1855 */
idt_temp_get_fmt(long mdegC)1856 static inline u8 idt_temp_get_fmt(long mdegC)
1857 {
1858 return (idt_get_deg(mdegC) << 1) | (idt_get_deg_frac(mdegC) ? 1 : 0);
1859 }
1860
1861 /*
1862 * idt_get_temp_sval() - convert temp sample to signed millidegree Celsius
1863 * @data: IN - shifted to LSB 8-bits temperature sample
1864 *
1865 * Return: signed millidegree Celsius
1866 */
idt_get_temp_sval(u32 data)1867 static inline long idt_get_temp_sval(u32 data)
1868 {
1869 return ((s8)data / 2) * 1000 + (data & 0x1 ? 500 : 0);
1870 }
1871
1872 /*
1873 * idt_get_temp_sval() - convert temp sample to unsigned millidegree Celsius
1874 * @data: IN - shifted to LSB 8-bits temperature sample
1875 *
1876 * Return: unsigned millidegree Celsius
1877 */
idt_get_temp_uval(u32 data)1878 static inline long idt_get_temp_uval(u32 data)
1879 {
1880 return (data / 2) * 1000 + (data & 0x1 ? 500 : 0);
1881 }
1882
1883 /*
1884 * idt_read_temp() - read temperature from chip sensor
1885 * @ntb: NTB device context.
1886 * @type: IN - type of the temperature value to read
1887 * @val: OUT - integer value of temperature in millidegree Celsius
1888 */
idt_read_temp(struct idt_ntb_dev * ndev,const enum idt_temp_val type,long * val)1889 static void idt_read_temp(struct idt_ntb_dev *ndev,
1890 const enum idt_temp_val type, long *val)
1891 {
1892 u32 data;
1893
1894 /* Alter the temperature field in accordance with the passed type */
1895 switch (type) {
1896 case IDT_TEMP_CUR:
1897 data = GET_FIELD(TMPSTS_TEMP,
1898 idt_sw_read(ndev, IDT_SW_TMPSTS));
1899 break;
1900 case IDT_TEMP_LOW:
1901 data = GET_FIELD(TMPSTS_LTEMP,
1902 idt_sw_read(ndev, IDT_SW_TMPSTS));
1903 break;
1904 case IDT_TEMP_HIGH:
1905 data = GET_FIELD(TMPSTS_HTEMP,
1906 idt_sw_read(ndev, IDT_SW_TMPSTS));
1907 break;
1908 case IDT_TEMP_OFFSET:
1909 /* This is the only field with signed 0:7:1 format */
1910 data = GET_FIELD(TMPADJ_OFFSET,
1911 idt_sw_read(ndev, IDT_SW_TMPADJ));
1912 *val = idt_get_temp_sval(data);
1913 return;
1914 default:
1915 data = GET_FIELD(TMPSTS_TEMP,
1916 idt_sw_read(ndev, IDT_SW_TMPSTS));
1917 break;
1918 }
1919
1920 /* The rest of the fields accept unsigned 0:7:1 format */
1921 *val = idt_get_temp_uval(data);
1922 }
1923
1924 /*
1925 * idt_write_temp() - write temperature to the chip sensor register
1926 * @ntb: NTB device context.
1927 * @type: IN - type of the temperature value to change
1928 * @val: IN - integer value of temperature in millidegree Celsius
1929 */
idt_write_temp(struct idt_ntb_dev * ndev,const enum idt_temp_val type,const long val)1930 static void idt_write_temp(struct idt_ntb_dev *ndev,
1931 const enum idt_temp_val type, const long val)
1932 {
1933 unsigned int reg;
1934 u32 data;
1935 u8 fmt;
1936
1937 /* Retrieve the properly formatted temperature value */
1938 fmt = idt_temp_get_fmt(val);
1939
1940 mutex_lock(&ndev->hwmon_mtx);
1941 switch (type) {
1942 case IDT_TEMP_LOW:
1943 reg = IDT_SW_TMPALARM;
1944 data = SET_FIELD(TMPALARM_LTEMP, idt_sw_read(ndev, reg), fmt) &
1945 ~IDT_TMPALARM_IRQ_MASK;
1946 break;
1947 case IDT_TEMP_HIGH:
1948 reg = IDT_SW_TMPALARM;
1949 data = SET_FIELD(TMPALARM_HTEMP, idt_sw_read(ndev, reg), fmt) &
1950 ~IDT_TMPALARM_IRQ_MASK;
1951 break;
1952 case IDT_TEMP_OFFSET:
1953 reg = IDT_SW_TMPADJ;
1954 data = SET_FIELD(TMPADJ_OFFSET, idt_sw_read(ndev, reg), fmt);
1955 break;
1956 default:
1957 goto inval_spin_unlock;
1958 }
1959
1960 idt_sw_write(ndev, reg, data);
1961
1962 inval_spin_unlock:
1963 mutex_unlock(&ndev->hwmon_mtx);
1964 }
1965
1966 /*
1967 * idt_sysfs_show_temp() - printout corresponding temperature value
1968 * @dev: Pointer to the NTB device structure
1969 * @da: Sensor device attribute structure
1970 * @buf: Buffer to print temperature out
1971 *
1972 * Return: Number of written symbols or negative error
1973 */
idt_sysfs_show_temp(struct device * dev,struct device_attribute * da,char * buf)1974 static ssize_t idt_sysfs_show_temp(struct device *dev,
1975 struct device_attribute *da, char *buf)
1976 {
1977 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1978 struct idt_ntb_dev *ndev = dev_get_drvdata(dev);
1979 enum idt_temp_val type = attr->index;
1980 long mdeg;
1981
1982 idt_read_temp(ndev, type, &mdeg);
1983 return sprintf(buf, "%ld\n", mdeg);
1984 }
1985
1986 /*
1987 * idt_sysfs_set_temp() - set corresponding temperature value
1988 * @dev: Pointer to the NTB device structure
1989 * @da: Sensor device attribute structure
1990 * @buf: Buffer to print temperature out
1991 * @count: Size of the passed buffer
1992 *
1993 * Return: Number of written symbols or negative error
1994 */
idt_sysfs_set_temp(struct device * dev,struct device_attribute * da,const char * buf,size_t count)1995 static ssize_t idt_sysfs_set_temp(struct device *dev,
1996 struct device_attribute *da, const char *buf,
1997 size_t count)
1998 {
1999 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2000 struct idt_ntb_dev *ndev = dev_get_drvdata(dev);
2001 enum idt_temp_val type = attr->index;
2002 long mdeg;
2003 int ret;
2004
2005 ret = kstrtol(buf, 10, &mdeg);
2006 if (ret)
2007 return ret;
2008
2009 /* Clamp the passed value in accordance with the type */
2010 if (type == IDT_TEMP_OFFSET)
2011 mdeg = clamp_val(mdeg, IDT_TEMP_MIN_OFFSET,
2012 IDT_TEMP_MAX_OFFSET);
2013 else
2014 mdeg = clamp_val(mdeg, IDT_TEMP_MIN_MDEG, IDT_TEMP_MAX_MDEG);
2015
2016 idt_write_temp(ndev, type, mdeg);
2017
2018 return count;
2019 }
2020
2021 /*
2022 * idt_sysfs_reset_hist() - reset temperature history
2023 * @dev: Pointer to the NTB device structure
2024 * @da: Sensor device attribute structure
2025 * @buf: Buffer to print temperature out
2026 * @count: Size of the passed buffer
2027 *
2028 * Return: Number of written symbols or negative error
2029 */
idt_sysfs_reset_hist(struct device * dev,struct device_attribute * da,const char * buf,size_t count)2030 static ssize_t idt_sysfs_reset_hist(struct device *dev,
2031 struct device_attribute *da,
2032 const char *buf, size_t count)
2033 {
2034 struct idt_ntb_dev *ndev = dev_get_drvdata(dev);
2035
2036 /* Just set the maximal value to the lowest temperature field and
2037 * minimal value to the highest temperature field
2038 */
2039 idt_write_temp(ndev, IDT_TEMP_LOW, IDT_TEMP_MAX_MDEG);
2040 idt_write_temp(ndev, IDT_TEMP_HIGH, IDT_TEMP_MIN_MDEG);
2041
2042 return count;
2043 }
2044
2045 /*
2046 * Hwmon IDT sysfs attributes
2047 */
2048 static SENSOR_DEVICE_ATTR(temp1_input, 0444, idt_sysfs_show_temp, NULL,
2049 IDT_TEMP_CUR);
2050 static SENSOR_DEVICE_ATTR(temp1_lowest, 0444, idt_sysfs_show_temp, NULL,
2051 IDT_TEMP_LOW);
2052 static SENSOR_DEVICE_ATTR(temp1_highest, 0444, idt_sysfs_show_temp, NULL,
2053 IDT_TEMP_HIGH);
2054 static SENSOR_DEVICE_ATTR(temp1_offset, 0644, idt_sysfs_show_temp,
2055 idt_sysfs_set_temp, IDT_TEMP_OFFSET);
2056 static DEVICE_ATTR(temp1_reset_history, 0200, NULL, idt_sysfs_reset_hist);
2057
2058 /*
2059 * Hwmon IDT sysfs attributes group
2060 */
2061 static struct attribute *idt_temp_attrs[] = {
2062 &sensor_dev_attr_temp1_input.dev_attr.attr,
2063 &sensor_dev_attr_temp1_lowest.dev_attr.attr,
2064 &sensor_dev_attr_temp1_highest.dev_attr.attr,
2065 &sensor_dev_attr_temp1_offset.dev_attr.attr,
2066 &dev_attr_temp1_reset_history.attr,
2067 NULL
2068 };
2069 ATTRIBUTE_GROUPS(idt_temp);
2070
2071 /*
2072 * idt_init_temp() - initialize temperature sensor interface
2073 * @ndev: IDT NTB hardware driver descriptor
2074 *
2075 * Simple sensor initializarion method is responsible for device switching
2076 * on and resource management based hwmon interface registration. Note, that
2077 * since the device is shared we won't disable it on remove, but leave it
2078 * working until the system is powered off.
2079 */
idt_init_temp(struct idt_ntb_dev * ndev)2080 static void idt_init_temp(struct idt_ntb_dev *ndev)
2081 {
2082 struct device *hwmon;
2083
2084 /* Enable sensor if it hasn't been already */
2085 idt_sw_write(ndev, IDT_SW_TMPCTL, 0x0);
2086
2087 /* Initialize hwmon interface fields */
2088 mutex_init(&ndev->hwmon_mtx);
2089
2090 hwmon = devm_hwmon_device_register_with_groups(&ndev->ntb.pdev->dev,
2091 ndev->swcfg->name, ndev, idt_temp_groups);
2092 if (IS_ERR(hwmon)) {
2093 dev_err(&ndev->ntb.pdev->dev, "Couldn't create hwmon device");
2094 return;
2095 }
2096
2097 dev_dbg(&ndev->ntb.pdev->dev, "Temperature HWmon interface registered");
2098 }
2099
2100 /*=============================================================================
2101 * 8. ISRs related operations
2102 *
2103 * IDT PCIe-switch has strangely developed IRQ system. There is just one
2104 * interrupt vector for doorbell and message registers. So the hardware driver
2105 * can't determine actual source of IRQ if, for example, message event happened
2106 * while any of unmasked doorbell is still set. The similar situation may be if
2107 * switch or temperature sensor events pop up. The difference is that SEVENT
2108 * and TMPSENSOR bits of NT interrupt status register can be cleaned by
2109 * IRQ handler so a next interrupt request won't have false handling of
2110 * corresponding events.
2111 * The hardware driver has only bottom-half handler of the IRQ, since if any
2112 * of events happened the device won't raise it again before the last one is
2113 * handled by clearing of corresponding NTINTSTS bit.
2114 *=============================================================================
2115 */
2116
2117 static irqreturn_t idt_thread_isr(int irq, void *devid);
2118
2119 /*
2120 * idt_init_isr() - initialize PCIe interrupt handler
2121 * @ndev: IDT NTB hardware driver descriptor
2122 *
2123 * Return: zero on success, otherwise a negative error number.
2124 */
idt_init_isr(struct idt_ntb_dev * ndev)2125 static int idt_init_isr(struct idt_ntb_dev *ndev)
2126 {
2127 struct pci_dev *pdev = ndev->ntb.pdev;
2128 u32 ntint_mask;
2129 int ret;
2130
2131 /* Allocate just one interrupt vector for the ISR */
2132 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
2133 if (ret != 1) {
2134 dev_err(&pdev->dev, "Failed to allocate IRQ vector");
2135 return ret;
2136 }
2137
2138 /* Retrieve the IRQ vector */
2139 ret = pci_irq_vector(pdev, 0);
2140 if (ret < 0) {
2141 dev_err(&pdev->dev, "Failed to get IRQ vector");
2142 goto err_free_vectors;
2143 }
2144
2145 /* Set the IRQ handler */
2146 ret = devm_request_threaded_irq(&pdev->dev, ret, NULL, idt_thread_isr,
2147 IRQF_ONESHOT, NTB_IRQNAME, ndev);
2148 if (ret != 0) {
2149 dev_err(&pdev->dev, "Failed to set MSI IRQ handler, %d", ret);
2150 goto err_free_vectors;
2151 }
2152
2153 /* Unmask Message/Doorbell/SE interrupts */
2154 ntint_mask = idt_nt_read(ndev, IDT_NT_NTINTMSK) & ~IDT_NTINTMSK_ALL;
2155 idt_nt_write(ndev, IDT_NT_NTINTMSK, ntint_mask);
2156
2157 /* From now on the interrupts are enabled */
2158 dev_dbg(&pdev->dev, "NTB interrupts initialized");
2159
2160 return 0;
2161
2162 err_free_vectors:
2163 pci_free_irq_vectors(pdev);
2164
2165 return ret;
2166 }
2167
2168 /*
2169 * idt_deinit_ist() - deinitialize PCIe interrupt handler
2170 * @ndev: IDT NTB hardware driver descriptor
2171 *
2172 * Disable corresponding interrupts and free allocated IRQ vectors.
2173 */
idt_deinit_isr(struct idt_ntb_dev * ndev)2174 static void idt_deinit_isr(struct idt_ntb_dev *ndev)
2175 {
2176 struct pci_dev *pdev = ndev->ntb.pdev;
2177 u32 ntint_mask;
2178
2179 /* Mask interrupts back */
2180 ntint_mask = idt_nt_read(ndev, IDT_NT_NTINTMSK) | IDT_NTINTMSK_ALL;
2181 idt_nt_write(ndev, IDT_NT_NTINTMSK, ntint_mask);
2182
2183 /* Manually free IRQ otherwise PCI free irq vectors will fail */
2184 devm_free_irq(&pdev->dev, pci_irq_vector(pdev, 0), ndev);
2185
2186 /* Free allocated IRQ vectors */
2187 pci_free_irq_vectors(pdev);
2188
2189 dev_dbg(&pdev->dev, "NTB interrupts deinitialized");
2190 }
2191
2192 /*
2193 * idt_thread_isr() - NT function interrupts handler
2194 * @irq: IRQ number
2195 * @devid: Custom buffer
2196 *
2197 * It reads current NT interrupts state register and handles all the event
2198 * it declares.
2199 * The method is bottom-half routine of actual default PCIe IRQ handler.
2200 */
idt_thread_isr(int irq,void * devid)2201 static irqreturn_t idt_thread_isr(int irq, void *devid)
2202 {
2203 struct idt_ntb_dev *ndev = devid;
2204 bool handled = false;
2205 u32 ntint_sts;
2206
2207 /* Read the NT interrupts status register */
2208 ntint_sts = idt_nt_read(ndev, IDT_NT_NTINTSTS);
2209
2210 /* Handle messaging interrupts */
2211 if (ntint_sts & IDT_NTINTSTS_MSG) {
2212 idt_msg_isr(ndev, ntint_sts);
2213 handled = true;
2214 }
2215
2216 /* Handle doorbell interrupts */
2217 if (ntint_sts & IDT_NTINTSTS_DBELL) {
2218 idt_db_isr(ndev, ntint_sts);
2219 handled = true;
2220 }
2221
2222 /* Handle switch event interrupts */
2223 if (ntint_sts & IDT_NTINTSTS_SEVENT) {
2224 idt_se_isr(ndev, ntint_sts);
2225 handled = true;
2226 }
2227
2228 dev_dbg(&ndev->ntb.pdev->dev, "IDT IRQs 0x%08x handled", ntint_sts);
2229
2230 return handled ? IRQ_HANDLED : IRQ_NONE;
2231 }
2232
2233 /*===========================================================================
2234 * 9. NTB hardware driver initialization
2235 *===========================================================================
2236 */
2237
2238 /*
2239 * NTB API operations
2240 */
2241 static const struct ntb_dev_ops idt_ntb_ops = {
2242 .port_number = idt_ntb_port_number,
2243 .peer_port_count = idt_ntb_peer_port_count,
2244 .peer_port_number = idt_ntb_peer_port_number,
2245 .peer_port_idx = idt_ntb_peer_port_idx,
2246 .link_is_up = idt_ntb_link_is_up,
2247 .link_enable = idt_ntb_link_enable,
2248 .link_disable = idt_ntb_link_disable,
2249 .mw_count = idt_ntb_mw_count,
2250 .mw_get_align = idt_ntb_mw_get_align,
2251 .peer_mw_count = idt_ntb_peer_mw_count,
2252 .peer_mw_get_addr = idt_ntb_peer_mw_get_addr,
2253 .peer_mw_set_trans = idt_ntb_peer_mw_set_trans,
2254 .peer_mw_clear_trans = idt_ntb_peer_mw_clear_trans,
2255 .db_valid_mask = idt_ntb_db_valid_mask,
2256 .db_read = idt_ntb_db_read,
2257 .db_clear = idt_ntb_db_clear,
2258 .db_read_mask = idt_ntb_db_read_mask,
2259 .db_set_mask = idt_ntb_db_set_mask,
2260 .db_clear_mask = idt_ntb_db_clear_mask,
2261 .peer_db_set = idt_ntb_peer_db_set,
2262 .msg_count = idt_ntb_msg_count,
2263 .msg_inbits = idt_ntb_msg_inbits,
2264 .msg_outbits = idt_ntb_msg_outbits,
2265 .msg_read_sts = idt_ntb_msg_read_sts,
2266 .msg_clear_sts = idt_ntb_msg_clear_sts,
2267 .msg_set_mask = idt_ntb_msg_set_mask,
2268 .msg_clear_mask = idt_ntb_msg_clear_mask,
2269 .msg_read = idt_ntb_msg_read,
2270 .peer_msg_write = idt_ntb_peer_msg_write
2271 };
2272
2273 /*
2274 * idt_register_device() - register IDT NTB device
2275 * @ndev: IDT NTB hardware driver descriptor
2276 *
2277 * Return: zero on success, otherwise a negative error number.
2278 */
idt_register_device(struct idt_ntb_dev * ndev)2279 static int idt_register_device(struct idt_ntb_dev *ndev)
2280 {
2281 int ret;
2282
2283 /* Initialize the rest of NTB device structure and register it */
2284 ndev->ntb.ops = &idt_ntb_ops;
2285 ndev->ntb.topo = NTB_TOPO_SWITCH;
2286
2287 ret = ntb_register_device(&ndev->ntb);
2288 if (ret != 0) {
2289 dev_err(&ndev->ntb.pdev->dev, "Failed to register NTB device");
2290 return ret;
2291 }
2292
2293 dev_dbg(&ndev->ntb.pdev->dev, "NTB device successfully registered");
2294
2295 return 0;
2296 }
2297
2298 /*
2299 * idt_unregister_device() - unregister IDT NTB device
2300 * @ndev: IDT NTB hardware driver descriptor
2301 */
idt_unregister_device(struct idt_ntb_dev * ndev)2302 static void idt_unregister_device(struct idt_ntb_dev *ndev)
2303 {
2304 /* Just unregister the NTB device */
2305 ntb_unregister_device(&ndev->ntb);
2306
2307 dev_dbg(&ndev->ntb.pdev->dev, "NTB device unregistered");
2308 }
2309
2310 /*=============================================================================
2311 * 10. DebugFS node initialization
2312 *=============================================================================
2313 */
2314
2315 static ssize_t idt_dbgfs_info_read(struct file *filp, char __user *ubuf,
2316 size_t count, loff_t *offp);
2317
2318 /*
2319 * Driver DebugFS info file operations
2320 */
2321 static const struct file_operations idt_dbgfs_info_ops = {
2322 .owner = THIS_MODULE,
2323 .open = simple_open,
2324 .read = idt_dbgfs_info_read
2325 };
2326
2327 /*
2328 * idt_dbgfs_info_read() - DebugFS read info node callback
2329 * @file: File node descriptor.
2330 * @ubuf: User-space buffer to put data to
2331 * @count: Size of the buffer
2332 * @offp: Offset within the buffer
2333 */
idt_dbgfs_info_read(struct file * filp,char __user * ubuf,size_t count,loff_t * offp)2334 static ssize_t idt_dbgfs_info_read(struct file *filp, char __user *ubuf,
2335 size_t count, loff_t *offp)
2336 {
2337 struct idt_ntb_dev *ndev = filp->private_data;
2338 unsigned char idx, pidx, cnt;
2339 unsigned long irqflags, mdeg;
2340 ssize_t ret = 0, off = 0;
2341 enum ntb_speed speed;
2342 enum ntb_width width;
2343 char *strbuf;
2344 size_t size;
2345 u32 data;
2346
2347 /* Lets limit the buffer size the way the Intel/AMD drivers do */
2348 size = min_t(size_t, count, 0x1000U);
2349
2350 /* Allocate the memory for the buffer */
2351 strbuf = kmalloc(size, GFP_KERNEL);
2352 if (strbuf == NULL)
2353 return -ENOMEM;
2354
2355 /* Put the data into the string buffer */
2356 off += scnprintf(strbuf + off, size - off,
2357 "\n\t\tIDT NTB device Information:\n\n");
2358
2359 /* General local device configurations */
2360 off += scnprintf(strbuf + off, size - off,
2361 "Local Port %hhu, Partition %hhu\n", ndev->port, ndev->part);
2362
2363 /* Peer ports information */
2364 off += scnprintf(strbuf + off, size - off, "Peers:\n");
2365 for (idx = 0; idx < ndev->peer_cnt; idx++) {
2366 off += scnprintf(strbuf + off, size - off,
2367 "\t%hhu. Port %hhu, Partition %hhu\n",
2368 idx, ndev->peers[idx].port, ndev->peers[idx].part);
2369 }
2370
2371 /* Links status */
2372 data = idt_ntb_link_is_up(&ndev->ntb, &speed, &width);
2373 off += scnprintf(strbuf + off, size - off,
2374 "NTB link status\t- 0x%08x, ", data);
2375 off += scnprintf(strbuf + off, size - off, "PCIe Gen %d x%d lanes\n",
2376 speed, width);
2377
2378 /* Mapping table entries */
2379 off += scnprintf(strbuf + off, size - off, "NTB Mapping Table:\n");
2380 for (idx = 0; idx < IDT_MTBL_ENTRY_CNT; idx++) {
2381 spin_lock_irqsave(&ndev->mtbl_lock, irqflags);
2382 idt_nt_write(ndev, IDT_NT_NTMTBLADDR, idx);
2383 data = idt_nt_read(ndev, IDT_NT_NTMTBLDATA);
2384 spin_unlock_irqrestore(&ndev->mtbl_lock, irqflags);
2385
2386 /* Print valid entries only */
2387 if (data & IDT_NTMTBLDATA_VALID) {
2388 off += scnprintf(strbuf + off, size - off,
2389 "\t%hhu. Partition %d, Requester ID 0x%04x\n",
2390 idx, GET_FIELD(NTMTBLDATA_PART, data),
2391 GET_FIELD(NTMTBLDATA_REQID, data));
2392 }
2393 }
2394 off += scnprintf(strbuf + off, size - off, "\n");
2395
2396 /* Outbound memory windows information */
2397 off += scnprintf(strbuf + off, size - off,
2398 "Outbound Memory Windows:\n");
2399 for (idx = 0; idx < ndev->mw_cnt; idx += cnt) {
2400 data = ndev->mws[idx].type;
2401 cnt = idt_get_mw_count(data);
2402
2403 /* Print Memory Window information */
2404 if (data == IDT_MW_DIR)
2405 off += scnprintf(strbuf + off, size - off,
2406 "\t%hhu.\t", idx);
2407 else
2408 off += scnprintf(strbuf + off, size - off,
2409 "\t%hhu-%hhu.\t", idx, idx + cnt - 1);
2410
2411 off += scnprintf(strbuf + off, size - off, "%s BAR%hhu, ",
2412 idt_get_mw_name(data), ndev->mws[idx].bar);
2413
2414 off += scnprintf(strbuf + off, size - off,
2415 "Address align 0x%08llx, ", ndev->mws[idx].addr_align);
2416
2417 off += scnprintf(strbuf + off, size - off,
2418 "Size align 0x%08llx, Size max %llu\n",
2419 ndev->mws[idx].size_align, ndev->mws[idx].size_max);
2420 }
2421
2422 /* Inbound memory windows information */
2423 for (pidx = 0; pidx < ndev->peer_cnt; pidx++) {
2424 off += scnprintf(strbuf + off, size - off,
2425 "Inbound Memory Windows for peer %hhu (Port %hhu):\n",
2426 pidx, ndev->peers[pidx].port);
2427
2428 /* Print Memory Windows information */
2429 for (idx = 0; idx < ndev->peers[pidx].mw_cnt; idx += cnt) {
2430 data = ndev->peers[pidx].mws[idx].type;
2431 cnt = idt_get_mw_count(data);
2432
2433 if (data == IDT_MW_DIR)
2434 off += scnprintf(strbuf + off, size - off,
2435 "\t%hhu.\t", idx);
2436 else
2437 off += scnprintf(strbuf + off, size - off,
2438 "\t%hhu-%hhu.\t", idx, idx + cnt - 1);
2439
2440 off += scnprintf(strbuf + off, size - off,
2441 "%s BAR%hhu, ", idt_get_mw_name(data),
2442 ndev->peers[pidx].mws[idx].bar);
2443
2444 off += scnprintf(strbuf + off, size - off,
2445 "Address align 0x%08llx, ",
2446 ndev->peers[pidx].mws[idx].addr_align);
2447
2448 off += scnprintf(strbuf + off, size - off,
2449 "Size align 0x%08llx, Size max %llu\n",
2450 ndev->peers[pidx].mws[idx].size_align,
2451 ndev->peers[pidx].mws[idx].size_max);
2452 }
2453 }
2454 off += scnprintf(strbuf + off, size - off, "\n");
2455
2456 /* Doorbell information */
2457 data = idt_sw_read(ndev, IDT_SW_GDBELLSTS);
2458 off += scnprintf(strbuf + off, size - off,
2459 "Global Doorbell state\t- 0x%08x\n", data);
2460 data = idt_ntb_db_read(&ndev->ntb);
2461 off += scnprintf(strbuf + off, size - off,
2462 "Local Doorbell state\t- 0x%08x\n", data);
2463 data = idt_nt_read(ndev, IDT_NT_INDBELLMSK);
2464 off += scnprintf(strbuf + off, size - off,
2465 "Local Doorbell mask\t- 0x%08x\n", data);
2466 off += scnprintf(strbuf + off, size - off, "\n");
2467
2468 /* Messaging information */
2469 off += scnprintf(strbuf + off, size - off,
2470 "Message event valid\t- 0x%08x\n", IDT_MSG_MASK);
2471 data = idt_ntb_msg_read_sts(&ndev->ntb);
2472 off += scnprintf(strbuf + off, size - off,
2473 "Message event status\t- 0x%08x\n", data);
2474 data = idt_nt_read(ndev, IDT_NT_MSGSTSMSK);
2475 off += scnprintf(strbuf + off, size - off,
2476 "Message event mask\t- 0x%08x\n", data);
2477 off += scnprintf(strbuf + off, size - off,
2478 "Message data:\n");
2479 for (idx = 0; idx < IDT_MSG_CNT; idx++) {
2480 int src;
2481 data = idt_ntb_msg_read(&ndev->ntb, &src, idx);
2482 off += scnprintf(strbuf + off, size - off,
2483 "\t%hhu. 0x%08x from peer %hhu (Port %hhu)\n",
2484 idx, data, src, ndev->peers[src].port);
2485 }
2486 off += scnprintf(strbuf + off, size - off, "\n");
2487
2488 /* Current temperature */
2489 idt_read_temp(ndev, IDT_TEMP_CUR, &mdeg);
2490 off += scnprintf(strbuf + off, size - off,
2491 "Switch temperature\t\t- %hhd.%hhuC\n",
2492 idt_get_deg(mdeg), idt_get_deg_frac(mdeg));
2493
2494 /* Copy the buffer to the User Space */
2495 ret = simple_read_from_buffer(ubuf, count, offp, strbuf, off);
2496 kfree(strbuf);
2497
2498 return ret;
2499 }
2500
2501 /*
2502 * idt_init_dbgfs() - initialize DebugFS node
2503 * @ndev: IDT NTB hardware driver descriptor
2504 *
2505 * Return: zero on success, otherwise a negative error number.
2506 */
idt_init_dbgfs(struct idt_ntb_dev * ndev)2507 static int idt_init_dbgfs(struct idt_ntb_dev *ndev)
2508 {
2509 char devname[64];
2510
2511 /* If the top directory is not created then do nothing */
2512 if (IS_ERR_OR_NULL(dbgfs_topdir)) {
2513 dev_info(&ndev->ntb.pdev->dev, "Top DebugFS directory absent");
2514 return PTR_ERR(dbgfs_topdir);
2515 }
2516
2517 /* Create the info file node */
2518 snprintf(devname, 64, "info:%s", pci_name(ndev->ntb.pdev));
2519 ndev->dbgfs_info = debugfs_create_file(devname, 0400, dbgfs_topdir,
2520 ndev, &idt_dbgfs_info_ops);
2521 if (IS_ERR(ndev->dbgfs_info)) {
2522 dev_dbg(&ndev->ntb.pdev->dev, "Failed to create DebugFS node");
2523 return PTR_ERR(ndev->dbgfs_info);
2524 }
2525
2526 dev_dbg(&ndev->ntb.pdev->dev, "NTB device DebugFS node created");
2527
2528 return 0;
2529 }
2530
2531 /*
2532 * idt_deinit_dbgfs() - deinitialize DebugFS node
2533 * @ndev: IDT NTB hardware driver descriptor
2534 *
2535 * Just discard the info node from DebugFS
2536 */
idt_deinit_dbgfs(struct idt_ntb_dev * ndev)2537 static void idt_deinit_dbgfs(struct idt_ntb_dev *ndev)
2538 {
2539 debugfs_remove(ndev->dbgfs_info);
2540
2541 dev_dbg(&ndev->ntb.pdev->dev, "NTB device DebugFS node discarded");
2542 }
2543
2544 /*=============================================================================
2545 * 11. Basic PCIe device initialization
2546 *=============================================================================
2547 */
2548
2549 /*
2550 * idt_check_setup() - Check whether the IDT PCIe-swtich is properly
2551 * pre-initialized
2552 * @pdev: Pointer to the PCI device descriptor
2553 *
2554 * Return: zero on success, otherwise a negative error number.
2555 */
idt_check_setup(struct pci_dev * pdev)2556 static int idt_check_setup(struct pci_dev *pdev)
2557 {
2558 u32 data;
2559 int ret;
2560
2561 /* Read the BARSETUP0 */
2562 ret = pci_read_config_dword(pdev, IDT_NT_BARSETUP0, &data);
2563 if (ret != 0) {
2564 dev_err(&pdev->dev,
2565 "Failed to read BARSETUP0 config register");
2566 return ret;
2567 }
2568
2569 /* Check whether the BAR0 register is enabled to be of config space */
2570 if (!(data & IDT_BARSETUP_EN) || !(data & IDT_BARSETUP_MODE_CFG)) {
2571 dev_err(&pdev->dev, "BAR0 doesn't map config space");
2572 return -EINVAL;
2573 }
2574
2575 /* Configuration space BAR0 must have certain size */
2576 if ((data & IDT_BARSETUP_SIZE_MASK) != IDT_BARSETUP_SIZE_CFG) {
2577 dev_err(&pdev->dev, "Invalid size of config space");
2578 return -EINVAL;
2579 }
2580
2581 dev_dbg(&pdev->dev, "NTB device pre-initialized correctly");
2582
2583 return 0;
2584 }
2585
2586 /*
2587 * Create the IDT PCIe-switch driver descriptor
2588 * @pdev: Pointer to the PCI device descriptor
2589 * @id: IDT PCIe-device configuration
2590 *
2591 * It just allocates a memory for IDT PCIe-switch device structure and
2592 * initializes some commonly used fields.
2593 *
2594 * No need of release method, since managed device resource is used for
2595 * memory allocation.
2596 *
2597 * Return: pointer to the descriptor, otherwise a negative error number.
2598 */
idt_create_dev(struct pci_dev * pdev,const struct pci_device_id * id)2599 static struct idt_ntb_dev *idt_create_dev(struct pci_dev *pdev,
2600 const struct pci_device_id *id)
2601 {
2602 struct idt_ntb_dev *ndev;
2603
2604 /* Allocate memory for the IDT PCIe-device descriptor */
2605 ndev = devm_kzalloc(&pdev->dev, sizeof(*ndev), GFP_KERNEL);
2606 if (!ndev) {
2607 dev_err(&pdev->dev, "Memory allocation failed for descriptor");
2608 return ERR_PTR(-ENOMEM);
2609 }
2610
2611 /* Save the IDT PCIe-switch ports configuration */
2612 ndev->swcfg = (struct idt_89hpes_cfg *)id->driver_data;
2613 /* Save the PCI-device pointer inside the NTB device structure */
2614 ndev->ntb.pdev = pdev;
2615
2616 /* Initialize spin locker of Doorbell, Message and GASA registers */
2617 spin_lock_init(&ndev->db_mask_lock);
2618 spin_lock_init(&ndev->msg_mask_lock);
2619 spin_lock_init(&ndev->gasa_lock);
2620
2621 dev_info(&pdev->dev, "IDT %s discovered", ndev->swcfg->name);
2622
2623 dev_dbg(&pdev->dev, "NTB device descriptor created");
2624
2625 return ndev;
2626 }
2627
2628 /*
2629 * idt_init_pci() - initialize the basic PCI-related subsystem
2630 * @ndev: Pointer to the IDT PCIe-switch driver descriptor
2631 *
2632 * Managed device resources will be freed automatically in case of failure or
2633 * driver detachment.
2634 *
2635 * Return: zero on success, otherwise negative error number.
2636 */
idt_init_pci(struct idt_ntb_dev * ndev)2637 static int idt_init_pci(struct idt_ntb_dev *ndev)
2638 {
2639 struct pci_dev *pdev = ndev->ntb.pdev;
2640 int ret;
2641
2642 /* Initialize the bit mask of PCI/NTB DMA */
2643 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2644 if (ret != 0) {
2645 ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2646 if (ret != 0) {
2647 dev_err(&pdev->dev, "Failed to set DMA bit mask\n");
2648 return ret;
2649 }
2650 dev_warn(&pdev->dev, "Cannot set DMA highmem bit mask\n");
2651 }
2652 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2653 if (ret != 0) {
2654 ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2655 if (ret != 0) {
2656 dev_err(&pdev->dev,
2657 "Failed to set consistent DMA bit mask\n");
2658 return ret;
2659 }
2660 dev_warn(&pdev->dev,
2661 "Cannot set consistent DMA highmem bit mask\n");
2662 }
2663
2664 /*
2665 * Enable the device advanced error reporting. It's not critical to
2666 * have AER disabled in the kernel.
2667 */
2668 ret = pci_enable_pcie_error_reporting(pdev);
2669 if (ret != 0)
2670 dev_warn(&pdev->dev, "PCIe AER capability disabled\n");
2671 else /* Cleanup nonfatal error status before getting to init */
2672 pci_aer_clear_nonfatal_status(pdev);
2673
2674 /* First enable the PCI device */
2675 ret = pcim_enable_device(pdev);
2676 if (ret != 0) {
2677 dev_err(&pdev->dev, "Failed to enable PCIe device\n");
2678 goto err_disable_aer;
2679 }
2680
2681 /*
2682 * Enable the bus mastering, which effectively enables MSI IRQs and
2683 * Request TLPs translation
2684 */
2685 pci_set_master(pdev);
2686
2687 /* Request all BARs resources and map BAR0 only */
2688 ret = pcim_iomap_regions_request_all(pdev, 1, NTB_NAME);
2689 if (ret != 0) {
2690 dev_err(&pdev->dev, "Failed to request resources\n");
2691 goto err_clear_master;
2692 }
2693
2694 /* Retrieve virtual address of BAR0 - PCI configuration space */
2695 ndev->cfgspc = pcim_iomap_table(pdev)[0];
2696
2697 /* Put the IDT driver data pointer to the PCI-device private pointer */
2698 pci_set_drvdata(pdev, ndev);
2699
2700 dev_dbg(&pdev->dev, "NT-function PCIe interface initialized");
2701
2702 return 0;
2703
2704 err_clear_master:
2705 pci_clear_master(pdev);
2706 err_disable_aer:
2707 (void)pci_disable_pcie_error_reporting(pdev);
2708
2709 return ret;
2710 }
2711
2712 /*
2713 * idt_deinit_pci() - deinitialize the basic PCI-related subsystem
2714 * @ndev: Pointer to the IDT PCIe-switch driver descriptor
2715 *
2716 * Managed resources will be freed on the driver detachment
2717 */
idt_deinit_pci(struct idt_ntb_dev * ndev)2718 static void idt_deinit_pci(struct idt_ntb_dev *ndev)
2719 {
2720 struct pci_dev *pdev = ndev->ntb.pdev;
2721
2722 /* Clean up the PCI-device private data pointer */
2723 pci_set_drvdata(pdev, NULL);
2724
2725 /* Clear the bus master disabling the Request TLPs translation */
2726 pci_clear_master(pdev);
2727
2728 /* Disable the AER capability */
2729 (void)pci_disable_pcie_error_reporting(pdev);
2730
2731 dev_dbg(&pdev->dev, "NT-function PCIe interface cleared");
2732 }
2733
2734 /*===========================================================================
2735 * 12. PCI bus callback functions
2736 *===========================================================================
2737 */
2738
2739 /*
2740 * idt_pci_probe() - PCI device probe callback
2741 * @pdev: Pointer to PCI device structure
2742 * @id: PCIe device custom descriptor
2743 *
2744 * Return: zero on success, otherwise negative error number
2745 */
idt_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)2746 static int idt_pci_probe(struct pci_dev *pdev,
2747 const struct pci_device_id *id)
2748 {
2749 struct idt_ntb_dev *ndev;
2750 int ret;
2751
2752 /* Check whether IDT PCIe-switch is properly pre-initialized */
2753 ret = idt_check_setup(pdev);
2754 if (ret != 0)
2755 return ret;
2756
2757 /* Allocate the memory for IDT NTB device data */
2758 ndev = idt_create_dev(pdev, id);
2759 if (IS_ERR_OR_NULL(ndev))
2760 return PTR_ERR(ndev);
2761
2762 /* Initialize the basic PCI subsystem of the device */
2763 ret = idt_init_pci(ndev);
2764 if (ret != 0)
2765 return ret;
2766
2767 /* Scan ports of the IDT PCIe-switch */
2768 (void)idt_scan_ports(ndev);
2769
2770 /* Initialize NTB link events subsystem */
2771 idt_init_link(ndev);
2772
2773 /* Initialize MWs subsystem */
2774 ret = idt_init_mws(ndev);
2775 if (ret != 0)
2776 goto err_deinit_link;
2777
2778 /* Initialize Messaging subsystem */
2779 idt_init_msg(ndev);
2780
2781 /* Initialize hwmon interface */
2782 idt_init_temp(ndev);
2783
2784 /* Initialize IDT interrupts handler */
2785 ret = idt_init_isr(ndev);
2786 if (ret != 0)
2787 goto err_deinit_link;
2788
2789 /* Register IDT NTB devices on the NTB bus */
2790 ret = idt_register_device(ndev);
2791 if (ret != 0)
2792 goto err_deinit_isr;
2793
2794 /* Initialize DebugFS info node */
2795 (void)idt_init_dbgfs(ndev);
2796
2797 /* IDT PCIe-switch NTB driver is finally initialized */
2798 dev_info(&pdev->dev, "IDT NTB device is ready");
2799
2800 /* May the force be with us... */
2801 return 0;
2802
2803 err_deinit_isr:
2804 idt_deinit_isr(ndev);
2805 err_deinit_link:
2806 idt_deinit_link(ndev);
2807 idt_deinit_pci(ndev);
2808
2809 return ret;
2810 }
2811
2812 /*
2813 * idt_pci_probe() - PCI device remove callback
2814 * @pdev: Pointer to PCI device structure
2815 */
idt_pci_remove(struct pci_dev * pdev)2816 static void idt_pci_remove(struct pci_dev *pdev)
2817 {
2818 struct idt_ntb_dev *ndev = pci_get_drvdata(pdev);
2819
2820 /* Deinit the DebugFS node */
2821 idt_deinit_dbgfs(ndev);
2822
2823 /* Unregister NTB device */
2824 idt_unregister_device(ndev);
2825
2826 /* Stop the interrupts handling */
2827 idt_deinit_isr(ndev);
2828
2829 /* Deinitialize link event subsystem */
2830 idt_deinit_link(ndev);
2831
2832 /* Deinit basic PCI subsystem */
2833 idt_deinit_pci(ndev);
2834
2835 /* IDT PCIe-switch NTB driver is finally initialized */
2836 dev_info(&pdev->dev, "IDT NTB device is removed");
2837
2838 /* Sayonara... */
2839 }
2840
2841 /*
2842 * IDT PCIe-switch models ports configuration structures
2843 */
2844 static const struct idt_89hpes_cfg idt_89hpes24nt6ag2_config = {
2845 .name = "89HPES24NT6AG2",
2846 .port_cnt = 6, .ports = {0, 2, 4, 6, 8, 12}
2847 };
2848 static const struct idt_89hpes_cfg idt_89hpes32nt8ag2_config = {
2849 .name = "89HPES32NT8AG2",
2850 .port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
2851 };
2852 static const struct idt_89hpes_cfg idt_89hpes32nt8bg2_config = {
2853 .name = "89HPES32NT8BG2",
2854 .port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
2855 };
2856 static const struct idt_89hpes_cfg idt_89hpes12nt12g2_config = {
2857 .name = "89HPES12NT12G2",
2858 .port_cnt = 3, .ports = {0, 8, 16}
2859 };
2860 static const struct idt_89hpes_cfg idt_89hpes16nt16g2_config = {
2861 .name = "89HPES16NT16G2",
2862 .port_cnt = 4, .ports = {0, 8, 12, 16}
2863 };
2864 static const struct idt_89hpes_cfg idt_89hpes24nt24g2_config = {
2865 .name = "89HPES24NT24G2",
2866 .port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
2867 };
2868 static const struct idt_89hpes_cfg idt_89hpes32nt24ag2_config = {
2869 .name = "89HPES32NT24AG2",
2870 .port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
2871 };
2872 static const struct idt_89hpes_cfg idt_89hpes32nt24bg2_config = {
2873 .name = "89HPES32NT24BG2",
2874 .port_cnt = 8, .ports = {0, 2, 4, 6, 8, 12, 16, 20}
2875 };
2876
2877 /*
2878 * PCI-ids table of the supported IDT PCIe-switch devices
2879 */
2880 static const struct pci_device_id idt_pci_tbl[] = {
2881 {IDT_PCI_DEVICE_IDS(89HPES24NT6AG2, idt_89hpes24nt6ag2_config)},
2882 {IDT_PCI_DEVICE_IDS(89HPES32NT8AG2, idt_89hpes32nt8ag2_config)},
2883 {IDT_PCI_DEVICE_IDS(89HPES32NT8BG2, idt_89hpes32nt8bg2_config)},
2884 {IDT_PCI_DEVICE_IDS(89HPES12NT12G2, idt_89hpes12nt12g2_config)},
2885 {IDT_PCI_DEVICE_IDS(89HPES16NT16G2, idt_89hpes16nt16g2_config)},
2886 {IDT_PCI_DEVICE_IDS(89HPES24NT24G2, idt_89hpes24nt24g2_config)},
2887 {IDT_PCI_DEVICE_IDS(89HPES32NT24AG2, idt_89hpes32nt24ag2_config)},
2888 {IDT_PCI_DEVICE_IDS(89HPES32NT24BG2, idt_89hpes32nt24bg2_config)},
2889 {0}
2890 };
2891 MODULE_DEVICE_TABLE(pci, idt_pci_tbl);
2892
2893 /*
2894 * IDT PCIe-switch NT-function device driver structure definition
2895 */
2896 static struct pci_driver idt_pci_driver = {
2897 .name = KBUILD_MODNAME,
2898 .probe = idt_pci_probe,
2899 .remove = idt_pci_remove,
2900 .id_table = idt_pci_tbl,
2901 };
2902
idt_pci_driver_init(void)2903 static int __init idt_pci_driver_init(void)
2904 {
2905 pr_info("%s %s\n", NTB_DESC, NTB_VER);
2906
2907 /* Create the top DebugFS directory if the FS is initialized */
2908 if (debugfs_initialized())
2909 dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
2910
2911 /* Register the NTB hardware driver to handle the PCI device */
2912 return pci_register_driver(&idt_pci_driver);
2913 }
2914 module_init(idt_pci_driver_init);
2915
idt_pci_driver_exit(void)2916 static void __exit idt_pci_driver_exit(void)
2917 {
2918 /* Unregister the NTB hardware driver */
2919 pci_unregister_driver(&idt_pci_driver);
2920
2921 /* Discard the top DebugFS directory */
2922 debugfs_remove_recursive(dbgfs_topdir);
2923 }
2924 module_exit(idt_pci_driver_exit);
2925
2926