1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
3 *
4 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
5 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
6 *
7 * Author: Harald Welte <hwelte@sysmocom.de>
8 * Pablo Neira Ayuso <pablo@netfilter.org>
9 * Andreas Schultz <aschultz@travelping.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/skbuff.h>
16 #include <linux/udp.h>
17 #include <linux/rculist.h>
18 #include <linux/jhash.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/net.h>
21 #include <linux/file.h>
22 #include <linux/gtp.h>
23
24 #include <net/net_namespace.h>
25 #include <net/protocol.h>
26 #include <net/ip.h>
27 #include <net/udp.h>
28 #include <net/udp_tunnel.h>
29 #include <net/icmp.h>
30 #include <net/xfrm.h>
31 #include <net/genetlink.h>
32 #include <net/netns/generic.h>
33 #include <net/gtp.h>
34
35 /* An active session for the subscriber. */
36 struct pdp_ctx {
37 struct hlist_node hlist_tid;
38 struct hlist_node hlist_addr;
39
40 union {
41 struct {
42 u64 tid;
43 u16 flow;
44 } v0;
45 struct {
46 u32 i_tei;
47 u32 o_tei;
48 } v1;
49 } u;
50 u8 gtp_version;
51 u16 af;
52
53 struct in_addr ms_addr_ip4;
54 struct in_addr peer_addr_ip4;
55
56 struct sock *sk;
57 struct net_device *dev;
58
59 atomic_t tx_seq;
60 struct rcu_head rcu_head;
61 };
62
63 /* One instance of the GTP device. */
64 struct gtp_dev {
65 struct list_head list;
66
67 struct sock *sk0;
68 struct sock *sk1u;
69
70 struct net_device *dev;
71
72 unsigned int role;
73 unsigned int hash_size;
74 struct hlist_head *tid_hash;
75 struct hlist_head *addr_hash;
76 };
77
78 static unsigned int gtp_net_id __read_mostly;
79
80 struct gtp_net {
81 struct list_head gtp_dev_list;
82 };
83
84 static u32 gtp_h_initval;
85
86 static void pdp_context_delete(struct pdp_ctx *pctx);
87
gtp0_hashfn(u64 tid)88 static inline u32 gtp0_hashfn(u64 tid)
89 {
90 u32 *tid32 = (u32 *) &tid;
91 return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
92 }
93
gtp1u_hashfn(u32 tid)94 static inline u32 gtp1u_hashfn(u32 tid)
95 {
96 return jhash_1word(tid, gtp_h_initval);
97 }
98
ipv4_hashfn(__be32 ip)99 static inline u32 ipv4_hashfn(__be32 ip)
100 {
101 return jhash_1word((__force u32)ip, gtp_h_initval);
102 }
103
104 /* Resolve a PDP context structure based on the 64bit TID. */
gtp0_pdp_find(struct gtp_dev * gtp,u64 tid)105 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
106 {
107 struct hlist_head *head;
108 struct pdp_ctx *pdp;
109
110 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
111
112 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
113 if (pdp->gtp_version == GTP_V0 &&
114 pdp->u.v0.tid == tid)
115 return pdp;
116 }
117 return NULL;
118 }
119
120 /* Resolve a PDP context structure based on the 32bit TEI. */
gtp1_pdp_find(struct gtp_dev * gtp,u32 tid)121 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
122 {
123 struct hlist_head *head;
124 struct pdp_ctx *pdp;
125
126 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
127
128 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
129 if (pdp->gtp_version == GTP_V1 &&
130 pdp->u.v1.i_tei == tid)
131 return pdp;
132 }
133 return NULL;
134 }
135
136 /* Resolve a PDP context based on IPv4 address of MS. */
ipv4_pdp_find(struct gtp_dev * gtp,__be32 ms_addr)137 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
138 {
139 struct hlist_head *head;
140 struct pdp_ctx *pdp;
141
142 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
143
144 hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
145 if (pdp->af == AF_INET &&
146 pdp->ms_addr_ip4.s_addr == ms_addr)
147 return pdp;
148 }
149
150 return NULL;
151 }
152
gtp_check_ms_ipv4(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)153 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
154 unsigned int hdrlen, unsigned int role)
155 {
156 struct iphdr *iph;
157
158 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
159 return false;
160
161 iph = (struct iphdr *)(skb->data + hdrlen);
162
163 if (role == GTP_ROLE_SGSN)
164 return iph->daddr == pctx->ms_addr_ip4.s_addr;
165 else
166 return iph->saddr == pctx->ms_addr_ip4.s_addr;
167 }
168
169 /* Check if the inner IP address in this packet is assigned to any
170 * existing mobile subscriber.
171 */
gtp_check_ms(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)172 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
173 unsigned int hdrlen, unsigned int role)
174 {
175 switch (ntohs(skb->protocol)) {
176 case ETH_P_IP:
177 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
178 }
179 return false;
180 }
181
gtp_rx(struct pdp_ctx * pctx,struct sk_buff * skb,unsigned int hdrlen,unsigned int role)182 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
183 unsigned int hdrlen, unsigned int role)
184 {
185 if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
186 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
187 return 1;
188 }
189
190 /* Get rid of the GTP + UDP headers. */
191 if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
192 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev))))
193 return -1;
194
195 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
196
197 /* Now that the UDP and the GTP header have been removed, set up the
198 * new network header. This is required by the upper layer to
199 * calculate the transport header.
200 */
201 skb_reset_network_header(skb);
202
203 skb->dev = pctx->dev;
204
205 dev_sw_netstats_rx_add(pctx->dev, skb->len);
206
207 netif_rx(skb);
208 return 0;
209 }
210
211 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
gtp0_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)212 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
213 {
214 unsigned int hdrlen = sizeof(struct udphdr) +
215 sizeof(struct gtp0_header);
216 struct gtp0_header *gtp0;
217 struct pdp_ctx *pctx;
218
219 if (!pskb_may_pull(skb, hdrlen))
220 return -1;
221
222 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
223
224 if ((gtp0->flags >> 5) != GTP_V0)
225 return 1;
226
227 if (gtp0->type != GTP_TPDU)
228 return 1;
229
230 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
231 if (!pctx) {
232 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
233 return 1;
234 }
235
236 return gtp_rx(pctx, skb, hdrlen, gtp->role);
237 }
238
gtp1u_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)239 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
240 {
241 unsigned int hdrlen = sizeof(struct udphdr) +
242 sizeof(struct gtp1_header);
243 struct gtp1_header *gtp1;
244 struct pdp_ctx *pctx;
245
246 if (!pskb_may_pull(skb, hdrlen))
247 return -1;
248
249 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
250
251 if ((gtp1->flags >> 5) != GTP_V1)
252 return 1;
253
254 if (gtp1->type != GTP_TPDU)
255 return 1;
256
257 /* From 29.060: "This field shall be present if and only if any one or
258 * more of the S, PN and E flags are set.".
259 *
260 * If any of the bit is set, then the remaining ones also have to be
261 * set.
262 */
263 if (gtp1->flags & GTP1_F_MASK)
264 hdrlen += 4;
265
266 /* Make sure the header is larger enough, including extensions. */
267 if (!pskb_may_pull(skb, hdrlen))
268 return -1;
269
270 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
271
272 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
273 if (!pctx) {
274 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
275 return 1;
276 }
277
278 return gtp_rx(pctx, skb, hdrlen, gtp->role);
279 }
280
__gtp_encap_destroy(struct sock * sk)281 static void __gtp_encap_destroy(struct sock *sk)
282 {
283 struct gtp_dev *gtp;
284
285 lock_sock(sk);
286 gtp = sk->sk_user_data;
287 if (gtp) {
288 if (gtp->sk0 == sk)
289 gtp->sk0 = NULL;
290 else
291 gtp->sk1u = NULL;
292 udp_sk(sk)->encap_type = 0;
293 rcu_assign_sk_user_data(sk, NULL);
294 sock_put(sk);
295 }
296 release_sock(sk);
297 }
298
gtp_encap_destroy(struct sock * sk)299 static void gtp_encap_destroy(struct sock *sk)
300 {
301 rtnl_lock();
302 __gtp_encap_destroy(sk);
303 rtnl_unlock();
304 }
305
gtp_encap_disable_sock(struct sock * sk)306 static void gtp_encap_disable_sock(struct sock *sk)
307 {
308 if (!sk)
309 return;
310
311 __gtp_encap_destroy(sk);
312 }
313
gtp_encap_disable(struct gtp_dev * gtp)314 static void gtp_encap_disable(struct gtp_dev *gtp)
315 {
316 gtp_encap_disable_sock(gtp->sk0);
317 gtp_encap_disable_sock(gtp->sk1u);
318 }
319
320 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
321 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
322 */
gtp_encap_recv(struct sock * sk,struct sk_buff * skb)323 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
324 {
325 struct gtp_dev *gtp;
326 int ret = 0;
327
328 gtp = rcu_dereference_sk_user_data(sk);
329 if (!gtp)
330 return 1;
331
332 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
333
334 switch (udp_sk(sk)->encap_type) {
335 case UDP_ENCAP_GTP0:
336 netdev_dbg(gtp->dev, "received GTP0 packet\n");
337 ret = gtp0_udp_encap_recv(gtp, skb);
338 break;
339 case UDP_ENCAP_GTP1U:
340 netdev_dbg(gtp->dev, "received GTP1U packet\n");
341 ret = gtp1u_udp_encap_recv(gtp, skb);
342 break;
343 default:
344 ret = -1; /* Shouldn't happen. */
345 }
346
347 switch (ret) {
348 case 1:
349 netdev_dbg(gtp->dev, "pass up to the process\n");
350 break;
351 case 0:
352 break;
353 case -1:
354 netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
355 kfree_skb(skb);
356 ret = 0;
357 break;
358 }
359
360 return ret;
361 }
362
gtp_dev_init(struct net_device * dev)363 static int gtp_dev_init(struct net_device *dev)
364 {
365 struct gtp_dev *gtp = netdev_priv(dev);
366
367 gtp->dev = dev;
368
369 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
370 if (!dev->tstats)
371 return -ENOMEM;
372
373 return 0;
374 }
375
gtp_dev_uninit(struct net_device * dev)376 static void gtp_dev_uninit(struct net_device *dev)
377 {
378 struct gtp_dev *gtp = netdev_priv(dev);
379
380 gtp_encap_disable(gtp);
381 free_percpu(dev->tstats);
382 }
383
ip4_route_output_gtp(struct flowi4 * fl4,const struct sock * sk,__be32 daddr)384 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
385 const struct sock *sk,
386 __be32 daddr)
387 {
388 memset(fl4, 0, sizeof(*fl4));
389 fl4->flowi4_oif = sk->sk_bound_dev_if;
390 fl4->daddr = daddr;
391 fl4->saddr = inet_sk(sk)->inet_saddr;
392 fl4->flowi4_tos = RT_CONN_FLAGS(sk);
393 fl4->flowi4_proto = sk->sk_protocol;
394
395 return ip_route_output_key(sock_net(sk), fl4);
396 }
397
gtp0_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)398 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
399 {
400 int payload_len = skb->len;
401 struct gtp0_header *gtp0;
402
403 gtp0 = skb_push(skb, sizeof(*gtp0));
404
405 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */
406 gtp0->type = GTP_TPDU;
407 gtp0->length = htons(payload_len);
408 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
409 gtp0->flow = htons(pctx->u.v0.flow);
410 gtp0->number = 0xff;
411 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff;
412 gtp0->tid = cpu_to_be64(pctx->u.v0.tid);
413 }
414
gtp1_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)415 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
416 {
417 int payload_len = skb->len;
418 struct gtp1_header *gtp1;
419
420 gtp1 = skb_push(skb, sizeof(*gtp1));
421
422 /* Bits 8 7 6 5 4 3 2 1
423 * +--+--+--+--+--+--+--+--+
424 * |version |PT| 0| E| S|PN|
425 * +--+--+--+--+--+--+--+--+
426 * 0 0 1 1 1 0 0 0
427 */
428 gtp1->flags = 0x30; /* v1, GTP-non-prime. */
429 gtp1->type = GTP_TPDU;
430 gtp1->length = htons(payload_len);
431 gtp1->tid = htonl(pctx->u.v1.o_tei);
432
433 /* TODO: Suppport for extension header, sequence number and N-PDU.
434 * Update the length field if any of them is available.
435 */
436 }
437
438 struct gtp_pktinfo {
439 struct sock *sk;
440 struct iphdr *iph;
441 struct flowi4 fl4;
442 struct rtable *rt;
443 struct pdp_ctx *pctx;
444 struct net_device *dev;
445 __be16 gtph_port;
446 };
447
gtp_push_header(struct sk_buff * skb,struct gtp_pktinfo * pktinfo)448 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
449 {
450 switch (pktinfo->pctx->gtp_version) {
451 case GTP_V0:
452 pktinfo->gtph_port = htons(GTP0_PORT);
453 gtp0_push_header(skb, pktinfo->pctx);
454 break;
455 case GTP_V1:
456 pktinfo->gtph_port = htons(GTP1U_PORT);
457 gtp1_push_header(skb, pktinfo->pctx);
458 break;
459 }
460 }
461
gtp_set_pktinfo_ipv4(struct gtp_pktinfo * pktinfo,struct sock * sk,struct iphdr * iph,struct pdp_ctx * pctx,struct rtable * rt,struct flowi4 * fl4,struct net_device * dev)462 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
463 struct sock *sk, struct iphdr *iph,
464 struct pdp_ctx *pctx, struct rtable *rt,
465 struct flowi4 *fl4,
466 struct net_device *dev)
467 {
468 pktinfo->sk = sk;
469 pktinfo->iph = iph;
470 pktinfo->pctx = pctx;
471 pktinfo->rt = rt;
472 pktinfo->fl4 = *fl4;
473 pktinfo->dev = dev;
474 }
475
gtp_build_skb_ip4(struct sk_buff * skb,struct net_device * dev,struct gtp_pktinfo * pktinfo)476 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
477 struct gtp_pktinfo *pktinfo)
478 {
479 struct gtp_dev *gtp = netdev_priv(dev);
480 struct pdp_ctx *pctx;
481 struct rtable *rt;
482 struct flowi4 fl4;
483 struct iphdr *iph;
484 __be16 df;
485 int mtu;
486
487 /* Read the IP destination address and resolve the PDP context.
488 * Prepend PDP header with TEI/TID from PDP ctx.
489 */
490 iph = ip_hdr(skb);
491 if (gtp->role == GTP_ROLE_SGSN)
492 pctx = ipv4_pdp_find(gtp, iph->saddr);
493 else
494 pctx = ipv4_pdp_find(gtp, iph->daddr);
495
496 if (!pctx) {
497 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
498 &iph->daddr);
499 return -ENOENT;
500 }
501 netdev_dbg(dev, "found PDP context %p\n", pctx);
502
503 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr);
504 if (IS_ERR(rt)) {
505 netdev_dbg(dev, "no route to SSGN %pI4\n",
506 &pctx->peer_addr_ip4.s_addr);
507 dev->stats.tx_carrier_errors++;
508 goto err;
509 }
510
511 if (rt->dst.dev == dev) {
512 netdev_dbg(dev, "circular route to SSGN %pI4\n",
513 &pctx->peer_addr_ip4.s_addr);
514 dev->stats.collisions++;
515 goto err_rt;
516 }
517
518 skb_dst_drop(skb);
519
520 /* This is similar to tnl_update_pmtu(). */
521 df = iph->frag_off;
522 if (df) {
523 mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
524 sizeof(struct iphdr) - sizeof(struct udphdr);
525 switch (pctx->gtp_version) {
526 case GTP_V0:
527 mtu -= sizeof(struct gtp0_header);
528 break;
529 case GTP_V1:
530 mtu -= sizeof(struct gtp1_header);
531 break;
532 }
533 } else {
534 mtu = dst_mtu(&rt->dst);
535 }
536
537 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu, false);
538
539 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
540 mtu < ntohs(iph->tot_len)) {
541 netdev_dbg(dev, "packet too big, fragmentation needed\n");
542 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
543 icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
544 htonl(mtu));
545 goto err_rt;
546 }
547
548 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
549 gtp_push_header(skb, pktinfo);
550
551 return 0;
552 err_rt:
553 ip_rt_put(rt);
554 err:
555 return -EBADMSG;
556 }
557
gtp_dev_xmit(struct sk_buff * skb,struct net_device * dev)558 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
559 {
560 unsigned int proto = ntohs(skb->protocol);
561 struct gtp_pktinfo pktinfo;
562 int err;
563
564 /* Ensure there is sufficient headroom. */
565 if (skb_cow_head(skb, dev->needed_headroom))
566 goto tx_err;
567
568 skb_reset_inner_headers(skb);
569
570 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
571 rcu_read_lock();
572 switch (proto) {
573 case ETH_P_IP:
574 err = gtp_build_skb_ip4(skb, dev, &pktinfo);
575 break;
576 default:
577 err = -EOPNOTSUPP;
578 break;
579 }
580 rcu_read_unlock();
581
582 if (err < 0)
583 goto tx_err;
584
585 switch (proto) {
586 case ETH_P_IP:
587 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
588 &pktinfo.iph->saddr, &pktinfo.iph->daddr);
589 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
590 pktinfo.fl4.saddr, pktinfo.fl4.daddr,
591 pktinfo.iph->tos,
592 ip4_dst_hoplimit(&pktinfo.rt->dst),
593 0,
594 pktinfo.gtph_port, pktinfo.gtph_port,
595 true, false);
596 break;
597 }
598
599 return NETDEV_TX_OK;
600 tx_err:
601 dev->stats.tx_errors++;
602 dev_kfree_skb(skb);
603 return NETDEV_TX_OK;
604 }
605
606 static const struct net_device_ops gtp_netdev_ops = {
607 .ndo_init = gtp_dev_init,
608 .ndo_uninit = gtp_dev_uninit,
609 .ndo_start_xmit = gtp_dev_xmit,
610 .ndo_get_stats64 = ip_tunnel_get_stats64,
611 };
612
gtp_link_setup(struct net_device * dev)613 static void gtp_link_setup(struct net_device *dev)
614 {
615 dev->netdev_ops = >p_netdev_ops;
616 dev->needs_free_netdev = true;
617
618 dev->hard_header_len = 0;
619 dev->addr_len = 0;
620
621 /* Zero header length. */
622 dev->type = ARPHRD_NONE;
623 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
624
625 dev->priv_flags |= IFF_NO_QUEUE;
626 dev->features |= NETIF_F_LLTX;
627 netif_keep_dst(dev);
628
629 /* Assume largest header, ie. GTPv0. */
630 dev->needed_headroom = LL_MAX_HEADER +
631 sizeof(struct iphdr) +
632 sizeof(struct udphdr) +
633 sizeof(struct gtp0_header);
634 }
635
636 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
637 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
638
gtp_destructor(struct net_device * dev)639 static void gtp_destructor(struct net_device *dev)
640 {
641 struct gtp_dev *gtp = netdev_priv(dev);
642
643 kfree(gtp->addr_hash);
644 kfree(gtp->tid_hash);
645 }
646
gtp_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)647 static int gtp_newlink(struct net *src_net, struct net_device *dev,
648 struct nlattr *tb[], struct nlattr *data[],
649 struct netlink_ext_ack *extack)
650 {
651 struct gtp_dev *gtp;
652 struct gtp_net *gn;
653 int hashsize, err;
654
655 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
656 return -EINVAL;
657
658 gtp = netdev_priv(dev);
659
660 if (!data[IFLA_GTP_PDP_HASHSIZE]) {
661 hashsize = 1024;
662 } else {
663 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
664 if (!hashsize)
665 hashsize = 1024;
666 }
667
668 err = gtp_hashtable_new(gtp, hashsize);
669 if (err < 0)
670 return err;
671
672 err = gtp_encap_enable(gtp, data);
673 if (err < 0)
674 goto out_hashtable;
675
676 err = register_netdevice(dev);
677 if (err < 0) {
678 netdev_dbg(dev, "failed to register new netdev %d\n", err);
679 goto out_encap;
680 }
681
682 gn = net_generic(dev_net(dev), gtp_net_id);
683 list_add_rcu(>p->list, &gn->gtp_dev_list);
684 dev->priv_destructor = gtp_destructor;
685
686 netdev_dbg(dev, "registered new GTP interface\n");
687
688 return 0;
689
690 out_encap:
691 gtp_encap_disable(gtp);
692 out_hashtable:
693 kfree(gtp->addr_hash);
694 kfree(gtp->tid_hash);
695 return err;
696 }
697
gtp_dellink(struct net_device * dev,struct list_head * head)698 static void gtp_dellink(struct net_device *dev, struct list_head *head)
699 {
700 struct gtp_dev *gtp = netdev_priv(dev);
701 struct pdp_ctx *pctx;
702 int i;
703
704 for (i = 0; i < gtp->hash_size; i++)
705 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid)
706 pdp_context_delete(pctx);
707
708 list_del_rcu(>p->list);
709 unregister_netdevice_queue(dev, head);
710 }
711
712 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
713 [IFLA_GTP_FD0] = { .type = NLA_U32 },
714 [IFLA_GTP_FD1] = { .type = NLA_U32 },
715 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 },
716 [IFLA_GTP_ROLE] = { .type = NLA_U32 },
717 };
718
gtp_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)719 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
720 struct netlink_ext_ack *extack)
721 {
722 if (!data)
723 return -EINVAL;
724
725 return 0;
726 }
727
gtp_get_size(const struct net_device * dev)728 static size_t gtp_get_size(const struct net_device *dev)
729 {
730 return nla_total_size(sizeof(__u32)); /* IFLA_GTP_PDP_HASHSIZE */
731 }
732
gtp_fill_info(struct sk_buff * skb,const struct net_device * dev)733 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
734 {
735 struct gtp_dev *gtp = netdev_priv(dev);
736
737 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
738 goto nla_put_failure;
739
740 return 0;
741
742 nla_put_failure:
743 return -EMSGSIZE;
744 }
745
746 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
747 .kind = "gtp",
748 .maxtype = IFLA_GTP_MAX,
749 .policy = gtp_policy,
750 .priv_size = sizeof(struct gtp_dev),
751 .setup = gtp_link_setup,
752 .validate = gtp_validate,
753 .newlink = gtp_newlink,
754 .dellink = gtp_dellink,
755 .get_size = gtp_get_size,
756 .fill_info = gtp_fill_info,
757 };
758
gtp_hashtable_new(struct gtp_dev * gtp,int hsize)759 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
760 {
761 int i;
762
763 gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
764 GFP_KERNEL | __GFP_NOWARN);
765 if (gtp->addr_hash == NULL)
766 return -ENOMEM;
767
768 gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
769 GFP_KERNEL | __GFP_NOWARN);
770 if (gtp->tid_hash == NULL)
771 goto err1;
772
773 gtp->hash_size = hsize;
774
775 for (i = 0; i < hsize; i++) {
776 INIT_HLIST_HEAD(>p->addr_hash[i]);
777 INIT_HLIST_HEAD(>p->tid_hash[i]);
778 }
779 return 0;
780 err1:
781 kfree(gtp->addr_hash);
782 return -ENOMEM;
783 }
784
gtp_encap_enable_socket(int fd,int type,struct gtp_dev * gtp)785 static struct sock *gtp_encap_enable_socket(int fd, int type,
786 struct gtp_dev *gtp)
787 {
788 struct udp_tunnel_sock_cfg tuncfg = {NULL};
789 struct socket *sock;
790 struct sock *sk;
791 int err;
792
793 pr_debug("enable gtp on %d, %d\n", fd, type);
794
795 sock = sockfd_lookup(fd, &err);
796 if (!sock) {
797 pr_debug("gtp socket fd=%d not found\n", fd);
798 return NULL;
799 }
800
801 sk = sock->sk;
802 if (sk->sk_protocol != IPPROTO_UDP ||
803 sk->sk_type != SOCK_DGRAM ||
804 (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) {
805 pr_debug("socket fd=%d not UDP\n", fd);
806 sk = ERR_PTR(-EINVAL);
807 goto out_sock;
808 }
809
810 lock_sock(sk);
811 if (sk->sk_user_data) {
812 sk = ERR_PTR(-EBUSY);
813 goto out_rel_sock;
814 }
815
816 sock_hold(sk);
817
818 tuncfg.sk_user_data = gtp;
819 tuncfg.encap_type = type;
820 tuncfg.encap_rcv = gtp_encap_recv;
821 tuncfg.encap_destroy = gtp_encap_destroy;
822
823 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
824
825 out_rel_sock:
826 release_sock(sock->sk);
827 out_sock:
828 sockfd_put(sock);
829 return sk;
830 }
831
gtp_encap_enable(struct gtp_dev * gtp,struct nlattr * data[])832 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
833 {
834 struct sock *sk1u = NULL;
835 struct sock *sk0 = NULL;
836 unsigned int role = GTP_ROLE_GGSN;
837
838 if (data[IFLA_GTP_FD0]) {
839 u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
840
841 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
842 if (IS_ERR(sk0))
843 return PTR_ERR(sk0);
844 }
845
846 if (data[IFLA_GTP_FD1]) {
847 u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
848
849 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
850 if (IS_ERR(sk1u)) {
851 gtp_encap_disable_sock(sk0);
852 return PTR_ERR(sk1u);
853 }
854 }
855
856 if (data[IFLA_GTP_ROLE]) {
857 role = nla_get_u32(data[IFLA_GTP_ROLE]);
858 if (role > GTP_ROLE_SGSN) {
859 gtp_encap_disable_sock(sk0);
860 gtp_encap_disable_sock(sk1u);
861 return -EINVAL;
862 }
863 }
864
865 gtp->sk0 = sk0;
866 gtp->sk1u = sk1u;
867 gtp->role = role;
868
869 return 0;
870 }
871
gtp_find_dev(struct net * src_net,struct nlattr * nla[])872 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
873 {
874 struct gtp_dev *gtp = NULL;
875 struct net_device *dev;
876 struct net *net;
877
878 /* Examine the link attributes and figure out which network namespace
879 * we are talking about.
880 */
881 if (nla[GTPA_NET_NS_FD])
882 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
883 else
884 net = get_net(src_net);
885
886 if (IS_ERR(net))
887 return NULL;
888
889 /* Check if there's an existing gtpX device to configure */
890 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
891 if (dev && dev->netdev_ops == >p_netdev_ops)
892 gtp = netdev_priv(dev);
893
894 put_net(net);
895 return gtp;
896 }
897
ipv4_pdp_fill(struct pdp_ctx * pctx,struct genl_info * info)898 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
899 {
900 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
901 pctx->af = AF_INET;
902 pctx->peer_addr_ip4.s_addr =
903 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
904 pctx->ms_addr_ip4.s_addr =
905 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
906
907 switch (pctx->gtp_version) {
908 case GTP_V0:
909 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
910 * label needs to be the same for uplink and downlink packets,
911 * so let's annotate this.
912 */
913 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
914 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
915 break;
916 case GTP_V1:
917 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
918 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
919 break;
920 default:
921 break;
922 }
923 }
924
gtp_pdp_add(struct gtp_dev * gtp,struct sock * sk,struct genl_info * info)925 static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk,
926 struct genl_info *info)
927 {
928 struct pdp_ctx *pctx, *pctx_tid = NULL;
929 struct net_device *dev = gtp->dev;
930 u32 hash_ms, hash_tid = 0;
931 unsigned int version;
932 bool found = false;
933 __be32 ms_addr;
934
935 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
936 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
937 version = nla_get_u32(info->attrs[GTPA_VERSION]);
938
939 pctx = ipv4_pdp_find(gtp, ms_addr);
940 if (pctx)
941 found = true;
942 if (version == GTP_V0)
943 pctx_tid = gtp0_pdp_find(gtp,
944 nla_get_u64(info->attrs[GTPA_TID]));
945 else if (version == GTP_V1)
946 pctx_tid = gtp1_pdp_find(gtp,
947 nla_get_u32(info->attrs[GTPA_I_TEI]));
948 if (pctx_tid)
949 found = true;
950
951 if (found) {
952 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
953 return ERR_PTR(-EEXIST);
954 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
955 return ERR_PTR(-EOPNOTSUPP);
956
957 if (pctx && pctx_tid)
958 return ERR_PTR(-EEXIST);
959 if (!pctx)
960 pctx = pctx_tid;
961
962 ipv4_pdp_fill(pctx, info);
963
964 if (pctx->gtp_version == GTP_V0)
965 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
966 pctx->u.v0.tid, pctx);
967 else if (pctx->gtp_version == GTP_V1)
968 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
969 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
970
971 return pctx;
972
973 }
974
975 pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
976 if (pctx == NULL)
977 return ERR_PTR(-ENOMEM);
978
979 sock_hold(sk);
980 pctx->sk = sk;
981 pctx->dev = gtp->dev;
982 ipv4_pdp_fill(pctx, info);
983 atomic_set(&pctx->tx_seq, 0);
984
985 switch (pctx->gtp_version) {
986 case GTP_V0:
987 /* TS 09.60: "The flow label identifies unambiguously a GTP
988 * flow.". We use the tid for this instead, I cannot find a
989 * situation in which this doesn't unambiguosly identify the
990 * PDP context.
991 */
992 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
993 break;
994 case GTP_V1:
995 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
996 break;
997 }
998
999 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]);
1000 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]);
1001
1002 switch (pctx->gtp_version) {
1003 case GTP_V0:
1004 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1005 pctx->u.v0.tid, &pctx->peer_addr_ip4,
1006 &pctx->ms_addr_ip4, pctx);
1007 break;
1008 case GTP_V1:
1009 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1010 pctx->u.v1.i_tei, pctx->u.v1.o_tei,
1011 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
1012 break;
1013 }
1014
1015 return pctx;
1016 }
1017
pdp_context_free(struct rcu_head * head)1018 static void pdp_context_free(struct rcu_head *head)
1019 {
1020 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
1021
1022 sock_put(pctx->sk);
1023 kfree(pctx);
1024 }
1025
pdp_context_delete(struct pdp_ctx * pctx)1026 static void pdp_context_delete(struct pdp_ctx *pctx)
1027 {
1028 hlist_del_rcu(&pctx->hlist_tid);
1029 hlist_del_rcu(&pctx->hlist_addr);
1030 call_rcu(&pctx->rcu_head, pdp_context_free);
1031 }
1032
1033 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation);
1034
gtp_genl_new_pdp(struct sk_buff * skb,struct genl_info * info)1035 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1036 {
1037 unsigned int version;
1038 struct pdp_ctx *pctx;
1039 struct gtp_dev *gtp;
1040 struct sock *sk;
1041 int err;
1042
1043 if (!info->attrs[GTPA_VERSION] ||
1044 !info->attrs[GTPA_LINK] ||
1045 !info->attrs[GTPA_PEER_ADDRESS] ||
1046 !info->attrs[GTPA_MS_ADDRESS])
1047 return -EINVAL;
1048
1049 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1050
1051 switch (version) {
1052 case GTP_V0:
1053 if (!info->attrs[GTPA_TID] ||
1054 !info->attrs[GTPA_FLOW])
1055 return -EINVAL;
1056 break;
1057 case GTP_V1:
1058 if (!info->attrs[GTPA_I_TEI] ||
1059 !info->attrs[GTPA_O_TEI])
1060 return -EINVAL;
1061 break;
1062
1063 default:
1064 return -EINVAL;
1065 }
1066
1067 rtnl_lock();
1068
1069 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1070 if (!gtp) {
1071 err = -ENODEV;
1072 goto out_unlock;
1073 }
1074
1075 if (version == GTP_V0)
1076 sk = gtp->sk0;
1077 else if (version == GTP_V1)
1078 sk = gtp->sk1u;
1079 else
1080 sk = NULL;
1081
1082 if (!sk) {
1083 err = -ENODEV;
1084 goto out_unlock;
1085 }
1086
1087 pctx = gtp_pdp_add(gtp, sk, info);
1088 if (IS_ERR(pctx)) {
1089 err = PTR_ERR(pctx);
1090 } else {
1091 gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL);
1092 err = 0;
1093 }
1094
1095 out_unlock:
1096 rtnl_unlock();
1097 return err;
1098 }
1099
gtp_find_pdp_by_link(struct net * net,struct nlattr * nla[])1100 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1101 struct nlattr *nla[])
1102 {
1103 struct gtp_dev *gtp;
1104
1105 gtp = gtp_find_dev(net, nla);
1106 if (!gtp)
1107 return ERR_PTR(-ENODEV);
1108
1109 if (nla[GTPA_MS_ADDRESS]) {
1110 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1111
1112 return ipv4_pdp_find(gtp, ip);
1113 } else if (nla[GTPA_VERSION]) {
1114 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1115
1116 if (gtp_version == GTP_V0 && nla[GTPA_TID])
1117 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1118 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1119 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1120 }
1121
1122 return ERR_PTR(-EINVAL);
1123 }
1124
gtp_find_pdp(struct net * net,struct nlattr * nla[])1125 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1126 {
1127 struct pdp_ctx *pctx;
1128
1129 if (nla[GTPA_LINK])
1130 pctx = gtp_find_pdp_by_link(net, nla);
1131 else
1132 pctx = ERR_PTR(-EINVAL);
1133
1134 if (!pctx)
1135 pctx = ERR_PTR(-ENOENT);
1136
1137 return pctx;
1138 }
1139
gtp_genl_del_pdp(struct sk_buff * skb,struct genl_info * info)1140 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1141 {
1142 struct pdp_ctx *pctx;
1143 int err = 0;
1144
1145 if (!info->attrs[GTPA_VERSION])
1146 return -EINVAL;
1147
1148 rcu_read_lock();
1149
1150 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1151 if (IS_ERR(pctx)) {
1152 err = PTR_ERR(pctx);
1153 goto out_unlock;
1154 }
1155
1156 if (pctx->gtp_version == GTP_V0)
1157 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1158 pctx->u.v0.tid, pctx);
1159 else if (pctx->gtp_version == GTP_V1)
1160 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1161 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1162
1163 gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC);
1164 pdp_context_delete(pctx);
1165
1166 out_unlock:
1167 rcu_read_unlock();
1168 return err;
1169 }
1170
1171 static struct genl_family gtp_genl_family;
1172
1173 enum gtp_multicast_groups {
1174 GTP_GENL_MCGRP,
1175 };
1176
1177 static const struct genl_multicast_group gtp_genl_mcgrps[] = {
1178 [GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME },
1179 };
1180
gtp_genl_fill_info(struct sk_buff * skb,u32 snd_portid,u32 snd_seq,int flags,u32 type,struct pdp_ctx * pctx)1181 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1182 int flags, u32 type, struct pdp_ctx *pctx)
1183 {
1184 void *genlh;
1185
1186 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, flags,
1187 type);
1188 if (genlh == NULL)
1189 goto nlmsg_failure;
1190
1191 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1192 nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) ||
1193 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1194 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1195 goto nla_put_failure;
1196
1197 switch (pctx->gtp_version) {
1198 case GTP_V0:
1199 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1200 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1201 goto nla_put_failure;
1202 break;
1203 case GTP_V1:
1204 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1205 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1206 goto nla_put_failure;
1207 break;
1208 }
1209 genlmsg_end(skb, genlh);
1210 return 0;
1211
1212 nlmsg_failure:
1213 nla_put_failure:
1214 genlmsg_cancel(skb, genlh);
1215 return -EMSGSIZE;
1216 }
1217
gtp_tunnel_notify(struct pdp_ctx * pctx,u8 cmd,gfp_t allocation)1218 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation)
1219 {
1220 struct sk_buff *msg;
1221 int ret;
1222
1223 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation);
1224 if (!msg)
1225 return -ENOMEM;
1226
1227 ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx);
1228 if (ret < 0) {
1229 nlmsg_free(msg);
1230 return ret;
1231 }
1232
1233 ret = genlmsg_multicast_netns(>p_genl_family, dev_net(pctx->dev), msg,
1234 0, GTP_GENL_MCGRP, GFP_ATOMIC);
1235 return ret;
1236 }
1237
gtp_genl_get_pdp(struct sk_buff * skb,struct genl_info * info)1238 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1239 {
1240 struct pdp_ctx *pctx = NULL;
1241 struct sk_buff *skb2;
1242 int err;
1243
1244 if (!info->attrs[GTPA_VERSION])
1245 return -EINVAL;
1246
1247 rcu_read_lock();
1248
1249 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1250 if (IS_ERR(pctx)) {
1251 err = PTR_ERR(pctx);
1252 goto err_unlock;
1253 }
1254
1255 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1256 if (skb2 == NULL) {
1257 err = -ENOMEM;
1258 goto err_unlock;
1259 }
1260
1261 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq,
1262 0, info->nlhdr->nlmsg_type, pctx);
1263 if (err < 0)
1264 goto err_unlock_free;
1265
1266 rcu_read_unlock();
1267 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1268
1269 err_unlock_free:
1270 kfree_skb(skb2);
1271 err_unlock:
1272 rcu_read_unlock();
1273 return err;
1274 }
1275
gtp_genl_dump_pdp(struct sk_buff * skb,struct netlink_callback * cb)1276 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1277 struct netlink_callback *cb)
1278 {
1279 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1280 int i, j, bucket = cb->args[0], skip = cb->args[1];
1281 struct net *net = sock_net(skb->sk);
1282 struct pdp_ctx *pctx;
1283 struct gtp_net *gn;
1284
1285 gn = net_generic(net, gtp_net_id);
1286
1287 if (cb->args[4])
1288 return 0;
1289
1290 rcu_read_lock();
1291 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
1292 if (last_gtp && last_gtp != gtp)
1293 continue;
1294 else
1295 last_gtp = NULL;
1296
1297 for (i = bucket; i < gtp->hash_size; i++) {
1298 j = 0;
1299 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i],
1300 hlist_tid) {
1301 if (j >= skip &&
1302 gtp_genl_fill_info(skb,
1303 NETLINK_CB(cb->skb).portid,
1304 cb->nlh->nlmsg_seq,
1305 NLM_F_MULTI,
1306 cb->nlh->nlmsg_type, pctx)) {
1307 cb->args[0] = i;
1308 cb->args[1] = j;
1309 cb->args[2] = (unsigned long)gtp;
1310 goto out;
1311 }
1312 j++;
1313 }
1314 skip = 0;
1315 }
1316 bucket = 0;
1317 }
1318 cb->args[4] = 1;
1319 out:
1320 rcu_read_unlock();
1321 return skb->len;
1322 }
1323
1324 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1325 [GTPA_LINK] = { .type = NLA_U32, },
1326 [GTPA_VERSION] = { .type = NLA_U32, },
1327 [GTPA_TID] = { .type = NLA_U64, },
1328 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, },
1329 [GTPA_MS_ADDRESS] = { .type = NLA_U32, },
1330 [GTPA_FLOW] = { .type = NLA_U16, },
1331 [GTPA_NET_NS_FD] = { .type = NLA_U32, },
1332 [GTPA_I_TEI] = { .type = NLA_U32, },
1333 [GTPA_O_TEI] = { .type = NLA_U32, },
1334 };
1335
1336 static const struct genl_small_ops gtp_genl_ops[] = {
1337 {
1338 .cmd = GTP_CMD_NEWPDP,
1339 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1340 .doit = gtp_genl_new_pdp,
1341 .flags = GENL_ADMIN_PERM,
1342 },
1343 {
1344 .cmd = GTP_CMD_DELPDP,
1345 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1346 .doit = gtp_genl_del_pdp,
1347 .flags = GENL_ADMIN_PERM,
1348 },
1349 {
1350 .cmd = GTP_CMD_GETPDP,
1351 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1352 .doit = gtp_genl_get_pdp,
1353 .dumpit = gtp_genl_dump_pdp,
1354 .flags = GENL_ADMIN_PERM,
1355 },
1356 };
1357
1358 static struct genl_family gtp_genl_family __ro_after_init = {
1359 .name = "gtp",
1360 .version = 0,
1361 .hdrsize = 0,
1362 .maxattr = GTPA_MAX,
1363 .policy = gtp_genl_policy,
1364 .netnsok = true,
1365 .module = THIS_MODULE,
1366 .small_ops = gtp_genl_ops,
1367 .n_small_ops = ARRAY_SIZE(gtp_genl_ops),
1368 .mcgrps = gtp_genl_mcgrps,
1369 .n_mcgrps = ARRAY_SIZE(gtp_genl_mcgrps),
1370 };
1371
gtp_net_init(struct net * net)1372 static int __net_init gtp_net_init(struct net *net)
1373 {
1374 struct gtp_net *gn = net_generic(net, gtp_net_id);
1375
1376 INIT_LIST_HEAD(&gn->gtp_dev_list);
1377 return 0;
1378 }
1379
gtp_net_exit(struct net * net)1380 static void __net_exit gtp_net_exit(struct net *net)
1381 {
1382 struct gtp_net *gn = net_generic(net, gtp_net_id);
1383 struct gtp_dev *gtp;
1384 LIST_HEAD(list);
1385
1386 rtnl_lock();
1387 list_for_each_entry(gtp, &gn->gtp_dev_list, list)
1388 gtp_dellink(gtp->dev, &list);
1389
1390 unregister_netdevice_many(&list);
1391 rtnl_unlock();
1392 }
1393
1394 static struct pernet_operations gtp_net_ops = {
1395 .init = gtp_net_init,
1396 .exit = gtp_net_exit,
1397 .id = >p_net_id,
1398 .size = sizeof(struct gtp_net),
1399 };
1400
gtp_init(void)1401 static int __init gtp_init(void)
1402 {
1403 int err;
1404
1405 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval));
1406
1407 err = rtnl_link_register(>p_link_ops);
1408 if (err < 0)
1409 goto error_out;
1410
1411 err = genl_register_family(>p_genl_family);
1412 if (err < 0)
1413 goto unreg_rtnl_link;
1414
1415 err = register_pernet_subsys(>p_net_ops);
1416 if (err < 0)
1417 goto unreg_genl_family;
1418
1419 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1420 sizeof(struct pdp_ctx));
1421 return 0;
1422
1423 unreg_genl_family:
1424 genl_unregister_family(>p_genl_family);
1425 unreg_rtnl_link:
1426 rtnl_link_unregister(>p_link_ops);
1427 error_out:
1428 pr_err("error loading GTP module loaded\n");
1429 return err;
1430 }
1431 late_initcall(gtp_init);
1432
gtp_fini(void)1433 static void __exit gtp_fini(void)
1434 {
1435 genl_unregister_family(>p_genl_family);
1436 rtnl_link_unregister(>p_link_ops);
1437 unregister_pernet_subsys(>p_net_ops);
1438
1439 pr_info("GTP module unloaded\n");
1440 }
1441 module_exit(gtp_fini);
1442
1443 MODULE_LICENSE("GPL");
1444 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1445 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1446 MODULE_ALIAS_RTNL_LINK("gtp");
1447 MODULE_ALIAS_GENL_FAMILY("gtp");
1448