1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include <linux/kernel.h>
19 #include "hw.h"
20 #include "ar9003_phy.h"
21 #include "ar9003_eeprom.h"
22 #include "ar9003_mci.h"
23 
24 #define COMP_HDR_LEN 4
25 #define COMP_CKSUM_LEN 2
26 
27 #define LE16(x) cpu_to_le16(x)
28 #define LE32(x) cpu_to_le32(x)
29 
30 /* Local defines to distinguish between extension and control CTL's */
31 #define EXT_ADDITIVE (0x8000)
32 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
33 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
34 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
35 
36 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
37 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
38 
39 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
40 
41 #define EEPROM_DATA_LEN_9485	1088
42 
43 static int ar9003_hw_power_interpolate(int32_t x,
44 				       int32_t *px, int32_t *py, u_int16_t np);
45 
46 static const struct ar9300_eeprom ar9300_default = {
47 	.eepromVersion = 2,
48 	.templateVersion = 2,
49 	.macAddr = {0, 2, 3, 4, 5, 6},
50 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
51 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
52 	.baseEepHeader = {
53 		.regDmn = { LE16(0), LE16(0x1f) },
54 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
55 		.opCapFlags = {
56 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
57 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
58 		},
59 		.rfSilent = 0,
60 		.blueToothOptions = 0,
61 		.deviceCap = 0,
62 		.deviceType = 5, /* takes lower byte in eeprom location */
63 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
64 		.params_for_tuning_caps = {0, 0},
65 		.featureEnable = 0x0c,
66 		 /*
67 		  * bit0 - enable tx temp comp - disabled
68 		  * bit1 - enable tx volt comp - disabled
69 		  * bit2 - enable fastClock - enabled
70 		  * bit3 - enable doubling - enabled
71 		  * bit4 - enable internal regulator - disabled
72 		  * bit5 - enable pa predistortion - disabled
73 		  */
74 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
75 		.eepromWriteEnableGpio = 3,
76 		.wlanDisableGpio = 0,
77 		.wlanLedGpio = 8,
78 		.rxBandSelectGpio = 0xff,
79 		.txrxgain = 0,
80 		.swreg = 0,
81 	 },
82 	.modalHeader2G = {
83 	/* ar9300_modal_eep_header  2g */
84 		/* 4 idle,t1,t2,b(4 bits per setting) */
85 		.antCtrlCommon = LE32(0x110),
86 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
87 		.antCtrlCommon2 = LE32(0x22222),
88 
89 		/*
90 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
91 		 * rx1, rx12, b (2 bits each)
92 		 */
93 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
94 
95 		/*
96 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
97 		 * for ar9280 (0xa20c/b20c 5:0)
98 		 */
99 		.xatten1DB = {0, 0, 0},
100 
101 		/*
102 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
103 		 * for ar9280 (0xa20c/b20c 16:12
104 		 */
105 		.xatten1Margin = {0, 0, 0},
106 		.tempSlope = 36,
107 		.voltSlope = 0,
108 
109 		/*
110 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
111 		 * channels in usual fbin coding format
112 		 */
113 		.spurChans = {0, 0, 0, 0, 0},
114 
115 		/*
116 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
117 		 * if the register is per chain
118 		 */
119 		.noiseFloorThreshCh = {-1, 0, 0},
120 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
121 		.quick_drop = 0,
122 		.xpaBiasLvl = 0,
123 		.txFrameToDataStart = 0x0e,
124 		.txFrameToPaOn = 0x0e,
125 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
126 		.antennaGain = 0,
127 		.switchSettling = 0x2c,
128 		.adcDesiredSize = -30,
129 		.txEndToXpaOff = 0,
130 		.txEndToRxOn = 0x2,
131 		.txFrameToXpaOn = 0xe,
132 		.thresh62 = 28,
133 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
134 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
135 		.switchcomspdt = 0,
136 		.xlna_bias_strength = 0,
137 		.futureModal = {
138 			0, 0, 0, 0, 0, 0, 0,
139 		},
140 	 },
141 	.base_ext1 = {
142 		.ant_div_control = 0,
143 		.future = {0, 0},
144 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
145 	},
146 	.calFreqPier2G = {
147 		FREQ2FBIN(2412, 1),
148 		FREQ2FBIN(2437, 1),
149 		FREQ2FBIN(2472, 1),
150 	 },
151 	/* ar9300_cal_data_per_freq_op_loop 2g */
152 	.calPierData2G = {
153 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
155 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
156 	 },
157 	.calTarget_freqbin_Cck = {
158 		FREQ2FBIN(2412, 1),
159 		FREQ2FBIN(2484, 1),
160 	 },
161 	.calTarget_freqbin_2G = {
162 		FREQ2FBIN(2412, 1),
163 		FREQ2FBIN(2437, 1),
164 		FREQ2FBIN(2472, 1)
165 	 },
166 	.calTarget_freqbin_2GHT20 = {
167 		FREQ2FBIN(2412, 1),
168 		FREQ2FBIN(2437, 1),
169 		FREQ2FBIN(2472, 1)
170 	 },
171 	.calTarget_freqbin_2GHT40 = {
172 		FREQ2FBIN(2412, 1),
173 		FREQ2FBIN(2437, 1),
174 		FREQ2FBIN(2472, 1)
175 	 },
176 	.calTargetPowerCck = {
177 		 /* 1L-5L,5S,11L,11S */
178 		 { {36, 36, 36, 36} },
179 		 { {36, 36, 36, 36} },
180 	},
181 	.calTargetPower2G = {
182 		 /* 6-24,36,48,54 */
183 		 { {32, 32, 28, 24} },
184 		 { {32, 32, 28, 24} },
185 		 { {32, 32, 28, 24} },
186 	},
187 	.calTargetPower2GHT20 = {
188 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 	},
192 	.calTargetPower2GHT40 = {
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
195 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
196 	},
197 	.ctlIndex_2G =  {
198 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
199 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
200 	},
201 	.ctl_freqbin_2G = {
202 		{
203 			FREQ2FBIN(2412, 1),
204 			FREQ2FBIN(2417, 1),
205 			FREQ2FBIN(2457, 1),
206 			FREQ2FBIN(2462, 1)
207 		},
208 		{
209 			FREQ2FBIN(2412, 1),
210 			FREQ2FBIN(2417, 1),
211 			FREQ2FBIN(2462, 1),
212 			0xFF,
213 		},
214 
215 		{
216 			FREQ2FBIN(2412, 1),
217 			FREQ2FBIN(2417, 1),
218 			FREQ2FBIN(2462, 1),
219 			0xFF,
220 		},
221 		{
222 			FREQ2FBIN(2422, 1),
223 			FREQ2FBIN(2427, 1),
224 			FREQ2FBIN(2447, 1),
225 			FREQ2FBIN(2452, 1)
226 		},
227 
228 		{
229 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
230 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
231 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
232 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
233 		},
234 
235 		{
236 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
237 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
238 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
239 			0,
240 		},
241 
242 		{
243 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
244 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
245 			FREQ2FBIN(2472, 1),
246 			0,
247 		},
248 
249 		{
250 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
251 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
252 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
253 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
254 		},
255 
256 		{
257 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
258 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
259 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
260 		},
261 
262 		{
263 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
264 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
265 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
266 			0
267 		},
268 
269 		{
270 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
271 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
272 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
273 			0
274 		},
275 
276 		{
277 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
278 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
279 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
280 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
281 		}
282 	 },
283 	.ctlPowerData_2G = {
284 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
285 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
287 
288 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
289 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
297 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
298 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
299 	 },
300 	.modalHeader5G = {
301 		/* 4 idle,t1,t2,b (4 bits per setting) */
302 		.antCtrlCommon = LE32(0x110),
303 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
304 		.antCtrlCommon2 = LE32(0x22222),
305 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
306 		.antCtrlChain = {
307 			LE16(0x000), LE16(0x000), LE16(0x000),
308 		},
309 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
310 		.xatten1DB = {0, 0, 0},
311 
312 		/*
313 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
314 		 * for merlin (0xa20c/b20c 16:12
315 		 */
316 		.xatten1Margin = {0, 0, 0},
317 		.tempSlope = 68,
318 		.voltSlope = 0,
319 		/* spurChans spur channels in usual fbin coding format */
320 		.spurChans = {0, 0, 0, 0, 0},
321 		/* noiseFloorThreshCh Check if the register is per chain */
322 		.noiseFloorThreshCh = {-1, 0, 0},
323 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
324 		.quick_drop = 0,
325 		.xpaBiasLvl = 0,
326 		.txFrameToDataStart = 0x0e,
327 		.txFrameToPaOn = 0x0e,
328 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
329 		.antennaGain = 0,
330 		.switchSettling = 0x2d,
331 		.adcDesiredSize = -30,
332 		.txEndToXpaOff = 0,
333 		.txEndToRxOn = 0x2,
334 		.txFrameToXpaOn = 0xe,
335 		.thresh62 = 28,
336 		.papdRateMaskHt20 = LE32(0x0c80c080),
337 		.papdRateMaskHt40 = LE32(0x0080c080),
338 		.switchcomspdt = 0,
339 		.xlna_bias_strength = 0,
340 		.futureModal = {
341 			0, 0, 0, 0, 0, 0, 0,
342 		},
343 	 },
344 	.base_ext2 = {
345 		.tempSlopeLow = 0,
346 		.tempSlopeHigh = 0,
347 		.xatten1DBLow = {0, 0, 0},
348 		.xatten1MarginLow = {0, 0, 0},
349 		.xatten1DBHigh = {0, 0, 0},
350 		.xatten1MarginHigh = {0, 0, 0}
351 	},
352 	.calFreqPier5G = {
353 		FREQ2FBIN(5180, 0),
354 		FREQ2FBIN(5220, 0),
355 		FREQ2FBIN(5320, 0),
356 		FREQ2FBIN(5400, 0),
357 		FREQ2FBIN(5500, 0),
358 		FREQ2FBIN(5600, 0),
359 		FREQ2FBIN(5725, 0),
360 		FREQ2FBIN(5825, 0)
361 	},
362 	.calPierData5G = {
363 			{
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 				{0, 0, 0, 0, 0},
370 				{0, 0, 0, 0, 0},
371 				{0, 0, 0, 0, 0},
372 			},
373 			{
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 				{0, 0, 0, 0, 0},
380 				{0, 0, 0, 0, 0},
381 				{0, 0, 0, 0, 0},
382 			},
383 			{
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 				{0, 0, 0, 0, 0},
392 			},
393 
394 	},
395 	.calTarget_freqbin_5G = {
396 		FREQ2FBIN(5180, 0),
397 		FREQ2FBIN(5220, 0),
398 		FREQ2FBIN(5320, 0),
399 		FREQ2FBIN(5400, 0),
400 		FREQ2FBIN(5500, 0),
401 		FREQ2FBIN(5600, 0),
402 		FREQ2FBIN(5725, 0),
403 		FREQ2FBIN(5825, 0)
404 	},
405 	.calTarget_freqbin_5GHT20 = {
406 		FREQ2FBIN(5180, 0),
407 		FREQ2FBIN(5240, 0),
408 		FREQ2FBIN(5320, 0),
409 		FREQ2FBIN(5500, 0),
410 		FREQ2FBIN(5700, 0),
411 		FREQ2FBIN(5745, 0),
412 		FREQ2FBIN(5725, 0),
413 		FREQ2FBIN(5825, 0)
414 	},
415 	.calTarget_freqbin_5GHT40 = {
416 		FREQ2FBIN(5180, 0),
417 		FREQ2FBIN(5240, 0),
418 		FREQ2FBIN(5320, 0),
419 		FREQ2FBIN(5500, 0),
420 		FREQ2FBIN(5700, 0),
421 		FREQ2FBIN(5745, 0),
422 		FREQ2FBIN(5725, 0),
423 		FREQ2FBIN(5825, 0)
424 	 },
425 	.calTargetPower5G = {
426 		/* 6-24,36,48,54 */
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 		{ {20, 20, 20, 10} },
433 		{ {20, 20, 20, 10} },
434 		{ {20, 20, 20, 10} },
435 	 },
436 	.calTargetPower5GHT20 = {
437 		/*
438 		 * 0_8_16,1-3_9-11_17-19,
439 		 * 4,5,6,7,12,13,14,15,20,21,22,23
440 		 */
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
449 	 },
450 	.calTargetPower5GHT40 =  {
451 		/*
452 		 * 0_8_16,1-3_9-11_17-19,
453 		 * 4,5,6,7,12,13,14,15,20,21,22,23
454 		 */
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 	 },
464 	.ctlIndex_5G =  {
465 		0x10, 0x16, 0x18, 0x40, 0x46,
466 		0x48, 0x30, 0x36, 0x38
467 	},
468 	.ctl_freqbin_5G =  {
469 		{
470 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
471 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
472 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
473 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
474 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
475 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
476 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
477 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
478 		},
479 		{
480 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
481 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
482 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
483 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
484 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
485 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
486 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
487 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
488 		},
489 
490 		{
491 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
492 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
493 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
494 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
495 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
496 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
497 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
498 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
499 		},
500 
501 		{
502 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
503 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
504 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
505 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
506 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
507 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
508 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
509 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
510 		},
511 
512 		{
513 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
514 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
515 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
516 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
517 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
518 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
519 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
520 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
521 		},
522 
523 		{
524 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
525 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
526 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
527 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
528 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
529 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
530 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
531 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
532 		},
533 
534 		{
535 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
536 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
537 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
538 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
539 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
540 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
541 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
542 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
543 		},
544 
545 		{
546 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
547 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
548 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
549 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
550 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
551 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
552 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
553 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
554 		},
555 
556 		{
557 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
558 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
559 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
560 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
561 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
562 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
563 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
564 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
565 		}
566 	 },
567 	.ctlPowerData_5G = {
568 		{
569 			{
570 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
571 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
572 			}
573 		},
574 		{
575 			{
576 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
577 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
578 			}
579 		},
580 		{
581 			{
582 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
583 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
584 			}
585 		},
586 		{
587 			{
588 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
589 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
590 			}
591 		},
592 		{
593 			{
594 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
595 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
596 			}
597 		},
598 		{
599 			{
600 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
601 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
602 			}
603 		},
604 		{
605 			{
606 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
607 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
608 			}
609 		},
610 		{
611 			{
612 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
613 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
614 			}
615 		},
616 		{
617 			{
618 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
619 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
620 			}
621 		},
622 	 }
623 };
624 
625 static const struct ar9300_eeprom ar9300_x113 = {
626 	.eepromVersion = 2,
627 	.templateVersion = 6,
628 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
629 	.custData = {"x113-023-f0000"},
630 	.baseEepHeader = {
631 		.regDmn = { LE16(0), LE16(0x1f) },
632 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
633 		.opCapFlags = {
634 			.opFlags = AR5416_OPFLAGS_11A,
635 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
636 		},
637 		.rfSilent = 0,
638 		.blueToothOptions = 0,
639 		.deviceCap = 0,
640 		.deviceType = 5, /* takes lower byte in eeprom location */
641 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
642 		.params_for_tuning_caps = {0, 0},
643 		.featureEnable = 0x0d,
644 		 /*
645 		  * bit0 - enable tx temp comp - disabled
646 		  * bit1 - enable tx volt comp - disabled
647 		  * bit2 - enable fastClock - enabled
648 		  * bit3 - enable doubling - enabled
649 		  * bit4 - enable internal regulator - disabled
650 		  * bit5 - enable pa predistortion - disabled
651 		  */
652 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
653 		.eepromWriteEnableGpio = 6,
654 		.wlanDisableGpio = 0,
655 		.wlanLedGpio = 8,
656 		.rxBandSelectGpio = 0xff,
657 		.txrxgain = 0x21,
658 		.swreg = 0,
659 	 },
660 	.modalHeader2G = {
661 	/* ar9300_modal_eep_header  2g */
662 		/* 4 idle,t1,t2,b(4 bits per setting) */
663 		.antCtrlCommon = LE32(0x110),
664 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
665 		.antCtrlCommon2 = LE32(0x44444),
666 
667 		/*
668 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
669 		 * rx1, rx12, b (2 bits each)
670 		 */
671 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
672 
673 		/*
674 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
675 		 * for ar9280 (0xa20c/b20c 5:0)
676 		 */
677 		.xatten1DB = {0, 0, 0},
678 
679 		/*
680 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
681 		 * for ar9280 (0xa20c/b20c 16:12
682 		 */
683 		.xatten1Margin = {0, 0, 0},
684 		.tempSlope = 25,
685 		.voltSlope = 0,
686 
687 		/*
688 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
689 		 * channels in usual fbin coding format
690 		 */
691 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
692 
693 		/*
694 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
695 		 * if the register is per chain
696 		 */
697 		.noiseFloorThreshCh = {-1, 0, 0},
698 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
699 		.quick_drop = 0,
700 		.xpaBiasLvl = 0,
701 		.txFrameToDataStart = 0x0e,
702 		.txFrameToPaOn = 0x0e,
703 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
704 		.antennaGain = 0,
705 		.switchSettling = 0x2c,
706 		.adcDesiredSize = -30,
707 		.txEndToXpaOff = 0,
708 		.txEndToRxOn = 0x2,
709 		.txFrameToXpaOn = 0xe,
710 		.thresh62 = 28,
711 		.papdRateMaskHt20 = LE32(0x0c80c080),
712 		.papdRateMaskHt40 = LE32(0x0080c080),
713 		.switchcomspdt = 0,
714 		.xlna_bias_strength = 0,
715 		.futureModal = {
716 			0, 0, 0, 0, 0, 0, 0,
717 		},
718 	 },
719 	 .base_ext1 = {
720 		.ant_div_control = 0,
721 		.future = {0, 0},
722 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
723 	 },
724 	.calFreqPier2G = {
725 		FREQ2FBIN(2412, 1),
726 		FREQ2FBIN(2437, 1),
727 		FREQ2FBIN(2472, 1),
728 	 },
729 	/* ar9300_cal_data_per_freq_op_loop 2g */
730 	.calPierData2G = {
731 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
732 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
733 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
734 	 },
735 	.calTarget_freqbin_Cck = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2472, 1),
738 	 },
739 	.calTarget_freqbin_2G = {
740 		FREQ2FBIN(2412, 1),
741 		FREQ2FBIN(2437, 1),
742 		FREQ2FBIN(2472, 1)
743 	 },
744 	.calTarget_freqbin_2GHT20 = {
745 		FREQ2FBIN(2412, 1),
746 		FREQ2FBIN(2437, 1),
747 		FREQ2FBIN(2472, 1)
748 	 },
749 	.calTarget_freqbin_2GHT40 = {
750 		FREQ2FBIN(2412, 1),
751 		FREQ2FBIN(2437, 1),
752 		FREQ2FBIN(2472, 1)
753 	 },
754 	.calTargetPowerCck = {
755 		 /* 1L-5L,5S,11L,11S */
756 		 { {34, 34, 34, 34} },
757 		 { {34, 34, 34, 34} },
758 	},
759 	.calTargetPower2G = {
760 		 /* 6-24,36,48,54 */
761 		 { {34, 34, 32, 32} },
762 		 { {34, 34, 32, 32} },
763 		 { {34, 34, 32, 32} },
764 	},
765 	.calTargetPower2GHT20 = {
766 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
767 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
768 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
769 	},
770 	.calTargetPower2GHT40 = {
771 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
772 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
773 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
774 	},
775 	.ctlIndex_2G =  {
776 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
777 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
778 	},
779 	.ctl_freqbin_2G = {
780 		{
781 			FREQ2FBIN(2412, 1),
782 			FREQ2FBIN(2417, 1),
783 			FREQ2FBIN(2457, 1),
784 			FREQ2FBIN(2462, 1)
785 		},
786 		{
787 			FREQ2FBIN(2412, 1),
788 			FREQ2FBIN(2417, 1),
789 			FREQ2FBIN(2462, 1),
790 			0xFF,
791 		},
792 
793 		{
794 			FREQ2FBIN(2412, 1),
795 			FREQ2FBIN(2417, 1),
796 			FREQ2FBIN(2462, 1),
797 			0xFF,
798 		},
799 		{
800 			FREQ2FBIN(2422, 1),
801 			FREQ2FBIN(2427, 1),
802 			FREQ2FBIN(2447, 1),
803 			FREQ2FBIN(2452, 1)
804 		},
805 
806 		{
807 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
808 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
809 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
810 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
811 		},
812 
813 		{
814 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
815 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
816 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
817 			0,
818 		},
819 
820 		{
821 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
822 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
823 			FREQ2FBIN(2472, 1),
824 			0,
825 		},
826 
827 		{
828 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
829 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
830 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
831 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
832 		},
833 
834 		{
835 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
836 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
837 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
838 		},
839 
840 		{
841 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
842 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
843 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
844 			0
845 		},
846 
847 		{
848 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
849 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
850 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
851 			0
852 		},
853 
854 		{
855 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
856 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
857 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
858 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
859 		}
860 	 },
861 	.ctlPowerData_2G = {
862 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
865 
866 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
873 
874 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
875 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
876 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
877 	 },
878 	.modalHeader5G = {
879 		/* 4 idle,t1,t2,b (4 bits per setting) */
880 		.antCtrlCommon = LE32(0x220),
881 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
882 		.antCtrlCommon2 = LE32(0x11111),
883 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
884 		.antCtrlChain = {
885 			LE16(0x150), LE16(0x150), LE16(0x150),
886 		},
887 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
888 		.xatten1DB = {0, 0, 0},
889 
890 		/*
891 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
892 		 * for merlin (0xa20c/b20c 16:12
893 		 */
894 		.xatten1Margin = {0, 0, 0},
895 		.tempSlope = 68,
896 		.voltSlope = 0,
897 		/* spurChans spur channels in usual fbin coding format */
898 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
899 		/* noiseFloorThreshCh Check if the register is per chain */
900 		.noiseFloorThreshCh = {-1, 0, 0},
901 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
902 		.quick_drop = 0,
903 		.xpaBiasLvl = 0xf,
904 		.txFrameToDataStart = 0x0e,
905 		.txFrameToPaOn = 0x0e,
906 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
907 		.antennaGain = 0,
908 		.switchSettling = 0x2d,
909 		.adcDesiredSize = -30,
910 		.txEndToXpaOff = 0,
911 		.txEndToRxOn = 0x2,
912 		.txFrameToXpaOn = 0xe,
913 		.thresh62 = 28,
914 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
915 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
916 		.switchcomspdt = 0,
917 		.xlna_bias_strength = 0,
918 		.futureModal = {
919 			0, 0, 0, 0, 0, 0, 0,
920 		},
921 	 },
922 	.base_ext2 = {
923 		.tempSlopeLow = 72,
924 		.tempSlopeHigh = 105,
925 		.xatten1DBLow = {0, 0, 0},
926 		.xatten1MarginLow = {0, 0, 0},
927 		.xatten1DBHigh = {0, 0, 0},
928 		.xatten1MarginHigh = {0, 0, 0}
929 	 },
930 	.calFreqPier5G = {
931 		FREQ2FBIN(5180, 0),
932 		FREQ2FBIN(5240, 0),
933 		FREQ2FBIN(5320, 0),
934 		FREQ2FBIN(5400, 0),
935 		FREQ2FBIN(5500, 0),
936 		FREQ2FBIN(5600, 0),
937 		FREQ2FBIN(5745, 0),
938 		FREQ2FBIN(5785, 0)
939 	},
940 	.calPierData5G = {
941 			{
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 				{0, 0, 0, 0, 0},
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 			},
951 			{
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 				{0, 0, 0, 0, 0},
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 			},
961 			{
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 				{0, 0, 0, 0, 0},
966 				{0, 0, 0, 0, 0},
967 				{0, 0, 0, 0, 0},
968 				{0, 0, 0, 0, 0},
969 				{0, 0, 0, 0, 0},
970 			},
971 
972 	},
973 	.calTarget_freqbin_5G = {
974 		FREQ2FBIN(5180, 0),
975 		FREQ2FBIN(5220, 0),
976 		FREQ2FBIN(5320, 0),
977 		FREQ2FBIN(5400, 0),
978 		FREQ2FBIN(5500, 0),
979 		FREQ2FBIN(5600, 0),
980 		FREQ2FBIN(5745, 0),
981 		FREQ2FBIN(5785, 0)
982 	},
983 	.calTarget_freqbin_5GHT20 = {
984 		FREQ2FBIN(5180, 0),
985 		FREQ2FBIN(5240, 0),
986 		FREQ2FBIN(5320, 0),
987 		FREQ2FBIN(5400, 0),
988 		FREQ2FBIN(5500, 0),
989 		FREQ2FBIN(5700, 0),
990 		FREQ2FBIN(5745, 0),
991 		FREQ2FBIN(5825, 0)
992 	},
993 	.calTarget_freqbin_5GHT40 = {
994 		FREQ2FBIN(5190, 0),
995 		FREQ2FBIN(5230, 0),
996 		FREQ2FBIN(5320, 0),
997 		FREQ2FBIN(5410, 0),
998 		FREQ2FBIN(5510, 0),
999 		FREQ2FBIN(5670, 0),
1000 		FREQ2FBIN(5755, 0),
1001 		FREQ2FBIN(5825, 0)
1002 	 },
1003 	.calTargetPower5G = {
1004 		/* 6-24,36,48,54 */
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 		{ {42, 40, 40, 34} },
1008 		{ {42, 40, 40, 34} },
1009 		{ {42, 40, 40, 34} },
1010 		{ {42, 40, 40, 34} },
1011 		{ {42, 40, 40, 34} },
1012 		{ {42, 40, 40, 34} },
1013 	 },
1014 	.calTargetPower5GHT20 = {
1015 		/*
1016 		 * 0_8_16,1-3_9-11_17-19,
1017 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1018 		 */
1019 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1021 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1025 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1026 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1027 	 },
1028 	.calTargetPower5GHT40 =  {
1029 		/*
1030 		 * 0_8_16,1-3_9-11_17-19,
1031 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1032 		 */
1033 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1035 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1039 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1040 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1041 	 },
1042 	.ctlIndex_5G =  {
1043 		0x10, 0x16, 0x18, 0x40, 0x46,
1044 		0x48, 0x30, 0x36, 0x38
1045 	},
1046 	.ctl_freqbin_5G =  {
1047 		{
1048 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1049 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1050 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1051 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1052 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1053 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1054 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1055 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1056 		},
1057 		{
1058 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1059 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1060 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1061 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1062 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1063 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1064 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1065 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1066 		},
1067 
1068 		{
1069 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1070 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1071 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1072 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1073 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1074 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1075 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1076 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1077 		},
1078 
1079 		{
1080 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1081 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1082 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1083 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1084 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1085 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1086 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1087 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1088 		},
1089 
1090 		{
1091 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1092 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1093 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1094 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1095 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1096 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1097 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1098 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1099 		},
1100 
1101 		{
1102 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1103 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1104 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1105 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1106 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1107 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1108 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1109 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1110 		},
1111 
1112 		{
1113 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1114 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1115 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1116 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1117 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1118 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1119 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1120 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1121 		},
1122 
1123 		{
1124 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1125 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1126 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1127 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1128 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1129 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1130 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1131 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1132 		},
1133 
1134 		{
1135 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1136 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1137 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1138 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1139 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1140 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1141 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1142 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1143 		}
1144 	 },
1145 	.ctlPowerData_5G = {
1146 		{
1147 			{
1148 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1149 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1150 			}
1151 		},
1152 		{
1153 			{
1154 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1155 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1156 			}
1157 		},
1158 		{
1159 			{
1160 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1161 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1162 			}
1163 		},
1164 		{
1165 			{
1166 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1167 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1168 			}
1169 		},
1170 		{
1171 			{
1172 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1173 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1174 			}
1175 		},
1176 		{
1177 			{
1178 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1179 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1180 			}
1181 		},
1182 		{
1183 			{
1184 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1185 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1186 			}
1187 		},
1188 		{
1189 			{
1190 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1191 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1192 			}
1193 		},
1194 		{
1195 			{
1196 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1197 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1198 			}
1199 		},
1200 	 }
1201 };
1202 
1203 
1204 static const struct ar9300_eeprom ar9300_h112 = {
1205 	.eepromVersion = 2,
1206 	.templateVersion = 3,
1207 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1208 	.custData = {"h112-241-f0000"},
1209 	.baseEepHeader = {
1210 		.regDmn = { LE16(0), LE16(0x1f) },
1211 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1212 		.opCapFlags = {
1213 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1214 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
1215 		},
1216 		.rfSilent = 0,
1217 		.blueToothOptions = 0,
1218 		.deviceCap = 0,
1219 		.deviceType = 5, /* takes lower byte in eeprom location */
1220 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1221 		.params_for_tuning_caps = {0, 0},
1222 		.featureEnable = 0x0d,
1223 		/*
1224 		 * bit0 - enable tx temp comp - disabled
1225 		 * bit1 - enable tx volt comp - disabled
1226 		 * bit2 - enable fastClock - enabled
1227 		 * bit3 - enable doubling - enabled
1228 		 * bit4 - enable internal regulator - disabled
1229 		 * bit5 - enable pa predistortion - disabled
1230 		 */
1231 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1232 		.eepromWriteEnableGpio = 6,
1233 		.wlanDisableGpio = 0,
1234 		.wlanLedGpio = 8,
1235 		.rxBandSelectGpio = 0xff,
1236 		.txrxgain = 0x10,
1237 		.swreg = 0,
1238 	},
1239 	.modalHeader2G = {
1240 		/* ar9300_modal_eep_header  2g */
1241 		/* 4 idle,t1,t2,b(4 bits per setting) */
1242 		.antCtrlCommon = LE32(0x110),
1243 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1244 		.antCtrlCommon2 = LE32(0x44444),
1245 
1246 		/*
1247 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1248 		 * rx1, rx12, b (2 bits each)
1249 		 */
1250 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1251 
1252 		/*
1253 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1254 		 * for ar9280 (0xa20c/b20c 5:0)
1255 		 */
1256 		.xatten1DB = {0, 0, 0},
1257 
1258 		/*
1259 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1260 		 * for ar9280 (0xa20c/b20c 16:12
1261 		 */
1262 		.xatten1Margin = {0, 0, 0},
1263 		.tempSlope = 25,
1264 		.voltSlope = 0,
1265 
1266 		/*
1267 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1268 		 * channels in usual fbin coding format
1269 		 */
1270 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1271 
1272 		/*
1273 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1274 		 * if the register is per chain
1275 		 */
1276 		.noiseFloorThreshCh = {-1, 0, 0},
1277 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1278 		.quick_drop = 0,
1279 		.xpaBiasLvl = 0,
1280 		.txFrameToDataStart = 0x0e,
1281 		.txFrameToPaOn = 0x0e,
1282 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1283 		.antennaGain = 0,
1284 		.switchSettling = 0x2c,
1285 		.adcDesiredSize = -30,
1286 		.txEndToXpaOff = 0,
1287 		.txEndToRxOn = 0x2,
1288 		.txFrameToXpaOn = 0xe,
1289 		.thresh62 = 28,
1290 		.papdRateMaskHt20 = LE32(0x0c80c080),
1291 		.papdRateMaskHt40 = LE32(0x0080c080),
1292 		.switchcomspdt = 0,
1293 		.xlna_bias_strength = 0,
1294 		.futureModal = {
1295 			0, 0, 0, 0, 0, 0, 0,
1296 		},
1297 	},
1298 	.base_ext1 = {
1299 		.ant_div_control = 0,
1300 		.future = {0, 0},
1301 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1302 	},
1303 	.calFreqPier2G = {
1304 		FREQ2FBIN(2412, 1),
1305 		FREQ2FBIN(2437, 1),
1306 		FREQ2FBIN(2462, 1),
1307 	},
1308 	/* ar9300_cal_data_per_freq_op_loop 2g */
1309 	.calPierData2G = {
1310 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1311 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1313 	},
1314 	.calTarget_freqbin_Cck = {
1315 		FREQ2FBIN(2412, 1),
1316 		FREQ2FBIN(2472, 1),
1317 	},
1318 	.calTarget_freqbin_2G = {
1319 		FREQ2FBIN(2412, 1),
1320 		FREQ2FBIN(2437, 1),
1321 		FREQ2FBIN(2472, 1)
1322 	},
1323 	.calTarget_freqbin_2GHT20 = {
1324 		FREQ2FBIN(2412, 1),
1325 		FREQ2FBIN(2437, 1),
1326 		FREQ2FBIN(2472, 1)
1327 	},
1328 	.calTarget_freqbin_2GHT40 = {
1329 		FREQ2FBIN(2412, 1),
1330 		FREQ2FBIN(2437, 1),
1331 		FREQ2FBIN(2472, 1)
1332 	},
1333 	.calTargetPowerCck = {
1334 		/* 1L-5L,5S,11L,11S */
1335 		{ {34, 34, 34, 34} },
1336 		{ {34, 34, 34, 34} },
1337 	},
1338 	.calTargetPower2G = {
1339 		/* 6-24,36,48,54 */
1340 		{ {34, 34, 32, 32} },
1341 		{ {34, 34, 32, 32} },
1342 		{ {34, 34, 32, 32} },
1343 	},
1344 	.calTargetPower2GHT20 = {
1345 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1346 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1348 	},
1349 	.calTargetPower2GHT40 = {
1350 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1351 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1353 	},
1354 	.ctlIndex_2G =  {
1355 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1356 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1357 	},
1358 	.ctl_freqbin_2G = {
1359 		{
1360 			FREQ2FBIN(2412, 1),
1361 			FREQ2FBIN(2417, 1),
1362 			FREQ2FBIN(2457, 1),
1363 			FREQ2FBIN(2462, 1)
1364 		},
1365 		{
1366 			FREQ2FBIN(2412, 1),
1367 			FREQ2FBIN(2417, 1),
1368 			FREQ2FBIN(2462, 1),
1369 			0xFF,
1370 		},
1371 
1372 		{
1373 			FREQ2FBIN(2412, 1),
1374 			FREQ2FBIN(2417, 1),
1375 			FREQ2FBIN(2462, 1),
1376 			0xFF,
1377 		},
1378 		{
1379 			FREQ2FBIN(2422, 1),
1380 			FREQ2FBIN(2427, 1),
1381 			FREQ2FBIN(2447, 1),
1382 			FREQ2FBIN(2452, 1)
1383 		},
1384 
1385 		{
1386 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1387 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1388 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1389 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1390 		},
1391 
1392 		{
1393 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1394 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1395 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1396 			0,
1397 		},
1398 
1399 		{
1400 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1401 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1402 			FREQ2FBIN(2472, 1),
1403 			0,
1404 		},
1405 
1406 		{
1407 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1408 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1409 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1410 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1411 		},
1412 
1413 		{
1414 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 		},
1418 
1419 		{
1420 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1421 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1422 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1423 			0
1424 		},
1425 
1426 		{
1427 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1428 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1429 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1430 			0
1431 		},
1432 
1433 		{
1434 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1435 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1436 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1437 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1438 		}
1439 	},
1440 	.ctlPowerData_2G = {
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1444 
1445 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1446 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1447 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 
1449 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1450 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1451 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1452 
1453 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1454 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1455 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1456 	},
1457 	.modalHeader5G = {
1458 		/* 4 idle,t1,t2,b (4 bits per setting) */
1459 		.antCtrlCommon = LE32(0x220),
1460 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1461 		.antCtrlCommon2 = LE32(0x44444),
1462 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1463 		.antCtrlChain = {
1464 			LE16(0x150), LE16(0x150), LE16(0x150),
1465 		},
1466 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1467 		.xatten1DB = {0, 0, 0},
1468 
1469 		/*
1470 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1471 		 * for merlin (0xa20c/b20c 16:12
1472 		 */
1473 		.xatten1Margin = {0, 0, 0},
1474 		.tempSlope = 45,
1475 		.voltSlope = 0,
1476 		/* spurChans spur channels in usual fbin coding format */
1477 		.spurChans = {0, 0, 0, 0, 0},
1478 		/* noiseFloorThreshCh Check if the register is per chain */
1479 		.noiseFloorThreshCh = {-1, 0, 0},
1480 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1481 		.quick_drop = 0,
1482 		.xpaBiasLvl = 0,
1483 		.txFrameToDataStart = 0x0e,
1484 		.txFrameToPaOn = 0x0e,
1485 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1486 		.antennaGain = 0,
1487 		.switchSettling = 0x2d,
1488 		.adcDesiredSize = -30,
1489 		.txEndToXpaOff = 0,
1490 		.txEndToRxOn = 0x2,
1491 		.txFrameToXpaOn = 0xe,
1492 		.thresh62 = 28,
1493 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1494 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1495 		.switchcomspdt = 0,
1496 		.xlna_bias_strength = 0,
1497 		.futureModal = {
1498 			0, 0, 0, 0, 0, 0, 0,
1499 		},
1500 	},
1501 	.base_ext2 = {
1502 		.tempSlopeLow = 40,
1503 		.tempSlopeHigh = 50,
1504 		.xatten1DBLow = {0, 0, 0},
1505 		.xatten1MarginLow = {0, 0, 0},
1506 		.xatten1DBHigh = {0, 0, 0},
1507 		.xatten1MarginHigh = {0, 0, 0}
1508 	},
1509 	.calFreqPier5G = {
1510 		FREQ2FBIN(5180, 0),
1511 		FREQ2FBIN(5220, 0),
1512 		FREQ2FBIN(5320, 0),
1513 		FREQ2FBIN(5400, 0),
1514 		FREQ2FBIN(5500, 0),
1515 		FREQ2FBIN(5600, 0),
1516 		FREQ2FBIN(5700, 0),
1517 		FREQ2FBIN(5785, 0)
1518 	},
1519 	.calPierData5G = {
1520 		{
1521 			{0, 0, 0, 0, 0},
1522 			{0, 0, 0, 0, 0},
1523 			{0, 0, 0, 0, 0},
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 		},
1530 		{
1531 			{0, 0, 0, 0, 0},
1532 			{0, 0, 0, 0, 0},
1533 			{0, 0, 0, 0, 0},
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 		},
1540 		{
1541 			{0, 0, 0, 0, 0},
1542 			{0, 0, 0, 0, 0},
1543 			{0, 0, 0, 0, 0},
1544 			{0, 0, 0, 0, 0},
1545 			{0, 0, 0, 0, 0},
1546 			{0, 0, 0, 0, 0},
1547 			{0, 0, 0, 0, 0},
1548 			{0, 0, 0, 0, 0},
1549 		},
1550 
1551 	},
1552 	.calTarget_freqbin_5G = {
1553 		FREQ2FBIN(5180, 0),
1554 		FREQ2FBIN(5240, 0),
1555 		FREQ2FBIN(5320, 0),
1556 		FREQ2FBIN(5400, 0),
1557 		FREQ2FBIN(5500, 0),
1558 		FREQ2FBIN(5600, 0),
1559 		FREQ2FBIN(5700, 0),
1560 		FREQ2FBIN(5825, 0)
1561 	},
1562 	.calTarget_freqbin_5GHT20 = {
1563 		FREQ2FBIN(5180, 0),
1564 		FREQ2FBIN(5240, 0),
1565 		FREQ2FBIN(5320, 0),
1566 		FREQ2FBIN(5400, 0),
1567 		FREQ2FBIN(5500, 0),
1568 		FREQ2FBIN(5700, 0),
1569 		FREQ2FBIN(5745, 0),
1570 		FREQ2FBIN(5825, 0)
1571 	},
1572 	.calTarget_freqbin_5GHT40 = {
1573 		FREQ2FBIN(5180, 0),
1574 		FREQ2FBIN(5240, 0),
1575 		FREQ2FBIN(5320, 0),
1576 		FREQ2FBIN(5400, 0),
1577 		FREQ2FBIN(5500, 0),
1578 		FREQ2FBIN(5700, 0),
1579 		FREQ2FBIN(5745, 0),
1580 		FREQ2FBIN(5825, 0)
1581 	},
1582 	.calTargetPower5G = {
1583 		/* 6-24,36,48,54 */
1584 		{ {30, 30, 28, 24} },
1585 		{ {30, 30, 28, 24} },
1586 		{ {30, 30, 28, 24} },
1587 		{ {30, 30, 28, 24} },
1588 		{ {30, 30, 28, 24} },
1589 		{ {30, 30, 28, 24} },
1590 		{ {30, 30, 28, 24} },
1591 		{ {30, 30, 28, 24} },
1592 	},
1593 	.calTargetPower5GHT20 = {
1594 		/*
1595 		 * 0_8_16,1-3_9-11_17-19,
1596 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1597 		 */
1598 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1599 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1600 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1601 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1602 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1603 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1604 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1605 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1606 	},
1607 	.calTargetPower5GHT40 =  {
1608 		/*
1609 		 * 0_8_16,1-3_9-11_17-19,
1610 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1611 		 */
1612 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1613 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1614 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1615 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1616 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1617 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1618 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1619 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1620 	},
1621 	.ctlIndex_5G =  {
1622 		0x10, 0x16, 0x18, 0x40, 0x46,
1623 		0x48, 0x30, 0x36, 0x38
1624 	},
1625 	.ctl_freqbin_5G =  {
1626 		{
1627 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1628 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1629 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1630 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1631 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1632 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1633 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1634 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1635 		},
1636 		{
1637 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1638 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1639 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1640 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1641 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1642 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1643 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1644 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1645 		},
1646 
1647 		{
1648 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1649 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1650 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1651 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1652 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1653 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1654 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1655 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1656 		},
1657 
1658 		{
1659 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1660 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1661 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1662 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1663 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1664 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1665 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1666 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1667 		},
1668 
1669 		{
1670 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1671 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1672 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1673 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1674 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1675 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1676 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1677 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1678 		},
1679 
1680 		{
1681 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1682 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1683 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1684 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1685 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1686 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1687 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1688 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1689 		},
1690 
1691 		{
1692 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1693 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1694 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1695 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1696 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1697 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1698 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1699 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1700 		},
1701 
1702 		{
1703 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1704 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1705 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1706 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1707 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1708 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1709 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1710 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1711 		},
1712 
1713 		{
1714 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1715 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1716 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1717 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1718 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1719 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1720 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1721 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1722 		}
1723 	},
1724 	.ctlPowerData_5G = {
1725 		{
1726 			{
1727 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1728 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1729 			}
1730 		},
1731 		{
1732 			{
1733 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1735 			}
1736 		},
1737 		{
1738 			{
1739 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1740 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1741 			}
1742 		},
1743 		{
1744 			{
1745 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1746 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1747 			}
1748 		},
1749 		{
1750 			{
1751 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1752 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1753 			}
1754 		},
1755 		{
1756 			{
1757 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1759 			}
1760 		},
1761 		{
1762 			{
1763 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1764 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1765 			}
1766 		},
1767 		{
1768 			{
1769 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1771 			}
1772 		},
1773 		{
1774 			{
1775 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1776 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1777 			}
1778 		},
1779 	}
1780 };
1781 
1782 
1783 static const struct ar9300_eeprom ar9300_x112 = {
1784 	.eepromVersion = 2,
1785 	.templateVersion = 5,
1786 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1787 	.custData = {"x112-041-f0000"},
1788 	.baseEepHeader = {
1789 		.regDmn = { LE16(0), LE16(0x1f) },
1790 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1791 		.opCapFlags = {
1792 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1793 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
1794 		},
1795 		.rfSilent = 0,
1796 		.blueToothOptions = 0,
1797 		.deviceCap = 0,
1798 		.deviceType = 5, /* takes lower byte in eeprom location */
1799 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1800 		.params_for_tuning_caps = {0, 0},
1801 		.featureEnable = 0x0d,
1802 		/*
1803 		 * bit0 - enable tx temp comp - disabled
1804 		 * bit1 - enable tx volt comp - disabled
1805 		 * bit2 - enable fastclock - enabled
1806 		 * bit3 - enable doubling - enabled
1807 		 * bit4 - enable internal regulator - disabled
1808 		 * bit5 - enable pa predistortion - disabled
1809 		 */
1810 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1811 		.eepromWriteEnableGpio = 6,
1812 		.wlanDisableGpio = 0,
1813 		.wlanLedGpio = 8,
1814 		.rxBandSelectGpio = 0xff,
1815 		.txrxgain = 0x0,
1816 		.swreg = 0,
1817 	},
1818 	.modalHeader2G = {
1819 		/* ar9300_modal_eep_header  2g */
1820 		/* 4 idle,t1,t2,b(4 bits per setting) */
1821 		.antCtrlCommon = LE32(0x110),
1822 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1823 		.antCtrlCommon2 = LE32(0x22222),
1824 
1825 		/*
1826 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1827 		 * rx1, rx12, b (2 bits each)
1828 		 */
1829 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1830 
1831 		/*
1832 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1833 		 * for ar9280 (0xa20c/b20c 5:0)
1834 		 */
1835 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1836 
1837 		/*
1838 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1839 		 * for ar9280 (0xa20c/b20c 16:12
1840 		 */
1841 		.xatten1Margin = {0x15, 0x15, 0x15},
1842 		.tempSlope = 50,
1843 		.voltSlope = 0,
1844 
1845 		/*
1846 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1847 		 * channels in usual fbin coding format
1848 		 */
1849 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1850 
1851 		/*
1852 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1853 		 * if the register is per chain
1854 		 */
1855 		.noiseFloorThreshCh = {-1, 0, 0},
1856 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1857 		.quick_drop = 0,
1858 		.xpaBiasLvl = 0,
1859 		.txFrameToDataStart = 0x0e,
1860 		.txFrameToPaOn = 0x0e,
1861 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1862 		.antennaGain = 0,
1863 		.switchSettling = 0x2c,
1864 		.adcDesiredSize = -30,
1865 		.txEndToXpaOff = 0,
1866 		.txEndToRxOn = 0x2,
1867 		.txFrameToXpaOn = 0xe,
1868 		.thresh62 = 28,
1869 		.papdRateMaskHt20 = LE32(0x0c80c080),
1870 		.papdRateMaskHt40 = LE32(0x0080c080),
1871 		.switchcomspdt = 0,
1872 		.xlna_bias_strength = 0,
1873 		.futureModal = {
1874 			0, 0, 0, 0, 0, 0, 0,
1875 		},
1876 	},
1877 	.base_ext1 = {
1878 		.ant_div_control = 0,
1879 		.future = {0, 0},
1880 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1881 	},
1882 	.calFreqPier2G = {
1883 		FREQ2FBIN(2412, 1),
1884 		FREQ2FBIN(2437, 1),
1885 		FREQ2FBIN(2472, 1),
1886 	},
1887 	/* ar9300_cal_data_per_freq_op_loop 2g */
1888 	.calPierData2G = {
1889 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1892 	},
1893 	.calTarget_freqbin_Cck = {
1894 		FREQ2FBIN(2412, 1),
1895 		FREQ2FBIN(2472, 1),
1896 	},
1897 	.calTarget_freqbin_2G = {
1898 		FREQ2FBIN(2412, 1),
1899 		FREQ2FBIN(2437, 1),
1900 		FREQ2FBIN(2472, 1)
1901 	},
1902 	.calTarget_freqbin_2GHT20 = {
1903 		FREQ2FBIN(2412, 1),
1904 		FREQ2FBIN(2437, 1),
1905 		FREQ2FBIN(2472, 1)
1906 	},
1907 	.calTarget_freqbin_2GHT40 = {
1908 		FREQ2FBIN(2412, 1),
1909 		FREQ2FBIN(2437, 1),
1910 		FREQ2FBIN(2472, 1)
1911 	},
1912 	.calTargetPowerCck = {
1913 		/* 1L-5L,5S,11L,11s */
1914 		{ {38, 38, 38, 38} },
1915 		{ {38, 38, 38, 38} },
1916 	},
1917 	.calTargetPower2G = {
1918 		/* 6-24,36,48,54 */
1919 		{ {38, 38, 36, 34} },
1920 		{ {38, 38, 36, 34} },
1921 		{ {38, 38, 34, 32} },
1922 	},
1923 	.calTargetPower2GHT20 = {
1924 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1925 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1926 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1927 	},
1928 	.calTargetPower2GHT40 = {
1929 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1930 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1931 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1932 	},
1933 	.ctlIndex_2G =  {
1934 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1935 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1936 	},
1937 	.ctl_freqbin_2G = {
1938 		{
1939 			FREQ2FBIN(2412, 1),
1940 			FREQ2FBIN(2417, 1),
1941 			FREQ2FBIN(2457, 1),
1942 			FREQ2FBIN(2462, 1)
1943 		},
1944 		{
1945 			FREQ2FBIN(2412, 1),
1946 			FREQ2FBIN(2417, 1),
1947 			FREQ2FBIN(2462, 1),
1948 			0xFF,
1949 		},
1950 
1951 		{
1952 			FREQ2FBIN(2412, 1),
1953 			FREQ2FBIN(2417, 1),
1954 			FREQ2FBIN(2462, 1),
1955 			0xFF,
1956 		},
1957 		{
1958 			FREQ2FBIN(2422, 1),
1959 			FREQ2FBIN(2427, 1),
1960 			FREQ2FBIN(2447, 1),
1961 			FREQ2FBIN(2452, 1)
1962 		},
1963 
1964 		{
1965 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1968 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1969 		},
1970 
1971 		{
1972 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1973 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1974 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1975 			0,
1976 		},
1977 
1978 		{
1979 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 			FREQ2FBIN(2472, 1),
1982 			0,
1983 		},
1984 
1985 		{
1986 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1987 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1988 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1989 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1990 		},
1991 
1992 		{
1993 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1994 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1995 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1996 		},
1997 
1998 		{
1999 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2000 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2001 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2002 			0
2003 		},
2004 
2005 		{
2006 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2007 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2008 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2009 			0
2010 		},
2011 
2012 		{
2013 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2014 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2015 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2016 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2017 		}
2018 	},
2019 	.ctlPowerData_2G = {
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2023 
2024 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2027 
2028 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2029 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2031 
2032 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2033 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2035 	},
2036 	.modalHeader5G = {
2037 		/* 4 idle,t1,t2,b (4 bits per setting) */
2038 		.antCtrlCommon = LE32(0x110),
2039 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2040 		.antCtrlCommon2 = LE32(0x22222),
2041 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2042 		.antCtrlChain = {
2043 			LE16(0x0), LE16(0x0), LE16(0x0),
2044 		},
2045 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2046 		.xatten1DB = {0x13, 0x19, 0x17},
2047 
2048 		/*
2049 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2050 		 * for merlin (0xa20c/b20c 16:12
2051 		 */
2052 		.xatten1Margin = {0x19, 0x19, 0x19},
2053 		.tempSlope = 70,
2054 		.voltSlope = 15,
2055 		/* spurChans spur channels in usual fbin coding format */
2056 		.spurChans = {0, 0, 0, 0, 0},
2057 		/* noiseFloorThreshch check if the register is per chain */
2058 		.noiseFloorThreshCh = {-1, 0, 0},
2059 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2060 		.quick_drop = 0,
2061 		.xpaBiasLvl = 0,
2062 		.txFrameToDataStart = 0x0e,
2063 		.txFrameToPaOn = 0x0e,
2064 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2065 		.antennaGain = 0,
2066 		.switchSettling = 0x2d,
2067 		.adcDesiredSize = -30,
2068 		.txEndToXpaOff = 0,
2069 		.txEndToRxOn = 0x2,
2070 		.txFrameToXpaOn = 0xe,
2071 		.thresh62 = 28,
2072 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2073 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2074 		.switchcomspdt = 0,
2075 		.xlna_bias_strength = 0,
2076 		.futureModal = {
2077 			0, 0, 0, 0, 0, 0, 0,
2078 		},
2079 	},
2080 	.base_ext2 = {
2081 		.tempSlopeLow = 72,
2082 		.tempSlopeHigh = 105,
2083 		.xatten1DBLow = {0x10, 0x14, 0x10},
2084 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2085 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2086 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2087 	},
2088 	.calFreqPier5G = {
2089 		FREQ2FBIN(5180, 0),
2090 		FREQ2FBIN(5220, 0),
2091 		FREQ2FBIN(5320, 0),
2092 		FREQ2FBIN(5400, 0),
2093 		FREQ2FBIN(5500, 0),
2094 		FREQ2FBIN(5600, 0),
2095 		FREQ2FBIN(5700, 0),
2096 		FREQ2FBIN(5785, 0)
2097 	},
2098 	.calPierData5G = {
2099 		{
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 		},
2109 		{
2110 			{0, 0, 0, 0, 0},
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 			{0, 0, 0, 0, 0},
2118 		},
2119 		{
2120 			{0, 0, 0, 0, 0},
2121 			{0, 0, 0, 0, 0},
2122 			{0, 0, 0, 0, 0},
2123 			{0, 0, 0, 0, 0},
2124 			{0, 0, 0, 0, 0},
2125 			{0, 0, 0, 0, 0},
2126 			{0, 0, 0, 0, 0},
2127 			{0, 0, 0, 0, 0},
2128 		},
2129 
2130 	},
2131 	.calTarget_freqbin_5G = {
2132 		FREQ2FBIN(5180, 0),
2133 		FREQ2FBIN(5220, 0),
2134 		FREQ2FBIN(5320, 0),
2135 		FREQ2FBIN(5400, 0),
2136 		FREQ2FBIN(5500, 0),
2137 		FREQ2FBIN(5600, 0),
2138 		FREQ2FBIN(5725, 0),
2139 		FREQ2FBIN(5825, 0)
2140 	},
2141 	.calTarget_freqbin_5GHT20 = {
2142 		FREQ2FBIN(5180, 0),
2143 		FREQ2FBIN(5220, 0),
2144 		FREQ2FBIN(5320, 0),
2145 		FREQ2FBIN(5400, 0),
2146 		FREQ2FBIN(5500, 0),
2147 		FREQ2FBIN(5600, 0),
2148 		FREQ2FBIN(5725, 0),
2149 		FREQ2FBIN(5825, 0)
2150 	},
2151 	.calTarget_freqbin_5GHT40 = {
2152 		FREQ2FBIN(5180, 0),
2153 		FREQ2FBIN(5220, 0),
2154 		FREQ2FBIN(5320, 0),
2155 		FREQ2FBIN(5400, 0),
2156 		FREQ2FBIN(5500, 0),
2157 		FREQ2FBIN(5600, 0),
2158 		FREQ2FBIN(5725, 0),
2159 		FREQ2FBIN(5825, 0)
2160 	},
2161 	.calTargetPower5G = {
2162 		/* 6-24,36,48,54 */
2163 		{ {32, 32, 28, 26} },
2164 		{ {32, 32, 28, 26} },
2165 		{ {32, 32, 28, 26} },
2166 		{ {32, 32, 26, 24} },
2167 		{ {32, 32, 26, 24} },
2168 		{ {32, 32, 24, 22} },
2169 		{ {30, 30, 24, 22} },
2170 		{ {30, 30, 24, 22} },
2171 	},
2172 	.calTargetPower5GHT20 = {
2173 		/*
2174 		 * 0_8_16,1-3_9-11_17-19,
2175 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2176 		 */
2177 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2180 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2181 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2182 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2183 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2185 	},
2186 	.calTargetPower5GHT40 =  {
2187 		/*
2188 		 * 0_8_16,1-3_9-11_17-19,
2189 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2190 		 */
2191 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2194 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2195 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2196 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2199 	},
2200 	.ctlIndex_5G =  {
2201 		0x10, 0x16, 0x18, 0x40, 0x46,
2202 		0x48, 0x30, 0x36, 0x38
2203 	},
2204 	.ctl_freqbin_5G =  {
2205 		{
2206 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2207 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2208 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2209 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2210 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2211 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2212 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2213 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2214 		},
2215 		{
2216 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2217 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2218 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2219 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2220 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2221 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2222 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2223 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2224 		},
2225 
2226 		{
2227 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2228 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2229 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2230 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2231 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2232 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2233 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2234 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2235 		},
2236 
2237 		{
2238 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2239 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2240 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2241 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2242 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2243 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2244 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2245 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2246 		},
2247 
2248 		{
2249 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2250 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2251 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2252 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2253 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2254 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2255 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2256 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2257 		},
2258 
2259 		{
2260 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2261 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2262 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2263 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2264 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2265 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2266 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2267 			/* Data[5].ctledges[7].bchannel */ 0xFF
2268 		},
2269 
2270 		{
2271 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2272 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2273 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2274 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2275 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2276 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2277 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2278 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2279 		},
2280 
2281 		{
2282 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2283 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2284 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2285 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2286 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2287 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2288 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2289 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2290 		},
2291 
2292 		{
2293 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2294 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2295 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2296 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2297 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2298 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2299 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2300 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2301 		}
2302 	},
2303 	.ctlPowerData_5G = {
2304 		{
2305 			{
2306 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2307 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2308 			}
2309 		},
2310 		{
2311 			{
2312 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2313 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2314 			}
2315 		},
2316 		{
2317 			{
2318 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2319 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2320 			}
2321 		},
2322 		{
2323 			{
2324 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2325 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2326 			}
2327 		},
2328 		{
2329 			{
2330 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2331 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2332 			}
2333 		},
2334 		{
2335 			{
2336 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2337 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2338 			}
2339 		},
2340 		{
2341 			{
2342 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2344 			}
2345 		},
2346 		{
2347 			{
2348 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2349 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2350 			}
2351 		},
2352 		{
2353 			{
2354 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2355 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2356 			}
2357 		},
2358 	}
2359 };
2360 
2361 static const struct ar9300_eeprom ar9300_h116 = {
2362 	.eepromVersion = 2,
2363 	.templateVersion = 4,
2364 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2365 	.custData = {"h116-041-f0000"},
2366 	.baseEepHeader = {
2367 		.regDmn = { LE16(0), LE16(0x1f) },
2368 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2369 		.opCapFlags = {
2370 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2371 			.eepMisc = AR9300_EEPMISC_LITTLE_ENDIAN,
2372 		},
2373 		.rfSilent = 0,
2374 		.blueToothOptions = 0,
2375 		.deviceCap = 0,
2376 		.deviceType = 5, /* takes lower byte in eeprom location */
2377 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2378 		.params_for_tuning_caps = {0, 0},
2379 		.featureEnable = 0x0d,
2380 		 /*
2381 		  * bit0 - enable tx temp comp - disabled
2382 		  * bit1 - enable tx volt comp - disabled
2383 		  * bit2 - enable fastClock - enabled
2384 		  * bit3 - enable doubling - enabled
2385 		  * bit4 - enable internal regulator - disabled
2386 		  * bit5 - enable pa predistortion - disabled
2387 		  */
2388 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2389 		.eepromWriteEnableGpio = 6,
2390 		.wlanDisableGpio = 0,
2391 		.wlanLedGpio = 8,
2392 		.rxBandSelectGpio = 0xff,
2393 		.txrxgain = 0x10,
2394 		.swreg = 0,
2395 	 },
2396 	.modalHeader2G = {
2397 	/* ar9300_modal_eep_header  2g */
2398 		/* 4 idle,t1,t2,b(4 bits per setting) */
2399 		.antCtrlCommon = LE32(0x110),
2400 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2401 		.antCtrlCommon2 = LE32(0x44444),
2402 
2403 		/*
2404 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2405 		 * rx1, rx12, b (2 bits each)
2406 		 */
2407 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2408 
2409 		/*
2410 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2411 		 * for ar9280 (0xa20c/b20c 5:0)
2412 		 */
2413 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2414 
2415 		/*
2416 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2417 		 * for ar9280 (0xa20c/b20c 16:12
2418 		 */
2419 		.xatten1Margin = {0x12, 0x12, 0x12},
2420 		.tempSlope = 25,
2421 		.voltSlope = 0,
2422 
2423 		/*
2424 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2425 		 * channels in usual fbin coding format
2426 		 */
2427 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2428 
2429 		/*
2430 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2431 		 * if the register is per chain
2432 		 */
2433 		.noiseFloorThreshCh = {-1, 0, 0},
2434 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2435 		.quick_drop = 0,
2436 		.xpaBiasLvl = 0,
2437 		.txFrameToDataStart = 0x0e,
2438 		.txFrameToPaOn = 0x0e,
2439 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2440 		.antennaGain = 0,
2441 		.switchSettling = 0x2c,
2442 		.adcDesiredSize = -30,
2443 		.txEndToXpaOff = 0,
2444 		.txEndToRxOn = 0x2,
2445 		.txFrameToXpaOn = 0xe,
2446 		.thresh62 = 28,
2447 		.papdRateMaskHt20 = LE32(0x0c80C080),
2448 		.papdRateMaskHt40 = LE32(0x0080C080),
2449 		.switchcomspdt = 0,
2450 		.xlna_bias_strength = 0,
2451 		.futureModal = {
2452 			0, 0, 0, 0, 0, 0, 0,
2453 		},
2454 	 },
2455 	 .base_ext1 = {
2456 		.ant_div_control = 0,
2457 		.future = {0, 0},
2458 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2459 	 },
2460 	.calFreqPier2G = {
2461 		FREQ2FBIN(2412, 1),
2462 		FREQ2FBIN(2437, 1),
2463 		FREQ2FBIN(2462, 1),
2464 	 },
2465 	/* ar9300_cal_data_per_freq_op_loop 2g */
2466 	.calPierData2G = {
2467 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2470 	 },
2471 	.calTarget_freqbin_Cck = {
2472 		FREQ2FBIN(2412, 1),
2473 		FREQ2FBIN(2472, 1),
2474 	 },
2475 	.calTarget_freqbin_2G = {
2476 		FREQ2FBIN(2412, 1),
2477 		FREQ2FBIN(2437, 1),
2478 		FREQ2FBIN(2472, 1)
2479 	 },
2480 	.calTarget_freqbin_2GHT20 = {
2481 		FREQ2FBIN(2412, 1),
2482 		FREQ2FBIN(2437, 1),
2483 		FREQ2FBIN(2472, 1)
2484 	 },
2485 	.calTarget_freqbin_2GHT40 = {
2486 		FREQ2FBIN(2412, 1),
2487 		FREQ2FBIN(2437, 1),
2488 		FREQ2FBIN(2472, 1)
2489 	 },
2490 	.calTargetPowerCck = {
2491 		 /* 1L-5L,5S,11L,11S */
2492 		 { {34, 34, 34, 34} },
2493 		 { {34, 34, 34, 34} },
2494 	},
2495 	.calTargetPower2G = {
2496 		 /* 6-24,36,48,54 */
2497 		 { {34, 34, 32, 32} },
2498 		 { {34, 34, 32, 32} },
2499 		 { {34, 34, 32, 32} },
2500 	},
2501 	.calTargetPower2GHT20 = {
2502 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2505 	},
2506 	.calTargetPower2GHT40 = {
2507 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2510 	},
2511 	.ctlIndex_2G =  {
2512 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2513 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2514 	},
2515 	.ctl_freqbin_2G = {
2516 		{
2517 			FREQ2FBIN(2412, 1),
2518 			FREQ2FBIN(2417, 1),
2519 			FREQ2FBIN(2457, 1),
2520 			FREQ2FBIN(2462, 1)
2521 		},
2522 		{
2523 			FREQ2FBIN(2412, 1),
2524 			FREQ2FBIN(2417, 1),
2525 			FREQ2FBIN(2462, 1),
2526 			0xFF,
2527 		},
2528 
2529 		{
2530 			FREQ2FBIN(2412, 1),
2531 			FREQ2FBIN(2417, 1),
2532 			FREQ2FBIN(2462, 1),
2533 			0xFF,
2534 		},
2535 		{
2536 			FREQ2FBIN(2422, 1),
2537 			FREQ2FBIN(2427, 1),
2538 			FREQ2FBIN(2447, 1),
2539 			FREQ2FBIN(2452, 1)
2540 		},
2541 
2542 		{
2543 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2544 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2545 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2546 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2547 		},
2548 
2549 		{
2550 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2551 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2552 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2553 			0,
2554 		},
2555 
2556 		{
2557 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2558 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2559 			FREQ2FBIN(2472, 1),
2560 			0,
2561 		},
2562 
2563 		{
2564 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2565 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2566 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2567 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2568 		},
2569 
2570 		{
2571 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2572 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2573 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2574 		},
2575 
2576 		{
2577 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2578 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2579 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2580 			0
2581 		},
2582 
2583 		{
2584 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2585 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2586 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2587 			0
2588 		},
2589 
2590 		{
2591 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2592 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2593 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2594 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2595 		}
2596 	 },
2597 	.ctlPowerData_2G = {
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2600 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2601 
2602 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2603 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2605 
2606 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2607 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2609 
2610 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2611 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2613 	 },
2614 	.modalHeader5G = {
2615 		/* 4 idle,t1,t2,b (4 bits per setting) */
2616 		.antCtrlCommon = LE32(0x220),
2617 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2618 		.antCtrlCommon2 = LE32(0x44444),
2619 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2620 		.antCtrlChain = {
2621 			LE16(0x150), LE16(0x150), LE16(0x150),
2622 		},
2623 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2624 		.xatten1DB = {0x19, 0x19, 0x19},
2625 
2626 		/*
2627 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2628 		 * for merlin (0xa20c/b20c 16:12
2629 		 */
2630 		.xatten1Margin = {0x14, 0x14, 0x14},
2631 		.tempSlope = 70,
2632 		.voltSlope = 0,
2633 		/* spurChans spur channels in usual fbin coding format */
2634 		.spurChans = {0, 0, 0, 0, 0},
2635 		/* noiseFloorThreshCh Check if the register is per chain */
2636 		.noiseFloorThreshCh = {-1, 0, 0},
2637 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2638 		.quick_drop = 0,
2639 		.xpaBiasLvl = 0,
2640 		.txFrameToDataStart = 0x0e,
2641 		.txFrameToPaOn = 0x0e,
2642 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2643 		.antennaGain = 0,
2644 		.switchSettling = 0x2d,
2645 		.adcDesiredSize = -30,
2646 		.txEndToXpaOff = 0,
2647 		.txEndToRxOn = 0x2,
2648 		.txFrameToXpaOn = 0xe,
2649 		.thresh62 = 28,
2650 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2651 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2652 		.switchcomspdt = 0,
2653 		.xlna_bias_strength = 0,
2654 		.futureModal = {
2655 			0, 0, 0, 0, 0, 0, 0,
2656 		},
2657 	 },
2658 	.base_ext2 = {
2659 		.tempSlopeLow = 35,
2660 		.tempSlopeHigh = 50,
2661 		.xatten1DBLow = {0, 0, 0},
2662 		.xatten1MarginLow = {0, 0, 0},
2663 		.xatten1DBHigh = {0, 0, 0},
2664 		.xatten1MarginHigh = {0, 0, 0}
2665 	 },
2666 	.calFreqPier5G = {
2667 		FREQ2FBIN(5160, 0),
2668 		FREQ2FBIN(5220, 0),
2669 		FREQ2FBIN(5320, 0),
2670 		FREQ2FBIN(5400, 0),
2671 		FREQ2FBIN(5500, 0),
2672 		FREQ2FBIN(5600, 0),
2673 		FREQ2FBIN(5700, 0),
2674 		FREQ2FBIN(5785, 0)
2675 	},
2676 	.calPierData5G = {
2677 			{
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 				{0, 0, 0, 0, 0},
2686 			},
2687 			{
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 				{0, 0, 0, 0, 0},
2696 			},
2697 			{
2698 				{0, 0, 0, 0, 0},
2699 				{0, 0, 0, 0, 0},
2700 				{0, 0, 0, 0, 0},
2701 				{0, 0, 0, 0, 0},
2702 				{0, 0, 0, 0, 0},
2703 				{0, 0, 0, 0, 0},
2704 				{0, 0, 0, 0, 0},
2705 				{0, 0, 0, 0, 0},
2706 			},
2707 
2708 	},
2709 	.calTarget_freqbin_5G = {
2710 		FREQ2FBIN(5180, 0),
2711 		FREQ2FBIN(5240, 0),
2712 		FREQ2FBIN(5320, 0),
2713 		FREQ2FBIN(5400, 0),
2714 		FREQ2FBIN(5500, 0),
2715 		FREQ2FBIN(5600, 0),
2716 		FREQ2FBIN(5700, 0),
2717 		FREQ2FBIN(5825, 0)
2718 	},
2719 	.calTarget_freqbin_5GHT20 = {
2720 		FREQ2FBIN(5180, 0),
2721 		FREQ2FBIN(5240, 0),
2722 		FREQ2FBIN(5320, 0),
2723 		FREQ2FBIN(5400, 0),
2724 		FREQ2FBIN(5500, 0),
2725 		FREQ2FBIN(5700, 0),
2726 		FREQ2FBIN(5745, 0),
2727 		FREQ2FBIN(5825, 0)
2728 	},
2729 	.calTarget_freqbin_5GHT40 = {
2730 		FREQ2FBIN(5180, 0),
2731 		FREQ2FBIN(5240, 0),
2732 		FREQ2FBIN(5320, 0),
2733 		FREQ2FBIN(5400, 0),
2734 		FREQ2FBIN(5500, 0),
2735 		FREQ2FBIN(5700, 0),
2736 		FREQ2FBIN(5745, 0),
2737 		FREQ2FBIN(5825, 0)
2738 	 },
2739 	.calTargetPower5G = {
2740 		/* 6-24,36,48,54 */
2741 		{ {30, 30, 28, 24} },
2742 		{ {30, 30, 28, 24} },
2743 		{ {30, 30, 28, 24} },
2744 		{ {30, 30, 28, 24} },
2745 		{ {30, 30, 28, 24} },
2746 		{ {30, 30, 28, 24} },
2747 		{ {30, 30, 28, 24} },
2748 		{ {30, 30, 28, 24} },
2749 	 },
2750 	.calTargetPower5GHT20 = {
2751 		/*
2752 		 * 0_8_16,1-3_9-11_17-19,
2753 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2754 		 */
2755 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2757 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2759 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2761 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2763 	 },
2764 	.calTargetPower5GHT40 =  {
2765 		/*
2766 		 * 0_8_16,1-3_9-11_17-19,
2767 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2768 		 */
2769 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2771 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2773 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2775 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2777 	 },
2778 	.ctlIndex_5G =  {
2779 		0x10, 0x16, 0x18, 0x40, 0x46,
2780 		0x48, 0x30, 0x36, 0x38
2781 	},
2782 	.ctl_freqbin_5G =  {
2783 		{
2784 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2785 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2786 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2787 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2788 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2789 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2790 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2791 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2792 		},
2793 		{
2794 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2795 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2796 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2797 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2798 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2799 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2800 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2801 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2802 		},
2803 
2804 		{
2805 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2806 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2807 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2808 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2809 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2810 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2811 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2812 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2813 		},
2814 
2815 		{
2816 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2818 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2819 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2820 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2821 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2822 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2823 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2824 		},
2825 
2826 		{
2827 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2828 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2829 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2830 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2831 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2832 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2833 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2834 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2835 		},
2836 
2837 		{
2838 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2839 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2840 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2841 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2842 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2843 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2844 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2845 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2846 		},
2847 
2848 		{
2849 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2851 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2852 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2853 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2854 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2855 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2856 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2857 		},
2858 
2859 		{
2860 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2861 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2862 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2863 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2864 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2865 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2866 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2867 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2868 		},
2869 
2870 		{
2871 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2872 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2873 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2874 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2875 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2876 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2877 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2878 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2879 		}
2880 	 },
2881 	.ctlPowerData_5G = {
2882 		{
2883 			{
2884 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2885 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2886 			}
2887 		},
2888 		{
2889 			{
2890 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2891 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 			}
2893 		},
2894 		{
2895 			{
2896 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2897 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2898 			}
2899 		},
2900 		{
2901 			{
2902 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2903 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2904 			}
2905 		},
2906 		{
2907 			{
2908 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2909 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2910 			}
2911 		},
2912 		{
2913 			{
2914 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2915 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2916 			}
2917 		},
2918 		{
2919 			{
2920 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2922 			}
2923 		},
2924 		{
2925 			{
2926 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2927 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2928 			}
2929 		},
2930 		{
2931 			{
2932 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2933 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2934 			}
2935 		},
2936 	 }
2937 };
2938 
2939 
2940 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2941 	&ar9300_default,
2942 	&ar9300_x112,
2943 	&ar9300_h116,
2944 	&ar9300_h112,
2945 	&ar9300_x113,
2946 };
2947 
ar9003_eeprom_struct_find_by_id(int id)2948 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2949 {
2950 	int it;
2951 
2952 	for (it = 0; it < ARRAY_SIZE(ar9300_eep_templates); it++)
2953 		if (ar9300_eep_templates[it]->templateVersion == id)
2954 			return ar9300_eep_templates[it];
2955 	return NULL;
2956 }
2957 
ath9k_hw_ar9300_check_eeprom(struct ath_hw * ah)2958 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2959 {
2960 	return 0;
2961 }
2962 
interpolate(int x,int xa,int xb,int ya,int yb)2963 static int interpolate(int x, int xa, int xb, int ya, int yb)
2964 {
2965 	int bf, factor, plus;
2966 
2967 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2968 	factor = bf / 2;
2969 	plus = bf % 2;
2970 	return ya + factor + plus;
2971 }
2972 
ath9k_hw_ar9300_get_eeprom(struct ath_hw * ah,enum eeprom_param param)2973 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2974 				      enum eeprom_param param)
2975 {
2976 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2977 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2978 
2979 	switch (param) {
2980 	case EEP_MAC_LSW:
2981 		return get_unaligned_be16(eep->macAddr);
2982 	case EEP_MAC_MID:
2983 		return get_unaligned_be16(eep->macAddr + 2);
2984 	case EEP_MAC_MSW:
2985 		return get_unaligned_be16(eep->macAddr + 4);
2986 	case EEP_REG_0:
2987 		return le16_to_cpu(pBase->regDmn[0]);
2988 	case EEP_OP_CAP:
2989 		return pBase->deviceCap;
2990 	case EEP_OP_MODE:
2991 		return pBase->opCapFlags.opFlags;
2992 	case EEP_RF_SILENT:
2993 		return pBase->rfSilent;
2994 	case EEP_TX_MASK:
2995 		return (pBase->txrxMask >> 4) & 0xf;
2996 	case EEP_RX_MASK:
2997 		return pBase->txrxMask & 0xf;
2998 	case EEP_PAPRD:
2999 		return !!(pBase->featureEnable & BIT(5));
3000 	case EEP_CHAIN_MASK_REDUCE:
3001 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3002 	case EEP_ANT_DIV_CTL1:
3003 		if (AR_SREV_9565(ah))
3004 			return AR9300_EEP_ANTDIV_CONTROL_DEFAULT_VALUE;
3005 		else
3006 			return eep->base_ext1.ant_div_control;
3007 	case EEP_ANTENNA_GAIN_5G:
3008 		return eep->modalHeader5G.antennaGain;
3009 	case EEP_ANTENNA_GAIN_2G:
3010 		return eep->modalHeader2G.antennaGain;
3011 	default:
3012 		return 0;
3013 	}
3014 }
3015 
ar9300_eeprom_read_byte(struct ath_hw * ah,int address,u8 * buffer)3016 static bool ar9300_eeprom_read_byte(struct ath_hw *ah, int address,
3017 				    u8 *buffer)
3018 {
3019 	u16 val;
3020 
3021 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3022 		return false;
3023 
3024 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3025 	return true;
3026 }
3027 
ar9300_eeprom_read_word(struct ath_hw * ah,int address,u8 * buffer)3028 static bool ar9300_eeprom_read_word(struct ath_hw *ah, int address,
3029 				    u8 *buffer)
3030 {
3031 	u16 val;
3032 
3033 	if (unlikely(!ath9k_hw_nvram_read(ah, address / 2, &val)))
3034 		return false;
3035 
3036 	buffer[0] = val >> 8;
3037 	buffer[1] = val & 0xff;
3038 
3039 	return true;
3040 }
3041 
ar9300_read_eeprom(struct ath_hw * ah,int address,u8 * buffer,int count)3042 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3043 			       int count)
3044 {
3045 	struct ath_common *common = ath9k_hw_common(ah);
3046 	int i;
3047 
3048 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3049 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3050 		return false;
3051 	}
3052 
3053 	/*
3054 	 * Since we're reading the bytes in reverse order from a little-endian
3055 	 * word stream, an even address means we only use the lower half of
3056 	 * the 16-bit word at that address
3057 	 */
3058 	if (address % 2 == 0) {
3059 		if (!ar9300_eeprom_read_byte(ah, address--, buffer++))
3060 			goto error;
3061 
3062 		count--;
3063 	}
3064 
3065 	for (i = 0; i < count / 2; i++) {
3066 		if (!ar9300_eeprom_read_word(ah, address, buffer))
3067 			goto error;
3068 
3069 		address -= 2;
3070 		buffer += 2;
3071 	}
3072 
3073 	if (count % 2)
3074 		if (!ar9300_eeprom_read_byte(ah, address, buffer))
3075 			goto error;
3076 
3077 	return true;
3078 
3079 error:
3080 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3081 		address);
3082 	return false;
3083 }
3084 
ar9300_otp_read_word(struct ath_hw * ah,int addr,u32 * data)3085 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3086 {
3087 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3088 
3089 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3090 			   AR9300_OTP_STATUS_VALID, 1000))
3091 		return false;
3092 
3093 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3094 	return true;
3095 }
3096 
ar9300_read_otp(struct ath_hw * ah,int address,u8 * buffer,int count)3097 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3098 			    int count)
3099 {
3100 	u32 data;
3101 	int i;
3102 
3103 	for (i = 0; i < count; i++) {
3104 		int offset = 8 * ((address - i) % 4);
3105 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3106 			return false;
3107 
3108 		buffer[i] = (data >> offset) & 0xff;
3109 	}
3110 
3111 	return true;
3112 }
3113 
3114 
ar9300_comp_hdr_unpack(u8 * best,int * code,int * reference,int * length,int * major,int * minor)3115 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3116 				   int *length, int *major, int *minor)
3117 {
3118 	unsigned long value[4];
3119 
3120 	value[0] = best[0];
3121 	value[1] = best[1];
3122 	value[2] = best[2];
3123 	value[3] = best[3];
3124 	*code = ((value[0] >> 5) & 0x0007);
3125 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3126 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3127 	*major = (value[2] & 0x000f);
3128 	*minor = (value[3] & 0x00ff);
3129 }
3130 
ar9300_comp_cksum(u8 * data,int dsize)3131 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3132 {
3133 	int it, checksum = 0;
3134 
3135 	for (it = 0; it < dsize; it++) {
3136 		checksum += data[it];
3137 		checksum &= 0xffff;
3138 	}
3139 
3140 	return checksum;
3141 }
3142 
ar9300_uncompress_block(struct ath_hw * ah,u8 * mptr,int mdataSize,u8 * block,int size)3143 static bool ar9300_uncompress_block(struct ath_hw *ah,
3144 				    u8 *mptr,
3145 				    int mdataSize,
3146 				    u8 *block,
3147 				    int size)
3148 {
3149 	int it;
3150 	int spot;
3151 	int offset;
3152 	int length;
3153 	struct ath_common *common = ath9k_hw_common(ah);
3154 
3155 	spot = 0;
3156 
3157 	for (it = 0; it < size; it += (length+2)) {
3158 		offset = block[it];
3159 		offset &= 0xff;
3160 		spot += offset;
3161 		length = block[it+1];
3162 		length &= 0xff;
3163 
3164 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3165 			ath_dbg(common, EEPROM,
3166 				"Restore at %d: spot=%d offset=%d length=%d\n",
3167 				it, spot, offset, length);
3168 			memcpy(&mptr[spot], &block[it+2], length);
3169 			spot += length;
3170 		} else if (length > 0) {
3171 			ath_dbg(common, EEPROM,
3172 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3173 				it, spot, offset, length);
3174 			return false;
3175 		}
3176 	}
3177 	return true;
3178 }
3179 
ar9300_compress_decision(struct ath_hw * ah,int it,int code,int reference,u8 * mptr,u8 * word,int length,int mdata_size)3180 static int ar9300_compress_decision(struct ath_hw *ah,
3181 				    int it,
3182 				    int code,
3183 				    int reference,
3184 				    u8 *mptr,
3185 				    u8 *word, int length, int mdata_size)
3186 {
3187 	struct ath_common *common = ath9k_hw_common(ah);
3188 	const struct ar9300_eeprom *eep = NULL;
3189 
3190 	switch (code) {
3191 	case _CompressNone:
3192 		if (length != mdata_size) {
3193 			ath_dbg(common, EEPROM,
3194 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3195 				mdata_size, length);
3196 			return -1;
3197 		}
3198 		memcpy(mptr, word + COMP_HDR_LEN, length);
3199 		ath_dbg(common, EEPROM,
3200 			"restored eeprom %d: uncompressed, length %d\n",
3201 			it, length);
3202 		break;
3203 	case _CompressBlock:
3204 		if (reference != 0) {
3205 			eep = ar9003_eeprom_struct_find_by_id(reference);
3206 			if (eep == NULL) {
3207 				ath_dbg(common, EEPROM,
3208 					"can't find reference eeprom struct %d\n",
3209 					reference);
3210 				return -1;
3211 			}
3212 			memcpy(mptr, eep, mdata_size);
3213 		}
3214 		ath_dbg(common, EEPROM,
3215 			"restore eeprom %d: block, reference %d, length %d\n",
3216 			it, reference, length);
3217 		ar9300_uncompress_block(ah, mptr, mdata_size,
3218 					(word + COMP_HDR_LEN), length);
3219 		break;
3220 	default:
3221 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3222 		return -1;
3223 	}
3224 	return 0;
3225 }
3226 
3227 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3228 			       int count);
3229 
ar9300_check_header(void * data)3230 static bool ar9300_check_header(void *data)
3231 {
3232 	u32 *word = data;
3233 	return !(*word == 0 || *word == ~0);
3234 }
3235 
ar9300_check_eeprom_header(struct ath_hw * ah,eeprom_read_op read,int base_addr)3236 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3237 				       int base_addr)
3238 {
3239 	u8 header[4];
3240 
3241 	if (!read(ah, base_addr, header, 4))
3242 		return false;
3243 
3244 	return ar9300_check_header(header);
3245 }
3246 
ar9300_eeprom_restore_flash(struct ath_hw * ah,u8 * mptr,int mdata_size)3247 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3248 				       int mdata_size)
3249 {
3250 	u16 *data = (u16 *) mptr;
3251 	int i;
3252 
3253 	for (i = 0; i < mdata_size / 2; i++, data++)
3254 		if (!ath9k_hw_nvram_read(ah, i, data))
3255 			return -EIO;
3256 
3257 	return 0;
3258 }
3259 /*
3260  * Read the configuration data from the eeprom.
3261  * The data can be put in any specified memory buffer.
3262  *
3263  * Returns -1 on error.
3264  * Returns address of next memory location on success.
3265  */
ar9300_eeprom_restore_internal(struct ath_hw * ah,u8 * mptr,int mdata_size)3266 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3267 					  u8 *mptr, int mdata_size)
3268 {
3269 #define MDEFAULT 15
3270 #define MSTATE 100
3271 	int cptr;
3272 	u8 *word;
3273 	int code;
3274 	int reference, length, major, minor;
3275 	int osize;
3276 	int it;
3277 	u16 checksum, mchecksum;
3278 	struct ath_common *common = ath9k_hw_common(ah);
3279 	struct ar9300_eeprom *eep;
3280 	eeprom_read_op read;
3281 
3282 	if (ath9k_hw_use_flash(ah)) {
3283 		u8 txrx;
3284 
3285 		if (ar9300_eeprom_restore_flash(ah, mptr, mdata_size))
3286 			return -EIO;
3287 
3288 		/* check if eeprom contains valid data */
3289 		eep = (struct ar9300_eeprom *) mptr;
3290 		txrx = eep->baseEepHeader.txrxMask;
3291 		if (txrx != 0 && txrx != 0xff)
3292 			return 0;
3293 	}
3294 
3295 	word = kzalloc(2048, GFP_KERNEL);
3296 	if (!word)
3297 		return -ENOMEM;
3298 
3299 	memcpy(mptr, &ar9300_default, mdata_size);
3300 
3301 	read = ar9300_read_eeprom;
3302 	if (AR_SREV_9485(ah))
3303 		cptr = AR9300_BASE_ADDR_4K;
3304 	else if (AR_SREV_9330(ah))
3305 		cptr = AR9300_BASE_ADDR_512;
3306 	else
3307 		cptr = AR9300_BASE_ADDR;
3308 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3309 		cptr);
3310 	if (ar9300_check_eeprom_header(ah, read, cptr))
3311 		goto found;
3312 
3313 	cptr = AR9300_BASE_ADDR_4K;
3314 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3315 		cptr);
3316 	if (ar9300_check_eeprom_header(ah, read, cptr))
3317 		goto found;
3318 
3319 	cptr = AR9300_BASE_ADDR_512;
3320 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3321 		cptr);
3322 	if (ar9300_check_eeprom_header(ah, read, cptr))
3323 		goto found;
3324 
3325 	read = ar9300_read_otp;
3326 	cptr = AR9300_BASE_ADDR;
3327 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3328 	if (ar9300_check_eeprom_header(ah, read, cptr))
3329 		goto found;
3330 
3331 	cptr = AR9300_BASE_ADDR_512;
3332 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3333 	if (ar9300_check_eeprom_header(ah, read, cptr))
3334 		goto found;
3335 
3336 	goto fail;
3337 
3338 found:
3339 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3340 
3341 	for (it = 0; it < MSTATE; it++) {
3342 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3343 			goto fail;
3344 
3345 		if (!ar9300_check_header(word))
3346 			break;
3347 
3348 		ar9300_comp_hdr_unpack(word, &code, &reference,
3349 				       &length, &major, &minor);
3350 		ath_dbg(common, EEPROM,
3351 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3352 			cptr, code, reference, length, major, minor);
3353 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3354 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3355 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3356 			cptr -= COMP_HDR_LEN;
3357 			continue;
3358 		}
3359 
3360 		osize = length;
3361 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3362 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3363 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3364 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3365 			checksum, mchecksum);
3366 		if (checksum == mchecksum) {
3367 			ar9300_compress_decision(ah, it, code, reference, mptr,
3368 						 word, length, mdata_size);
3369 		} else {
3370 			ath_dbg(common, EEPROM,
3371 				"skipping block with bad checksum\n");
3372 		}
3373 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3374 	}
3375 
3376 	kfree(word);
3377 	return cptr;
3378 
3379 fail:
3380 	kfree(word);
3381 	return -1;
3382 }
3383 
3384 /*
3385  * Restore the configuration structure by reading the eeprom.
3386  * This function destroys any existing in-memory structure
3387  * content.
3388  */
ath9k_hw_ar9300_fill_eeprom(struct ath_hw * ah)3389 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3390 {
3391 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3392 
3393 	if (ar9300_eeprom_restore_internal(ah, mptr,
3394 			sizeof(struct ar9300_eeprom)) < 0)
3395 		return false;
3396 
3397 	return true;
3398 }
3399 
3400 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
ar9003_dump_modal_eeprom(char * buf,u32 len,u32 size,struct ar9300_modal_eep_header * modal_hdr)3401 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3402 				    struct ar9300_modal_eep_header *modal_hdr)
3403 {
3404 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3405 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3406 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3407 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3408 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3409 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3410 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3411 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3412 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3413 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3414 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3415 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3416 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3417 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3418 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3419 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3420 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3421 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3422 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3423 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3424 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3425 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3426 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3427 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3428 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3429 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3430 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3431 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3432 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3433 	PR_EEP("txClip", modal_hdr->txClip);
3434 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3435 
3436 	return len;
3437 }
3438 
ar9003_dump_cal_data(struct ath_hw * ah,char * buf,u32 len,u32 size,bool is_2g)3439 static u32 ar9003_dump_cal_data(struct ath_hw *ah, char *buf, u32 len, u32 size,
3440 				bool is_2g)
3441 {
3442 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3443 	struct ar9300_base_eep_hdr *pBase;
3444 	struct ar9300_cal_data_per_freq_op_loop *cal_pier;
3445 	int cal_pier_nr;
3446 	int freq;
3447 	int i, j;
3448 
3449 	pBase = &eep->baseEepHeader;
3450 
3451 	if (is_2g)
3452 		cal_pier_nr = AR9300_NUM_2G_CAL_PIERS;
3453 	else
3454 		cal_pier_nr = AR9300_NUM_5G_CAL_PIERS;
3455 
3456 	for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3457 		if (!((pBase->txrxMask >> i) & 1))
3458 			continue;
3459 
3460 		len += scnprintf(buf + len, size - len, "Chain %d\n", i);
3461 
3462 		len += scnprintf(buf + len, size - len,
3463 			"Freq\t ref\tvolt\ttemp\tnf_cal\tnf_pow\trx_temp\n");
3464 
3465 		for (j = 0; j < cal_pier_nr; j++) {
3466 			if (is_2g) {
3467 				cal_pier = &eep->calPierData2G[i][j];
3468 				freq = 2300 + eep->calFreqPier2G[j];
3469 			} else {
3470 				cal_pier = &eep->calPierData5G[i][j];
3471 				freq = 4800 + eep->calFreqPier5G[j] * 5;
3472 			}
3473 
3474 			len += scnprintf(buf + len, size - len,
3475 				"%d\t", freq);
3476 
3477 			len += scnprintf(buf + len, size - len,
3478 				"%d\t%d\t%d\t%d\t%d\t%d\n",
3479 				cal_pier->refPower,
3480 				cal_pier->voltMeas,
3481 				cal_pier->tempMeas,
3482 				cal_pier->rxTempMeas ?
3483 				N2DBM(cal_pier->rxNoisefloorCal) : 0,
3484 				cal_pier->rxTempMeas ?
3485 				N2DBM(cal_pier->rxNoisefloorPower) : 0,
3486 				cal_pier->rxTempMeas);
3487 		}
3488 	}
3489 
3490 	return len;
3491 }
3492 
ath9k_hw_ar9003_dump_eeprom(struct ath_hw * ah,bool dump_base_hdr,u8 * buf,u32 len,u32 size)3493 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3494 				       u8 *buf, u32 len, u32 size)
3495 {
3496 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3497 	struct ar9300_base_eep_hdr *pBase;
3498 
3499 	if (!dump_base_hdr) {
3500 		len += scnprintf(buf + len, size - len,
3501 				 "%20s :\n", "2GHz modal Header");
3502 		len = ar9003_dump_modal_eeprom(buf, len, size,
3503 						&eep->modalHeader2G);
3504 
3505 		len += scnprintf(buf + len, size - len, "Calibration data\n");
3506 		len = ar9003_dump_cal_data(ah, buf, len, size, true);
3507 
3508 		len += scnprintf(buf + len, size - len,
3509 				 "%20s :\n", "5GHz modal Header");
3510 		len = ar9003_dump_modal_eeprom(buf, len, size,
3511 						&eep->modalHeader5G);
3512 
3513 		len += scnprintf(buf + len, size - len, "Calibration data\n");
3514 		len = ar9003_dump_cal_data(ah, buf, len, size, false);
3515 
3516 		goto out;
3517 	}
3518 
3519 	pBase = &eep->baseEepHeader;
3520 
3521 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3522 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3523 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3524 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3525 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3526 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3527 				AR5416_OPFLAGS_11A));
3528 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3529 				AR5416_OPFLAGS_11G));
3530 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3531 					AR5416_OPFLAGS_N_2G_HT20));
3532 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3533 					AR5416_OPFLAGS_N_2G_HT40));
3534 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3535 					AR5416_OPFLAGS_N_5G_HT20));
3536 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3537 					AR5416_OPFLAGS_N_5G_HT40));
3538 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc &
3539 				AR5416_EEPMISC_BIG_ENDIAN));
3540 	PR_EEP("RF Silent", pBase->rfSilent);
3541 	PR_EEP("BT option", pBase->blueToothOptions);
3542 	PR_EEP("Device Cap", pBase->deviceCap);
3543 	PR_EEP("Device Type", pBase->deviceType);
3544 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3545 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3546 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3547 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3548 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3549 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3550 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3551 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3552 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3553 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3554 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3555 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3556 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3557 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3558 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3559 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3560 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3561 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3562 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3563 
3564 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3565 			 ah->eeprom.ar9300_eep.macAddr);
3566 out:
3567 	if (len > size)
3568 		len = size;
3569 
3570 	return len;
3571 }
3572 #else
ath9k_hw_ar9003_dump_eeprom(struct ath_hw * ah,bool dump_base_hdr,u8 * buf,u32 len,u32 size)3573 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3574 				       u8 *buf, u32 len, u32 size)
3575 {
3576 	return 0;
3577 }
3578 #endif
3579 
3580 /* XXX: review hardware docs */
ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw * ah)3581 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3582 {
3583 	return ah->eeprom.ar9300_eep.eepromVersion;
3584 }
3585 
3586 /* XXX: could be read from the eepromVersion, not sure yet */
ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw * ah)3587 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3588 {
3589 	return 0;
3590 }
3591 
ar9003_modal_header(struct ath_hw * ah,bool is2ghz)3592 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3593 							   bool is2ghz)
3594 {
3595 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3596 
3597 	if (is2ghz)
3598 		return &eep->modalHeader2G;
3599 	else
3600 		return &eep->modalHeader5G;
3601 }
3602 
ar9003_hw_xpa_bias_level_apply(struct ath_hw * ah,bool is2ghz)3603 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3604 {
3605 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3606 
3607 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
3608 	    AR_SREV_9531(ah) || AR_SREV_9561(ah))
3609 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3610 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3611 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3612 	else {
3613 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3614 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3615 				AR_CH0_THERM_XPABIASLVL_MSB,
3616 				bias >> 2);
3617 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3618 				AR_CH0_THERM_XPASHORT2GND, 1);
3619 	}
3620 }
3621 
ar9003_switch_com_spdt_get(struct ath_hw * ah,bool is2ghz)3622 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3623 {
3624 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3625 }
3626 
ar9003_hw_ant_ctrl_common_get(struct ath_hw * ah,bool is2ghz)3627 u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3628 {
3629 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3630 }
3631 
ar9003_hw_ant_ctrl_common_2_get(struct ath_hw * ah,bool is2ghz)3632 u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3633 {
3634 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3635 }
3636 
ar9003_hw_ant_ctrl_chain_get(struct ath_hw * ah,int chain,bool is2ghz)3637 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3638 					bool is2ghz)
3639 {
3640 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3641 	return le16_to_cpu(val);
3642 }
3643 
ar9003_hw_ant_ctrl_apply(struct ath_hw * ah,bool is2ghz)3644 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3645 {
3646 	struct ath_common *common = ath9k_hw_common(ah);
3647 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3648 	int chain;
3649 	u32 regval, value, gpio;
3650 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3651 			AR_PHY_SWITCH_CHAIN_0,
3652 			AR_PHY_SWITCH_CHAIN_1,
3653 			AR_PHY_SWITCH_CHAIN_2,
3654 	};
3655 
3656 	if (AR_SREV_9485(ah) && (ar9003_hw_get_rx_gain_idx(ah) == 0)) {
3657 		if (ah->config.xlna_gpio)
3658 			gpio = ah->config.xlna_gpio;
3659 		else
3660 			gpio = AR9300_EXT_LNA_CTL_GPIO_AR9485;
3661 
3662 		ath9k_hw_gpio_request_out(ah, gpio, NULL,
3663 					  AR_GPIO_OUTPUT_MUX_AS_PCIE_ATTENTION_LED);
3664 	}
3665 
3666 	value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3667 
3668 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3669 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3670 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3671 	} else if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
3672 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3673 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3674 	} else
3675 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3676 			      AR_SWITCH_TABLE_COM_ALL, value);
3677 
3678 
3679 	/*
3680 	 *   AR9462 defines new switch table for BT/WLAN,
3681 	 *       here's new field name in XXX.ref for both 2G and 5G.
3682 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3683 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3684 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3685 	 *
3686 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3687 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3688 	 *
3689 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3690 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3691 	 */
3692 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565(ah)) {
3693 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3694 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3695 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3696 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3697 	}
3698 
3699 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3700 	if (AR_SREV_9485(ah) && common->bt_ant_diversity) {
3701 		value &= ~AR_SWITCH_TABLE_COM2_ALL;
3702 		value |= ah->config.ant_ctrl_comm2g_switch_enable;
3703 
3704 	}
3705 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3706 
3707 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3708 		value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
3709 		REG_RMW_FIELD(ah, switch_chain_reg[0],
3710 			      AR_SWITCH_TABLE_ALL, value);
3711 	}
3712 
3713 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3714 		if ((ah->rxchainmask & BIT(chain)) ||
3715 		    (ah->txchainmask & BIT(chain))) {
3716 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3717 							     is2ghz);
3718 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3719 				      AR_SWITCH_TABLE_ALL, value);
3720 		}
3721 	}
3722 
3723 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3724 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3725 		/*
3726 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3727 		 * are the fields present
3728 		 */
3729 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3730 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3731 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3732 		/* enable_lnadiv */
3733 		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3734 		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3735 
3736 		if (AR_SREV_9485(ah) && common->bt_ant_diversity)
3737 			regval |= AR_ANT_DIV_ENABLE;
3738 
3739 		if (AR_SREV_9565(ah)) {
3740 			if (common->bt_ant_diversity) {
3741 				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3742 
3743 				REG_SET_BIT(ah, AR_PHY_RESTART,
3744 					    AR_PHY_RESTART_ENABLE_DIV_M2FLAG);
3745 
3746 				/* Force WLAN LNA diversity ON */
3747 				REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV,
3748 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3749 			} else {
3750 				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3751 				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3752 
3753 				REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL,
3754 					    (1 << AR_PHY_ANT_SW_RX_PROT_S));
3755 
3756 				/* Force WLAN LNA diversity OFF */
3757 				REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV,
3758 					    AR_BTCOEX_WL_LNADIV_FORCE_ON);
3759 			}
3760 		}
3761 
3762 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3763 
3764 		/* enable fast_div */
3765 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3766 		regval &= (~AR_FAST_DIV_ENABLE);
3767 		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3768 
3769 		if ((AR_SREV_9485(ah) || AR_SREV_9565(ah))
3770 		    && common->bt_ant_diversity)
3771 			regval |= AR_FAST_DIV_ENABLE;
3772 
3773 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3774 
3775 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3776 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3777 			/*
3778 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3779 			 * main_tb, alt_tb
3780 			 */
3781 			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3782 				     AR_PHY_ANT_DIV_ALT_LNACONF |
3783 				     AR_PHY_ANT_DIV_ALT_GAINTB |
3784 				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3785 			/* by default use LNA1 for the main antenna */
3786 			regval |= (ATH_ANT_DIV_COMB_LNA1 <<
3787 				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3788 			regval |= (ATH_ANT_DIV_COMB_LNA2 <<
3789 				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3790 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3791 		}
3792 	}
3793 }
3794 
ar9003_hw_drive_strength_apply(struct ath_hw * ah)3795 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3796 {
3797 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3798 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3799 	int drive_strength;
3800 	unsigned long reg;
3801 
3802 	drive_strength = pBase->miscConfiguration & BIT(0);
3803 	if (!drive_strength)
3804 		return;
3805 
3806 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3807 	reg &= ~0x00ffffc0;
3808 	reg |= 0x5 << 21;
3809 	reg |= 0x5 << 18;
3810 	reg |= 0x5 << 15;
3811 	reg |= 0x5 << 12;
3812 	reg |= 0x5 << 9;
3813 	reg |= 0x5 << 6;
3814 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3815 
3816 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3817 	reg &= ~0xffffffe0;
3818 	reg |= 0x5 << 29;
3819 	reg |= 0x5 << 26;
3820 	reg |= 0x5 << 23;
3821 	reg |= 0x5 << 20;
3822 	reg |= 0x5 << 17;
3823 	reg |= 0x5 << 14;
3824 	reg |= 0x5 << 11;
3825 	reg |= 0x5 << 8;
3826 	reg |= 0x5 << 5;
3827 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3828 
3829 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3830 	reg &= ~0xff800000;
3831 	reg |= 0x5 << 29;
3832 	reg |= 0x5 << 26;
3833 	reg |= 0x5 << 23;
3834 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3835 }
3836 
ar9003_hw_atten_chain_get(struct ath_hw * ah,int chain,struct ath9k_channel * chan)3837 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3838 				     struct ath9k_channel *chan)
3839 {
3840 	int f[3], t[3];
3841 	u16 value;
3842 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3843 
3844 	if (chain >= 0 && chain < 3) {
3845 		if (IS_CHAN_2GHZ(chan))
3846 			return eep->modalHeader2G.xatten1DB[chain];
3847 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3848 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3849 			f[0] = 5180;
3850 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3851 			f[1] = 5500;
3852 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3853 			f[2] = 5785;
3854 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3855 							    f, t, 3);
3856 			return value;
3857 		} else
3858 			return eep->modalHeader5G.xatten1DB[chain];
3859 	}
3860 
3861 	return 0;
3862 }
3863 
3864 
ar9003_hw_atten_chain_get_margin(struct ath_hw * ah,int chain,struct ath9k_channel * chan)3865 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3866 					    struct ath9k_channel *chan)
3867 {
3868 	int f[3], t[3];
3869 	u16 value;
3870 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3871 
3872 	if (chain >= 0 && chain < 3) {
3873 		if (IS_CHAN_2GHZ(chan))
3874 			return eep->modalHeader2G.xatten1Margin[chain];
3875 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3876 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3877 			f[0] = 5180;
3878 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3879 			f[1] = 5500;
3880 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3881 			f[2] = 5785;
3882 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3883 							    f, t, 3);
3884 			return value;
3885 		} else
3886 			return eep->modalHeader5G.xatten1Margin[chain];
3887 	}
3888 
3889 	return 0;
3890 }
3891 
ar9003_hw_atten_apply(struct ath_hw * ah,struct ath9k_channel * chan)3892 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3893 {
3894 	int i;
3895 	u16 value;
3896 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3897 					  AR_PHY_EXT_ATTEN_CTL_1,
3898 					  AR_PHY_EXT_ATTEN_CTL_2,
3899 					 };
3900 
3901 	if ((AR_SREV_9462(ah)) && (ah->rxchainmask == 0x2)) {
3902 		value = ar9003_hw_atten_chain_get(ah, 1, chan);
3903 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3904 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3905 
3906 		value = ar9003_hw_atten_chain_get_margin(ah, 1, chan);
3907 		REG_RMW_FIELD(ah, ext_atten_reg[0],
3908 			      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3909 			      value);
3910 	}
3911 
3912 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3913 	for (i = 0; i < 3; i++) {
3914 		if (ah->txchainmask & BIT(i)) {
3915 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3916 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3917 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3918 
3919 			if (AR_SREV_9485(ah) &&
3920 			    (ar9003_hw_get_rx_gain_idx(ah) == 0) &&
3921 			    ah->config.xatten_margin_cfg)
3922 				value = 5;
3923 			else
3924 				value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3925 
3926 			if (ah->config.alt_mingainidx)
3927 				REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0,
3928 					      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3929 					      value);
3930 
3931 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3932 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3933 				      value);
3934 		}
3935 	}
3936 }
3937 
is_pmu_set(struct ath_hw * ah,u32 pmu_reg,int pmu_set)3938 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3939 {
3940 	int timeout = 100;
3941 
3942 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3943 		if (timeout-- == 0)
3944 			return false;
3945 		REG_WRITE(ah, pmu_reg, pmu_set);
3946 		udelay(10);
3947 	}
3948 
3949 	return true;
3950 }
3951 
ar9003_hw_internal_regulator_apply(struct ath_hw * ah)3952 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3953 {
3954 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3955 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3956 	u32 reg_val;
3957 
3958 	if (pBase->featureEnable & BIT(4)) {
3959 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3960 			int reg_pmu_set;
3961 
3962 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3963 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3964 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3965 				return;
3966 
3967 			if (AR_SREV_9330(ah)) {
3968 				if (ah->is_clk_25mhz) {
3969 					reg_pmu_set = (3 << 1) | (8 << 4) |
3970 						      (3 << 8) | (1 << 14) |
3971 						      (6 << 17) | (1 << 20) |
3972 						      (3 << 24);
3973 				} else {
3974 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3975 						      (3 << 8)  | (1 << 14) |
3976 						      (6 << 17) | (1 << 20) |
3977 						      (3 << 24);
3978 				}
3979 			} else {
3980 				reg_pmu_set = (5 << 1) | (7 << 4) |
3981 					      (2 << 8) | (2 << 14) |
3982 					      (6 << 17) | (1 << 20) |
3983 					      (3 << 24) | (1 << 28);
3984 			}
3985 
3986 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3987 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3988 				return;
3989 
3990 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3991 					| (4 << 26);
3992 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3993 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3994 				return;
3995 
3996 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3997 					| (1 << 21);
3998 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3999 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
4000 				return;
4001 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah) ||
4002 			   AR_SREV_9561(ah)) {
4003 			reg_val = le32_to_cpu(pBase->swreg);
4004 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
4005 
4006 			if (AR_SREV_9561(ah))
4007 				REG_WRITE(ah, AR_PHY_PMU2, 0x10200000);
4008 		} else {
4009 			/* Internal regulator is ON. Write swreg register. */
4010 			reg_val = le32_to_cpu(pBase->swreg);
4011 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
4012 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
4013 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
4014 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
4015 			/* Set REG_CONTROL1.SWREG_PROGRAM */
4016 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
4017 				  REG_READ(ah,
4018 					   AR_RTC_REG_CONTROL1) |
4019 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
4020 		}
4021 	} else {
4022 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
4023 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
4024 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
4025 						AR_PHY_PMU2_PGM))
4026 				udelay(10);
4027 
4028 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
4029 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
4030 						AR_PHY_PMU1_PWD))
4031 				udelay(10);
4032 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
4033 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
4034 						AR_PHY_PMU2_PGM))
4035 				udelay(10);
4036 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
4037 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
4038 		else {
4039 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
4040 				AR_RTC_FORCE_SWREG_PRD;
4041 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
4042 		}
4043 	}
4044 
4045 }
4046 
ar9003_hw_apply_tuning_caps(struct ath_hw * ah)4047 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
4048 {
4049 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4050 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
4051 
4052 	if (AR_SREV_9340(ah) || AR_SREV_9531(ah))
4053 		return;
4054 
4055 	if (eep->baseEepHeader.featureEnable & 0x40) {
4056 		tuning_caps_param &= 0x7f;
4057 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
4058 			      tuning_caps_param);
4059 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
4060 			      tuning_caps_param);
4061 	}
4062 }
4063 
ar9003_hw_quick_drop_apply(struct ath_hw * ah,u16 freq)4064 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
4065 {
4066 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4067 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4068 	int quick_drop;
4069 	s32 t[3], f[3] = {5180, 5500, 5785};
4070 
4071 	if (!(pBase->miscConfiguration & BIT(4)))
4072 		return;
4073 
4074 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah) || AR_SREV_9340(ah)) {
4075 		if (freq < 4000) {
4076 			quick_drop = eep->modalHeader2G.quick_drop;
4077 		} else {
4078 			t[0] = eep->base_ext1.quick_drop_low;
4079 			t[1] = eep->modalHeader5G.quick_drop;
4080 			t[2] = eep->base_ext1.quick_drop_high;
4081 			quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
4082 		}
4083 		REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
4084 	}
4085 }
4086 
ar9003_hw_txend_to_xpa_off_apply(struct ath_hw * ah,bool is2ghz)4087 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
4088 {
4089 	u32 value;
4090 
4091 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
4092 
4093 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4094 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
4095 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4096 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
4097 }
4098 
ar9003_hw_xpa_timing_control_apply(struct ath_hw * ah,bool is2ghz)4099 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
4100 {
4101 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4102 	u8 xpa_ctl;
4103 
4104 	if (!(eep->baseEepHeader.featureEnable & 0x80))
4105 		return;
4106 
4107 	if (!AR_SREV_9300(ah) &&
4108 	    !AR_SREV_9340(ah) &&
4109 	    !AR_SREV_9580(ah) &&
4110 	    !AR_SREV_9531(ah) &&
4111 	    !AR_SREV_9561(ah))
4112 		return;
4113 
4114 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
4115 	if (is2ghz)
4116 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4117 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
4118 	else
4119 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
4120 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
4121 }
4122 
ar9003_hw_xlna_bias_strength_apply(struct ath_hw * ah,bool is2ghz)4123 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
4124 {
4125 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4126 	u8 bias;
4127 
4128 	if (!(eep->baseEepHeader.miscConfiguration & 0x40))
4129 		return;
4130 
4131 	if (!AR_SREV_9300(ah))
4132 		return;
4133 
4134 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
4135 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4136 		      bias & 0x3);
4137 	bias >>= 2;
4138 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4139 		      bias & 0x3);
4140 	bias >>= 2;
4141 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
4142 		      bias & 0x3);
4143 }
4144 
ar9003_hw_get_thermometer(struct ath_hw * ah)4145 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
4146 {
4147 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4148 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
4149 	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
4150 
4151 	return --thermometer;
4152 }
4153 
ar9003_hw_thermometer_apply(struct ath_hw * ah)4154 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4155 {
4156 	struct ath9k_hw_capabilities *pCap = &ah->caps;
4157 	int thermometer = ar9003_hw_get_thermometer(ah);
4158 	u8 therm_on = (thermometer < 0) ? 0 : 1;
4159 
4160 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4161 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4162 	if (pCap->chip_chainmask & BIT(1))
4163 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4164 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4165 	if (pCap->chip_chainmask & BIT(2))
4166 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4167 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4168 
4169 	therm_on = thermometer == 0;
4170 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4171 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4172 	if (pCap->chip_chainmask & BIT(1)) {
4173 		therm_on = thermometer == 1;
4174 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4175 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4176 	}
4177 	if (pCap->chip_chainmask & BIT(2)) {
4178 		therm_on = thermometer == 2;
4179 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4180 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4181 	}
4182 }
4183 
ar9003_hw_thermo_cal_apply(struct ath_hw * ah)4184 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4185 {
4186 	u32 data = 0, ko, kg;
4187 
4188 	if (!AR_SREV_9462_20_OR_LATER(ah))
4189 		return;
4190 
4191 	ar9300_otp_read_word(ah, 1, &data);
4192 	ko = data & 0xff;
4193 	kg = (data >> 8) & 0xff;
4194 	if (ko || kg) {
4195 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4196 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4197 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4198 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4199 			      kg + 256);
4200 	}
4201 }
4202 
ar9003_hw_apply_minccapwr_thresh(struct ath_hw * ah,bool is2ghz)4203 static void ar9003_hw_apply_minccapwr_thresh(struct ath_hw *ah,
4204 					     bool is2ghz)
4205 {
4206 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4207 	const u_int32_t cca_ctrl[AR9300_MAX_CHAINS] = {
4208 		AR_PHY_CCA_CTRL_0,
4209 		AR_PHY_CCA_CTRL_1,
4210 		AR_PHY_CCA_CTRL_2,
4211 	};
4212 	int chain;
4213 	u32 val;
4214 
4215 	if (is2ghz) {
4216 		if (!(eep->base_ext1.misc_enable & BIT(2)))
4217 			return;
4218 	} else {
4219 		if (!(eep->base_ext1.misc_enable & BIT(3)))
4220 			return;
4221 	}
4222 
4223 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
4224 		if (!(ah->caps.tx_chainmask & BIT(chain)))
4225 			continue;
4226 
4227 		val = ar9003_modal_header(ah, is2ghz)->noiseFloorThreshCh[chain];
4228 		REG_RMW_FIELD(ah, cca_ctrl[chain],
4229 			      AR_PHY_EXT_CCA0_THRESH62_1, val);
4230 	}
4231 
4232 }
4233 
ath9k_hw_ar9300_set_board_values(struct ath_hw * ah,struct ath9k_channel * chan)4234 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4235 					     struct ath9k_channel *chan)
4236 {
4237 	bool is2ghz = IS_CHAN_2GHZ(chan);
4238 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4239 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4240 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4241 	ar9003_hw_drive_strength_apply(ah);
4242 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4243 	ar9003_hw_atten_apply(ah, chan);
4244 	ar9003_hw_quick_drop_apply(ah, chan->channel);
4245 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9531(ah))
4246 		ar9003_hw_internal_regulator_apply(ah);
4247 	ar9003_hw_apply_tuning_caps(ah);
4248 	ar9003_hw_apply_minccapwr_thresh(ah, is2ghz);
4249 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4250 	ar9003_hw_thermometer_apply(ah);
4251 	ar9003_hw_thermo_cal_apply(ah);
4252 }
4253 
ath9k_hw_ar9300_set_addac(struct ath_hw * ah,struct ath9k_channel * chan)4254 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4255 				      struct ath9k_channel *chan)
4256 {
4257 }
4258 
4259 /*
4260  * Returns the interpolated y value corresponding to the specified x value
4261  * from the np ordered pairs of data (px,py).
4262  * The pairs do not have to be in any order.
4263  * If the specified x value is less than any of the px,
4264  * the returned y value is equal to the py for the lowest px.
4265  * If the specified x value is greater than any of the px,
4266  * the returned y value is equal to the py for the highest px.
4267  */
ar9003_hw_power_interpolate(int32_t x,int32_t * px,int32_t * py,u_int16_t np)4268 static int ar9003_hw_power_interpolate(int32_t x,
4269 				       int32_t *px, int32_t *py, u_int16_t np)
4270 {
4271 	int ip = 0;
4272 	int lx = 0, ly = 0, lhave = 0;
4273 	int hx = 0, hy = 0, hhave = 0;
4274 	int dx = 0;
4275 	int y = 0;
4276 
4277 	lhave = 0;
4278 	hhave = 0;
4279 
4280 	/* identify best lower and higher x calibration measurement */
4281 	for (ip = 0; ip < np; ip++) {
4282 		dx = x - px[ip];
4283 
4284 		/* this measurement is higher than our desired x */
4285 		if (dx <= 0) {
4286 			if (!hhave || dx > (x - hx)) {
4287 				/* new best higher x measurement */
4288 				hx = px[ip];
4289 				hy = py[ip];
4290 				hhave = 1;
4291 			}
4292 		}
4293 		/* this measurement is lower than our desired x */
4294 		if (dx >= 0) {
4295 			if (!lhave || dx < (x - lx)) {
4296 				/* new best lower x measurement */
4297 				lx = px[ip];
4298 				ly = py[ip];
4299 				lhave = 1;
4300 			}
4301 		}
4302 	}
4303 
4304 	/* the low x is good */
4305 	if (lhave) {
4306 		/* so is the high x */
4307 		if (hhave) {
4308 			/* they're the same, so just pick one */
4309 			if (hx == lx)
4310 				y = ly;
4311 			else	/* interpolate  */
4312 				y = interpolate(x, lx, hx, ly, hy);
4313 		} else		/* only low is good, use it */
4314 			y = ly;
4315 	} else if (hhave)	/* only high is good, use it */
4316 		y = hy;
4317 	else /* nothing is good,this should never happen unless np=0, ???? */
4318 		y = -(1 << 30);
4319 	return y;
4320 }
4321 
ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw * ah,u16 rateIndex,u16 freq,bool is2GHz)4322 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4323 				       u16 rateIndex, u16 freq, bool is2GHz)
4324 {
4325 	u16 numPiers, i;
4326 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4327 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4328 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4329 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4330 	u8 *pFreqBin;
4331 
4332 	if (is2GHz) {
4333 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4334 		pEepromTargetPwr = eep->calTargetPower2G;
4335 		pFreqBin = eep->calTarget_freqbin_2G;
4336 	} else {
4337 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4338 		pEepromTargetPwr = eep->calTargetPower5G;
4339 		pFreqBin = eep->calTarget_freqbin_5G;
4340 	}
4341 
4342 	/*
4343 	 * create array of channels and targetpower from
4344 	 * targetpower piers stored on eeprom
4345 	 */
4346 	for (i = 0; i < numPiers; i++) {
4347 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4348 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4349 	}
4350 
4351 	/* interpolate to get target power for given frequency */
4352 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4353 						 freqArray,
4354 						 targetPowerArray, numPiers);
4355 }
4356 
ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw * ah,u16 rateIndex,u16 freq,bool is2GHz)4357 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4358 					    u16 rateIndex,
4359 					    u16 freq, bool is2GHz)
4360 {
4361 	u16 numPiers, i;
4362 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4363 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4364 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4365 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4366 	u8 *pFreqBin;
4367 
4368 	if (is2GHz) {
4369 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4370 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4371 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4372 	} else {
4373 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4374 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4375 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4376 	}
4377 
4378 	/*
4379 	 * create array of channels and targetpower
4380 	 * from targetpower piers stored on eeprom
4381 	 */
4382 	for (i = 0; i < numPiers; i++) {
4383 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4384 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4385 	}
4386 
4387 	/* interpolate to get target power for given frequency */
4388 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4389 						 freqArray,
4390 						 targetPowerArray, numPiers);
4391 }
4392 
ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw * ah,u16 rateIndex,u16 freq,bool is2GHz)4393 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4394 					    u16 rateIndex,
4395 					    u16 freq, bool is2GHz)
4396 {
4397 	u16 numPiers, i;
4398 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4399 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4400 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4401 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4402 	u8 *pFreqBin;
4403 
4404 	if (is2GHz) {
4405 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4406 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4407 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4408 	} else {
4409 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4410 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4411 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4412 	}
4413 
4414 	/*
4415 	 * create array of channels and targetpower from
4416 	 * targetpower piers stored on eeprom
4417 	 */
4418 	for (i = 0; i < numPiers; i++) {
4419 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4420 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4421 	}
4422 
4423 	/* interpolate to get target power for given frequency */
4424 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4425 						 freqArray,
4426 						 targetPowerArray, numPiers);
4427 }
4428 
ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw * ah,u16 rateIndex,u16 freq)4429 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4430 					   u16 rateIndex, u16 freq)
4431 {
4432 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4433 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4434 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4435 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4436 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4437 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4438 
4439 	/*
4440 	 * create array of channels and targetpower from
4441 	 * targetpower piers stored on eeprom
4442 	 */
4443 	for (i = 0; i < numPiers; i++) {
4444 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4445 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4446 	}
4447 
4448 	/* interpolate to get target power for given frequency */
4449 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4450 						 freqArray,
4451 						 targetPowerArray, numPiers);
4452 }
4453 
ar9003_hw_selfgen_tpc_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u8 * pwr_array)4454 static void ar9003_hw_selfgen_tpc_txpower(struct ath_hw *ah,
4455 					  struct ath9k_channel *chan,
4456 					  u8 *pwr_array)
4457 {
4458 	u32 val;
4459 
4460 	/* target power values for self generated frames (ACK,RTS/CTS) */
4461 	if (IS_CHAN_2GHZ(chan)) {
4462 		val = SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
4463 		      SM(pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
4464 		      SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4465 	} else {
4466 		val = SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
4467 		      SM(pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
4468 		      SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT);
4469 	}
4470 	REG_WRITE(ah, AR_TPC, val);
4471 }
4472 
4473 /* Set tx power registers to array of values passed in */
ar9003_hw_tx_power_regwrite(struct ath_hw * ah,u8 * pPwrArray)4474 int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4475 {
4476 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4477 	/* make sure forced gain is not set */
4478 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4479 
4480 	/* Write the OFDM power per rate set */
4481 
4482 	/* 6 (LSB), 9, 12, 18 (MSB) */
4483 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4484 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4485 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4486 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4487 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4488 
4489 	/* 24 (LSB), 36, 48, 54 (MSB) */
4490 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4491 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4492 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4493 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4494 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4495 
4496 	/* Write the CCK power per rate set */
4497 
4498 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4499 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4500 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4501 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4502 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4503 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4504 
4505 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4506 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4507 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4508 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4509 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4510 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4511 	    );
4512 
4513         /* Write the power for duplicated frames - HT40 */
4514 
4515         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4516 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4517 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4518 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4519 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4520 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4521 	    );
4522 
4523 	/* Write the HT20 power per rate set */
4524 
4525 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4526 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4527 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4528 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4529 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4530 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4531 	    );
4532 
4533 	/* 6 (LSB), 7, 12, 13 (MSB) */
4534 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4535 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4536 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4537 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4538 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4539 	    );
4540 
4541 	/* 14 (LSB), 15, 20, 21 */
4542 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4543 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4544 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4545 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4546 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4547 	    );
4548 
4549 	/* Mixed HT20 and HT40 rates */
4550 
4551 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4552 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4553 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4554 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4555 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4556 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4557 	    );
4558 
4559 	/*
4560 	 * Write the HT40 power per rate set
4561 	 * correct PAR difference between HT40 and HT20/LEGACY
4562 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4563 	 */
4564 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4565 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4566 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4567 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4568 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4569 	    );
4570 
4571 	/* 6 (LSB), 7, 12, 13 (MSB) */
4572 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4573 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4574 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4575 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4576 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4577 	    );
4578 
4579 	/* 14 (LSB), 15, 20, 21 */
4580 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4581 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4582 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4583 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4584 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4585 	    );
4586 
4587 	return 0;
4588 #undef POW_SM
4589 }
4590 
ar9003_hw_get_legacy_target_powers(struct ath_hw * ah,u16 freq,u8 * targetPowerValT2,bool is2GHz)4591 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4592 					       u8 *targetPowerValT2,
4593 					       bool is2GHz)
4594 {
4595 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4596 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4597 					 is2GHz);
4598 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4599 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4600 					 is2GHz);
4601 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4602 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4603 					 is2GHz);
4604 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4605 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4606 					 is2GHz);
4607 }
4608 
ar9003_hw_get_cck_target_powers(struct ath_hw * ah,u16 freq,u8 * targetPowerValT2)4609 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4610 					    u8 *targetPowerValT2)
4611 {
4612 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4613 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4614 					     freq);
4615 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4616 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4617 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4618 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4619 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4620 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4621 }
4622 
ar9003_hw_get_ht20_target_powers(struct ath_hw * ah,u16 freq,u8 * targetPowerValT2,bool is2GHz)4623 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4624 					     u8 *targetPowerValT2, bool is2GHz)
4625 {
4626 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4627 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4628 					      is2GHz);
4629 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4630 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4631 					      freq, is2GHz);
4632 	targetPowerValT2[ALL_TARGET_HT20_4] =
4633 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4634 					      is2GHz);
4635 	targetPowerValT2[ALL_TARGET_HT20_5] =
4636 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4637 					      is2GHz);
4638 	targetPowerValT2[ALL_TARGET_HT20_6] =
4639 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4640 					      is2GHz);
4641 	targetPowerValT2[ALL_TARGET_HT20_7] =
4642 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4643 					      is2GHz);
4644 	targetPowerValT2[ALL_TARGET_HT20_12] =
4645 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4646 					      is2GHz);
4647 	targetPowerValT2[ALL_TARGET_HT20_13] =
4648 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4649 					      is2GHz);
4650 	targetPowerValT2[ALL_TARGET_HT20_14] =
4651 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4652 					      is2GHz);
4653 	targetPowerValT2[ALL_TARGET_HT20_15] =
4654 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4655 					      is2GHz);
4656 	targetPowerValT2[ALL_TARGET_HT20_20] =
4657 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4658 					      is2GHz);
4659 	targetPowerValT2[ALL_TARGET_HT20_21] =
4660 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4661 					      is2GHz);
4662 	targetPowerValT2[ALL_TARGET_HT20_22] =
4663 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4664 					      is2GHz);
4665 	targetPowerValT2[ALL_TARGET_HT20_23] =
4666 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4667 					      is2GHz);
4668 }
4669 
ar9003_hw_get_ht40_target_powers(struct ath_hw * ah,u16 freq,u8 * targetPowerValT2,bool is2GHz)4670 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4671 						   u16 freq,
4672 						   u8 *targetPowerValT2,
4673 						   bool is2GHz)
4674 {
4675 	/* XXX: hard code for now, need to get from eeprom struct */
4676 	u8 ht40PowerIncForPdadc = 0;
4677 
4678 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4679 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4680 					      is2GHz) + ht40PowerIncForPdadc;
4681 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4682 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4683 					      freq,
4684 					      is2GHz) + ht40PowerIncForPdadc;
4685 	targetPowerValT2[ALL_TARGET_HT40_4] =
4686 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4687 					      is2GHz) + ht40PowerIncForPdadc;
4688 	targetPowerValT2[ALL_TARGET_HT40_5] =
4689 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4690 					      is2GHz) + ht40PowerIncForPdadc;
4691 	targetPowerValT2[ALL_TARGET_HT40_6] =
4692 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4693 					      is2GHz) + ht40PowerIncForPdadc;
4694 	targetPowerValT2[ALL_TARGET_HT40_7] =
4695 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4696 					      is2GHz) + ht40PowerIncForPdadc;
4697 	targetPowerValT2[ALL_TARGET_HT40_12] =
4698 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4699 					      is2GHz) + ht40PowerIncForPdadc;
4700 	targetPowerValT2[ALL_TARGET_HT40_13] =
4701 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4702 					      is2GHz) + ht40PowerIncForPdadc;
4703 	targetPowerValT2[ALL_TARGET_HT40_14] =
4704 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4705 					      is2GHz) + ht40PowerIncForPdadc;
4706 	targetPowerValT2[ALL_TARGET_HT40_15] =
4707 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4708 					      is2GHz) + ht40PowerIncForPdadc;
4709 	targetPowerValT2[ALL_TARGET_HT40_20] =
4710 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4711 					      is2GHz) + ht40PowerIncForPdadc;
4712 	targetPowerValT2[ALL_TARGET_HT40_21] =
4713 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4714 					      is2GHz) + ht40PowerIncForPdadc;
4715 	targetPowerValT2[ALL_TARGET_HT40_22] =
4716 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4717 					      is2GHz) + ht40PowerIncForPdadc;
4718 	targetPowerValT2[ALL_TARGET_HT40_23] =
4719 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4720 					      is2GHz) + ht40PowerIncForPdadc;
4721 }
4722 
ar9003_hw_get_target_power_eeprom(struct ath_hw * ah,struct ath9k_channel * chan,u8 * targetPowerValT2)4723 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4724 					      struct ath9k_channel *chan,
4725 					      u8 *targetPowerValT2)
4726 {
4727 	bool is2GHz = IS_CHAN_2GHZ(chan);
4728 	unsigned int i = 0;
4729 	struct ath_common *common = ath9k_hw_common(ah);
4730 	u16 freq = chan->channel;
4731 
4732 	if (is2GHz)
4733 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4734 
4735 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4736 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4737 
4738 	if (IS_CHAN_HT40(chan))
4739 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4740 						 is2GHz);
4741 
4742 	for (i = 0; i < ar9300RateSize; i++) {
4743 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
4744 			i, targetPowerValT2[i]);
4745 	}
4746 }
4747 
ar9003_hw_cal_pier_get(struct ath_hw * ah,int mode,int ipier,int ichain,int * pfrequency,int * pcorrection,int * ptemperature,int * pvoltage,int * pnf_cal,int * pnf_power)4748 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4749 				  int mode,
4750 				  int ipier,
4751 				  int ichain,
4752 				  int *pfrequency,
4753 				  int *pcorrection,
4754 				  int *ptemperature, int *pvoltage,
4755 				  int *pnf_cal, int *pnf_power)
4756 {
4757 	u8 *pCalPier;
4758 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4759 	int is2GHz;
4760 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4761 	struct ath_common *common = ath9k_hw_common(ah);
4762 
4763 	if (ichain >= AR9300_MAX_CHAINS) {
4764 		ath_dbg(common, EEPROM,
4765 			"Invalid chain index, must be less than %d\n",
4766 			AR9300_MAX_CHAINS);
4767 		return -1;
4768 	}
4769 
4770 	if (mode) {		/* 5GHz */
4771 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4772 			ath_dbg(common, EEPROM,
4773 				"Invalid 5GHz cal pier index, must be less than %d\n",
4774 				AR9300_NUM_5G_CAL_PIERS);
4775 			return -1;
4776 		}
4777 		pCalPier = &(eep->calFreqPier5G[ipier]);
4778 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4779 		is2GHz = 0;
4780 	} else {
4781 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4782 			ath_dbg(common, EEPROM,
4783 				"Invalid 2GHz cal pier index, must be less than %d\n",
4784 				AR9300_NUM_2G_CAL_PIERS);
4785 			return -1;
4786 		}
4787 
4788 		pCalPier = &(eep->calFreqPier2G[ipier]);
4789 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4790 		is2GHz = 1;
4791 	}
4792 
4793 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4794 	*pcorrection = pCalPierStruct->refPower;
4795 	*ptemperature = pCalPierStruct->tempMeas;
4796 	*pvoltage = pCalPierStruct->voltMeas;
4797 	*pnf_cal = pCalPierStruct->rxTempMeas ?
4798 			N2DBM(pCalPierStruct->rxNoisefloorCal) : 0;
4799 	*pnf_power = pCalPierStruct->rxTempMeas ?
4800 			N2DBM(pCalPierStruct->rxNoisefloorPower) : 0;
4801 
4802 	return 0;
4803 }
4804 
ar9003_hw_power_control_override(struct ath_hw * ah,int frequency,int * correction,int * voltage,int * temperature)4805 static void ar9003_hw_power_control_override(struct ath_hw *ah,
4806 					     int frequency,
4807 					     int *correction,
4808 					     int *voltage, int *temperature)
4809 {
4810 	int temp_slope = 0, temp_slope1 = 0, temp_slope2 = 0;
4811 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4812 	int f[8], t[8], t1[3], t2[3], i;
4813 
4814 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4815 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4816 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4817 	if (ah->caps.tx_chainmask & BIT(1))
4818 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4819 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4820 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4821 	if (ah->caps.tx_chainmask & BIT(2))
4822 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4823 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4824 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4825 
4826 	/* enable open loop power control on chip */
4827 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4828 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4829 		AR_PHY_TPC_6_ERROR_EST_MODE);
4830 	if (ah->caps.tx_chainmask & BIT(1))
4831 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4832 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4833 			AR_PHY_TPC_6_ERROR_EST_MODE);
4834 	if (ah->caps.tx_chainmask & BIT(2))
4835 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4836 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4837 			AR_PHY_TPC_6_ERROR_EST_MODE);
4838 
4839 	/*
4840 	 * enable temperature compensation
4841 	 * Need to use register names
4842 	 */
4843 	if (frequency < 4000) {
4844 		temp_slope = eep->modalHeader2G.tempSlope;
4845 	} else {
4846 		if (AR_SREV_9550(ah)) {
4847 			t[0] = eep->base_ext1.tempslopextension[2];
4848 			t1[0] = eep->base_ext1.tempslopextension[3];
4849 			t2[0] = eep->base_ext1.tempslopextension[4];
4850 			f[0] = 5180;
4851 
4852 			t[1] = eep->modalHeader5G.tempSlope;
4853 			t1[1] = eep->base_ext1.tempslopextension[0];
4854 			t2[1] = eep->base_ext1.tempslopextension[1];
4855 			f[1] = 5500;
4856 
4857 			t[2] = eep->base_ext1.tempslopextension[5];
4858 			t1[2] = eep->base_ext1.tempslopextension[6];
4859 			t2[2] = eep->base_ext1.tempslopextension[7];
4860 			f[2] = 5785;
4861 
4862 			temp_slope = ar9003_hw_power_interpolate(frequency,
4863 								 f, t, 3);
4864 			temp_slope1 = ar9003_hw_power_interpolate(frequency,
4865 								   f, t1, 3);
4866 			temp_slope2 = ar9003_hw_power_interpolate(frequency,
4867 								   f, t2, 3);
4868 
4869 			goto tempslope;
4870 		}
4871 
4872 		if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4873 			for (i = 0; i < 8; i++) {
4874 				t[i] = eep->base_ext1.tempslopextension[i];
4875 				f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4876 			}
4877 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4878 								 f, t, 8);
4879 		} else if (eep->base_ext2.tempSlopeLow != 0) {
4880 			t[0] = eep->base_ext2.tempSlopeLow;
4881 			f[0] = 5180;
4882 			t[1] = eep->modalHeader5G.tempSlope;
4883 			f[1] = 5500;
4884 			t[2] = eep->base_ext2.tempSlopeHigh;
4885 			f[2] = 5785;
4886 			temp_slope = ar9003_hw_power_interpolate((s32) frequency,
4887 								 f, t, 3);
4888 		} else {
4889 			temp_slope = eep->modalHeader5G.tempSlope;
4890 		}
4891 	}
4892 
4893 tempslope:
4894 	if (AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
4895 		u8 txmask = (eep->baseEepHeader.txrxMask & 0xf0) >> 4;
4896 
4897 		/*
4898 		 * AR955x has tempSlope register for each chain.
4899 		 * Check whether temp_compensation feature is enabled or not.
4900 		 */
4901 		if (eep->baseEepHeader.featureEnable & 0x1) {
4902 			if (frequency < 4000) {
4903 				if (txmask & BIT(0))
4904 					REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4905 						      AR_PHY_TPC_19_ALPHA_THERM,
4906 						      eep->base_ext2.tempSlopeLow);
4907 				if (txmask & BIT(1))
4908 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4909 						      AR_PHY_TPC_19_ALPHA_THERM,
4910 						      temp_slope);
4911 				if (txmask & BIT(2))
4912 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4913 						      AR_PHY_TPC_19_ALPHA_THERM,
4914 						      eep->base_ext2.tempSlopeHigh);
4915 			} else {
4916 				if (txmask & BIT(0))
4917 					REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4918 						      AR_PHY_TPC_19_ALPHA_THERM,
4919 						      temp_slope);
4920 				if (txmask & BIT(1))
4921 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4922 						      AR_PHY_TPC_19_ALPHA_THERM,
4923 						      temp_slope1);
4924 				if (txmask & BIT(2))
4925 					REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4926 						      AR_PHY_TPC_19_ALPHA_THERM,
4927 						      temp_slope2);
4928 			}
4929 		} else {
4930 			/*
4931 			 * If temp compensation is not enabled,
4932 			 * set all registers to 0.
4933 			 */
4934 			if (txmask & BIT(0))
4935 				REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4936 					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4937 			if (txmask & BIT(1))
4938 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4939 					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4940 			if (txmask & BIT(2))
4941 				REG_RMW_FIELD(ah, AR_PHY_TPC_19_B2,
4942 					      AR_PHY_TPC_19_ALPHA_THERM, 0);
4943 		}
4944 	} else {
4945 		REG_RMW_FIELD(ah, AR_PHY_TPC_19,
4946 			      AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
4947 	}
4948 
4949 	if (AR_SREV_9462_20_OR_LATER(ah))
4950 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4951 			      AR_PHY_TPC_19_B1_ALPHA_THERM, temp_slope);
4952 
4953 
4954 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4955 		      temperature[0]);
4956 }
4957 
4958 /* Apply the recorded correction values. */
ar9003_hw_calibration_apply(struct ath_hw * ah,int frequency)4959 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4960 {
4961 	int ichain, ipier, npier;
4962 	int mode;
4963 	int lfrequency[AR9300_MAX_CHAINS],
4964 	    lcorrection[AR9300_MAX_CHAINS],
4965 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS],
4966 	    lnf_cal[AR9300_MAX_CHAINS], lnf_pwr[AR9300_MAX_CHAINS];
4967 	int hfrequency[AR9300_MAX_CHAINS],
4968 	    hcorrection[AR9300_MAX_CHAINS],
4969 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS],
4970 	    hnf_cal[AR9300_MAX_CHAINS], hnf_pwr[AR9300_MAX_CHAINS];
4971 	int fdiff;
4972 	int correction[AR9300_MAX_CHAINS],
4973 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS],
4974 	    nf_cal[AR9300_MAX_CHAINS], nf_pwr[AR9300_MAX_CHAINS];
4975 	int pfrequency, pcorrection, ptemperature, pvoltage,
4976 	    pnf_cal, pnf_pwr;
4977 	struct ath_common *common = ath9k_hw_common(ah);
4978 
4979 	mode = (frequency >= 4000);
4980 	if (mode)
4981 		npier = AR9300_NUM_5G_CAL_PIERS;
4982 	else
4983 		npier = AR9300_NUM_2G_CAL_PIERS;
4984 
4985 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4986 		lfrequency[ichain] = 0;
4987 		hfrequency[ichain] = 100000;
4988 	}
4989 	/* identify best lower and higher frequency calibration measurement */
4990 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4991 		for (ipier = 0; ipier < npier; ipier++) {
4992 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4993 						    &pfrequency, &pcorrection,
4994 						    &ptemperature, &pvoltage,
4995 						    &pnf_cal, &pnf_pwr)) {
4996 				fdiff = frequency - pfrequency;
4997 
4998 				/*
4999 				 * this measurement is higher than
5000 				 * our desired frequency
5001 				 */
5002 				if (fdiff <= 0) {
5003 					if (hfrequency[ichain] <= 0 ||
5004 					    hfrequency[ichain] >= 100000 ||
5005 					    fdiff >
5006 					    (frequency - hfrequency[ichain])) {
5007 						/*
5008 						 * new best higher
5009 						 * frequency measurement
5010 						 */
5011 						hfrequency[ichain] = pfrequency;
5012 						hcorrection[ichain] =
5013 						    pcorrection;
5014 						htemperature[ichain] =
5015 						    ptemperature;
5016 						hvoltage[ichain] = pvoltage;
5017 						hnf_cal[ichain] = pnf_cal;
5018 						hnf_pwr[ichain] = pnf_pwr;
5019 					}
5020 				}
5021 				if (fdiff >= 0) {
5022 					if (lfrequency[ichain] <= 0
5023 					    || fdiff <
5024 					    (frequency - lfrequency[ichain])) {
5025 						/*
5026 						 * new best lower
5027 						 * frequency measurement
5028 						 */
5029 						lfrequency[ichain] = pfrequency;
5030 						lcorrection[ichain] =
5031 						    pcorrection;
5032 						ltemperature[ichain] =
5033 						    ptemperature;
5034 						lvoltage[ichain] = pvoltage;
5035 						lnf_cal[ichain] = pnf_cal;
5036 						lnf_pwr[ichain] = pnf_pwr;
5037 					}
5038 				}
5039 			}
5040 		}
5041 	}
5042 
5043 	/* interpolate  */
5044 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
5045 		ath_dbg(common, EEPROM,
5046 			"ch=%d f=%d low=%d %d h=%d %d n=%d %d p=%d %d\n",
5047 			ichain, frequency, lfrequency[ichain],
5048 			lcorrection[ichain], hfrequency[ichain],
5049 			hcorrection[ichain], lnf_cal[ichain],
5050 			hnf_cal[ichain], lnf_pwr[ichain],
5051 			hnf_pwr[ichain]);
5052 		/* they're the same, so just pick one */
5053 		if (hfrequency[ichain] == lfrequency[ichain]) {
5054 			correction[ichain] = lcorrection[ichain];
5055 			voltage[ichain] = lvoltage[ichain];
5056 			temperature[ichain] = ltemperature[ichain];
5057 			nf_cal[ichain] = lnf_cal[ichain];
5058 			nf_pwr[ichain] = lnf_pwr[ichain];
5059 		}
5060 		/* the low frequency is good */
5061 		else if (frequency - lfrequency[ichain] < 1000) {
5062 			/* so is the high frequency, interpolate */
5063 			if (hfrequency[ichain] - frequency < 1000) {
5064 
5065 				correction[ichain] = interpolate(frequency,
5066 						lfrequency[ichain],
5067 						hfrequency[ichain],
5068 						lcorrection[ichain],
5069 						hcorrection[ichain]);
5070 
5071 				temperature[ichain] = interpolate(frequency,
5072 						lfrequency[ichain],
5073 						hfrequency[ichain],
5074 						ltemperature[ichain],
5075 						htemperature[ichain]);
5076 
5077 				voltage[ichain] = interpolate(frequency,
5078 						lfrequency[ichain],
5079 						hfrequency[ichain],
5080 						lvoltage[ichain],
5081 						hvoltage[ichain]);
5082 
5083 				nf_cal[ichain] = interpolate(frequency,
5084 						lfrequency[ichain],
5085 						hfrequency[ichain],
5086 						lnf_cal[ichain],
5087 						hnf_cal[ichain]);
5088 
5089 				nf_pwr[ichain] = interpolate(frequency,
5090 						lfrequency[ichain],
5091 						hfrequency[ichain],
5092 						lnf_pwr[ichain],
5093 						hnf_pwr[ichain]);
5094 			}
5095 			/* only low is good, use it */
5096 			else {
5097 				correction[ichain] = lcorrection[ichain];
5098 				temperature[ichain] = ltemperature[ichain];
5099 				voltage[ichain] = lvoltage[ichain];
5100 				nf_cal[ichain] = lnf_cal[ichain];
5101 				nf_pwr[ichain] = lnf_pwr[ichain];
5102 			}
5103 		}
5104 		/* only high is good, use it */
5105 		else if (hfrequency[ichain] - frequency < 1000) {
5106 			correction[ichain] = hcorrection[ichain];
5107 			temperature[ichain] = htemperature[ichain];
5108 			voltage[ichain] = hvoltage[ichain];
5109 			nf_cal[ichain] = hnf_cal[ichain];
5110 			nf_pwr[ichain] = hnf_pwr[ichain];
5111 		} else {	/* nothing is good, presume 0???? */
5112 			correction[ichain] = 0;
5113 			temperature[ichain] = 0;
5114 			voltage[ichain] = 0;
5115 			nf_cal[ichain] = 0;
5116 			nf_pwr[ichain] = 0;
5117 		}
5118 	}
5119 
5120 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
5121 					 temperature);
5122 
5123 	ath_dbg(common, EEPROM,
5124 		"for frequency=%d, calibration correction = %d %d %d\n",
5125 		frequency, correction[0], correction[1], correction[2]);
5126 
5127 	/* Store calibrated noise floor values */
5128 	for (ichain = 0; ichain < AR5416_MAX_CHAINS; ichain++)
5129 		if (mode) {
5130 			ah->nf_5g.cal[ichain] = nf_cal[ichain];
5131 			ah->nf_5g.pwr[ichain] = nf_pwr[ichain];
5132 		} else {
5133 			ah->nf_2g.cal[ichain] = nf_cal[ichain];
5134 			ah->nf_2g.pwr[ichain] = nf_pwr[ichain];
5135 		}
5136 
5137 	return 0;
5138 }
5139 
ar9003_hw_get_direct_edge_power(struct ar9300_eeprom * eep,int idx,int edge,bool is2GHz)5140 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
5141 					   int idx,
5142 					   int edge,
5143 					   bool is2GHz)
5144 {
5145 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5146 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5147 
5148 	if (is2GHz)
5149 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
5150 	else
5151 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
5152 }
5153 
ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom * eep,int idx,unsigned int edge,u16 freq,bool is2GHz)5154 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
5155 					     int idx,
5156 					     unsigned int edge,
5157 					     u16 freq,
5158 					     bool is2GHz)
5159 {
5160 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
5161 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
5162 
5163 	u8 *ctl_freqbin = is2GHz ?
5164 		&eep->ctl_freqbin_2G[idx][0] :
5165 		&eep->ctl_freqbin_5G[idx][0];
5166 
5167 	if (is2GHz) {
5168 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
5169 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
5170 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
5171 	} else {
5172 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
5173 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
5174 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
5175 	}
5176 
5177 	return MAX_RATE_POWER;
5178 }
5179 
5180 /*
5181  * Find the maximum conformance test limit for the given channel and CTL info
5182  */
ar9003_hw_get_max_edge_power(struct ar9300_eeprom * eep,u16 freq,int idx,bool is2GHz)5183 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
5184 					u16 freq, int idx, bool is2GHz)
5185 {
5186 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
5187 	u8 *ctl_freqbin = is2GHz ?
5188 		&eep->ctl_freqbin_2G[idx][0] :
5189 		&eep->ctl_freqbin_5G[idx][0];
5190 	u16 num_edges = is2GHz ?
5191 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
5192 	unsigned int edge;
5193 
5194 	/* Get the edge power */
5195 	for (edge = 0;
5196 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
5197 	     edge++) {
5198 		/*
5199 		 * If there's an exact channel match or an inband flag set
5200 		 * on the lower channel use the given rdEdgePower
5201 		 */
5202 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
5203 			twiceMaxEdgePower =
5204 				ar9003_hw_get_direct_edge_power(eep, idx,
5205 								edge, is2GHz);
5206 			break;
5207 		} else if ((edge > 0) &&
5208 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
5209 						      is2GHz))) {
5210 			twiceMaxEdgePower =
5211 				ar9003_hw_get_indirect_edge_power(eep, idx,
5212 								  edge, freq,
5213 								  is2GHz);
5214 			/*
5215 			 * Leave loop - no more affecting edges possible in
5216 			 * this monotonic increasing list
5217 			 */
5218 			break;
5219 		}
5220 	}
5221 
5222 	if (is2GHz && !twiceMaxEdgePower)
5223 		twiceMaxEdgePower = 60;
5224 
5225 	return twiceMaxEdgePower;
5226 }
5227 
ar9003_hw_set_power_per_rate_table(struct ath_hw * ah,struct ath9k_channel * chan,u8 * pPwrArray,u16 cfgCtl,u8 antenna_reduction,u16 powerLimit)5228 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
5229 					       struct ath9k_channel *chan,
5230 					       u8 *pPwrArray, u16 cfgCtl,
5231 					       u8 antenna_reduction,
5232 					       u16 powerLimit)
5233 {
5234 	struct ath_common *common = ath9k_hw_common(ah);
5235 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
5236 	u16 twiceMaxEdgePower;
5237 	int i;
5238 	u16 scaledPower = 0, minCtlPower;
5239 	static const u16 ctlModesFor11a[] = {
5240 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
5241 	};
5242 	static const u16 ctlModesFor11g[] = {
5243 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
5244 		CTL_11G_EXT, CTL_2GHT40
5245 	};
5246 	u16 numCtlModes;
5247 	const u16 *pCtlMode;
5248 	u16 ctlMode, freq;
5249 	struct chan_centers centers;
5250 	u8 *ctlIndex;
5251 	u8 ctlNum;
5252 	u16 twiceMinEdgePower;
5253 	bool is2ghz = IS_CHAN_2GHZ(chan);
5254 
5255 	ath9k_hw_get_channel_centers(ah, chan, &centers);
5256 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
5257 						antenna_reduction);
5258 
5259 	if (is2ghz) {
5260 		/* Setup for CTL modes */
5261 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
5262 		numCtlModes =
5263 			ARRAY_SIZE(ctlModesFor11g) -
5264 				   SUB_NUM_CTL_MODES_AT_2G_40;
5265 		pCtlMode = ctlModesFor11g;
5266 		if (IS_CHAN_HT40(chan))
5267 			/* All 2G CTL's */
5268 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
5269 	} else {
5270 		/* Setup for CTL modes */
5271 		/* CTL_11A, CTL_5GHT20 */
5272 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
5273 					 SUB_NUM_CTL_MODES_AT_5G_40;
5274 		pCtlMode = ctlModesFor11a;
5275 		if (IS_CHAN_HT40(chan))
5276 			/* All 5G CTL's */
5277 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
5278 	}
5279 
5280 	/*
5281 	 * For MIMO, need to apply regulatory caps individually across
5282 	 * dynamically running modes: CCK, OFDM, HT20, HT40
5283 	 *
5284 	 * The outer loop walks through each possible applicable runtime mode.
5285 	 * The inner loop walks through each ctlIndex entry in EEPROM.
5286 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
5287 	 */
5288 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
5289 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
5290 			(pCtlMode[ctlMode] == CTL_2GHT40);
5291 		if (isHt40CtlMode)
5292 			freq = centers.synth_center;
5293 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
5294 			freq = centers.ext_center;
5295 		else
5296 			freq = centers.ctl_center;
5297 
5298 		ath_dbg(common, REGULATORY,
5299 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
5300 			ctlMode, numCtlModes, isHt40CtlMode,
5301 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
5302 
5303 		/* walk through each CTL index stored in EEPROM */
5304 		if (is2ghz) {
5305 			ctlIndex = pEepData->ctlIndex_2G;
5306 			ctlNum = AR9300_NUM_CTLS_2G;
5307 		} else {
5308 			ctlIndex = pEepData->ctlIndex_5G;
5309 			ctlNum = AR9300_NUM_CTLS_5G;
5310 		}
5311 
5312 		twiceMaxEdgePower = MAX_RATE_POWER;
5313 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
5314 			ath_dbg(common, REGULATORY,
5315 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
5316 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
5317 				chan->channel);
5318 
5319 			/*
5320 			 * compare test group from regulatory
5321 			 * channel list with test mode from pCtlMode
5322 			 * list
5323 			 */
5324 			if ((((cfgCtl & ~CTL_MODE_M) |
5325 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5326 				ctlIndex[i]) ||
5327 			    (((cfgCtl & ~CTL_MODE_M) |
5328 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
5329 			     ((ctlIndex[i] & CTL_MODE_M) |
5330 			       SD_NO_CTL))) {
5331 				twiceMinEdgePower =
5332 				  ar9003_hw_get_max_edge_power(pEepData,
5333 							       freq, i,
5334 							       is2ghz);
5335 
5336 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
5337 					/*
5338 					 * Find the minimum of all CTL
5339 					 * edge powers that apply to
5340 					 * this channel
5341 					 */
5342 					twiceMaxEdgePower =
5343 						min(twiceMaxEdgePower,
5344 						    twiceMinEdgePower);
5345 				else {
5346 					/* specific */
5347 					twiceMaxEdgePower = twiceMinEdgePower;
5348 					break;
5349 				}
5350 			}
5351 		}
5352 
5353 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5354 
5355 		ath_dbg(common, REGULATORY,
5356 			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5357 			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5358 			scaledPower, minCtlPower);
5359 
5360 		/* Apply ctl mode to correct target power set */
5361 		switch (pCtlMode[ctlMode]) {
5362 		case CTL_11B:
5363 			for (i = ALL_TARGET_LEGACY_1L_5L;
5364 			     i <= ALL_TARGET_LEGACY_11S; i++)
5365 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5366 						       minCtlPower);
5367 			break;
5368 		case CTL_11A:
5369 		case CTL_11G:
5370 			for (i = ALL_TARGET_LEGACY_6_24;
5371 			     i <= ALL_TARGET_LEGACY_54; i++)
5372 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5373 						       minCtlPower);
5374 			break;
5375 		case CTL_5GHT20:
5376 		case CTL_2GHT20:
5377 			for (i = ALL_TARGET_HT20_0_8_16;
5378 			     i <= ALL_TARGET_HT20_23; i++) {
5379 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5380 						       minCtlPower);
5381 				if (ath9k_hw_mci_is_enabled(ah))
5382 					pPwrArray[i] =
5383 						(u8)min((u16)pPwrArray[i],
5384 						ar9003_mci_get_max_txpower(ah,
5385 							pCtlMode[ctlMode]));
5386 			}
5387 			break;
5388 		case CTL_5GHT40:
5389 		case CTL_2GHT40:
5390 			for (i = ALL_TARGET_HT40_0_8_16;
5391 			     i <= ALL_TARGET_HT40_23; i++) {
5392 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5393 						       minCtlPower);
5394 				if (ath9k_hw_mci_is_enabled(ah))
5395 					pPwrArray[i] =
5396 						(u8)min((u16)pPwrArray[i],
5397 						ar9003_mci_get_max_txpower(ah,
5398 							pCtlMode[ctlMode]));
5399 			}
5400 			break;
5401 		default:
5402 			break;
5403 		}
5404 	} /* end ctl mode checking */
5405 }
5406 
mcsidx_to_tgtpwridx(unsigned int mcs_idx,u8 base_pwridx)5407 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5408 {
5409 	u8 mod_idx = mcs_idx % 8;
5410 
5411 	if (mod_idx <= 3)
5412 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5413 	else
5414 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5415 }
5416 
ar9003_paprd_set_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u8 * targetPowerValT2)5417 static void ar9003_paprd_set_txpower(struct ath_hw *ah,
5418 				     struct ath9k_channel *chan,
5419 				     u8 *targetPowerValT2)
5420 {
5421 	int i;
5422 
5423 	if (!ar9003_is_paprd_enabled(ah))
5424 		return;
5425 
5426 	if (IS_CHAN_HT40(chan))
5427 		i = ALL_TARGET_HT40_7;
5428 	else
5429 		i = ALL_TARGET_HT20_7;
5430 
5431 	if (IS_CHAN_2GHZ(chan)) {
5432 		if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) &&
5433 		    !AR_SREV_9462(ah) && !AR_SREV_9565(ah)) {
5434 			if (IS_CHAN_HT40(chan))
5435 				i = ALL_TARGET_HT40_0_8_16;
5436 			else
5437 				i = ALL_TARGET_HT20_0_8_16;
5438 		}
5439 	}
5440 
5441 	ah->paprd_target_power = targetPowerValT2[i];
5442 }
5443 
ath9k_hw_ar9300_set_txpower(struct ath_hw * ah,struct ath9k_channel * chan,u16 cfgCtl,u8 twiceAntennaReduction,u8 powerLimit,bool test)5444 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5445 					struct ath9k_channel *chan, u16 cfgCtl,
5446 					u8 twiceAntennaReduction,
5447 					u8 powerLimit, bool test)
5448 {
5449 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5450 	struct ath_common *common = ath9k_hw_common(ah);
5451 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5452 	struct ar9300_modal_eep_header *modal_hdr;
5453 	u8 targetPowerValT2[ar9300RateSize];
5454 	u8 target_power_val_t2_eep[ar9300RateSize];
5455 	u8 targetPowerValT2_tpc[ar9300RateSize];
5456 	unsigned int i = 0, paprd_scale_factor = 0;
5457 	u8 pwr_idx, min_pwridx = 0;
5458 
5459 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5460 
5461 	/*
5462 	 * Get target powers from EEPROM - our baseline for TX Power
5463 	 */
5464 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5465 
5466 	if (ar9003_is_paprd_enabled(ah)) {
5467 		if (IS_CHAN_2GHZ(chan))
5468 			modal_hdr = &eep->modalHeader2G;
5469 		else
5470 			modal_hdr = &eep->modalHeader5G;
5471 
5472 		ah->paprd_ratemask =
5473 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5474 			AR9300_PAPRD_RATE_MASK;
5475 
5476 		ah->paprd_ratemask_ht40 =
5477 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5478 			AR9300_PAPRD_RATE_MASK;
5479 
5480 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5481 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5482 						  ALL_TARGET_HT20_0_8_16;
5483 
5484 		if (!ah->paprd_table_write_done) {
5485 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5486 			       sizeof(targetPowerValT2));
5487 			for (i = 0; i < 24; i++) {
5488 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5489 				if (ah->paprd_ratemask & (1 << i)) {
5490 					if (targetPowerValT2[pwr_idx] &&
5491 					    targetPowerValT2[pwr_idx] ==
5492 					    target_power_val_t2_eep[pwr_idx])
5493 						targetPowerValT2[pwr_idx] -=
5494 							paprd_scale_factor;
5495 				}
5496 			}
5497 		}
5498 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5499 		       sizeof(targetPowerValT2));
5500 	}
5501 
5502 	ar9003_hw_set_power_per_rate_table(ah, chan,
5503 					   targetPowerValT2, cfgCtl,
5504 					   twiceAntennaReduction,
5505 					   powerLimit);
5506 
5507 	memcpy(targetPowerValT2_tpc, targetPowerValT2,
5508 	       sizeof(targetPowerValT2));
5509 
5510 	if (ar9003_is_paprd_enabled(ah)) {
5511 		for (i = 0; i < ar9300RateSize; i++) {
5512 			if ((ah->paprd_ratemask & (1 << i)) &&
5513 			    (abs(targetPowerValT2[i] -
5514 				target_power_val_t2_eep[i]) >
5515 			    paprd_scale_factor)) {
5516 				ah->paprd_ratemask &= ~(1 << i);
5517 				ath_dbg(common, EEPROM,
5518 					"paprd disabled for mcs %d\n", i);
5519 			}
5520 		}
5521 	}
5522 
5523 	regulatory->max_power_level = 0;
5524 	for (i = 0; i < ar9300RateSize; i++) {
5525 		if (targetPowerValT2[i] > regulatory->max_power_level)
5526 			regulatory->max_power_level = targetPowerValT2[i];
5527 	}
5528 
5529 	ath9k_hw_update_regulatory_maxpower(ah);
5530 
5531 	if (test)
5532 		return;
5533 
5534 	for (i = 0; i < ar9300RateSize; i++) {
5535 		ath_dbg(common, REGULATORY, "TPC[%02d] 0x%08x\n",
5536 			i, targetPowerValT2[i]);
5537 	}
5538 
5539 	/* Write target power array to registers */
5540 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5541 	ar9003_hw_calibration_apply(ah, chan->channel);
5542 	ar9003_paprd_set_txpower(ah, chan, targetPowerValT2);
5543 
5544 	ar9003_hw_selfgen_tpc_txpower(ah, chan, targetPowerValT2);
5545 
5546 	/* TPC initializations */
5547 	if (ah->tpc_enabled) {
5548 		u32 val;
5549 
5550 		ar9003_hw_init_rate_txpower(ah, targetPowerValT2_tpc, chan);
5551 
5552 		/* Enable TPC */
5553 		REG_WRITE(ah, AR_PHY_PWRTX_MAX,
5554 			  AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
5555 		/* Disable per chain power reduction */
5556 		val = REG_READ(ah, AR_PHY_POWER_TX_SUB);
5557 		if (AR_SREV_9340(ah))
5558 			REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5559 				  val & 0xFFFFFFC0);
5560 		else
5561 			REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
5562 				  val & 0xFFFFF000);
5563 	} else {
5564 		/* Disable TPC */
5565 		REG_WRITE(ah, AR_PHY_PWRTX_MAX, 0);
5566 	}
5567 }
5568 
ath9k_hw_ar9300_get_spur_channel(struct ath_hw * ah,u16 i,bool is2GHz)5569 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5570 					    u16 i, bool is2GHz)
5571 {
5572 	return AR_NO_SPUR;
5573 }
5574 
ar9003_hw_get_tx_gain_idx(struct ath_hw * ah)5575 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5576 {
5577 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5578 
5579 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5580 }
5581 
ar9003_hw_get_rx_gain_idx(struct ath_hw * ah)5582 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5583 {
5584 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5585 
5586 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5587 }
5588 
ar9003_get_spur_chan_ptr(struct ath_hw * ah,bool is2ghz)5589 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5590 {
5591 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5592 }
5593 
ar9003_get_paprd_scale_factor(struct ath_hw * ah,struct ath9k_channel * chan)5594 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5595 					   struct ath9k_channel *chan)
5596 {
5597 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5598 
5599 	if (IS_CHAN_2GHZ(chan))
5600 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5601 			  AR9300_PAPRD_SCALE_1);
5602 	else {
5603 		if (chan->channel >= 5700)
5604 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5605 				  AR9300_PAPRD_SCALE_1);
5606 		else if (chan->channel >= 5400)
5607 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5608 				  AR9300_PAPRD_SCALE_2);
5609 		else
5610 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5611 				  AR9300_PAPRD_SCALE_1);
5612 	}
5613 }
5614 
ar9003_get_eepmisc(struct ath_hw * ah)5615 static u8 ar9003_get_eepmisc(struct ath_hw *ah)
5616 {
5617 	return ah->eeprom.map4k.baseEepHeader.eepMisc;
5618 }
5619 
5620 const struct eeprom_ops eep_ar9300_ops = {
5621 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5622 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5623 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5624 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5625 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5626 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5627 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5628 	.set_addac = ath9k_hw_ar9300_set_addac,
5629 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5630 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel,
5631 	.get_eepmisc = ar9003_get_eepmisc
5632 };
5633