1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2015 EZchip Technologies.
4 */
5
6 #include <linux/module.h>
7 #include <linux/etherdevice.h>
8 #include <linux/interrupt.h>
9 #include <linux/of_address.h>
10 #include <linux/of_irq.h>
11 #include <linux/of_net.h>
12 #include <linux/of_platform.h>
13 #include "nps_enet.h"
14
15 #define DRV_NAME "nps_mgt_enet"
16
nps_enet_is_tx_pending(struct nps_enet_priv * priv)17 static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
18 {
19 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
20 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
21
22 return (!tx_ctrl_ct && priv->tx_skb);
23 }
24
nps_enet_clean_rx_fifo(struct net_device * ndev,u32 frame_len)25 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
26 {
27 struct nps_enet_priv *priv = netdev_priv(ndev);
28 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
29
30 /* Empty Rx FIFO buffer by reading all words */
31 for (i = 0; i < len; i++)
32 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
33 }
34
nps_enet_read_rx_fifo(struct net_device * ndev,unsigned char * dst,u32 length)35 static void nps_enet_read_rx_fifo(struct net_device *ndev,
36 unsigned char *dst, u32 length)
37 {
38 struct nps_enet_priv *priv = netdev_priv(ndev);
39 s32 i, last = length & (sizeof(u32) - 1);
40 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
41 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
42
43 /* In case dst is not aligned we need an intermediate buffer */
44 if (dst_is_aligned) {
45 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
46 reg += len;
47 } else { /* !dst_is_aligned */
48 for (i = 0; i < len; i++, reg++) {
49 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
50
51 put_unaligned_be32(buf, reg);
52 }
53 }
54 /* copy last bytes (if any) */
55 if (last) {
56 u32 buf;
57
58 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
59 memcpy((u8 *)reg, &buf, last);
60 }
61 }
62
nps_enet_rx_handler(struct net_device * ndev)63 static u32 nps_enet_rx_handler(struct net_device *ndev)
64 {
65 u32 frame_len, err = 0;
66 u32 work_done = 0;
67 struct nps_enet_priv *priv = netdev_priv(ndev);
68 struct sk_buff *skb;
69 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
70 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
71 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
72 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
73
74 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
75
76 /* Check if we got RX */
77 if (!rx_ctrl_cr)
78 return work_done;
79
80 /* If we got here there is a work for us */
81 work_done++;
82
83 /* Check Rx error */
84 if (rx_ctrl_er) {
85 ndev->stats.rx_errors++;
86 err = 1;
87 }
88
89 /* Check Rx CRC error */
90 if (rx_ctrl_crc) {
91 ndev->stats.rx_crc_errors++;
92 ndev->stats.rx_dropped++;
93 err = 1;
94 }
95
96 /* Check Frame length Min 64b */
97 if (unlikely(frame_len < ETH_ZLEN)) {
98 ndev->stats.rx_length_errors++;
99 ndev->stats.rx_dropped++;
100 err = 1;
101 }
102
103 if (err)
104 goto rx_irq_clean;
105
106 /* Skb allocation */
107 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
108 if (unlikely(!skb)) {
109 ndev->stats.rx_errors++;
110 ndev->stats.rx_dropped++;
111 goto rx_irq_clean;
112 }
113
114 /* Copy frame from Rx fifo into the skb */
115 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
116
117 skb_put(skb, frame_len);
118 skb->protocol = eth_type_trans(skb, ndev);
119 skb->ip_summed = CHECKSUM_UNNECESSARY;
120
121 ndev->stats.rx_packets++;
122 ndev->stats.rx_bytes += frame_len;
123 netif_receive_skb(skb);
124
125 goto rx_irq_frame_done;
126
127 rx_irq_clean:
128 /* Clean Rx fifo */
129 nps_enet_clean_rx_fifo(ndev, frame_len);
130
131 rx_irq_frame_done:
132 /* Ack Rx ctrl register */
133 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
134
135 return work_done;
136 }
137
nps_enet_tx_handler(struct net_device * ndev)138 static void nps_enet_tx_handler(struct net_device *ndev)
139 {
140 struct nps_enet_priv *priv = netdev_priv(ndev);
141 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
142 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
143 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
144
145 /* Check if we got TX */
146 if (!nps_enet_is_tx_pending(priv))
147 return;
148
149 /* Ack Tx ctrl register */
150 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
151
152 /* Check Tx transmit error */
153 if (unlikely(tx_ctrl_et)) {
154 ndev->stats.tx_errors++;
155 } else {
156 ndev->stats.tx_packets++;
157 ndev->stats.tx_bytes += tx_ctrl_nt;
158 }
159
160 dev_kfree_skb(priv->tx_skb);
161 priv->tx_skb = NULL;
162
163 if (netif_queue_stopped(ndev))
164 netif_wake_queue(ndev);
165 }
166
167 /**
168 * nps_enet_poll - NAPI poll handler.
169 * @napi: Pointer to napi_struct structure.
170 * @budget: How many frames to process on one call.
171 *
172 * returns: Number of processed frames
173 */
nps_enet_poll(struct napi_struct * napi,int budget)174 static int nps_enet_poll(struct napi_struct *napi, int budget)
175 {
176 struct net_device *ndev = napi->dev;
177 struct nps_enet_priv *priv = netdev_priv(ndev);
178 u32 work_done;
179
180 nps_enet_tx_handler(ndev);
181 work_done = nps_enet_rx_handler(ndev);
182 if ((work_done < budget) && napi_complete_done(napi, work_done)) {
183 u32 buf_int_enable_value = 0;
184
185 /* set tx_done and rx_rdy bits */
186 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
187 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
188
189 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
190 buf_int_enable_value);
191
192 /* in case we will get a tx interrupt while interrupts
193 * are masked, we will lose it since the tx is edge interrupt.
194 * specifically, while executing the code section above,
195 * between nps_enet_tx_handler and the interrupts enable, all
196 * tx requests will be stuck until we will get an rx interrupt.
197 * the two code lines below will solve this situation by
198 * re-adding ourselves to the poll list.
199 */
200 if (nps_enet_is_tx_pending(priv)) {
201 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
202 napi_reschedule(napi);
203 }
204 }
205
206 return work_done;
207 }
208
209 /**
210 * nps_enet_irq_handler - Global interrupt handler for ENET.
211 * @irq: irq number.
212 * @dev_instance: device instance.
213 *
214 * returns: IRQ_HANDLED for all cases.
215 *
216 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
217 * CTRL registers we may tell what is a reason for interrupt to fire up.
218 * We got one for RX and the other for TX (completion).
219 */
nps_enet_irq_handler(s32 irq,void * dev_instance)220 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
221 {
222 struct net_device *ndev = dev_instance;
223 struct nps_enet_priv *priv = netdev_priv(ndev);
224 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
225 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
226
227 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
228 if (likely(napi_schedule_prep(&priv->napi))) {
229 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
230 __napi_schedule(&priv->napi);
231 }
232
233 return IRQ_HANDLED;
234 }
235
nps_enet_set_hw_mac_address(struct net_device * ndev)236 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
237 {
238 struct nps_enet_priv *priv = netdev_priv(ndev);
239 u32 ge_mac_cfg_1_value = 0;
240 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
241
242 /* set MAC address in HW */
243 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
244 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
245 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
246 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
247 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
248 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
249 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
250 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
251
252 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
253 ge_mac_cfg_1_value);
254
255 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
256 *ge_mac_cfg_2_value);
257 }
258
259 /**
260 * nps_enet_hw_reset - Reset the network device.
261 * @ndev: Pointer to the network device.
262 *
263 * This function reset the PCS and TX fifo.
264 * The programming model is to set the relevant reset bits
265 * wait for some time for this to propagate and then unset
266 * the reset bits. This way we ensure that reset procedure
267 * is done successfully by device.
268 */
nps_enet_hw_reset(struct net_device * ndev)269 static void nps_enet_hw_reset(struct net_device *ndev)
270 {
271 struct nps_enet_priv *priv = netdev_priv(ndev);
272 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
273
274 /* Pcs reset sequence*/
275 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
276 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
277 usleep_range(10, 20);
278 ge_rst_value = 0;
279 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
280
281 /* Tx fifo reset sequence */
282 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
283 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
284 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
285 phase_fifo_ctl_value);
286 usleep_range(10, 20);
287 phase_fifo_ctl_value = 0;
288 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
289 phase_fifo_ctl_value);
290 }
291
nps_enet_hw_enable_control(struct net_device * ndev)292 static void nps_enet_hw_enable_control(struct net_device *ndev)
293 {
294 struct nps_enet_priv *priv = netdev_priv(ndev);
295 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
296 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
297 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
298 s32 max_frame_length;
299
300 /* Enable Rx and Tx statistics */
301 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
302 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
303
304 /* Discard packets with different MAC address */
305 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
306 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
307
308 /* Discard multicast packets */
309 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
310 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
311
312 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
313 *ge_mac_cfg_2_value);
314
315 /* Discard Packets bigger than max frame length */
316 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
317 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
318 *ge_mac_cfg_3_value =
319 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
320 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
321 }
322
323 /* Enable interrupts */
324 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
325 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
326 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
327 buf_int_enable_value);
328
329 /* Write device MAC address to HW */
330 nps_enet_set_hw_mac_address(ndev);
331
332 /* Rx and Tx HW features */
333 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
334 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
335 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
336
337 /* IFG configuration */
338 ge_mac_cfg_0_value |=
339 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
340 ge_mac_cfg_0_value |=
341 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
342
343 /* preamble configuration */
344 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
345 ge_mac_cfg_0_value |=
346 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
347
348 /* enable flow control frames */
349 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
350 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
351 ge_mac_cfg_0_value |=
352 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
353 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
354 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
355
356 /* Enable Rx and Tx */
357 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
358 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
359
360 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
361 *ge_mac_cfg_3_value);
362 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
363 ge_mac_cfg_0_value);
364 }
365
nps_enet_hw_disable_control(struct net_device * ndev)366 static void nps_enet_hw_disable_control(struct net_device *ndev)
367 {
368 struct nps_enet_priv *priv = netdev_priv(ndev);
369
370 /* Disable interrupts */
371 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
372
373 /* Disable Rx and Tx */
374 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
375 }
376
nps_enet_send_frame(struct net_device * ndev,struct sk_buff * skb)377 static void nps_enet_send_frame(struct net_device *ndev,
378 struct sk_buff *skb)
379 {
380 struct nps_enet_priv *priv = netdev_priv(ndev);
381 u32 tx_ctrl_value = 0;
382 short length = skb->len;
383 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
384 u32 *src = (void *)skb->data;
385 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
386
387 /* In case src is not aligned we need an intermediate buffer */
388 if (src_is_aligned)
389 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
390 else /* !src_is_aligned */
391 for (i = 0; i < len; i++, src++)
392 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
393 get_unaligned_be32(src));
394
395 /* Write the length of the Frame */
396 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
397
398 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
399 /* Send Frame */
400 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
401 }
402
403 /**
404 * nps_enet_set_mac_address - Set the MAC address for this device.
405 * @ndev: Pointer to net_device structure.
406 * @p: 6 byte Address to be written as MAC address.
407 *
408 * This function copies the HW address from the sockaddr structure to the
409 * net_device structure and updates the address in HW.
410 *
411 * returns: -EBUSY if the net device is busy or 0 if the address is set
412 * successfully.
413 */
nps_enet_set_mac_address(struct net_device * ndev,void * p)414 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
415 {
416 struct sockaddr *addr = p;
417 s32 res;
418
419 if (netif_running(ndev))
420 return -EBUSY;
421
422 res = eth_mac_addr(ndev, p);
423 if (!res) {
424 ether_addr_copy(ndev->dev_addr, addr->sa_data);
425 nps_enet_set_hw_mac_address(ndev);
426 }
427
428 return res;
429 }
430
431 /**
432 * nps_enet_set_rx_mode - Change the receive filtering mode.
433 * @ndev: Pointer to the network device.
434 *
435 * This function enables/disables promiscuous mode
436 */
nps_enet_set_rx_mode(struct net_device * ndev)437 static void nps_enet_set_rx_mode(struct net_device *ndev)
438 {
439 struct nps_enet_priv *priv = netdev_priv(ndev);
440 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
441
442 if (ndev->flags & IFF_PROMISC) {
443 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
444 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
445 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
446 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
447
448 } else {
449 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
450 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
451 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
452 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
453 }
454
455 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
456 }
457
458 /**
459 * nps_enet_open - Open the network device.
460 * @ndev: Pointer to the network device.
461 *
462 * returns: 0, on success or non-zero error value on failure.
463 *
464 * This function sets the MAC address, requests and enables an IRQ
465 * for the ENET device and starts the Tx queue.
466 */
nps_enet_open(struct net_device * ndev)467 static s32 nps_enet_open(struct net_device *ndev)
468 {
469 struct nps_enet_priv *priv = netdev_priv(ndev);
470 s32 err;
471
472 /* Reset private variables */
473 priv->tx_skb = NULL;
474 priv->ge_mac_cfg_2_value = 0;
475 priv->ge_mac_cfg_3_value = 0;
476
477 /* ge_mac_cfg_3 default values */
478 priv->ge_mac_cfg_3_value |=
479 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
480
481 priv->ge_mac_cfg_3_value |=
482 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
483
484 /* Disable HW device */
485 nps_enet_hw_disable_control(ndev);
486
487 /* irq Rx allocation */
488 err = request_irq(priv->irq, nps_enet_irq_handler,
489 0, "enet-rx-tx", ndev);
490 if (err)
491 return err;
492
493 napi_enable(&priv->napi);
494
495 /* Enable HW device */
496 nps_enet_hw_reset(ndev);
497 nps_enet_hw_enable_control(ndev);
498
499 netif_start_queue(ndev);
500
501 return 0;
502 }
503
504 /**
505 * nps_enet_stop - Close the network device.
506 * @ndev: Pointer to the network device.
507 *
508 * This function stops the Tx queue, disables interrupts for the ENET device.
509 */
nps_enet_stop(struct net_device * ndev)510 static s32 nps_enet_stop(struct net_device *ndev)
511 {
512 struct nps_enet_priv *priv = netdev_priv(ndev);
513
514 napi_disable(&priv->napi);
515 netif_stop_queue(ndev);
516 nps_enet_hw_disable_control(ndev);
517 free_irq(priv->irq, ndev);
518
519 return 0;
520 }
521
522 /**
523 * nps_enet_start_xmit - Starts the data transmission.
524 * @skb: sk_buff pointer that contains data to be Transmitted.
525 * @ndev: Pointer to net_device structure.
526 *
527 * returns: NETDEV_TX_OK, on success
528 * NETDEV_TX_BUSY, if any of the descriptors are not free.
529 *
530 * This function is invoked from upper layers to initiate transmission.
531 */
nps_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)532 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
533 struct net_device *ndev)
534 {
535 struct nps_enet_priv *priv = netdev_priv(ndev);
536
537 /* This driver handles one frame at a time */
538 netif_stop_queue(ndev);
539
540 priv->tx_skb = skb;
541
542 /* make sure tx_skb is actually written to the memory
543 * before the HW is informed and the IRQ is fired.
544 */
545 wmb();
546
547 nps_enet_send_frame(ndev, skb);
548
549 return NETDEV_TX_OK;
550 }
551
552 #ifdef CONFIG_NET_POLL_CONTROLLER
nps_enet_poll_controller(struct net_device * ndev)553 static void nps_enet_poll_controller(struct net_device *ndev)
554 {
555 disable_irq(ndev->irq);
556 nps_enet_irq_handler(ndev->irq, ndev);
557 enable_irq(ndev->irq);
558 }
559 #endif
560
561 static const struct net_device_ops nps_netdev_ops = {
562 .ndo_open = nps_enet_open,
563 .ndo_stop = nps_enet_stop,
564 .ndo_start_xmit = nps_enet_start_xmit,
565 .ndo_set_mac_address = nps_enet_set_mac_address,
566 .ndo_set_rx_mode = nps_enet_set_rx_mode,
567 #ifdef CONFIG_NET_POLL_CONTROLLER
568 .ndo_poll_controller = nps_enet_poll_controller,
569 #endif
570 };
571
nps_enet_probe(struct platform_device * pdev)572 static s32 nps_enet_probe(struct platform_device *pdev)
573 {
574 struct device *dev = &pdev->dev;
575 struct net_device *ndev;
576 struct nps_enet_priv *priv;
577 s32 err = 0;
578 const char *mac_addr;
579
580 if (!dev->of_node)
581 return -ENODEV;
582
583 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
584 if (!ndev)
585 return -ENOMEM;
586
587 platform_set_drvdata(pdev, ndev);
588 SET_NETDEV_DEV(ndev, dev);
589 priv = netdev_priv(ndev);
590
591 /* The EZ NET specific entries in the device structure. */
592 ndev->netdev_ops = &nps_netdev_ops;
593 ndev->watchdog_timeo = (400 * HZ / 1000);
594 /* FIXME :: no multicast support yet */
595 ndev->flags &= ~IFF_MULTICAST;
596
597 priv->regs_base = devm_platform_ioremap_resource(pdev, 0);
598 if (IS_ERR(priv->regs_base)) {
599 err = PTR_ERR(priv->regs_base);
600 goto out_netdev;
601 }
602 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
603
604 /* set kernel MAC address to dev */
605 mac_addr = of_get_mac_address(dev->of_node);
606 if (!IS_ERR(mac_addr))
607 ether_addr_copy(ndev->dev_addr, mac_addr);
608 else
609 eth_hw_addr_random(ndev);
610
611 /* Get IRQ number */
612 priv->irq = platform_get_irq(pdev, 0);
613 if (!priv->irq) {
614 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
615 err = -ENODEV;
616 goto out_netdev;
617 }
618
619 netif_napi_add(ndev, &priv->napi, nps_enet_poll,
620 NPS_ENET_NAPI_POLL_WEIGHT);
621
622 /* Register the driver. Should be the last thing in probe */
623 err = register_netdev(ndev);
624 if (err) {
625 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
626 ndev->name, (s32)err);
627 goto out_netif_api;
628 }
629
630 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
631 return 0;
632
633 out_netif_api:
634 netif_napi_del(&priv->napi);
635 out_netdev:
636 if (err)
637 free_netdev(ndev);
638
639 return err;
640 }
641
nps_enet_remove(struct platform_device * pdev)642 static s32 nps_enet_remove(struct platform_device *pdev)
643 {
644 struct net_device *ndev = platform_get_drvdata(pdev);
645 struct nps_enet_priv *priv = netdev_priv(ndev);
646
647 unregister_netdev(ndev);
648 free_netdev(ndev);
649 netif_napi_del(&priv->napi);
650
651 return 0;
652 }
653
654 static const struct of_device_id nps_enet_dt_ids[] = {
655 { .compatible = "ezchip,nps-mgt-enet" },
656 { /* Sentinel */ }
657 };
658 MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
659
660 static struct platform_driver nps_enet_driver = {
661 .probe = nps_enet_probe,
662 .remove = nps_enet_remove,
663 .driver = {
664 .name = DRV_NAME,
665 .of_match_table = nps_enet_dt_ids,
666 },
667 };
668
669 module_platform_driver(nps_enet_driver);
670
671 MODULE_AUTHOR("EZchip Semiconductor");
672 MODULE_LICENSE("GPL v2");
673