1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24
25 #include "core.h"
26
27 /* Define max times to check status register before we give up. */
28
29 /*
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
32 */
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
34
35 /*
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
38 */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
42
43 /**
44 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
45 * transfer
46 * @nor: pointer to 'struct spi_nor'
47 * @op: pointer to 'struct spi_mem_op' template for transfer
48 *
49 * If we have to use the bounce buffer, the data field in @op will be updated.
50 *
51 * Return: true if the bounce buffer is needed, false if not
52 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)53 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
54 {
55 /* op->data.buf.in occupies the same memory as op->data.buf.out */
56 if (object_is_on_stack(op->data.buf.in) ||
57 !virt_addr_valid(op->data.buf.in)) {
58 if (op->data.nbytes > nor->bouncebuf_size)
59 op->data.nbytes = nor->bouncebuf_size;
60 op->data.buf.in = nor->bouncebuf;
61 return true;
62 }
63
64 return false;
65 }
66
67 /**
68 * spi_nor_spimem_exec_op() - execute a memory operation
69 * @nor: pointer to 'struct spi_nor'
70 * @op: pointer to 'struct spi_mem_op' template for transfer
71 *
72 * Return: 0 on success, -error otherwise.
73 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)74 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
75 {
76 int error;
77
78 error = spi_mem_adjust_op_size(nor->spimem, op);
79 if (error)
80 return error;
81
82 return spi_mem_exec_op(nor->spimem, op);
83 }
84
85 /**
86 * spi_nor_spimem_read_data() - read data from flash's memory region via
87 * spi-mem
88 * @nor: pointer to 'struct spi_nor'
89 * @from: offset to read from
90 * @len: number of bytes to read
91 * @buf: pointer to dst buffer
92 *
93 * Return: number of bytes read successfully, -errno otherwise
94 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)95 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
96 size_t len, u8 *buf)
97 {
98 struct spi_mem_op op =
99 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
100 SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
101 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
102 SPI_MEM_OP_DATA_IN(len, buf, 1));
103 bool usebouncebuf;
104 ssize_t nbytes;
105 int error;
106
107 /* get transfer protocols. */
108 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
109 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
110 op.dummy.buswidth = op.addr.buswidth;
111 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
112
113 /* convert the dummy cycles to the number of bytes */
114 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
115
116 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
117
118 if (nor->dirmap.rdesc) {
119 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
120 op.data.nbytes, op.data.buf.in);
121 } else {
122 error = spi_nor_spimem_exec_op(nor, &op);
123 if (error)
124 return error;
125 nbytes = op.data.nbytes;
126 }
127
128 if (usebouncebuf && nbytes > 0)
129 memcpy(buf, op.data.buf.in, nbytes);
130
131 return nbytes;
132 }
133
134 /**
135 * spi_nor_read_data() - read data from flash memory
136 * @nor: pointer to 'struct spi_nor'
137 * @from: offset to read from
138 * @len: number of bytes to read
139 * @buf: pointer to dst buffer
140 *
141 * Return: number of bytes read successfully, -errno otherwise
142 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)143 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
144 {
145 if (nor->spimem)
146 return spi_nor_spimem_read_data(nor, from, len, buf);
147
148 return nor->controller_ops->read(nor, from, len, buf);
149 }
150
151 /**
152 * spi_nor_spimem_write_data() - write data to flash memory via
153 * spi-mem
154 * @nor: pointer to 'struct spi_nor'
155 * @to: offset to write to
156 * @len: number of bytes to write
157 * @buf: pointer to src buffer
158 *
159 * Return: number of bytes written successfully, -errno otherwise
160 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)161 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
162 size_t len, const u8 *buf)
163 {
164 struct spi_mem_op op =
165 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
166 SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
167 SPI_MEM_OP_NO_DUMMY,
168 SPI_MEM_OP_DATA_OUT(len, buf, 1));
169 ssize_t nbytes;
170 int error;
171
172 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
173 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
174 op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
175
176 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
177 op.addr.nbytes = 0;
178
179 if (spi_nor_spimem_bounce(nor, &op))
180 memcpy(nor->bouncebuf, buf, op.data.nbytes);
181
182 if (nor->dirmap.wdesc) {
183 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
184 op.data.nbytes, op.data.buf.out);
185 } else {
186 error = spi_nor_spimem_exec_op(nor, &op);
187 if (error)
188 return error;
189 nbytes = op.data.nbytes;
190 }
191
192 return nbytes;
193 }
194
195 /**
196 * spi_nor_write_data() - write data to flash memory
197 * @nor: pointer to 'struct spi_nor'
198 * @to: offset to write to
199 * @len: number of bytes to write
200 * @buf: pointer to src buffer
201 *
202 * Return: number of bytes written successfully, -errno otherwise
203 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)204 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
205 const u8 *buf)
206 {
207 if (nor->spimem)
208 return spi_nor_spimem_write_data(nor, to, len, buf);
209
210 return nor->controller_ops->write(nor, to, len, buf);
211 }
212
213 /**
214 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
215 * @nor: pointer to 'struct spi_nor'.
216 *
217 * Return: 0 on success, -errno otherwise.
218 */
spi_nor_write_enable(struct spi_nor * nor)219 int spi_nor_write_enable(struct spi_nor *nor)
220 {
221 int ret;
222
223 if (nor->spimem) {
224 struct spi_mem_op op =
225 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
226 SPI_MEM_OP_NO_ADDR,
227 SPI_MEM_OP_NO_DUMMY,
228 SPI_MEM_OP_NO_DATA);
229
230 ret = spi_mem_exec_op(nor->spimem, &op);
231 } else {
232 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
233 NULL, 0);
234 }
235
236 if (ret)
237 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
238
239 return ret;
240 }
241
242 /**
243 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
244 * @nor: pointer to 'struct spi_nor'.
245 *
246 * Return: 0 on success, -errno otherwise.
247 */
spi_nor_write_disable(struct spi_nor * nor)248 int spi_nor_write_disable(struct spi_nor *nor)
249 {
250 int ret;
251
252 if (nor->spimem) {
253 struct spi_mem_op op =
254 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
255 SPI_MEM_OP_NO_ADDR,
256 SPI_MEM_OP_NO_DUMMY,
257 SPI_MEM_OP_NO_DATA);
258
259 ret = spi_mem_exec_op(nor->spimem, &op);
260 } else {
261 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
262 NULL, 0);
263 }
264
265 if (ret)
266 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
267
268 return ret;
269 }
270
271 /**
272 * spi_nor_read_sr() - Read the Status Register.
273 * @nor: pointer to 'struct spi_nor'.
274 * @sr: pointer to a DMA-able buffer where the value of the
275 * Status Register will be written.
276 *
277 * Return: 0 on success, -errno otherwise.
278 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)279 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
280 {
281 int ret;
282
283 if (nor->spimem) {
284 struct spi_mem_op op =
285 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
286 SPI_MEM_OP_NO_ADDR,
287 SPI_MEM_OP_NO_DUMMY,
288 SPI_MEM_OP_DATA_IN(1, sr, 1));
289
290 ret = spi_mem_exec_op(nor->spimem, &op);
291 } else {
292 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
293 sr, 1);
294 }
295
296 if (ret)
297 dev_dbg(nor->dev, "error %d reading SR\n", ret);
298
299 return ret;
300 }
301
302 /**
303 * spi_nor_read_fsr() - Read the Flag Status Register.
304 * @nor: pointer to 'struct spi_nor'
305 * @fsr: pointer to a DMA-able buffer where the value of the
306 * Flag Status Register will be written.
307 *
308 * Return: 0 on success, -errno otherwise.
309 */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)310 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
311 {
312 int ret;
313
314 if (nor->spimem) {
315 struct spi_mem_op op =
316 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
317 SPI_MEM_OP_NO_ADDR,
318 SPI_MEM_OP_NO_DUMMY,
319 SPI_MEM_OP_DATA_IN(1, fsr, 1));
320
321 ret = spi_mem_exec_op(nor->spimem, &op);
322 } else {
323 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
324 fsr, 1);
325 }
326
327 if (ret)
328 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
329
330 return ret;
331 }
332
333 /**
334 * spi_nor_read_cr() - Read the Configuration Register using the
335 * SPINOR_OP_RDCR (35h) command.
336 * @nor: pointer to 'struct spi_nor'
337 * @cr: pointer to a DMA-able buffer where the value of the
338 * Configuration Register will be written.
339 *
340 * Return: 0 on success, -errno otherwise.
341 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)342 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
343 {
344 int ret;
345
346 if (nor->spimem) {
347 struct spi_mem_op op =
348 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
349 SPI_MEM_OP_NO_ADDR,
350 SPI_MEM_OP_NO_DUMMY,
351 SPI_MEM_OP_DATA_IN(1, cr, 1));
352
353 ret = spi_mem_exec_op(nor->spimem, &op);
354 } else {
355 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
356 }
357
358 if (ret)
359 dev_dbg(nor->dev, "error %d reading CR\n", ret);
360
361 return ret;
362 }
363
364 /**
365 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
366 * @nor: pointer to 'struct spi_nor'.
367 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
368 * address mode.
369 *
370 * Return: 0 on success, -errno otherwise.
371 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)372 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
373 {
374 int ret;
375
376 if (nor->spimem) {
377 struct spi_mem_op op =
378 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
379 SPINOR_OP_EN4B :
380 SPINOR_OP_EX4B,
381 1),
382 SPI_MEM_OP_NO_ADDR,
383 SPI_MEM_OP_NO_DUMMY,
384 SPI_MEM_OP_NO_DATA);
385
386 ret = spi_mem_exec_op(nor->spimem, &op);
387 } else {
388 ret = nor->controller_ops->write_reg(nor,
389 enable ? SPINOR_OP_EN4B :
390 SPINOR_OP_EX4B,
391 NULL, 0);
392 }
393
394 if (ret)
395 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
396
397 return ret;
398 }
399
400 /**
401 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
402 * flashes.
403 * @nor: pointer to 'struct spi_nor'.
404 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
405 * address mode.
406 *
407 * Return: 0 on success, -errno otherwise.
408 */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)409 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
410 {
411 int ret;
412
413 nor->bouncebuf[0] = enable << 7;
414
415 if (nor->spimem) {
416 struct spi_mem_op op =
417 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
418 SPI_MEM_OP_NO_ADDR,
419 SPI_MEM_OP_NO_DUMMY,
420 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
421
422 ret = spi_mem_exec_op(nor->spimem, &op);
423 } else {
424 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
425 nor->bouncebuf, 1);
426 }
427
428 if (ret)
429 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
430
431 return ret;
432 }
433
434 /**
435 * spi_nor_write_ear() - Write Extended Address Register.
436 * @nor: pointer to 'struct spi_nor'.
437 * @ear: value to write to the Extended Address Register.
438 *
439 * Return: 0 on success, -errno otherwise.
440 */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)441 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
442 {
443 int ret;
444
445 nor->bouncebuf[0] = ear;
446
447 if (nor->spimem) {
448 struct spi_mem_op op =
449 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
450 SPI_MEM_OP_NO_ADDR,
451 SPI_MEM_OP_NO_DUMMY,
452 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
453
454 ret = spi_mem_exec_op(nor->spimem, &op);
455 } else {
456 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
457 nor->bouncebuf, 1);
458 }
459
460 if (ret)
461 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
462
463 return ret;
464 }
465
466 /**
467 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
468 * @nor: pointer to 'struct spi_nor'.
469 * @sr: pointer to a DMA-able buffer where the value of the
470 * Status Register will be written.
471 *
472 * Return: 0 on success, -errno otherwise.
473 */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)474 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
475 {
476 int ret;
477
478 if (nor->spimem) {
479 struct spi_mem_op op =
480 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
481 SPI_MEM_OP_NO_ADDR,
482 SPI_MEM_OP_NO_DUMMY,
483 SPI_MEM_OP_DATA_IN(1, sr, 1));
484
485 ret = spi_mem_exec_op(nor->spimem, &op);
486 } else {
487 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
488 sr, 1);
489 }
490
491 if (ret)
492 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
493
494 return ret;
495 }
496
497 /**
498 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
499 * the flash is ready for new commands.
500 * @nor: pointer to 'struct spi_nor'.
501 *
502 * Return: 1 if ready, 0 if not ready, -errno on errors.
503 */
spi_nor_xsr_ready(struct spi_nor * nor)504 static int spi_nor_xsr_ready(struct spi_nor *nor)
505 {
506 int ret;
507
508 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
509 if (ret)
510 return ret;
511
512 return !!(nor->bouncebuf[0] & XSR_RDY);
513 }
514
515 /**
516 * spi_nor_clear_sr() - Clear the Status Register.
517 * @nor: pointer to 'struct spi_nor'.
518 */
spi_nor_clear_sr(struct spi_nor * nor)519 static void spi_nor_clear_sr(struct spi_nor *nor)
520 {
521 int ret;
522
523 if (nor->spimem) {
524 struct spi_mem_op op =
525 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
526 SPI_MEM_OP_NO_ADDR,
527 SPI_MEM_OP_NO_DUMMY,
528 SPI_MEM_OP_NO_DATA);
529
530 ret = spi_mem_exec_op(nor->spimem, &op);
531 } else {
532 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
533 NULL, 0);
534 }
535
536 if (ret)
537 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
538 }
539
540 /**
541 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
542 * for new commands.
543 * @nor: pointer to 'struct spi_nor'.
544 *
545 * Return: 1 if ready, 0 if not ready, -errno on errors.
546 */
spi_nor_sr_ready(struct spi_nor * nor)547 static int spi_nor_sr_ready(struct spi_nor *nor)
548 {
549 int ret = spi_nor_read_sr(nor, nor->bouncebuf);
550
551 if (ret)
552 return ret;
553
554 if (nor->flags & SNOR_F_USE_CLSR &&
555 nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
556 if (nor->bouncebuf[0] & SR_E_ERR)
557 dev_err(nor->dev, "Erase Error occurred\n");
558 else
559 dev_err(nor->dev, "Programming Error occurred\n");
560
561 spi_nor_clear_sr(nor);
562
563 /*
564 * WEL bit remains set to one when an erase or page program
565 * error occurs. Issue a Write Disable command to protect
566 * against inadvertent writes that can possibly corrupt the
567 * contents of the memory.
568 */
569 ret = spi_nor_write_disable(nor);
570 if (ret)
571 return ret;
572
573 return -EIO;
574 }
575
576 return !(nor->bouncebuf[0] & SR_WIP);
577 }
578
579 /**
580 * spi_nor_clear_fsr() - Clear the Flag Status Register.
581 * @nor: pointer to 'struct spi_nor'.
582 */
spi_nor_clear_fsr(struct spi_nor * nor)583 static void spi_nor_clear_fsr(struct spi_nor *nor)
584 {
585 int ret;
586
587 if (nor->spimem) {
588 struct spi_mem_op op =
589 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
590 SPI_MEM_OP_NO_ADDR,
591 SPI_MEM_OP_NO_DUMMY,
592 SPI_MEM_OP_NO_DATA);
593
594 ret = spi_mem_exec_op(nor->spimem, &op);
595 } else {
596 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
597 NULL, 0);
598 }
599
600 if (ret)
601 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
602 }
603
604 /**
605 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
606 * ready for new commands.
607 * @nor: pointer to 'struct spi_nor'.
608 *
609 * Return: 1 if ready, 0 if not ready, -errno on errors.
610 */
spi_nor_fsr_ready(struct spi_nor * nor)611 static int spi_nor_fsr_ready(struct spi_nor *nor)
612 {
613 int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
614
615 if (ret)
616 return ret;
617
618 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
619 if (nor->bouncebuf[0] & FSR_E_ERR)
620 dev_err(nor->dev, "Erase operation failed.\n");
621 else
622 dev_err(nor->dev, "Program operation failed.\n");
623
624 if (nor->bouncebuf[0] & FSR_PT_ERR)
625 dev_err(nor->dev,
626 "Attempted to modify a protected sector.\n");
627
628 spi_nor_clear_fsr(nor);
629
630 /*
631 * WEL bit remains set to one when an erase or page program
632 * error occurs. Issue a Write Disable command to protect
633 * against inadvertent writes that can possibly corrupt the
634 * contents of the memory.
635 */
636 ret = spi_nor_write_disable(nor);
637 if (ret)
638 return ret;
639
640 return -EIO;
641 }
642
643 return !!(nor->bouncebuf[0] & FSR_READY);
644 }
645
646 /**
647 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
648 * @nor: pointer to 'struct spi_nor'.
649 *
650 * Return: 1 if ready, 0 if not ready, -errno on errors.
651 */
spi_nor_ready(struct spi_nor * nor)652 static int spi_nor_ready(struct spi_nor *nor)
653 {
654 int sr, fsr;
655
656 if (nor->flags & SNOR_F_READY_XSR_RDY)
657 sr = spi_nor_xsr_ready(nor);
658 else
659 sr = spi_nor_sr_ready(nor);
660 if (sr < 0)
661 return sr;
662 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
663 if (fsr < 0)
664 return fsr;
665 return sr && fsr;
666 }
667
668 /**
669 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
670 * Status Register until ready, or timeout occurs.
671 * @nor: pointer to "struct spi_nor".
672 * @timeout_jiffies: jiffies to wait until timeout.
673 *
674 * Return: 0 on success, -errno otherwise.
675 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)676 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
677 unsigned long timeout_jiffies)
678 {
679 unsigned long deadline;
680 int timeout = 0, ret;
681
682 deadline = jiffies + timeout_jiffies;
683
684 while (!timeout) {
685 if (time_after_eq(jiffies, deadline))
686 timeout = 1;
687
688 ret = spi_nor_ready(nor);
689 if (ret < 0)
690 return ret;
691 if (ret)
692 return 0;
693
694 cond_resched();
695 }
696
697 dev_dbg(nor->dev, "flash operation timed out\n");
698
699 return -ETIMEDOUT;
700 }
701
702 /**
703 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
704 * flash to be ready, or timeout occurs.
705 * @nor: pointer to "struct spi_nor".
706 *
707 * Return: 0 on success, -errno otherwise.
708 */
spi_nor_wait_till_ready(struct spi_nor * nor)709 int spi_nor_wait_till_ready(struct spi_nor *nor)
710 {
711 return spi_nor_wait_till_ready_with_timeout(nor,
712 DEFAULT_READY_WAIT_JIFFIES);
713 }
714
715 /**
716 * spi_nor_write_sr() - Write the Status Register.
717 * @nor: pointer to 'struct spi_nor'.
718 * @sr: pointer to DMA-able buffer to write to the Status Register.
719 * @len: number of bytes to write to the Status Register.
720 *
721 * Return: 0 on success, -errno otherwise.
722 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)723 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
724 {
725 int ret;
726
727 ret = spi_nor_write_enable(nor);
728 if (ret)
729 return ret;
730
731 if (nor->spimem) {
732 struct spi_mem_op op =
733 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
734 SPI_MEM_OP_NO_ADDR,
735 SPI_MEM_OP_NO_DUMMY,
736 SPI_MEM_OP_DATA_OUT(len, sr, 1));
737
738 ret = spi_mem_exec_op(nor->spimem, &op);
739 } else {
740 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
741 sr, len);
742 }
743
744 if (ret) {
745 dev_dbg(nor->dev, "error %d writing SR\n", ret);
746 return ret;
747 }
748
749 return spi_nor_wait_till_ready(nor);
750 }
751
752 /**
753 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
754 * ensure that the byte written match the received value.
755 * @nor: pointer to a 'struct spi_nor'.
756 * @sr1: byte value to be written to the Status Register.
757 *
758 * Return: 0 on success, -errno otherwise.
759 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)760 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
761 {
762 int ret;
763
764 nor->bouncebuf[0] = sr1;
765
766 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
767 if (ret)
768 return ret;
769
770 ret = spi_nor_read_sr(nor, nor->bouncebuf);
771 if (ret)
772 return ret;
773
774 if (nor->bouncebuf[0] != sr1) {
775 dev_dbg(nor->dev, "SR1: read back test failed\n");
776 return -EIO;
777 }
778
779 return 0;
780 }
781
782 /**
783 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
784 * Status Register 2 in one shot. Ensure that the byte written in the Status
785 * Register 1 match the received value, and that the 16-bit Write did not
786 * affect what was already in the Status Register 2.
787 * @nor: pointer to a 'struct spi_nor'.
788 * @sr1: byte value to be written to the Status Register 1.
789 *
790 * Return: 0 on success, -errno otherwise.
791 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)792 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
793 {
794 int ret;
795 u8 *sr_cr = nor->bouncebuf;
796 u8 cr_written;
797
798 /* Make sure we don't overwrite the contents of Status Register 2. */
799 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
800 ret = spi_nor_read_cr(nor, &sr_cr[1]);
801 if (ret)
802 return ret;
803 } else if (nor->params->quad_enable) {
804 /*
805 * If the Status Register 2 Read command (35h) is not
806 * supported, we should at least be sure we don't
807 * change the value of the SR2 Quad Enable bit.
808 *
809 * We can safely assume that when the Quad Enable method is
810 * set, the value of the QE bit is one, as a consequence of the
811 * nor->params->quad_enable() call.
812 *
813 * We can safely assume that the Quad Enable bit is present in
814 * the Status Register 2 at BIT(1). According to the JESD216
815 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
816 * Write Status (01h) command is available just for the cases
817 * in which the QE bit is described in SR2 at BIT(1).
818 */
819 sr_cr[1] = SR2_QUAD_EN_BIT1;
820 } else {
821 sr_cr[1] = 0;
822 }
823
824 sr_cr[0] = sr1;
825
826 ret = spi_nor_write_sr(nor, sr_cr, 2);
827 if (ret)
828 return ret;
829
830 if (nor->flags & SNOR_F_NO_READ_CR)
831 return 0;
832
833 cr_written = sr_cr[1];
834
835 ret = spi_nor_read_cr(nor, &sr_cr[1]);
836 if (ret)
837 return ret;
838
839 if (cr_written != sr_cr[1]) {
840 dev_dbg(nor->dev, "CR: read back test failed\n");
841 return -EIO;
842 }
843
844 return 0;
845 }
846
847 /**
848 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
849 * Configuration Register in one shot. Ensure that the byte written in the
850 * Configuration Register match the received value, and that the 16-bit Write
851 * did not affect what was already in the Status Register 1.
852 * @nor: pointer to a 'struct spi_nor'.
853 * @cr: byte value to be written to the Configuration Register.
854 *
855 * Return: 0 on success, -errno otherwise.
856 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)857 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
858 {
859 int ret;
860 u8 *sr_cr = nor->bouncebuf;
861 u8 sr_written;
862
863 /* Keep the current value of the Status Register 1. */
864 ret = spi_nor_read_sr(nor, sr_cr);
865 if (ret)
866 return ret;
867
868 sr_cr[1] = cr;
869
870 ret = spi_nor_write_sr(nor, sr_cr, 2);
871 if (ret)
872 return ret;
873
874 sr_written = sr_cr[0];
875
876 ret = spi_nor_read_sr(nor, sr_cr);
877 if (ret)
878 return ret;
879
880 if (sr_written != sr_cr[0]) {
881 dev_dbg(nor->dev, "SR: Read back test failed\n");
882 return -EIO;
883 }
884
885 if (nor->flags & SNOR_F_NO_READ_CR)
886 return 0;
887
888 ret = spi_nor_read_cr(nor, &sr_cr[1]);
889 if (ret)
890 return ret;
891
892 if (cr != sr_cr[1]) {
893 dev_dbg(nor->dev, "CR: read back test failed\n");
894 return -EIO;
895 }
896
897 return 0;
898 }
899
900 /**
901 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
902 * the byte written match the received value without affecting other bits in the
903 * Status Register 1 and 2.
904 * @nor: pointer to a 'struct spi_nor'.
905 * @sr1: byte value to be written to the Status Register.
906 *
907 * Return: 0 on success, -errno otherwise.
908 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)909 static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
910 {
911 if (nor->flags & SNOR_F_HAS_16BIT_SR)
912 return spi_nor_write_16bit_sr_and_check(nor, sr1);
913
914 return spi_nor_write_sr1_and_check(nor, sr1);
915 }
916
917 /**
918 * spi_nor_write_sr2() - Write the Status Register 2 using the
919 * SPINOR_OP_WRSR2 (3eh) command.
920 * @nor: pointer to 'struct spi_nor'.
921 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
922 *
923 * Return: 0 on success, -errno otherwise.
924 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)925 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
926 {
927 int ret;
928
929 ret = spi_nor_write_enable(nor);
930 if (ret)
931 return ret;
932
933 if (nor->spimem) {
934 struct spi_mem_op op =
935 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
936 SPI_MEM_OP_NO_ADDR,
937 SPI_MEM_OP_NO_DUMMY,
938 SPI_MEM_OP_DATA_OUT(1, sr2, 1));
939
940 ret = spi_mem_exec_op(nor->spimem, &op);
941 } else {
942 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
943 sr2, 1);
944 }
945
946 if (ret) {
947 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
948 return ret;
949 }
950
951 return spi_nor_wait_till_ready(nor);
952 }
953
954 /**
955 * spi_nor_read_sr2() - Read the Status Register 2 using the
956 * SPINOR_OP_RDSR2 (3fh) command.
957 * @nor: pointer to 'struct spi_nor'.
958 * @sr2: pointer to DMA-able buffer where the value of the
959 * Status Register 2 will be written.
960 *
961 * Return: 0 on success, -errno otherwise.
962 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)963 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
964 {
965 int ret;
966
967 if (nor->spimem) {
968 struct spi_mem_op op =
969 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
970 SPI_MEM_OP_NO_ADDR,
971 SPI_MEM_OP_NO_DUMMY,
972 SPI_MEM_OP_DATA_IN(1, sr2, 1));
973
974 ret = spi_mem_exec_op(nor->spimem, &op);
975 } else {
976 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
977 sr2, 1);
978 }
979
980 if (ret)
981 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
982
983 return ret;
984 }
985
986 /**
987 * spi_nor_erase_chip() - Erase the entire flash memory.
988 * @nor: pointer to 'struct spi_nor'.
989 *
990 * Return: 0 on success, -errno otherwise.
991 */
spi_nor_erase_chip(struct spi_nor * nor)992 static int spi_nor_erase_chip(struct spi_nor *nor)
993 {
994 int ret;
995
996 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
997
998 if (nor->spimem) {
999 struct spi_mem_op op =
1000 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1001 SPI_MEM_OP_NO_ADDR,
1002 SPI_MEM_OP_NO_DUMMY,
1003 SPI_MEM_OP_NO_DATA);
1004
1005 ret = spi_mem_exec_op(nor->spimem, &op);
1006 } else {
1007 ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1008 NULL, 0);
1009 }
1010
1011 if (ret)
1012 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1013
1014 return ret;
1015 }
1016
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1017 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1018 {
1019 size_t i;
1020
1021 for (i = 0; i < size; i++)
1022 if (table[i][0] == opcode)
1023 return table[i][1];
1024
1025 /* No conversion found, keep input op code. */
1026 return opcode;
1027 }
1028
spi_nor_convert_3to4_read(u8 opcode)1029 u8 spi_nor_convert_3to4_read(u8 opcode)
1030 {
1031 static const u8 spi_nor_3to4_read[][2] = {
1032 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1033 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1034 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1035 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1036 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1037 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1038 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1039 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1040
1041 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1042 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1043 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1044 };
1045
1046 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1047 ARRAY_SIZE(spi_nor_3to4_read));
1048 }
1049
spi_nor_convert_3to4_program(u8 opcode)1050 static u8 spi_nor_convert_3to4_program(u8 opcode)
1051 {
1052 static const u8 spi_nor_3to4_program[][2] = {
1053 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1054 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1055 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1056 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1057 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1058 };
1059
1060 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1061 ARRAY_SIZE(spi_nor_3to4_program));
1062 }
1063
spi_nor_convert_3to4_erase(u8 opcode)1064 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1065 {
1066 static const u8 spi_nor_3to4_erase[][2] = {
1067 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1068 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1069 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1070 };
1071
1072 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1073 ARRAY_SIZE(spi_nor_3to4_erase));
1074 }
1075
spi_nor_has_uniform_erase(const struct spi_nor * nor)1076 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1077 {
1078 return !!nor->params->erase_map.uniform_erase_type;
1079 }
1080
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1081 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1082 {
1083 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1084 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1085 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1086
1087 if (!spi_nor_has_uniform_erase(nor)) {
1088 struct spi_nor_erase_map *map = &nor->params->erase_map;
1089 struct spi_nor_erase_type *erase;
1090 int i;
1091
1092 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1093 erase = &map->erase_type[i];
1094 erase->opcode =
1095 spi_nor_convert_3to4_erase(erase->opcode);
1096 }
1097 }
1098 }
1099
spi_nor_lock_and_prep(struct spi_nor * nor)1100 int spi_nor_lock_and_prep(struct spi_nor *nor)
1101 {
1102 int ret = 0;
1103
1104 mutex_lock(&nor->lock);
1105
1106 if (nor->controller_ops && nor->controller_ops->prepare) {
1107 ret = nor->controller_ops->prepare(nor);
1108 if (ret) {
1109 mutex_unlock(&nor->lock);
1110 return ret;
1111 }
1112 }
1113 return ret;
1114 }
1115
spi_nor_unlock_and_unprep(struct spi_nor * nor)1116 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1117 {
1118 if (nor->controller_ops && nor->controller_ops->unprepare)
1119 nor->controller_ops->unprepare(nor);
1120 mutex_unlock(&nor->lock);
1121 }
1122
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1123 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1124 {
1125 if (!nor->params->convert_addr)
1126 return addr;
1127
1128 return nor->params->convert_addr(nor, addr);
1129 }
1130
1131 /*
1132 * Initiate the erasure of a single sector
1133 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1134 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1135 {
1136 int i;
1137
1138 addr = spi_nor_convert_addr(nor, addr);
1139
1140 if (nor->spimem) {
1141 struct spi_mem_op op =
1142 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1143 SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1144 SPI_MEM_OP_NO_DUMMY,
1145 SPI_MEM_OP_NO_DATA);
1146
1147 return spi_mem_exec_op(nor->spimem, &op);
1148 } else if (nor->controller_ops->erase) {
1149 return nor->controller_ops->erase(nor, addr);
1150 }
1151
1152 /*
1153 * Default implementation, if driver doesn't have a specialized HW
1154 * control
1155 */
1156 for (i = nor->addr_width - 1; i >= 0; i--) {
1157 nor->bouncebuf[i] = addr & 0xff;
1158 addr >>= 8;
1159 }
1160
1161 return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1162 nor->bouncebuf, nor->addr_width);
1163 }
1164
1165 /**
1166 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1167 * @erase: pointer to a structure that describes a SPI NOR erase type
1168 * @dividend: dividend value
1169 * @remainder: pointer to u32 remainder (will be updated)
1170 *
1171 * Return: the result of the division
1172 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1173 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1174 u64 dividend, u32 *remainder)
1175 {
1176 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1177 *remainder = (u32)dividend & erase->size_mask;
1178 return dividend >> erase->size_shift;
1179 }
1180
1181 /**
1182 * spi_nor_find_best_erase_type() - find the best erase type for the given
1183 * offset in the serial flash memory and the
1184 * number of bytes to erase. The region in
1185 * which the address fits is expected to be
1186 * provided.
1187 * @map: the erase map of the SPI NOR
1188 * @region: pointer to a structure that describes a SPI NOR erase region
1189 * @addr: offset in the serial flash memory
1190 * @len: number of bytes to erase
1191 *
1192 * Return: a pointer to the best fitted erase type, NULL otherwise.
1193 */
1194 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1195 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1196 const struct spi_nor_erase_region *region,
1197 u64 addr, u32 len)
1198 {
1199 const struct spi_nor_erase_type *erase;
1200 u32 rem;
1201 int i;
1202 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1203
1204 /*
1205 * Erase types are ordered by size, with the smallest erase type at
1206 * index 0.
1207 */
1208 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1209 /* Does the erase region support the tested erase type? */
1210 if (!(erase_mask & BIT(i)))
1211 continue;
1212
1213 erase = &map->erase_type[i];
1214
1215 /* Don't erase more than what the user has asked for. */
1216 if (erase->size > len)
1217 continue;
1218
1219 /* Alignment is not mandatory for overlaid regions */
1220 if (region->offset & SNOR_OVERLAID_REGION)
1221 return erase;
1222
1223 spi_nor_div_by_erase_size(erase, addr, &rem);
1224 if (rem)
1225 continue;
1226 else
1227 return erase;
1228 }
1229
1230 return NULL;
1231 }
1232
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1233 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1234 {
1235 return region->offset & SNOR_LAST_REGION;
1236 }
1237
spi_nor_region_end(const struct spi_nor_erase_region * region)1238 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1239 {
1240 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1241 }
1242
1243 /**
1244 * spi_nor_region_next() - get the next spi nor region
1245 * @region: pointer to a structure that describes a SPI NOR erase region
1246 *
1247 * Return: the next spi nor region or NULL if last region.
1248 */
1249 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1250 spi_nor_region_next(struct spi_nor_erase_region *region)
1251 {
1252 if (spi_nor_region_is_last(region))
1253 return NULL;
1254 region++;
1255 return region;
1256 }
1257
1258 /**
1259 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1260 * which the offset fits
1261 * @map: the erase map of the SPI NOR
1262 * @addr: offset in the serial flash memory
1263 *
1264 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1265 * otherwise.
1266 */
1267 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1268 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1269 {
1270 struct spi_nor_erase_region *region = map->regions;
1271 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1272 u64 region_end = region_start + region->size;
1273
1274 while (addr < region_start || addr >= region_end) {
1275 region = spi_nor_region_next(region);
1276 if (!region)
1277 return ERR_PTR(-EINVAL);
1278
1279 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1280 region_end = region_start + region->size;
1281 }
1282
1283 return region;
1284 }
1285
1286 /**
1287 * spi_nor_init_erase_cmd() - initialize an erase command
1288 * @region: pointer to a structure that describes a SPI NOR erase region
1289 * @erase: pointer to a structure that describes a SPI NOR erase type
1290 *
1291 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1292 * otherwise.
1293 */
1294 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1295 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1296 const struct spi_nor_erase_type *erase)
1297 {
1298 struct spi_nor_erase_command *cmd;
1299
1300 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1301 if (!cmd)
1302 return ERR_PTR(-ENOMEM);
1303
1304 INIT_LIST_HEAD(&cmd->list);
1305 cmd->opcode = erase->opcode;
1306 cmd->count = 1;
1307
1308 if (region->offset & SNOR_OVERLAID_REGION)
1309 cmd->size = region->size;
1310 else
1311 cmd->size = erase->size;
1312
1313 return cmd;
1314 }
1315
1316 /**
1317 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1318 * @erase_list: list of erase commands
1319 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1320 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1321 {
1322 struct spi_nor_erase_command *cmd, *next;
1323
1324 list_for_each_entry_safe(cmd, next, erase_list, list) {
1325 list_del(&cmd->list);
1326 kfree(cmd);
1327 }
1328 }
1329
1330 /**
1331 * spi_nor_init_erase_cmd_list() - initialize erase command list
1332 * @nor: pointer to a 'struct spi_nor'
1333 * @erase_list: list of erase commands to be executed once we validate that the
1334 * erase can be performed
1335 * @addr: offset in the serial flash memory
1336 * @len: number of bytes to erase
1337 *
1338 * Builds the list of best fitted erase commands and verifies if the erase can
1339 * be performed.
1340 *
1341 * Return: 0 on success, -errno otherwise.
1342 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1343 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1344 struct list_head *erase_list,
1345 u64 addr, u32 len)
1346 {
1347 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1348 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1349 struct spi_nor_erase_region *region;
1350 struct spi_nor_erase_command *cmd = NULL;
1351 u64 region_end;
1352 int ret = -EINVAL;
1353
1354 region = spi_nor_find_erase_region(map, addr);
1355 if (IS_ERR(region))
1356 return PTR_ERR(region);
1357
1358 region_end = spi_nor_region_end(region);
1359
1360 while (len) {
1361 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1362 if (!erase)
1363 goto destroy_erase_cmd_list;
1364
1365 if (prev_erase != erase ||
1366 region->offset & SNOR_OVERLAID_REGION) {
1367 cmd = spi_nor_init_erase_cmd(region, erase);
1368 if (IS_ERR(cmd)) {
1369 ret = PTR_ERR(cmd);
1370 goto destroy_erase_cmd_list;
1371 }
1372
1373 list_add_tail(&cmd->list, erase_list);
1374 } else {
1375 cmd->count++;
1376 }
1377
1378 addr += cmd->size;
1379 len -= cmd->size;
1380
1381 if (len && addr >= region_end) {
1382 region = spi_nor_region_next(region);
1383 if (!region)
1384 goto destroy_erase_cmd_list;
1385 region_end = spi_nor_region_end(region);
1386 }
1387
1388 prev_erase = erase;
1389 }
1390
1391 return 0;
1392
1393 destroy_erase_cmd_list:
1394 spi_nor_destroy_erase_cmd_list(erase_list);
1395 return ret;
1396 }
1397
1398 /**
1399 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1400 * @nor: pointer to a 'struct spi_nor'
1401 * @addr: offset in the serial flash memory
1402 * @len: number of bytes to erase
1403 *
1404 * Build a list of best fitted erase commands and execute it once we validate
1405 * that the erase can be performed.
1406 *
1407 * Return: 0 on success, -errno otherwise.
1408 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1409 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1410 {
1411 LIST_HEAD(erase_list);
1412 struct spi_nor_erase_command *cmd, *next;
1413 int ret;
1414
1415 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1416 if (ret)
1417 return ret;
1418
1419 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1420 nor->erase_opcode = cmd->opcode;
1421 while (cmd->count) {
1422 ret = spi_nor_write_enable(nor);
1423 if (ret)
1424 goto destroy_erase_cmd_list;
1425
1426 ret = spi_nor_erase_sector(nor, addr);
1427 if (ret)
1428 goto destroy_erase_cmd_list;
1429
1430 addr += cmd->size;
1431 cmd->count--;
1432
1433 ret = spi_nor_wait_till_ready(nor);
1434 if (ret)
1435 goto destroy_erase_cmd_list;
1436 }
1437 list_del(&cmd->list);
1438 kfree(cmd);
1439 }
1440
1441 return 0;
1442
1443 destroy_erase_cmd_list:
1444 spi_nor_destroy_erase_cmd_list(&erase_list);
1445 return ret;
1446 }
1447
1448 /*
1449 * Erase an address range on the nor chip. The address range may extend
1450 * one or more erase sectors. Return an error is there is a problem erasing.
1451 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1452 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1453 {
1454 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1455 u32 addr, len;
1456 uint32_t rem;
1457 int ret;
1458
1459 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1460 (long long)instr->len);
1461
1462 if (spi_nor_has_uniform_erase(nor)) {
1463 div_u64_rem(instr->len, mtd->erasesize, &rem);
1464 if (rem)
1465 return -EINVAL;
1466 }
1467
1468 addr = instr->addr;
1469 len = instr->len;
1470
1471 ret = spi_nor_lock_and_prep(nor);
1472 if (ret)
1473 return ret;
1474
1475 /* whole-chip erase? */
1476 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1477 unsigned long timeout;
1478
1479 ret = spi_nor_write_enable(nor);
1480 if (ret)
1481 goto erase_err;
1482
1483 ret = spi_nor_erase_chip(nor);
1484 if (ret)
1485 goto erase_err;
1486
1487 /*
1488 * Scale the timeout linearly with the size of the flash, with
1489 * a minimum calibrated to an old 2MB flash. We could try to
1490 * pull these from CFI/SFDP, but these values should be good
1491 * enough for now.
1492 */
1493 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1494 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1495 (unsigned long)(mtd->size / SZ_2M));
1496 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1497 if (ret)
1498 goto erase_err;
1499
1500 /* REVISIT in some cases we could speed up erasing large regions
1501 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1502 * to use "small sector erase", but that's not always optimal.
1503 */
1504
1505 /* "sector"-at-a-time erase */
1506 } else if (spi_nor_has_uniform_erase(nor)) {
1507 while (len) {
1508 ret = spi_nor_write_enable(nor);
1509 if (ret)
1510 goto erase_err;
1511
1512 ret = spi_nor_erase_sector(nor, addr);
1513 if (ret)
1514 goto erase_err;
1515
1516 addr += mtd->erasesize;
1517 len -= mtd->erasesize;
1518
1519 ret = spi_nor_wait_till_ready(nor);
1520 if (ret)
1521 goto erase_err;
1522 }
1523
1524 /* erase multiple sectors */
1525 } else {
1526 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1527 if (ret)
1528 goto erase_err;
1529 }
1530
1531 ret = spi_nor_write_disable(nor);
1532
1533 erase_err:
1534 spi_nor_unlock_and_unprep(nor);
1535
1536 return ret;
1537 }
1538
spi_nor_get_sr_bp_mask(struct spi_nor * nor)1539 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1540 {
1541 u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1542
1543 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1544 return mask | SR_BP3_BIT6;
1545
1546 if (nor->flags & SNOR_F_HAS_4BIT_BP)
1547 return mask | SR_BP3;
1548
1549 return mask;
1550 }
1551
spi_nor_get_sr_tb_mask(struct spi_nor * nor)1552 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1553 {
1554 if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1555 return SR_TB_BIT6;
1556 else
1557 return SR_TB_BIT5;
1558 }
1559
spi_nor_get_min_prot_length_sr(struct spi_nor * nor)1560 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1561 {
1562 unsigned int bp_slots, bp_slots_needed;
1563 u8 mask = spi_nor_get_sr_bp_mask(nor);
1564
1565 /* Reserved one for "protect none" and one for "protect all". */
1566 bp_slots = (1 << hweight8(mask)) - 2;
1567 bp_slots_needed = ilog2(nor->info->n_sectors);
1568
1569 if (bp_slots_needed > bp_slots)
1570 return nor->info->sector_size <<
1571 (bp_slots_needed - bp_slots);
1572 else
1573 return nor->info->sector_size;
1574 }
1575
spi_nor_get_locked_range_sr(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)1576 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1577 uint64_t *len)
1578 {
1579 struct mtd_info *mtd = &nor->mtd;
1580 u64 min_prot_len;
1581 u8 mask = spi_nor_get_sr_bp_mask(nor);
1582 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1583 u8 bp, val = sr & mask;
1584
1585 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1586 val = (val & ~SR_BP3_BIT6) | SR_BP3;
1587
1588 bp = val >> SR_BP_SHIFT;
1589
1590 if (!bp) {
1591 /* No protection */
1592 *ofs = 0;
1593 *len = 0;
1594 return;
1595 }
1596
1597 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1598 *len = min_prot_len << (bp - 1);
1599
1600 if (*len > mtd->size)
1601 *len = mtd->size;
1602
1603 if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1604 *ofs = 0;
1605 else
1606 *ofs = mtd->size - *len;
1607 }
1608
1609 /*
1610 * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1611 * @locked is false); 0 otherwise
1612 */
spi_nor_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr,bool locked)1613 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1614 uint64_t len, u8 sr, bool locked)
1615 {
1616 loff_t lock_offs;
1617 uint64_t lock_len;
1618
1619 if (!len)
1620 return 1;
1621
1622 spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1623
1624 if (locked)
1625 /* Requested range is a sub-range of locked range */
1626 return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1627 else
1628 /* Requested range does not overlap with locked range */
1629 return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1630 }
1631
spi_nor_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1632 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1633 u8 sr)
1634 {
1635 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1636 }
1637
spi_nor_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1638 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1639 u8 sr)
1640 {
1641 return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1642 }
1643
1644 /*
1645 * Lock a region of the flash. Compatible with ST Micro and similar flash.
1646 * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1647 * register
1648 * (SR). Does not support these features found in newer SR bitfields:
1649 * - SEC: sector/block protect - only handle SEC=0 (block protect)
1650 * - CMP: complement protect - only support CMP=0 (range is not complemented)
1651 *
1652 * Support for the following is provided conditionally for some flash:
1653 * - TB: top/bottom protect
1654 *
1655 * Sample table portion for 8MB flash (Winbond w25q64fw):
1656 *
1657 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
1658 * --------------------------------------------------------------------------
1659 * X | X | 0 | 0 | 0 | NONE | NONE
1660 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
1661 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
1662 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
1663 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
1664 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
1665 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
1666 * X | X | 1 | 1 | 1 | 8 MB | ALL
1667 * ------|-------|-------|-------|-------|---------------|-------------------
1668 * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
1669 * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
1670 * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
1671 * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
1672 * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
1673 * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
1674 *
1675 * Returns negative on errors, 0 on success.
1676 */
spi_nor_sr_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1677 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1678 {
1679 struct mtd_info *mtd = &nor->mtd;
1680 u64 min_prot_len;
1681 int ret, status_old, status_new;
1682 u8 mask = spi_nor_get_sr_bp_mask(nor);
1683 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1684 u8 pow, val;
1685 loff_t lock_len;
1686 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1687 bool use_top;
1688
1689 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1690 if (ret)
1691 return ret;
1692
1693 status_old = nor->bouncebuf[0];
1694
1695 /* If nothing in our range is unlocked, we don't need to do anything */
1696 if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1697 return 0;
1698
1699 /* If anything below us is unlocked, we can't use 'bottom' protection */
1700 if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1701 can_be_bottom = false;
1702
1703 /* If anything above us is unlocked, we can't use 'top' protection */
1704 if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1705 status_old))
1706 can_be_top = false;
1707
1708 if (!can_be_bottom && !can_be_top)
1709 return -EINVAL;
1710
1711 /* Prefer top, if both are valid */
1712 use_top = can_be_top;
1713
1714 /* lock_len: length of region that should end up locked */
1715 if (use_top)
1716 lock_len = mtd->size - ofs;
1717 else
1718 lock_len = ofs + len;
1719
1720 if (lock_len == mtd->size) {
1721 val = mask;
1722 } else {
1723 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1724 pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1725 val = pow << SR_BP_SHIFT;
1726
1727 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1728 val = (val & ~SR_BP3) | SR_BP3_BIT6;
1729
1730 if (val & ~mask)
1731 return -EINVAL;
1732
1733 /* Don't "lock" with no region! */
1734 if (!(val & mask))
1735 return -EINVAL;
1736 }
1737
1738 status_new = (status_old & ~mask & ~tb_mask) | val;
1739
1740 /* Disallow further writes if WP pin is asserted */
1741 status_new |= SR_SRWD;
1742
1743 if (!use_top)
1744 status_new |= tb_mask;
1745
1746 /* Don't bother if they're the same */
1747 if (status_new == status_old)
1748 return 0;
1749
1750 /* Only modify protection if it will not unlock other areas */
1751 if ((status_new & mask) < (status_old & mask))
1752 return -EINVAL;
1753
1754 return spi_nor_write_sr_and_check(nor, status_new);
1755 }
1756
1757 /*
1758 * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1759 *
1760 * Returns negative on errors, 0 on success.
1761 */
spi_nor_sr_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1762 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1763 {
1764 struct mtd_info *mtd = &nor->mtd;
1765 u64 min_prot_len;
1766 int ret, status_old, status_new;
1767 u8 mask = spi_nor_get_sr_bp_mask(nor);
1768 u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1769 u8 pow, val;
1770 loff_t lock_len;
1771 bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1772 bool use_top;
1773
1774 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1775 if (ret)
1776 return ret;
1777
1778 status_old = nor->bouncebuf[0];
1779
1780 /* If nothing in our range is locked, we don't need to do anything */
1781 if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1782 return 0;
1783
1784 /* If anything below us is locked, we can't use 'top' protection */
1785 if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1786 can_be_top = false;
1787
1788 /* If anything above us is locked, we can't use 'bottom' protection */
1789 if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1790 status_old))
1791 can_be_bottom = false;
1792
1793 if (!can_be_bottom && !can_be_top)
1794 return -EINVAL;
1795
1796 /* Prefer top, if both are valid */
1797 use_top = can_be_top;
1798
1799 /* lock_len: length of region that should remain locked */
1800 if (use_top)
1801 lock_len = mtd->size - (ofs + len);
1802 else
1803 lock_len = ofs;
1804
1805 if (lock_len == 0) {
1806 val = 0; /* fully unlocked */
1807 } else {
1808 min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1809 pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1810 val = pow << SR_BP_SHIFT;
1811
1812 if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1813 val = (val & ~SR_BP3) | SR_BP3_BIT6;
1814
1815 /* Some power-of-two sizes are not supported */
1816 if (val & ~mask)
1817 return -EINVAL;
1818 }
1819
1820 status_new = (status_old & ~mask & ~tb_mask) | val;
1821
1822 /* Don't protect status register if we're fully unlocked */
1823 if (lock_len == 0)
1824 status_new &= ~SR_SRWD;
1825
1826 if (!use_top)
1827 status_new |= tb_mask;
1828
1829 /* Don't bother if they're the same */
1830 if (status_new == status_old)
1831 return 0;
1832
1833 /* Only modify protection if it will not lock other areas */
1834 if ((status_new & mask) > (status_old & mask))
1835 return -EINVAL;
1836
1837 return spi_nor_write_sr_and_check(nor, status_new);
1838 }
1839
1840 /*
1841 * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1842 * for more info.
1843 *
1844 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1845 * negative on errors.
1846 */
spi_nor_sr_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1847 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1848 {
1849 int ret;
1850
1851 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1852 if (ret)
1853 return ret;
1854
1855 return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1856 }
1857
1858 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1859 .lock = spi_nor_sr_lock,
1860 .unlock = spi_nor_sr_unlock,
1861 .is_locked = spi_nor_sr_is_locked,
1862 };
1863
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1864 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1865 {
1866 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1867 int ret;
1868
1869 ret = spi_nor_lock_and_prep(nor);
1870 if (ret)
1871 return ret;
1872
1873 ret = nor->params->locking_ops->lock(nor, ofs, len);
1874
1875 spi_nor_unlock_and_unprep(nor);
1876 return ret;
1877 }
1878
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1879 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1880 {
1881 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1882 int ret;
1883
1884 ret = spi_nor_lock_and_prep(nor);
1885 if (ret)
1886 return ret;
1887
1888 ret = nor->params->locking_ops->unlock(nor, ofs, len);
1889
1890 spi_nor_unlock_and_unprep(nor);
1891 return ret;
1892 }
1893
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1894 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1895 {
1896 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1897 int ret;
1898
1899 ret = spi_nor_lock_and_prep(nor);
1900 if (ret)
1901 return ret;
1902
1903 ret = nor->params->locking_ops->is_locked(nor, ofs, len);
1904
1905 spi_nor_unlock_and_unprep(nor);
1906 return ret;
1907 }
1908
1909 /**
1910 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1911 * Register 1.
1912 * @nor: pointer to a 'struct spi_nor'
1913 *
1914 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1915 *
1916 * Return: 0 on success, -errno otherwise.
1917 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1918 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1919 {
1920 int ret;
1921
1922 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1923 if (ret)
1924 return ret;
1925
1926 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1927 return 0;
1928
1929 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1930
1931 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1932 }
1933
1934 /**
1935 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1936 * Register 2.
1937 * @nor: pointer to a 'struct spi_nor'.
1938 *
1939 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1940 *
1941 * Return: 0 on success, -errno otherwise.
1942 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1943 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1944 {
1945 int ret;
1946
1947 if (nor->flags & SNOR_F_NO_READ_CR)
1948 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1949
1950 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1951 if (ret)
1952 return ret;
1953
1954 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1955 return 0;
1956
1957 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1958
1959 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1960 }
1961
1962 /**
1963 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1964 * @nor: pointer to a 'struct spi_nor'
1965 *
1966 * Set the Quad Enable (QE) bit in the Status Register 2.
1967 *
1968 * This is one of the procedures to set the QE bit described in the SFDP
1969 * (JESD216 rev B) specification but no manufacturer using this procedure has
1970 * been identified yet, hence the name of the function.
1971 *
1972 * Return: 0 on success, -errno otherwise.
1973 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1974 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1975 {
1976 u8 *sr2 = nor->bouncebuf;
1977 int ret;
1978 u8 sr2_written;
1979
1980 /* Check current Quad Enable bit value. */
1981 ret = spi_nor_read_sr2(nor, sr2);
1982 if (ret)
1983 return ret;
1984 if (*sr2 & SR2_QUAD_EN_BIT7)
1985 return 0;
1986
1987 /* Update the Quad Enable bit. */
1988 *sr2 |= SR2_QUAD_EN_BIT7;
1989
1990 ret = spi_nor_write_sr2(nor, sr2);
1991 if (ret)
1992 return ret;
1993
1994 sr2_written = *sr2;
1995
1996 /* Read back and check it. */
1997 ret = spi_nor_read_sr2(nor, sr2);
1998 if (ret)
1999 return ret;
2000
2001 if (*sr2 != sr2_written) {
2002 dev_dbg(nor->dev, "SR2: Read back test failed\n");
2003 return -EIO;
2004 }
2005
2006 return 0;
2007 }
2008
2009 static const struct spi_nor_manufacturer *manufacturers[] = {
2010 &spi_nor_atmel,
2011 &spi_nor_catalyst,
2012 &spi_nor_eon,
2013 &spi_nor_esmt,
2014 &spi_nor_everspin,
2015 &spi_nor_fujitsu,
2016 &spi_nor_gigadevice,
2017 &spi_nor_intel,
2018 &spi_nor_issi,
2019 &spi_nor_macronix,
2020 &spi_nor_micron,
2021 &spi_nor_st,
2022 &spi_nor_spansion,
2023 &spi_nor_sst,
2024 &spi_nor_winbond,
2025 &spi_nor_xilinx,
2026 &spi_nor_xmc,
2027 };
2028
2029 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)2030 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2031 const u8 *id)
2032 {
2033 unsigned int i;
2034
2035 for (i = 0; i < nparts; i++) {
2036 if (parts[i].id_len &&
2037 !memcmp(parts[i].id, id, parts[i].id_len))
2038 return &parts[i];
2039 }
2040
2041 return NULL;
2042 }
2043
spi_nor_read_id(struct spi_nor * nor)2044 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2045 {
2046 const struct flash_info *info;
2047 u8 *id = nor->bouncebuf;
2048 unsigned int i;
2049 int ret;
2050
2051 if (nor->spimem) {
2052 struct spi_mem_op op =
2053 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2054 SPI_MEM_OP_NO_ADDR,
2055 SPI_MEM_OP_NO_DUMMY,
2056 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2057
2058 ret = spi_mem_exec_op(nor->spimem, &op);
2059 } else {
2060 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2061 SPI_NOR_MAX_ID_LEN);
2062 }
2063 if (ret) {
2064 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2065 return ERR_PTR(ret);
2066 }
2067
2068 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2069 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2070 manufacturers[i]->nparts,
2071 id);
2072 if (info) {
2073 nor->manufacturer = manufacturers[i];
2074 return info;
2075 }
2076 }
2077
2078 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2079 SPI_NOR_MAX_ID_LEN, id);
2080 return ERR_PTR(-ENODEV);
2081 }
2082
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2083 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2084 size_t *retlen, u_char *buf)
2085 {
2086 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2087 ssize_t ret;
2088
2089 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2090
2091 ret = spi_nor_lock_and_prep(nor);
2092 if (ret)
2093 return ret;
2094
2095 while (len) {
2096 loff_t addr = from;
2097
2098 addr = spi_nor_convert_addr(nor, addr);
2099
2100 ret = spi_nor_read_data(nor, addr, len, buf);
2101 if (ret == 0) {
2102 /* We shouldn't see 0-length reads */
2103 ret = -EIO;
2104 goto read_err;
2105 }
2106 if (ret < 0)
2107 goto read_err;
2108
2109 WARN_ON(ret > len);
2110 *retlen += ret;
2111 buf += ret;
2112 from += ret;
2113 len -= ret;
2114 }
2115 ret = 0;
2116
2117 read_err:
2118 spi_nor_unlock_and_unprep(nor);
2119 return ret;
2120 }
2121
2122 /*
2123 * Write an address range to the nor chip. Data must be written in
2124 * FLASH_PAGESIZE chunks. The address range may be any size provided
2125 * it is within the physical boundaries.
2126 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2127 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2128 size_t *retlen, const u_char *buf)
2129 {
2130 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2131 size_t page_offset, page_remain, i;
2132 ssize_t ret;
2133
2134 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2135
2136 ret = spi_nor_lock_and_prep(nor);
2137 if (ret)
2138 return ret;
2139
2140 for (i = 0; i < len; ) {
2141 ssize_t written;
2142 loff_t addr = to + i;
2143
2144 /*
2145 * If page_size is a power of two, the offset can be quickly
2146 * calculated with an AND operation. On the other cases we
2147 * need to do a modulus operation (more expensive).
2148 * Power of two numbers have only one bit set and we can use
2149 * the instruction hweight32 to detect if we need to do a
2150 * modulus (do_div()) or not.
2151 */
2152 if (hweight32(nor->page_size) == 1) {
2153 page_offset = addr & (nor->page_size - 1);
2154 } else {
2155 uint64_t aux = addr;
2156
2157 page_offset = do_div(aux, nor->page_size);
2158 }
2159 /* the size of data remaining on the first page */
2160 page_remain = min_t(size_t,
2161 nor->page_size - page_offset, len - i);
2162
2163 addr = spi_nor_convert_addr(nor, addr);
2164
2165 ret = spi_nor_write_enable(nor);
2166 if (ret)
2167 goto write_err;
2168
2169 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2170 if (ret < 0)
2171 goto write_err;
2172 written = ret;
2173
2174 ret = spi_nor_wait_till_ready(nor);
2175 if (ret)
2176 goto write_err;
2177 *retlen += written;
2178 i += written;
2179 }
2180
2181 write_err:
2182 spi_nor_unlock_and_unprep(nor);
2183 return ret;
2184 }
2185
spi_nor_check(struct spi_nor * nor)2186 static int spi_nor_check(struct spi_nor *nor)
2187 {
2188 if (!nor->dev ||
2189 (!nor->spimem && !nor->controller_ops) ||
2190 (!nor->spimem && nor->controller_ops &&
2191 (!nor->controller_ops->read ||
2192 !nor->controller_ops->write ||
2193 !nor->controller_ops->read_reg ||
2194 !nor->controller_ops->write_reg))) {
2195 pr_err("spi-nor: please fill all the necessary fields!\n");
2196 return -EINVAL;
2197 }
2198
2199 if (nor->spimem && nor->controller_ops) {
2200 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2201 return -EINVAL;
2202 }
2203
2204 return 0;
2205 }
2206
2207 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2208 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2209 u8 num_mode_clocks,
2210 u8 num_wait_states,
2211 u8 opcode,
2212 enum spi_nor_protocol proto)
2213 {
2214 read->num_mode_clocks = num_mode_clocks;
2215 read->num_wait_states = num_wait_states;
2216 read->opcode = opcode;
2217 read->proto = proto;
2218 }
2219
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2220 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2221 enum spi_nor_protocol proto)
2222 {
2223 pp->opcode = opcode;
2224 pp->proto = proto;
2225 }
2226
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2227 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2228 {
2229 size_t i;
2230
2231 for (i = 0; i < size; i++)
2232 if (table[i][0] == (int)hwcaps)
2233 return table[i][1];
2234
2235 return -EINVAL;
2236 }
2237
spi_nor_hwcaps_read2cmd(u32 hwcaps)2238 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2239 {
2240 static const int hwcaps_read2cmd[][2] = {
2241 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2242 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2243 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2244 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2245 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2246 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2247 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2248 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2249 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2250 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2251 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2252 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2253 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2254 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2255 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2256 };
2257
2258 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2259 ARRAY_SIZE(hwcaps_read2cmd));
2260 }
2261
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2262 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2263 {
2264 static const int hwcaps_pp2cmd[][2] = {
2265 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2266 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2267 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2268 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2269 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2270 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2271 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2272 };
2273
2274 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2275 ARRAY_SIZE(hwcaps_pp2cmd));
2276 }
2277
2278 /**
2279 * spi_nor_spimem_check_op - check if the operation is supported
2280 * by controller
2281 *@nor: pointer to a 'struct spi_nor'
2282 *@op: pointer to op template to be checked
2283 *
2284 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2285 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2286 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2287 struct spi_mem_op *op)
2288 {
2289 /*
2290 * First test with 4 address bytes. The opcode itself might
2291 * be a 3B addressing opcode but we don't care, because
2292 * SPI controller implementation should not check the opcode,
2293 * but just the sequence.
2294 */
2295 op->addr.nbytes = 4;
2296 if (!spi_mem_supports_op(nor->spimem, op)) {
2297 if (nor->mtd.size > SZ_16M)
2298 return -ENOTSUPP;
2299
2300 /* If flash size <= 16MB, 3 address bytes are sufficient */
2301 op->addr.nbytes = 3;
2302 if (!spi_mem_supports_op(nor->spimem, op))
2303 return -ENOTSUPP;
2304 }
2305
2306 return 0;
2307 }
2308
2309 /**
2310 * spi_nor_spimem_check_readop - check if the read op is supported
2311 * by controller
2312 *@nor: pointer to a 'struct spi_nor'
2313 *@read: pointer to op template to be checked
2314 *
2315 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2316 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2317 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2318 const struct spi_nor_read_command *read)
2319 {
2320 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2321 SPI_MEM_OP_ADDR(3, 0, 1),
2322 SPI_MEM_OP_DUMMY(0, 1),
2323 SPI_MEM_OP_DATA_IN(0, NULL, 1));
2324
2325 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2326 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2327 op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2328 op.dummy.buswidth = op.addr.buswidth;
2329 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2330 op.dummy.buswidth / 8;
2331
2332 return spi_nor_spimem_check_op(nor, &op);
2333 }
2334
2335 /**
2336 * spi_nor_spimem_check_pp - check if the page program op is supported
2337 * by controller
2338 *@nor: pointer to a 'struct spi_nor'
2339 *@pp: pointer to op template to be checked
2340 *
2341 * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2342 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2343 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2344 const struct spi_nor_pp_command *pp)
2345 {
2346 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2347 SPI_MEM_OP_ADDR(3, 0, 1),
2348 SPI_MEM_OP_NO_DUMMY,
2349 SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2350
2351 op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2352 op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2353 op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2354
2355 return spi_nor_spimem_check_op(nor, &op);
2356 }
2357
2358 /**
2359 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2360 * based on SPI controller capabilities
2361 * @nor: pointer to a 'struct spi_nor'
2362 * @hwcaps: pointer to resulting capabilities after adjusting
2363 * according to controller and flash's capability
2364 */
2365 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2366 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2367 {
2368 struct spi_nor_flash_parameter *params = nor->params;
2369 unsigned int cap;
2370
2371 /* DTR modes are not supported yet, mask them all. */
2372 *hwcaps &= ~SNOR_HWCAPS_DTR;
2373
2374 /* X-X-X modes are not supported yet, mask them all. */
2375 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2376
2377 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2378 int rdidx, ppidx;
2379
2380 if (!(*hwcaps & BIT(cap)))
2381 continue;
2382
2383 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2384 if (rdidx >= 0 &&
2385 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2386 *hwcaps &= ~BIT(cap);
2387
2388 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2389 if (ppidx < 0)
2390 continue;
2391
2392 if (spi_nor_spimem_check_pp(nor,
2393 ¶ms->page_programs[ppidx]))
2394 *hwcaps &= ~BIT(cap);
2395 }
2396 }
2397
2398 /**
2399 * spi_nor_set_erase_type() - set a SPI NOR erase type
2400 * @erase: pointer to a structure that describes a SPI NOR erase type
2401 * @size: the size of the sector/block erased by the erase type
2402 * @opcode: the SPI command op code to erase the sector/block
2403 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2404 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2405 u8 opcode)
2406 {
2407 erase->size = size;
2408 erase->opcode = opcode;
2409 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2410 erase->size_shift = ffs(erase->size) - 1;
2411 erase->size_mask = (1 << erase->size_shift) - 1;
2412 }
2413
2414 /**
2415 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2416 * @map: the erase map of the SPI NOR
2417 * @erase_mask: bitmask encoding erase types that can erase the entire
2418 * flash memory
2419 * @flash_size: the spi nor flash memory size
2420 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2421 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2422 u8 erase_mask, u64 flash_size)
2423 {
2424 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2425 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2426 SNOR_LAST_REGION;
2427 map->uniform_region.size = flash_size;
2428 map->regions = &map->uniform_region;
2429 map->uniform_erase_type = erase_mask;
2430 }
2431
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt,struct spi_nor_flash_parameter * params)2432 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2433 const struct sfdp_parameter_header *bfpt_header,
2434 const struct sfdp_bfpt *bfpt,
2435 struct spi_nor_flash_parameter *params)
2436 {
2437 int ret;
2438
2439 if (nor->manufacturer && nor->manufacturer->fixups &&
2440 nor->manufacturer->fixups->post_bfpt) {
2441 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2442 bfpt, params);
2443 if (ret)
2444 return ret;
2445 }
2446
2447 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2448 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2449 params);
2450
2451 return 0;
2452 }
2453
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2454 static int spi_nor_select_read(struct spi_nor *nor,
2455 u32 shared_hwcaps)
2456 {
2457 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2458 const struct spi_nor_read_command *read;
2459
2460 if (best_match < 0)
2461 return -EINVAL;
2462
2463 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2464 if (cmd < 0)
2465 return -EINVAL;
2466
2467 read = &nor->params->reads[cmd];
2468 nor->read_opcode = read->opcode;
2469 nor->read_proto = read->proto;
2470
2471 /*
2472 * In the SPI NOR framework, we don't need to make the difference
2473 * between mode clock cycles and wait state clock cycles.
2474 * Indeed, the value of the mode clock cycles is used by a QSPI
2475 * flash memory to know whether it should enter or leave its 0-4-4
2476 * (Continuous Read / XIP) mode.
2477 * eXecution In Place is out of the scope of the mtd sub-system.
2478 * Hence we choose to merge both mode and wait state clock cycles
2479 * into the so called dummy clock cycles.
2480 */
2481 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2482 return 0;
2483 }
2484
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2485 static int spi_nor_select_pp(struct spi_nor *nor,
2486 u32 shared_hwcaps)
2487 {
2488 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2489 const struct spi_nor_pp_command *pp;
2490
2491 if (best_match < 0)
2492 return -EINVAL;
2493
2494 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2495 if (cmd < 0)
2496 return -EINVAL;
2497
2498 pp = &nor->params->page_programs[cmd];
2499 nor->program_opcode = pp->opcode;
2500 nor->write_proto = pp->proto;
2501 return 0;
2502 }
2503
2504 /**
2505 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2506 * @map: the erase map of the SPI NOR
2507 * @wanted_size: the erase type size to search for. Contains the value of
2508 * info->sector_size or of the "small sector" size in case
2509 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2510 *
2511 * Once the optimum uniform sector erase command is found, disable all the
2512 * other.
2513 *
2514 * Return: pointer to erase type on success, NULL otherwise.
2515 */
2516 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2517 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2518 const u32 wanted_size)
2519 {
2520 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2521 int i;
2522 u8 uniform_erase_type = map->uniform_erase_type;
2523
2524 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2525 if (!(uniform_erase_type & BIT(i)))
2526 continue;
2527
2528 tested_erase = &map->erase_type[i];
2529
2530 /*
2531 * If the current erase size is the one, stop here:
2532 * we have found the right uniform Sector Erase command.
2533 */
2534 if (tested_erase->size == wanted_size) {
2535 erase = tested_erase;
2536 break;
2537 }
2538
2539 /*
2540 * Otherwise, the current erase size is still a valid canditate.
2541 * Select the biggest valid candidate.
2542 */
2543 if (!erase && tested_erase->size)
2544 erase = tested_erase;
2545 /* keep iterating to find the wanted_size */
2546 }
2547
2548 if (!erase)
2549 return NULL;
2550
2551 /* Disable all other Sector Erase commands. */
2552 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2553 map->uniform_erase_type |= BIT(erase - map->erase_type);
2554 return erase;
2555 }
2556
spi_nor_select_erase(struct spi_nor * nor)2557 static int spi_nor_select_erase(struct spi_nor *nor)
2558 {
2559 struct spi_nor_erase_map *map = &nor->params->erase_map;
2560 const struct spi_nor_erase_type *erase = NULL;
2561 struct mtd_info *mtd = &nor->mtd;
2562 u32 wanted_size = nor->info->sector_size;
2563 int i;
2564
2565 /*
2566 * The previous implementation handling Sector Erase commands assumed
2567 * that the SPI flash memory has an uniform layout then used only one
2568 * of the supported erase sizes for all Sector Erase commands.
2569 * So to be backward compatible, the new implementation also tries to
2570 * manage the SPI flash memory as uniform with a single erase sector
2571 * size, when possible.
2572 */
2573 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2574 /* prefer "small sector" erase if possible */
2575 wanted_size = 4096u;
2576 #endif
2577
2578 if (spi_nor_has_uniform_erase(nor)) {
2579 erase = spi_nor_select_uniform_erase(map, wanted_size);
2580 if (!erase)
2581 return -EINVAL;
2582 nor->erase_opcode = erase->opcode;
2583 mtd->erasesize = erase->size;
2584 return 0;
2585 }
2586
2587 /*
2588 * For non-uniform SPI flash memory, set mtd->erasesize to the
2589 * maximum erase sector size. No need to set nor->erase_opcode.
2590 */
2591 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2592 if (map->erase_type[i].size) {
2593 erase = &map->erase_type[i];
2594 break;
2595 }
2596 }
2597
2598 if (!erase)
2599 return -EINVAL;
2600
2601 mtd->erasesize = erase->size;
2602 return 0;
2603 }
2604
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2605 static int spi_nor_default_setup(struct spi_nor *nor,
2606 const struct spi_nor_hwcaps *hwcaps)
2607 {
2608 struct spi_nor_flash_parameter *params = nor->params;
2609 u32 ignored_mask, shared_mask;
2610 int err;
2611
2612 /*
2613 * Keep only the hardware capabilities supported by both the SPI
2614 * controller and the SPI flash memory.
2615 */
2616 shared_mask = hwcaps->mask & params->hwcaps.mask;
2617
2618 if (nor->spimem) {
2619 /*
2620 * When called from spi_nor_probe(), all caps are set and we
2621 * need to discard some of them based on what the SPI
2622 * controller actually supports (using spi_mem_supports_op()).
2623 */
2624 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2625 } else {
2626 /*
2627 * SPI n-n-n protocols are not supported when the SPI
2628 * controller directly implements the spi_nor interface.
2629 * Yet another reason to switch to spi-mem.
2630 */
2631 ignored_mask = SNOR_HWCAPS_X_X_X;
2632 if (shared_mask & ignored_mask) {
2633 dev_dbg(nor->dev,
2634 "SPI n-n-n protocols are not supported.\n");
2635 shared_mask &= ~ignored_mask;
2636 }
2637 }
2638
2639 /* Select the (Fast) Read command. */
2640 err = spi_nor_select_read(nor, shared_mask);
2641 if (err) {
2642 dev_dbg(nor->dev,
2643 "can't select read settings supported by both the SPI controller and memory.\n");
2644 return err;
2645 }
2646
2647 /* Select the Page Program command. */
2648 err = spi_nor_select_pp(nor, shared_mask);
2649 if (err) {
2650 dev_dbg(nor->dev,
2651 "can't select write settings supported by both the SPI controller and memory.\n");
2652 return err;
2653 }
2654
2655 /* Select the Sector Erase command. */
2656 err = spi_nor_select_erase(nor);
2657 if (err) {
2658 dev_dbg(nor->dev,
2659 "can't select erase settings supported by both the SPI controller and memory.\n");
2660 return err;
2661 }
2662
2663 return 0;
2664 }
2665
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2666 static int spi_nor_setup(struct spi_nor *nor,
2667 const struct spi_nor_hwcaps *hwcaps)
2668 {
2669 if (!nor->params->setup)
2670 return 0;
2671
2672 return nor->params->setup(nor, hwcaps);
2673 }
2674
2675 /**
2676 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2677 * settings based on MFR register and ->default_init() hook.
2678 * @nor: pointer to a 'struct spi_nor'.
2679 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2680 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2681 {
2682 if (nor->manufacturer && nor->manufacturer->fixups &&
2683 nor->manufacturer->fixups->default_init)
2684 nor->manufacturer->fixups->default_init(nor);
2685
2686 if (nor->info->fixups && nor->info->fixups->default_init)
2687 nor->info->fixups->default_init(nor);
2688 }
2689
2690 /**
2691 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2692 * based on JESD216 SFDP standard.
2693 * @nor: pointer to a 'struct spi_nor'.
2694 *
2695 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2696 * legacy flash parameters and settings will be restored.
2697 */
spi_nor_sfdp_init_params(struct spi_nor * nor)2698 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2699 {
2700 struct spi_nor_flash_parameter sfdp_params;
2701
2702 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2703
2704 if (spi_nor_parse_sfdp(nor, nor->params)) {
2705 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2706 nor->addr_width = 0;
2707 nor->flags &= ~SNOR_F_4B_OPCODES;
2708 }
2709 }
2710
2711 /**
2712 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2713 * based on nor->info data.
2714 * @nor: pointer to a 'struct spi_nor'.
2715 */
spi_nor_info_init_params(struct spi_nor * nor)2716 static void spi_nor_info_init_params(struct spi_nor *nor)
2717 {
2718 struct spi_nor_flash_parameter *params = nor->params;
2719 struct spi_nor_erase_map *map = ¶ms->erase_map;
2720 const struct flash_info *info = nor->info;
2721 struct device_node *np = spi_nor_get_flash_node(nor);
2722 u8 i, erase_mask;
2723
2724 /* Initialize legacy flash parameters and settings. */
2725 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2726 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2727 params->setup = spi_nor_default_setup;
2728 /* Default to 16-bit Write Status (01h) Command */
2729 nor->flags |= SNOR_F_HAS_16BIT_SR;
2730
2731 /* Set SPI NOR sizes. */
2732 params->size = (u64)info->sector_size * info->n_sectors;
2733 params->page_size = info->page_size;
2734
2735 if (!(info->flags & SPI_NOR_NO_FR)) {
2736 /* Default to Fast Read for DT and non-DT platform devices. */
2737 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2738
2739 /* Mask out Fast Read if not requested at DT instantiation. */
2740 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2741 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2742 }
2743
2744 /* (Fast) Read settings. */
2745 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2746 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2747 0, 0, SPINOR_OP_READ,
2748 SNOR_PROTO_1_1_1);
2749
2750 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2751 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2752 0, 8, SPINOR_OP_READ_FAST,
2753 SNOR_PROTO_1_1_1);
2754
2755 if (info->flags & SPI_NOR_DUAL_READ) {
2756 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2757 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2758 0, 8, SPINOR_OP_READ_1_1_2,
2759 SNOR_PROTO_1_1_2);
2760 }
2761
2762 if (info->flags & SPI_NOR_QUAD_READ) {
2763 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2764 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2765 0, 8, SPINOR_OP_READ_1_1_4,
2766 SNOR_PROTO_1_1_4);
2767 }
2768
2769 if (info->flags & SPI_NOR_OCTAL_READ) {
2770 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2771 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2772 0, 8, SPINOR_OP_READ_1_1_8,
2773 SNOR_PROTO_1_1_8);
2774 }
2775
2776 /* Page Program settings. */
2777 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2778 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2779 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2780
2781 /*
2782 * Sector Erase settings. Sort Erase Types in ascending order, with the
2783 * smallest erase size starting at BIT(0).
2784 */
2785 erase_mask = 0;
2786 i = 0;
2787 if (info->flags & SECT_4K_PMC) {
2788 erase_mask |= BIT(i);
2789 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2790 SPINOR_OP_BE_4K_PMC);
2791 i++;
2792 } else if (info->flags & SECT_4K) {
2793 erase_mask |= BIT(i);
2794 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2795 SPINOR_OP_BE_4K);
2796 i++;
2797 }
2798 erase_mask |= BIT(i);
2799 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2800 SPINOR_OP_SE);
2801 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2802 }
2803
2804 /**
2805 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2806 * after SFDP has been parsed (is also called for SPI NORs that do not
2807 * support RDSFDP).
2808 * @nor: pointer to a 'struct spi_nor'
2809 *
2810 * Typically used to tweak various parameters that could not be extracted by
2811 * other means (i.e. when information provided by the SFDP/flash_info tables
2812 * are incomplete or wrong).
2813 */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2814 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2815 {
2816 if (nor->manufacturer && nor->manufacturer->fixups &&
2817 nor->manufacturer->fixups->post_sfdp)
2818 nor->manufacturer->fixups->post_sfdp(nor);
2819
2820 if (nor->info->fixups && nor->info->fixups->post_sfdp)
2821 nor->info->fixups->post_sfdp(nor);
2822 }
2823
2824 /**
2825 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2826 * @nor: pointer to a 'struct spi_nor'
2827 *
2828 * Used to set default flash parameters and settings when the ->default_init()
2829 * hook or the SFDP parser let voids.
2830 */
spi_nor_late_init_params(struct spi_nor * nor)2831 static void spi_nor_late_init_params(struct spi_nor *nor)
2832 {
2833 /*
2834 * NOR protection support. When locking_ops are not provided, we pick
2835 * the default ones.
2836 */
2837 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2838 nor->params->locking_ops = &spi_nor_sr_locking_ops;
2839 }
2840
2841 /**
2842 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2843 * @nor: pointer to a 'struct spi_nor'.
2844 *
2845 * The flash parameters and settings are initialized based on a sequence of
2846 * calls that are ordered by priority:
2847 *
2848 * 1/ Default flash parameters initialization. The initializations are done
2849 * based on nor->info data:
2850 * spi_nor_info_init_params()
2851 *
2852 * which can be overwritten by:
2853 * 2/ Manufacturer flash parameters initialization. The initializations are
2854 * done based on MFR register, or when the decisions can not be done solely
2855 * based on MFR, by using specific flash_info tweeks, ->default_init():
2856 * spi_nor_manufacturer_init_params()
2857 *
2858 * which can be overwritten by:
2859 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2860 * should be more accurate that the above.
2861 * spi_nor_sfdp_init_params()
2862 *
2863 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2864 * the flash parameters and settings immediately after parsing the Basic
2865 * Flash Parameter Table.
2866 *
2867 * which can be overwritten by:
2868 * 4/ Post SFDP flash parameters initialization. Used to tweak various
2869 * parameters that could not be extracted by other means (i.e. when
2870 * information provided by the SFDP/flash_info tables are incomplete or
2871 * wrong).
2872 * spi_nor_post_sfdp_fixups()
2873 *
2874 * 5/ Late default flash parameters initialization, used when the
2875 * ->default_init() hook or the SFDP parser do not set specific params.
2876 * spi_nor_late_init_params()
2877 */
spi_nor_init_params(struct spi_nor * nor)2878 static int spi_nor_init_params(struct spi_nor *nor)
2879 {
2880 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2881 if (!nor->params)
2882 return -ENOMEM;
2883
2884 spi_nor_info_init_params(nor);
2885
2886 spi_nor_manufacturer_init_params(nor);
2887
2888 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
2889 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2890 spi_nor_sfdp_init_params(nor);
2891
2892 spi_nor_post_sfdp_fixups(nor);
2893
2894 spi_nor_late_init_params(nor);
2895
2896 return 0;
2897 }
2898
2899 /**
2900 * spi_nor_quad_enable() - enable Quad I/O if needed.
2901 * @nor: pointer to a 'struct spi_nor'
2902 *
2903 * Return: 0 on success, -errno otherwise.
2904 */
spi_nor_quad_enable(struct spi_nor * nor)2905 static int spi_nor_quad_enable(struct spi_nor *nor)
2906 {
2907 if (!nor->params->quad_enable)
2908 return 0;
2909
2910 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2911 spi_nor_get_protocol_width(nor->write_proto) == 4))
2912 return 0;
2913
2914 return nor->params->quad_enable(nor);
2915 }
2916
2917 /**
2918 * spi_nor_unlock_all() - Unlocks the entire flash memory array.
2919 * @nor: pointer to a 'struct spi_nor'.
2920 *
2921 * Some SPI NOR flashes are write protected by default after a power-on reset
2922 * cycle, in order to avoid inadvertent writes during power-up. Backward
2923 * compatibility imposes to unlock the entire flash memory array at power-up
2924 * by default.
2925 */
spi_nor_unlock_all(struct spi_nor * nor)2926 static int spi_nor_unlock_all(struct spi_nor *nor)
2927 {
2928 if (nor->flags & SNOR_F_HAS_LOCK)
2929 return spi_nor_unlock(&nor->mtd, 0, nor->params->size);
2930
2931 return 0;
2932 }
2933
spi_nor_init(struct spi_nor * nor)2934 static int spi_nor_init(struct spi_nor *nor)
2935 {
2936 int err;
2937
2938 err = spi_nor_quad_enable(nor);
2939 if (err) {
2940 dev_dbg(nor->dev, "quad mode not supported\n");
2941 return err;
2942 }
2943
2944 err = spi_nor_unlock_all(nor);
2945 if (err) {
2946 dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
2947 return err;
2948 }
2949
2950 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
2951 /*
2952 * If the RESET# pin isn't hooked up properly, or the system
2953 * otherwise doesn't perform a reset command in the boot
2954 * sequence, it's impossible to 100% protect against unexpected
2955 * reboots (e.g., crashes). Warn the user (or hopefully, system
2956 * designer) that this is bad.
2957 */
2958 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2959 "enabling reset hack; may not recover from unexpected reboots\n");
2960 nor->params->set_4byte_addr_mode(nor, true);
2961 }
2962
2963 return 0;
2964 }
2965
2966 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2967 static void spi_nor_resume(struct mtd_info *mtd)
2968 {
2969 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2970 struct device *dev = nor->dev;
2971 int ret;
2972
2973 /* re-initialize the nor chip */
2974 ret = spi_nor_init(nor);
2975 if (ret)
2976 dev_err(dev, "resume() failed\n");
2977 }
2978
spi_nor_restore(struct spi_nor * nor)2979 void spi_nor_restore(struct spi_nor *nor)
2980 {
2981 /* restore the addressing mode */
2982 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
2983 nor->flags & SNOR_F_BROKEN_RESET)
2984 nor->params->set_4byte_addr_mode(nor, false);
2985 }
2986 EXPORT_SYMBOL_GPL(spi_nor_restore);
2987
spi_nor_match_id(struct spi_nor * nor,const char * name)2988 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
2989 const char *name)
2990 {
2991 unsigned int i, j;
2992
2993 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2994 for (j = 0; j < manufacturers[i]->nparts; j++) {
2995 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
2996 nor->manufacturer = manufacturers[i];
2997 return &manufacturers[i]->parts[j];
2998 }
2999 }
3000 }
3001
3002 return NULL;
3003 }
3004
spi_nor_set_addr_width(struct spi_nor * nor)3005 static int spi_nor_set_addr_width(struct spi_nor *nor)
3006 {
3007 if (nor->addr_width) {
3008 /* already configured from SFDP */
3009 } else if (nor->info->addr_width) {
3010 nor->addr_width = nor->info->addr_width;
3011 } else {
3012 nor->addr_width = 3;
3013 }
3014
3015 if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3016 /* enable 4-byte addressing if the device exceeds 16MiB */
3017 nor->addr_width = 4;
3018 }
3019
3020 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3021 dev_dbg(nor->dev, "address width is too large: %u\n",
3022 nor->addr_width);
3023 return -EINVAL;
3024 }
3025
3026 /* Set 4byte opcodes when possible. */
3027 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3028 !(nor->flags & SNOR_F_HAS_4BAIT))
3029 spi_nor_set_4byte_opcodes(nor);
3030
3031 return 0;
3032 }
3033
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3034 static void spi_nor_debugfs_init(struct spi_nor *nor,
3035 const struct flash_info *info)
3036 {
3037 struct mtd_info *mtd = &nor->mtd;
3038
3039 mtd->dbg.partname = info->name;
3040 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3041 info->id_len, info->id);
3042 }
3043
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3044 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3045 const char *name)
3046 {
3047 const struct flash_info *info = NULL;
3048
3049 if (name)
3050 info = spi_nor_match_id(nor, name);
3051 /* Try to auto-detect if chip name wasn't specified or not found */
3052 if (!info)
3053 info = spi_nor_read_id(nor);
3054 if (IS_ERR_OR_NULL(info))
3055 return ERR_PTR(-ENOENT);
3056
3057 /*
3058 * If caller has specified name of flash model that can normally be
3059 * detected using JEDEC, let's verify it.
3060 */
3061 if (name && info->id_len) {
3062 const struct flash_info *jinfo;
3063
3064 jinfo = spi_nor_read_id(nor);
3065 if (IS_ERR(jinfo)) {
3066 return jinfo;
3067 } else if (jinfo != info) {
3068 /*
3069 * JEDEC knows better, so overwrite platform ID. We
3070 * can't trust partitions any longer, but we'll let
3071 * mtd apply them anyway, since some partitions may be
3072 * marked read-only, and we don't want to lose that
3073 * information, even if it's not 100% accurate.
3074 */
3075 dev_warn(nor->dev, "found %s, expected %s\n",
3076 jinfo->name, info->name);
3077 info = jinfo;
3078 }
3079 }
3080
3081 return info;
3082 }
3083
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3084 int spi_nor_scan(struct spi_nor *nor, const char *name,
3085 const struct spi_nor_hwcaps *hwcaps)
3086 {
3087 const struct flash_info *info;
3088 struct device *dev = nor->dev;
3089 struct mtd_info *mtd = &nor->mtd;
3090 struct device_node *np = spi_nor_get_flash_node(nor);
3091 int ret;
3092 int i;
3093
3094 ret = spi_nor_check(nor);
3095 if (ret)
3096 return ret;
3097
3098 /* Reset SPI protocol for all commands. */
3099 nor->reg_proto = SNOR_PROTO_1_1_1;
3100 nor->read_proto = SNOR_PROTO_1_1_1;
3101 nor->write_proto = SNOR_PROTO_1_1_1;
3102
3103 /*
3104 * We need the bounce buffer early to read/write registers when going
3105 * through the spi-mem layer (buffers have to be DMA-able).
3106 * For spi-mem drivers, we'll reallocate a new buffer if
3107 * nor->page_size turns out to be greater than PAGE_SIZE (which
3108 * shouldn't happen before long since NOR pages are usually less
3109 * than 1KB) after spi_nor_scan() returns.
3110 */
3111 nor->bouncebuf_size = PAGE_SIZE;
3112 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3113 GFP_KERNEL);
3114 if (!nor->bouncebuf)
3115 return -ENOMEM;
3116
3117 info = spi_nor_get_flash_info(nor, name);
3118 if (IS_ERR(info))
3119 return PTR_ERR(info);
3120
3121 nor->info = info;
3122
3123 spi_nor_debugfs_init(nor, info);
3124
3125 mutex_init(&nor->lock);
3126
3127 /*
3128 * Make sure the XSR_RDY flag is set before calling
3129 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3130 * with Atmel SPI NOR.
3131 */
3132 if (info->flags & SPI_NOR_XSR_RDY)
3133 nor->flags |= SNOR_F_READY_XSR_RDY;
3134
3135 if (info->flags & SPI_NOR_HAS_LOCK)
3136 nor->flags |= SNOR_F_HAS_LOCK;
3137
3138 mtd->_write = spi_nor_write;
3139
3140 /* Init flash parameters based on flash_info struct and SFDP */
3141 ret = spi_nor_init_params(nor);
3142 if (ret)
3143 return ret;
3144
3145 if (!mtd->name)
3146 mtd->name = dev_name(dev);
3147 mtd->priv = nor;
3148 mtd->type = MTD_NORFLASH;
3149 mtd->writesize = 1;
3150 mtd->flags = MTD_CAP_NORFLASH;
3151 mtd->size = nor->params->size;
3152 mtd->_erase = spi_nor_erase;
3153 mtd->_read = spi_nor_read;
3154 mtd->_resume = spi_nor_resume;
3155
3156 if (nor->params->locking_ops) {
3157 mtd->_lock = spi_nor_lock;
3158 mtd->_unlock = spi_nor_unlock;
3159 mtd->_is_locked = spi_nor_is_locked;
3160 }
3161
3162 if (info->flags & USE_FSR)
3163 nor->flags |= SNOR_F_USE_FSR;
3164 if (info->flags & SPI_NOR_HAS_TB) {
3165 nor->flags |= SNOR_F_HAS_SR_TB;
3166 if (info->flags & SPI_NOR_TB_SR_BIT6)
3167 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3168 }
3169
3170 if (info->flags & NO_CHIP_ERASE)
3171 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3172 if (info->flags & USE_CLSR)
3173 nor->flags |= SNOR_F_USE_CLSR;
3174
3175 if (info->flags & SPI_NOR_4BIT_BP) {
3176 nor->flags |= SNOR_F_HAS_4BIT_BP;
3177 if (info->flags & SPI_NOR_BP3_SR_BIT6)
3178 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3179 }
3180
3181 if (info->flags & SPI_NOR_NO_ERASE)
3182 mtd->flags |= MTD_NO_ERASE;
3183
3184 mtd->dev.parent = dev;
3185 nor->page_size = nor->params->page_size;
3186 mtd->writebufsize = nor->page_size;
3187
3188 if (of_property_read_bool(np, "broken-flash-reset"))
3189 nor->flags |= SNOR_F_BROKEN_RESET;
3190
3191 /*
3192 * Configure the SPI memory:
3193 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3194 * - set the number of dummy cycles (mode cycles + wait states).
3195 * - set the SPI protocols for register and memory accesses.
3196 */
3197 ret = spi_nor_setup(nor, hwcaps);
3198 if (ret)
3199 return ret;
3200
3201 if (info->flags & SPI_NOR_4B_OPCODES)
3202 nor->flags |= SNOR_F_4B_OPCODES;
3203
3204 ret = spi_nor_set_addr_width(nor);
3205 if (ret)
3206 return ret;
3207
3208 /* Send all the required SPI flash commands to initialize device */
3209 ret = spi_nor_init(nor);
3210 if (ret)
3211 return ret;
3212
3213 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3214 (long long)mtd->size >> 10);
3215
3216 dev_dbg(dev,
3217 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3218 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3219 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3220 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3221
3222 if (mtd->numeraseregions)
3223 for (i = 0; i < mtd->numeraseregions; i++)
3224 dev_dbg(dev,
3225 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3226 ".erasesize = 0x%.8x (%uKiB), "
3227 ".numblocks = %d }\n",
3228 i, (long long)mtd->eraseregions[i].offset,
3229 mtd->eraseregions[i].erasesize,
3230 mtd->eraseregions[i].erasesize / 1024,
3231 mtd->eraseregions[i].numblocks);
3232 return 0;
3233 }
3234 EXPORT_SYMBOL_GPL(spi_nor_scan);
3235
spi_nor_create_read_dirmap(struct spi_nor * nor)3236 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3237 {
3238 struct spi_mem_dirmap_info info = {
3239 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3240 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3241 SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3242 SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3243 .offset = 0,
3244 .length = nor->mtd.size,
3245 };
3246 struct spi_mem_op *op = &info.op_tmpl;
3247
3248 /* get transfer protocols. */
3249 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3250 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3251 op->dummy.buswidth = op->addr.buswidth;
3252 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3253
3254 /* convert the dummy cycles to the number of bytes */
3255 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3256
3257 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3258 &info);
3259 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3260 }
3261
spi_nor_create_write_dirmap(struct spi_nor * nor)3262 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3263 {
3264 struct spi_mem_dirmap_info info = {
3265 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3266 SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3267 SPI_MEM_OP_NO_DUMMY,
3268 SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3269 .offset = 0,
3270 .length = nor->mtd.size,
3271 };
3272 struct spi_mem_op *op = &info.op_tmpl;
3273
3274 /* get transfer protocols. */
3275 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3276 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3277 op->dummy.buswidth = op->addr.buswidth;
3278 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3279
3280 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3281 op->addr.nbytes = 0;
3282
3283 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3284 &info);
3285 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3286 }
3287
spi_nor_probe(struct spi_mem * spimem)3288 static int spi_nor_probe(struct spi_mem *spimem)
3289 {
3290 struct spi_device *spi = spimem->spi;
3291 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3292 struct spi_nor *nor;
3293 /*
3294 * Enable all caps by default. The core will mask them after
3295 * checking what's really supported using spi_mem_supports_op().
3296 */
3297 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3298 char *flash_name;
3299 int ret;
3300
3301 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3302 if (!nor)
3303 return -ENOMEM;
3304
3305 nor->spimem = spimem;
3306 nor->dev = &spi->dev;
3307 spi_nor_set_flash_node(nor, spi->dev.of_node);
3308
3309 spi_mem_set_drvdata(spimem, nor);
3310
3311 if (data && data->name)
3312 nor->mtd.name = data->name;
3313
3314 if (!nor->mtd.name)
3315 nor->mtd.name = spi_mem_get_name(spimem);
3316
3317 /*
3318 * For some (historical?) reason many platforms provide two different
3319 * names in flash_platform_data: "name" and "type". Quite often name is
3320 * set to "m25p80" and then "type" provides a real chip name.
3321 * If that's the case, respect "type" and ignore a "name".
3322 */
3323 if (data && data->type)
3324 flash_name = data->type;
3325 else if (!strcmp(spi->modalias, "spi-nor"))
3326 flash_name = NULL; /* auto-detect */
3327 else
3328 flash_name = spi->modalias;
3329
3330 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3331 if (ret)
3332 return ret;
3333
3334 /*
3335 * None of the existing parts have > 512B pages, but let's play safe
3336 * and add this logic so that if anyone ever adds support for such
3337 * a NOR we don't end up with buffer overflows.
3338 */
3339 if (nor->page_size > PAGE_SIZE) {
3340 nor->bouncebuf_size = nor->page_size;
3341 devm_kfree(nor->dev, nor->bouncebuf);
3342 nor->bouncebuf = devm_kmalloc(nor->dev,
3343 nor->bouncebuf_size,
3344 GFP_KERNEL);
3345 if (!nor->bouncebuf)
3346 return -ENOMEM;
3347 }
3348
3349 ret = spi_nor_create_read_dirmap(nor);
3350 if (ret)
3351 return ret;
3352
3353 ret = spi_nor_create_write_dirmap(nor);
3354 if (ret)
3355 return ret;
3356
3357 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3358 data ? data->nr_parts : 0);
3359 }
3360
spi_nor_remove(struct spi_mem * spimem)3361 static int spi_nor_remove(struct spi_mem *spimem)
3362 {
3363 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3364
3365 spi_nor_restore(nor);
3366
3367 /* Clean up MTD stuff. */
3368 return mtd_device_unregister(&nor->mtd);
3369 }
3370
spi_nor_shutdown(struct spi_mem * spimem)3371 static void spi_nor_shutdown(struct spi_mem *spimem)
3372 {
3373 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3374
3375 spi_nor_restore(nor);
3376 }
3377
3378 /*
3379 * Do NOT add to this array without reading the following:
3380 *
3381 * Historically, many flash devices are bound to this driver by their name. But
3382 * since most of these flash are compatible to some extent, and their
3383 * differences can often be differentiated by the JEDEC read-ID command, we
3384 * encourage new users to add support to the spi-nor library, and simply bind
3385 * against a generic string here (e.g., "jedec,spi-nor").
3386 *
3387 * Many flash names are kept here in this list (as well as in spi-nor.c) to
3388 * keep them available as module aliases for existing platforms.
3389 */
3390 static const struct spi_device_id spi_nor_dev_ids[] = {
3391 /*
3392 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3393 * hack around the fact that the SPI core does not provide uevent
3394 * matching for .of_match_table
3395 */
3396 {"spi-nor"},
3397
3398 /*
3399 * Entries not used in DTs that should be safe to drop after replacing
3400 * them with "spi-nor" in platform data.
3401 */
3402 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3403
3404 /*
3405 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3406 * should be kept for backward compatibility.
3407 */
3408 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3409 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3410 {"mx25l25635e"},{"mx66l51235l"},
3411 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3412 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3413 {"s25fl064k"},
3414 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3415 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3416 {"m25p64"}, {"m25p128"},
3417 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3418 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3419
3420 /* Flashes that can't be detected using JEDEC */
3421 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3422 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3423 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3424
3425 /* Everspin MRAMs (non-JEDEC) */
3426 { "mr25h128" }, /* 128 Kib, 40 MHz */
3427 { "mr25h256" }, /* 256 Kib, 40 MHz */
3428 { "mr25h10" }, /* 1 Mib, 40 MHz */
3429 { "mr25h40" }, /* 4 Mib, 40 MHz */
3430
3431 { },
3432 };
3433 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3434
3435 static const struct of_device_id spi_nor_of_table[] = {
3436 /*
3437 * Generic compatibility for SPI NOR that can be identified by the
3438 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3439 */
3440 { .compatible = "jedec,spi-nor" },
3441 { /* sentinel */ },
3442 };
3443 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3444
3445 /*
3446 * REVISIT: many of these chips have deep power-down modes, which
3447 * should clearly be entered on suspend() to minimize power use.
3448 * And also when they're otherwise idle...
3449 */
3450 static struct spi_mem_driver spi_nor_driver = {
3451 .spidrv = {
3452 .driver = {
3453 .name = "spi-nor",
3454 .of_match_table = spi_nor_of_table,
3455 },
3456 .id_table = spi_nor_dev_ids,
3457 },
3458 .probe = spi_nor_probe,
3459 .remove = spi_nor_remove,
3460 .shutdown = spi_nor_shutdown,
3461 };
3462 module_spi_mem_driver(spi_nor_driver);
3463
3464 MODULE_LICENSE("GPL v2");
3465 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3466 MODULE_AUTHOR("Mike Lavender");
3467 MODULE_DESCRIPTION("framework for SPI NOR");
3468