1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
23 
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
32 
33 /*
34  * In the following, we will distinguish between two kinds of VMX processes -
35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36  * VMCI page files in the VMX and supporting VM to VM communication and the
37  * newer ones that use the guest memory directly. We will in the following
38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39  * new-style VMX'en.
40  *
41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42  * removed for readability) - see below for more details on the transtions:
43  *
44  *            --------------  NEW  -------------
45  *            |                                |
46  *           \_/                              \_/
47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
48  *            |    |                           |
49  *            |    o-----------------------o   |
50  *            |                            |   |
51  *           \_/                          \_/ \_/
52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53  *            |                            |   |
54  *            |     o----------------------o   |
55  *            |     |                          |
56  *           \_/   \_/                        \_/
57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58  *            |                                |
59  *            |                                |
60  *            -------------> gone <-------------
61  *
62  * In more detail. When a VMCI queue pair is first created, it will be in the
63  * VMCIQPB_NEW state. It will then move into one of the following states:
64  *
65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66  *
67  *     - the created was performed by a host endpoint, in which case there is
68  *       no backing memory yet.
69  *
70  *     - the create was initiated by an old-style VMX, that uses
71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72  *       a later point in time. This state can be distinguished from the one
73  *       above by the context ID of the creator. A host side is not allowed to
74  *       attach until the page store has been set.
75  *
76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77  *     is created by a VMX using the queue pair device backend that
78  *     sets the UVAs of the queue pair immediately and stores the
79  *     information for later attachers. At this point, it is ready for
80  *     the host side to attach to it.
81  *
82  * Once the queue pair is in one of the created states (with the exception of
83  * the case mentioned for older VMX'en above), it is possible to attach to the
84  * queue pair. Again we have two new states possible:
85  *
86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87  *   paths:
88  *
89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90  *       pair, and attaches to a queue pair previously created by the host side.
91  *
92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93  *       already created by a guest.
94  *
95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96  *       vmci_qp_broker_set_page_store (see below).
97  *
98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102  *     will be entered.
103  *
104  * From the attached queue pair, the queue pair can enter the shutdown states
105  * when either side of the queue pair detaches. If the guest side detaches
106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107  * the content of the queue pair will no longer be available. If the host
108  * side detaches first, the queue pair will either enter the
109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111  * (e.g., the host detaches while a guest is stunned).
112  *
113  * New-style VMX'en will also unmap guest memory, if the guest is
114  * quiesced, e.g., during a snapshot operation. In that case, the guest
115  * memory will no longer be available, and the queue pair will transition from
116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117  * in which case the queue pair will transition from the *_NO_MEM state at that
118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119  * since the peer may have either attached or detached in the meantime. The
120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121  * *_MEM state, and vice versa.
122  */
123 
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if {
126 	struct mutex __mutex;	/* Protects the queue. */
127 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
128 	size_t num_pages;	/* Number of pages incl. header. */
129 	bool host;		/* Host or guest? */
130 	union {
131 		struct {
132 			dma_addr_t *pas;
133 			void **vas;
134 		} g;		/* Used by the guest. */
135 		struct {
136 			struct page **page;
137 			struct page **header_page;
138 		} h;		/* Used by the host. */
139 	} u;
140 };
141 
142 /*
143  * This structure is opaque to the clients.
144  */
145 struct vmci_qp {
146 	struct vmci_handle handle;
147 	struct vmci_queue *produce_q;
148 	struct vmci_queue *consume_q;
149 	u64 produce_q_size;
150 	u64 consume_q_size;
151 	u32 peer;
152 	u32 flags;
153 	u32 priv_flags;
154 	bool guest_endpoint;
155 	unsigned int blocked;
156 	unsigned int generation;
157 	wait_queue_head_t event;
158 };
159 
160 enum qp_broker_state {
161 	VMCIQPB_NEW,
162 	VMCIQPB_CREATED_NO_MEM,
163 	VMCIQPB_CREATED_MEM,
164 	VMCIQPB_ATTACHED_NO_MEM,
165 	VMCIQPB_ATTACHED_MEM,
166 	VMCIQPB_SHUTDOWN_NO_MEM,
167 	VMCIQPB_SHUTDOWN_MEM,
168 	VMCIQPB_GONE
169 };
170 
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
173 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174 
175 /*
176  * In the queue pair broker, we always use the guest point of view for
177  * the produce and consume queue values and references, e.g., the
178  * produce queue size stored is the guests produce queue size. The
179  * host endpoint will need to swap these around. The only exception is
180  * the local queue pairs on the host, in which case the host endpoint
181  * that creates the queue pair will have the right orientation, and
182  * the attaching host endpoint will need to swap.
183  */
184 struct qp_entry {
185 	struct list_head list_item;
186 	struct vmci_handle handle;
187 	u32 peer;
188 	u32 flags;
189 	u64 produce_size;
190 	u64 consume_size;
191 	u32 ref_count;
192 };
193 
194 struct qp_broker_entry {
195 	struct vmci_resource resource;
196 	struct qp_entry qp;
197 	u32 create_id;
198 	u32 attach_id;
199 	enum qp_broker_state state;
200 	bool require_trusted_attach;
201 	bool created_by_trusted;
202 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
203 	struct vmci_queue *produce_q;
204 	struct vmci_queue *consume_q;
205 	struct vmci_queue_header saved_produce_q;
206 	struct vmci_queue_header saved_consume_q;
207 	vmci_event_release_cb wakeup_cb;
208 	void *client_data;
209 	void *local_mem;	/* Kernel memory for local queue pair */
210 };
211 
212 struct qp_guest_endpoint {
213 	struct vmci_resource resource;
214 	struct qp_entry qp;
215 	u64 num_ppns;
216 	void *produce_q;
217 	void *consume_q;
218 	struct ppn_set ppn_set;
219 };
220 
221 struct qp_list {
222 	struct list_head head;
223 	struct mutex mutex;	/* Protect queue list. */
224 };
225 
226 static struct qp_list qp_broker_list = {
227 	.head = LIST_HEAD_INIT(qp_broker_list.head),
228 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229 };
230 
231 static struct qp_list qp_guest_endpoints = {
232 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234 };
235 
236 #define INVALID_VMCI_GUEST_MEM_ID  0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240 
241 
242 /*
243  * Frees kernel VA space for a given queue and its queue header, and
244  * frees physical data pages.
245  */
qp_free_queue(void * q,u64 size)246 static void qp_free_queue(void *q, u64 size)
247 {
248 	struct vmci_queue *queue = q;
249 
250 	if (queue) {
251 		u64 i;
252 
253 		/* Given size does not include header, so add in a page here. */
254 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
255 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
256 					  queue->kernel_if->u.g.vas[i],
257 					  queue->kernel_if->u.g.pas[i]);
258 		}
259 
260 		vfree(queue);
261 	}
262 }
263 
264 /*
265  * Allocates kernel queue pages of specified size with IOMMU mappings,
266  * plus space for the queue structure/kernel interface and the queue
267  * header.
268  */
qp_alloc_queue(u64 size,u32 flags)269 static void *qp_alloc_queue(u64 size, u32 flags)
270 {
271 	u64 i;
272 	struct vmci_queue *queue;
273 	size_t pas_size;
274 	size_t vas_size;
275 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
276 	u64 num_pages;
277 
278 	if (size > SIZE_MAX - PAGE_SIZE)
279 		return NULL;
280 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
281 	if (num_pages >
282 		 (SIZE_MAX - queue_size) /
283 		 (sizeof(*queue->kernel_if->u.g.pas) +
284 		  sizeof(*queue->kernel_if->u.g.vas)))
285 		return NULL;
286 
287 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
288 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
289 	queue_size += pas_size + vas_size;
290 
291 	queue = vmalloc(queue_size);
292 	if (!queue)
293 		return NULL;
294 
295 	queue->q_header = NULL;
296 	queue->saved_header = NULL;
297 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
298 	queue->kernel_if->mutex = NULL;
299 	queue->kernel_if->num_pages = num_pages;
300 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
301 	queue->kernel_if->u.g.vas =
302 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
303 	queue->kernel_if->host = false;
304 
305 	for (i = 0; i < num_pages; i++) {
306 		queue->kernel_if->u.g.vas[i] =
307 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
308 					   &queue->kernel_if->u.g.pas[i],
309 					   GFP_KERNEL);
310 		if (!queue->kernel_if->u.g.vas[i]) {
311 			/* Size excl. the header. */
312 			qp_free_queue(queue, i * PAGE_SIZE);
313 			return NULL;
314 		}
315 	}
316 
317 	/* Queue header is the first page. */
318 	queue->q_header = queue->kernel_if->u.g.vas[0];
319 
320 	return queue;
321 }
322 
323 /*
324  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
325  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
326  * by traversing the offset -> page translation structure for the queue.
327  * Assumes that offset + size does not wrap around in the queue.
328  */
qp_memcpy_to_queue_iter(struct vmci_queue * queue,u64 queue_offset,struct iov_iter * from,size_t size)329 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
330 				  u64 queue_offset,
331 				  struct iov_iter *from,
332 				  size_t size)
333 {
334 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
335 	size_t bytes_copied = 0;
336 
337 	while (bytes_copied < size) {
338 		const u64 page_index =
339 			(queue_offset + bytes_copied) / PAGE_SIZE;
340 		const size_t page_offset =
341 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
342 		void *va;
343 		size_t to_copy;
344 
345 		if (kernel_if->host)
346 			va = kmap(kernel_if->u.h.page[page_index]);
347 		else
348 			va = kernel_if->u.g.vas[page_index + 1];
349 			/* Skip header. */
350 
351 		if (size - bytes_copied > PAGE_SIZE - page_offset)
352 			/* Enough payload to fill up from this page. */
353 			to_copy = PAGE_SIZE - page_offset;
354 		else
355 			to_copy = size - bytes_copied;
356 
357 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
358 					 from)) {
359 			if (kernel_if->host)
360 				kunmap(kernel_if->u.h.page[page_index]);
361 			return VMCI_ERROR_INVALID_ARGS;
362 		}
363 		bytes_copied += to_copy;
364 		if (kernel_if->host)
365 			kunmap(kernel_if->u.h.page[page_index]);
366 	}
367 
368 	return VMCI_SUCCESS;
369 }
370 
371 /*
372  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
373  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
374  * by traversing the offset -> page translation structure for the queue.
375  * Assumes that offset + size does not wrap around in the queue.
376  */
qp_memcpy_from_queue_iter(struct iov_iter * to,const struct vmci_queue * queue,u64 queue_offset,size_t size)377 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
378 				    const struct vmci_queue *queue,
379 				    u64 queue_offset, size_t size)
380 {
381 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
382 	size_t bytes_copied = 0;
383 
384 	while (bytes_copied < size) {
385 		const u64 page_index =
386 			(queue_offset + bytes_copied) / PAGE_SIZE;
387 		const size_t page_offset =
388 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
389 		void *va;
390 		size_t to_copy;
391 		int err;
392 
393 		if (kernel_if->host)
394 			va = kmap(kernel_if->u.h.page[page_index]);
395 		else
396 			va = kernel_if->u.g.vas[page_index + 1];
397 			/* Skip header. */
398 
399 		if (size - bytes_copied > PAGE_SIZE - page_offset)
400 			/* Enough payload to fill up this page. */
401 			to_copy = PAGE_SIZE - page_offset;
402 		else
403 			to_copy = size - bytes_copied;
404 
405 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
406 		if (err != to_copy) {
407 			if (kernel_if->host)
408 				kunmap(kernel_if->u.h.page[page_index]);
409 			return VMCI_ERROR_INVALID_ARGS;
410 		}
411 		bytes_copied += to_copy;
412 		if (kernel_if->host)
413 			kunmap(kernel_if->u.h.page[page_index]);
414 	}
415 
416 	return VMCI_SUCCESS;
417 }
418 
419 /*
420  * Allocates two list of PPNs --- one for the pages in the produce queue,
421  * and the other for the pages in the consume queue. Intializes the list
422  * of PPNs with the page frame numbers of the KVA for the two queues (and
423  * the queue headers).
424  */
qp_alloc_ppn_set(void * prod_q,u64 num_produce_pages,void * cons_q,u64 num_consume_pages,struct ppn_set * ppn_set)425 static int qp_alloc_ppn_set(void *prod_q,
426 			    u64 num_produce_pages,
427 			    void *cons_q,
428 			    u64 num_consume_pages, struct ppn_set *ppn_set)
429 {
430 	u64 *produce_ppns;
431 	u64 *consume_ppns;
432 	struct vmci_queue *produce_q = prod_q;
433 	struct vmci_queue *consume_q = cons_q;
434 	u64 i;
435 
436 	if (!produce_q || !num_produce_pages || !consume_q ||
437 	    !num_consume_pages || !ppn_set)
438 		return VMCI_ERROR_INVALID_ARGS;
439 
440 	if (ppn_set->initialized)
441 		return VMCI_ERROR_ALREADY_EXISTS;
442 
443 	produce_ppns =
444 	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
445 			  GFP_KERNEL);
446 	if (!produce_ppns)
447 		return VMCI_ERROR_NO_MEM;
448 
449 	consume_ppns =
450 	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
451 			  GFP_KERNEL);
452 	if (!consume_ppns) {
453 		kfree(produce_ppns);
454 		return VMCI_ERROR_NO_MEM;
455 	}
456 
457 	for (i = 0; i < num_produce_pages; i++)
458 		produce_ppns[i] =
459 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
460 
461 	for (i = 0; i < num_consume_pages; i++)
462 		consume_ppns[i] =
463 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
464 
465 	ppn_set->num_produce_pages = num_produce_pages;
466 	ppn_set->num_consume_pages = num_consume_pages;
467 	ppn_set->produce_ppns = produce_ppns;
468 	ppn_set->consume_ppns = consume_ppns;
469 	ppn_set->initialized = true;
470 	return VMCI_SUCCESS;
471 }
472 
473 /*
474  * Frees the two list of PPNs for a queue pair.
475  */
qp_free_ppn_set(struct ppn_set * ppn_set)476 static void qp_free_ppn_set(struct ppn_set *ppn_set)
477 {
478 	if (ppn_set->initialized) {
479 		/* Do not call these functions on NULL inputs. */
480 		kfree(ppn_set->produce_ppns);
481 		kfree(ppn_set->consume_ppns);
482 	}
483 	memset(ppn_set, 0, sizeof(*ppn_set));
484 }
485 
486 /*
487  * Populates the list of PPNs in the hypercall structure with the PPNS
488  * of the produce queue and the consume queue.
489  */
qp_populate_ppn_set(u8 * call_buf,const struct ppn_set * ppn_set)490 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
491 {
492 	if (vmci_use_ppn64()) {
493 		memcpy(call_buf, ppn_set->produce_ppns,
494 		       ppn_set->num_produce_pages *
495 		       sizeof(*ppn_set->produce_ppns));
496 		memcpy(call_buf +
497 		       ppn_set->num_produce_pages *
498 		       sizeof(*ppn_set->produce_ppns),
499 		       ppn_set->consume_ppns,
500 		       ppn_set->num_consume_pages *
501 		       sizeof(*ppn_set->consume_ppns));
502 	} else {
503 		int i;
504 		u32 *ppns = (u32 *) call_buf;
505 
506 		for (i = 0; i < ppn_set->num_produce_pages; i++)
507 			ppns[i] = (u32) ppn_set->produce_ppns[i];
508 
509 		ppns = &ppns[ppn_set->num_produce_pages];
510 
511 		for (i = 0; i < ppn_set->num_consume_pages; i++)
512 			ppns[i] = (u32) ppn_set->consume_ppns[i];
513 	}
514 
515 	return VMCI_SUCCESS;
516 }
517 
518 /*
519  * Allocates kernel VA space of specified size plus space for the queue
520  * and kernel interface.  This is different from the guest queue allocator,
521  * because we do not allocate our own queue header/data pages here but
522  * share those of the guest.
523  */
qp_host_alloc_queue(u64 size)524 static struct vmci_queue *qp_host_alloc_queue(u64 size)
525 {
526 	struct vmci_queue *queue;
527 	size_t queue_page_size;
528 	u64 num_pages;
529 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
530 
531 	if (size > SIZE_MAX - PAGE_SIZE)
532 		return NULL;
533 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
534 	if (num_pages > (SIZE_MAX - queue_size) /
535 		 sizeof(*queue->kernel_if->u.h.page))
536 		return NULL;
537 
538 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
539 
540 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
541 	if (queue) {
542 		queue->q_header = NULL;
543 		queue->saved_header = NULL;
544 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
545 		queue->kernel_if->host = true;
546 		queue->kernel_if->mutex = NULL;
547 		queue->kernel_if->num_pages = num_pages;
548 		queue->kernel_if->u.h.header_page =
549 		    (struct page **)((u8 *)queue + queue_size);
550 		queue->kernel_if->u.h.page =
551 			&queue->kernel_if->u.h.header_page[1];
552 	}
553 
554 	return queue;
555 }
556 
557 /*
558  * Frees kernel memory for a given queue (header plus translation
559  * structure).
560  */
qp_host_free_queue(struct vmci_queue * queue,u64 queue_size)561 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
562 {
563 	kfree(queue);
564 }
565 
566 /*
567  * Initialize the mutex for the pair of queues.  This mutex is used to
568  * protect the q_header and the buffer from changing out from under any
569  * users of either queue.  Of course, it's only any good if the mutexes
570  * are actually acquired.  Queue structure must lie on non-paged memory
571  * or we cannot guarantee access to the mutex.
572  */
qp_init_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)573 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
574 				struct vmci_queue *consume_q)
575 {
576 	/*
577 	 * Only the host queue has shared state - the guest queues do not
578 	 * need to synchronize access using a queue mutex.
579 	 */
580 
581 	if (produce_q->kernel_if->host) {
582 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
583 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
584 		mutex_init(produce_q->kernel_if->mutex);
585 	}
586 }
587 
588 /*
589  * Cleans up the mutex for the pair of queues.
590  */
qp_cleanup_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)591 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
592 				   struct vmci_queue *consume_q)
593 {
594 	if (produce_q->kernel_if->host) {
595 		produce_q->kernel_if->mutex = NULL;
596 		consume_q->kernel_if->mutex = NULL;
597 	}
598 }
599 
600 /*
601  * Acquire the mutex for the queue.  Note that the produce_q and
602  * the consume_q share a mutex.  So, only one of the two need to
603  * be passed in to this routine.  Either will work just fine.
604  */
qp_acquire_queue_mutex(struct vmci_queue * queue)605 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
606 {
607 	if (queue->kernel_if->host)
608 		mutex_lock(queue->kernel_if->mutex);
609 }
610 
611 /*
612  * Release the mutex for the queue.  Note that the produce_q and
613  * the consume_q share a mutex.  So, only one of the two need to
614  * be passed in to this routine.  Either will work just fine.
615  */
qp_release_queue_mutex(struct vmci_queue * queue)616 static void qp_release_queue_mutex(struct vmci_queue *queue)
617 {
618 	if (queue->kernel_if->host)
619 		mutex_unlock(queue->kernel_if->mutex);
620 }
621 
622 /*
623  * Helper function to release pages in the PageStoreAttachInfo
624  * previously obtained using get_user_pages.
625  */
qp_release_pages(struct page ** pages,u64 num_pages,bool dirty)626 static void qp_release_pages(struct page **pages,
627 			     u64 num_pages, bool dirty)
628 {
629 	int i;
630 
631 	for (i = 0; i < num_pages; i++) {
632 		if (dirty)
633 			set_page_dirty(pages[i]);
634 
635 		put_page(pages[i]);
636 		pages[i] = NULL;
637 	}
638 }
639 
640 /*
641  * Lock the user pages referenced by the {produce,consume}Buffer
642  * struct into memory and populate the {produce,consume}Pages
643  * arrays in the attach structure with them.
644  */
qp_host_get_user_memory(u64 produce_uva,u64 consume_uva,struct vmci_queue * produce_q,struct vmci_queue * consume_q)645 static int qp_host_get_user_memory(u64 produce_uva,
646 				   u64 consume_uva,
647 				   struct vmci_queue *produce_q,
648 				   struct vmci_queue *consume_q)
649 {
650 	int retval;
651 	int err = VMCI_SUCCESS;
652 
653 	retval = get_user_pages_fast((uintptr_t) produce_uva,
654 				     produce_q->kernel_if->num_pages,
655 				     FOLL_WRITE,
656 				     produce_q->kernel_if->u.h.header_page);
657 	if (retval < (int)produce_q->kernel_if->num_pages) {
658 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
659 			retval);
660 		if (retval > 0)
661 			qp_release_pages(produce_q->kernel_if->u.h.header_page,
662 					retval, false);
663 		err = VMCI_ERROR_NO_MEM;
664 		goto out;
665 	}
666 
667 	retval = get_user_pages_fast((uintptr_t) consume_uva,
668 				     consume_q->kernel_if->num_pages,
669 				     FOLL_WRITE,
670 				     consume_q->kernel_if->u.h.header_page);
671 	if (retval < (int)consume_q->kernel_if->num_pages) {
672 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
673 			retval);
674 		if (retval > 0)
675 			qp_release_pages(consume_q->kernel_if->u.h.header_page,
676 					retval, false);
677 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
678 				 produce_q->kernel_if->num_pages, false);
679 		err = VMCI_ERROR_NO_MEM;
680 	}
681 
682  out:
683 	return err;
684 }
685 
686 /*
687  * Registers the specification of the user pages used for backing a queue
688  * pair. Enough information to map in pages is stored in the OS specific
689  * part of the struct vmci_queue structure.
690  */
qp_host_register_user_memory(struct vmci_qp_page_store * page_store,struct vmci_queue * produce_q,struct vmci_queue * consume_q)691 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
692 					struct vmci_queue *produce_q,
693 					struct vmci_queue *consume_q)
694 {
695 	u64 produce_uva;
696 	u64 consume_uva;
697 
698 	/*
699 	 * The new style and the old style mapping only differs in
700 	 * that we either get a single or two UVAs, so we split the
701 	 * single UVA range at the appropriate spot.
702 	 */
703 	produce_uva = page_store->pages;
704 	consume_uva = page_store->pages +
705 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
706 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
707 				       consume_q);
708 }
709 
710 /*
711  * Releases and removes the references to user pages stored in the attach
712  * struct.  Pages are released from the page cache and may become
713  * swappable again.
714  */
qp_host_unregister_user_memory(struct vmci_queue * produce_q,struct vmci_queue * consume_q)715 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
716 					   struct vmci_queue *consume_q)
717 {
718 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
719 			 produce_q->kernel_if->num_pages, true);
720 	memset(produce_q->kernel_if->u.h.header_page, 0,
721 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
722 	       produce_q->kernel_if->num_pages);
723 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
724 			 consume_q->kernel_if->num_pages, true);
725 	memset(consume_q->kernel_if->u.h.header_page, 0,
726 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
727 	       consume_q->kernel_if->num_pages);
728 }
729 
730 /*
731  * Once qp_host_register_user_memory has been performed on a
732  * queue, the queue pair headers can be mapped into the
733  * kernel. Once mapped, they must be unmapped with
734  * qp_host_unmap_queues prior to calling
735  * qp_host_unregister_user_memory.
736  * Pages are pinned.
737  */
qp_host_map_queues(struct vmci_queue * produce_q,struct vmci_queue * consume_q)738 static int qp_host_map_queues(struct vmci_queue *produce_q,
739 			      struct vmci_queue *consume_q)
740 {
741 	int result;
742 
743 	if (!produce_q->q_header || !consume_q->q_header) {
744 		struct page *headers[2];
745 
746 		if (produce_q->q_header != consume_q->q_header)
747 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
748 
749 		if (produce_q->kernel_if->u.h.header_page == NULL ||
750 		    *produce_q->kernel_if->u.h.header_page == NULL)
751 			return VMCI_ERROR_UNAVAILABLE;
752 
753 		headers[0] = *produce_q->kernel_if->u.h.header_page;
754 		headers[1] = *consume_q->kernel_if->u.h.header_page;
755 
756 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
757 		if (produce_q->q_header != NULL) {
758 			consume_q->q_header =
759 			    (struct vmci_queue_header *)((u8 *)
760 							 produce_q->q_header +
761 							 PAGE_SIZE);
762 			result = VMCI_SUCCESS;
763 		} else {
764 			pr_warn("vmap failed\n");
765 			result = VMCI_ERROR_NO_MEM;
766 		}
767 	} else {
768 		result = VMCI_SUCCESS;
769 	}
770 
771 	return result;
772 }
773 
774 /*
775  * Unmaps previously mapped queue pair headers from the kernel.
776  * Pages are unpinned.
777  */
qp_host_unmap_queues(u32 gid,struct vmci_queue * produce_q,struct vmci_queue * consume_q)778 static int qp_host_unmap_queues(u32 gid,
779 				struct vmci_queue *produce_q,
780 				struct vmci_queue *consume_q)
781 {
782 	if (produce_q->q_header) {
783 		if (produce_q->q_header < consume_q->q_header)
784 			vunmap(produce_q->q_header);
785 		else
786 			vunmap(consume_q->q_header);
787 
788 		produce_q->q_header = NULL;
789 		consume_q->q_header = NULL;
790 	}
791 
792 	return VMCI_SUCCESS;
793 }
794 
795 /*
796  * Finds the entry in the list corresponding to a given handle. Assumes
797  * that the list is locked.
798  */
qp_list_find(struct qp_list * qp_list,struct vmci_handle handle)799 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
800 				     struct vmci_handle handle)
801 {
802 	struct qp_entry *entry;
803 
804 	if (vmci_handle_is_invalid(handle))
805 		return NULL;
806 
807 	list_for_each_entry(entry, &qp_list->head, list_item) {
808 		if (vmci_handle_is_equal(entry->handle, handle))
809 			return entry;
810 	}
811 
812 	return NULL;
813 }
814 
815 /*
816  * Finds the entry in the list corresponding to a given handle.
817  */
818 static struct qp_guest_endpoint *
qp_guest_handle_to_entry(struct vmci_handle handle)819 qp_guest_handle_to_entry(struct vmci_handle handle)
820 {
821 	struct qp_guest_endpoint *entry;
822 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
823 
824 	entry = qp ? container_of(
825 		qp, struct qp_guest_endpoint, qp) : NULL;
826 	return entry;
827 }
828 
829 /*
830  * Finds the entry in the list corresponding to a given handle.
831  */
832 static struct qp_broker_entry *
qp_broker_handle_to_entry(struct vmci_handle handle)833 qp_broker_handle_to_entry(struct vmci_handle handle)
834 {
835 	struct qp_broker_entry *entry;
836 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
837 
838 	entry = qp ? container_of(
839 		qp, struct qp_broker_entry, qp) : NULL;
840 	return entry;
841 }
842 
843 /*
844  * Dispatches a queue pair event message directly into the local event
845  * queue.
846  */
qp_notify_peer_local(bool attach,struct vmci_handle handle)847 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
848 {
849 	u32 context_id = vmci_get_context_id();
850 	struct vmci_event_qp ev;
851 
852 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
853 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
854 					  VMCI_CONTEXT_RESOURCE_ID);
855 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
856 	ev.msg.event_data.event =
857 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
858 	ev.payload.peer_id = context_id;
859 	ev.payload.handle = handle;
860 
861 	return vmci_event_dispatch(&ev.msg.hdr);
862 }
863 
864 /*
865  * Allocates and initializes a qp_guest_endpoint structure.
866  * Allocates a queue_pair rid (and handle) iff the given entry has
867  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
868  * are reserved handles.  Assumes that the QP list mutex is held
869  * by the caller.
870  */
871 static struct qp_guest_endpoint *
qp_guest_endpoint_create(struct vmci_handle handle,u32 peer,u32 flags,u64 produce_size,u64 consume_size,void * produce_q,void * consume_q)872 qp_guest_endpoint_create(struct vmci_handle handle,
873 			 u32 peer,
874 			 u32 flags,
875 			 u64 produce_size,
876 			 u64 consume_size,
877 			 void *produce_q,
878 			 void *consume_q)
879 {
880 	int result;
881 	struct qp_guest_endpoint *entry;
882 	/* One page each for the queue headers. */
883 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
884 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
885 
886 	if (vmci_handle_is_invalid(handle)) {
887 		u32 context_id = vmci_get_context_id();
888 
889 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
890 	}
891 
892 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
893 	if (entry) {
894 		entry->qp.peer = peer;
895 		entry->qp.flags = flags;
896 		entry->qp.produce_size = produce_size;
897 		entry->qp.consume_size = consume_size;
898 		entry->qp.ref_count = 0;
899 		entry->num_ppns = num_ppns;
900 		entry->produce_q = produce_q;
901 		entry->consume_q = consume_q;
902 		INIT_LIST_HEAD(&entry->qp.list_item);
903 
904 		/* Add resource obj */
905 		result = vmci_resource_add(&entry->resource,
906 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
907 					   handle);
908 		entry->qp.handle = vmci_resource_handle(&entry->resource);
909 		if ((result != VMCI_SUCCESS) ||
910 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
911 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
912 				handle.context, handle.resource, result);
913 			kfree(entry);
914 			entry = NULL;
915 		}
916 	}
917 	return entry;
918 }
919 
920 /*
921  * Frees a qp_guest_endpoint structure.
922  */
qp_guest_endpoint_destroy(struct qp_guest_endpoint * entry)923 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
924 {
925 	qp_free_ppn_set(&entry->ppn_set);
926 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
927 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
928 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
929 	/* Unlink from resource hash table and free callback */
930 	vmci_resource_remove(&entry->resource);
931 
932 	kfree(entry);
933 }
934 
935 /*
936  * Helper to make a queue_pairAlloc hypercall when the driver is
937  * supporting a guest device.
938  */
qp_alloc_hypercall(const struct qp_guest_endpoint * entry)939 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
940 {
941 	struct vmci_qp_alloc_msg *alloc_msg;
942 	size_t msg_size;
943 	size_t ppn_size;
944 	int result;
945 
946 	if (!entry || entry->num_ppns <= 2)
947 		return VMCI_ERROR_INVALID_ARGS;
948 
949 	ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
950 	msg_size = sizeof(*alloc_msg) +
951 	    (size_t) entry->num_ppns * ppn_size;
952 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
953 	if (!alloc_msg)
954 		return VMCI_ERROR_NO_MEM;
955 
956 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
957 					      VMCI_QUEUEPAIR_ALLOC);
958 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
959 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
960 	alloc_msg->handle = entry->qp.handle;
961 	alloc_msg->peer = entry->qp.peer;
962 	alloc_msg->flags = entry->qp.flags;
963 	alloc_msg->produce_size = entry->qp.produce_size;
964 	alloc_msg->consume_size = entry->qp.consume_size;
965 	alloc_msg->num_ppns = entry->num_ppns;
966 
967 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
968 				     &entry->ppn_set);
969 	if (result == VMCI_SUCCESS)
970 		result = vmci_send_datagram(&alloc_msg->hdr);
971 
972 	kfree(alloc_msg);
973 
974 	return result;
975 }
976 
977 /*
978  * Helper to make a queue_pairDetach hypercall when the driver is
979  * supporting a guest device.
980  */
qp_detatch_hypercall(struct vmci_handle handle)981 static int qp_detatch_hypercall(struct vmci_handle handle)
982 {
983 	struct vmci_qp_detach_msg detach_msg;
984 
985 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
986 					      VMCI_QUEUEPAIR_DETACH);
987 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
988 	detach_msg.hdr.payload_size = sizeof(handle);
989 	detach_msg.handle = handle;
990 
991 	return vmci_send_datagram(&detach_msg.hdr);
992 }
993 
994 /*
995  * Adds the given entry to the list. Assumes that the list is locked.
996  */
qp_list_add_entry(struct qp_list * qp_list,struct qp_entry * entry)997 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
998 {
999 	if (entry)
1000 		list_add(&entry->list_item, &qp_list->head);
1001 }
1002 
1003 /*
1004  * Removes the given entry from the list. Assumes that the list is locked.
1005  */
qp_list_remove_entry(struct qp_list * qp_list,struct qp_entry * entry)1006 static void qp_list_remove_entry(struct qp_list *qp_list,
1007 				 struct qp_entry *entry)
1008 {
1009 	if (entry)
1010 		list_del(&entry->list_item);
1011 }
1012 
1013 /*
1014  * Helper for VMCI queue_pair detach interface. Frees the physical
1015  * pages for the queue pair.
1016  */
qp_detatch_guest_work(struct vmci_handle handle)1017 static int qp_detatch_guest_work(struct vmci_handle handle)
1018 {
1019 	int result;
1020 	struct qp_guest_endpoint *entry;
1021 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1022 
1023 	mutex_lock(&qp_guest_endpoints.mutex);
1024 
1025 	entry = qp_guest_handle_to_entry(handle);
1026 	if (!entry) {
1027 		mutex_unlock(&qp_guest_endpoints.mutex);
1028 		return VMCI_ERROR_NOT_FOUND;
1029 	}
1030 
1031 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1032 		result = VMCI_SUCCESS;
1033 
1034 		if (entry->qp.ref_count > 1) {
1035 			result = qp_notify_peer_local(false, handle);
1036 			/*
1037 			 * We can fail to notify a local queuepair
1038 			 * because we can't allocate.  We still want
1039 			 * to release the entry if that happens, so
1040 			 * don't bail out yet.
1041 			 */
1042 		}
1043 	} else {
1044 		result = qp_detatch_hypercall(handle);
1045 		if (result < VMCI_SUCCESS) {
1046 			/*
1047 			 * We failed to notify a non-local queuepair.
1048 			 * That other queuepair might still be
1049 			 * accessing the shared memory, so don't
1050 			 * release the entry yet.  It will get cleaned
1051 			 * up by VMCIqueue_pair_Exit() if necessary
1052 			 * (assuming we are going away, otherwise why
1053 			 * did this fail?).
1054 			 */
1055 
1056 			mutex_unlock(&qp_guest_endpoints.mutex);
1057 			return result;
1058 		}
1059 	}
1060 
1061 	/*
1062 	 * If we get here then we either failed to notify a local queuepair, or
1063 	 * we succeeded in all cases.  Release the entry if required.
1064 	 */
1065 
1066 	entry->qp.ref_count--;
1067 	if (entry->qp.ref_count == 0)
1068 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1069 
1070 	/* If we didn't remove the entry, this could change once we unlock. */
1071 	if (entry)
1072 		ref_count = entry->qp.ref_count;
1073 
1074 	mutex_unlock(&qp_guest_endpoints.mutex);
1075 
1076 	if (ref_count == 0)
1077 		qp_guest_endpoint_destroy(entry);
1078 
1079 	return result;
1080 }
1081 
1082 /*
1083  * This functions handles the actual allocation of a VMCI queue
1084  * pair guest endpoint. Allocates physical pages for the queue
1085  * pair. It makes OS dependent calls through generic wrappers.
1086  */
qp_alloc_guest_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags)1087 static int qp_alloc_guest_work(struct vmci_handle *handle,
1088 			       struct vmci_queue **produce_q,
1089 			       u64 produce_size,
1090 			       struct vmci_queue **consume_q,
1091 			       u64 consume_size,
1092 			       u32 peer,
1093 			       u32 flags,
1094 			       u32 priv_flags)
1095 {
1096 	const u64 num_produce_pages =
1097 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1098 	const u64 num_consume_pages =
1099 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1100 	void *my_produce_q = NULL;
1101 	void *my_consume_q = NULL;
1102 	int result;
1103 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1104 
1105 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1106 		return VMCI_ERROR_NO_ACCESS;
1107 
1108 	mutex_lock(&qp_guest_endpoints.mutex);
1109 
1110 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1111 	if (queue_pair_entry) {
1112 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1113 			/* Local attach case. */
1114 			if (queue_pair_entry->qp.ref_count > 1) {
1115 				pr_devel("Error attempting to attach more than once\n");
1116 				result = VMCI_ERROR_UNAVAILABLE;
1117 				goto error_keep_entry;
1118 			}
1119 
1120 			if (queue_pair_entry->qp.produce_size != consume_size ||
1121 			    queue_pair_entry->qp.consume_size !=
1122 			    produce_size ||
1123 			    queue_pair_entry->qp.flags !=
1124 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1125 				pr_devel("Error mismatched queue pair in local attach\n");
1126 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1127 				goto error_keep_entry;
1128 			}
1129 
1130 			/*
1131 			 * Do a local attach.  We swap the consume and
1132 			 * produce queues for the attacher and deliver
1133 			 * an attach event.
1134 			 */
1135 			result = qp_notify_peer_local(true, *handle);
1136 			if (result < VMCI_SUCCESS)
1137 				goto error_keep_entry;
1138 
1139 			my_produce_q = queue_pair_entry->consume_q;
1140 			my_consume_q = queue_pair_entry->produce_q;
1141 			goto out;
1142 		}
1143 
1144 		result = VMCI_ERROR_ALREADY_EXISTS;
1145 		goto error_keep_entry;
1146 	}
1147 
1148 	my_produce_q = qp_alloc_queue(produce_size, flags);
1149 	if (!my_produce_q) {
1150 		pr_warn("Error allocating pages for produce queue\n");
1151 		result = VMCI_ERROR_NO_MEM;
1152 		goto error;
1153 	}
1154 
1155 	my_consume_q = qp_alloc_queue(consume_size, flags);
1156 	if (!my_consume_q) {
1157 		pr_warn("Error allocating pages for consume queue\n");
1158 		result = VMCI_ERROR_NO_MEM;
1159 		goto error;
1160 	}
1161 
1162 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1163 						    produce_size, consume_size,
1164 						    my_produce_q, my_consume_q);
1165 	if (!queue_pair_entry) {
1166 		pr_warn("Error allocating memory in %s\n", __func__);
1167 		result = VMCI_ERROR_NO_MEM;
1168 		goto error;
1169 	}
1170 
1171 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1172 				  num_consume_pages,
1173 				  &queue_pair_entry->ppn_set);
1174 	if (result < VMCI_SUCCESS) {
1175 		pr_warn("qp_alloc_ppn_set failed\n");
1176 		goto error;
1177 	}
1178 
1179 	/*
1180 	 * It's only necessary to notify the host if this queue pair will be
1181 	 * attached to from another context.
1182 	 */
1183 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1184 		/* Local create case. */
1185 		u32 context_id = vmci_get_context_id();
1186 
1187 		/*
1188 		 * Enforce similar checks on local queue pairs as we
1189 		 * do for regular ones.  The handle's context must
1190 		 * match the creator or attacher context id (here they
1191 		 * are both the current context id) and the
1192 		 * attach-only flag cannot exist during create.  We
1193 		 * also ensure specified peer is this context or an
1194 		 * invalid one.
1195 		 */
1196 		if (queue_pair_entry->qp.handle.context != context_id ||
1197 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1198 		     queue_pair_entry->qp.peer != context_id)) {
1199 			result = VMCI_ERROR_NO_ACCESS;
1200 			goto error;
1201 		}
1202 
1203 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1204 			result = VMCI_ERROR_NOT_FOUND;
1205 			goto error;
1206 		}
1207 	} else {
1208 		result = qp_alloc_hypercall(queue_pair_entry);
1209 		if (result < VMCI_SUCCESS) {
1210 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1211 			goto error;
1212 		}
1213 	}
1214 
1215 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1216 			    (struct vmci_queue *)my_consume_q);
1217 
1218 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1219 
1220  out:
1221 	queue_pair_entry->qp.ref_count++;
1222 	*handle = queue_pair_entry->qp.handle;
1223 	*produce_q = (struct vmci_queue *)my_produce_q;
1224 	*consume_q = (struct vmci_queue *)my_consume_q;
1225 
1226 	/*
1227 	 * We should initialize the queue pair header pages on a local
1228 	 * queue pair create.  For non-local queue pairs, the
1229 	 * hypervisor initializes the header pages in the create step.
1230 	 */
1231 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1232 	    queue_pair_entry->qp.ref_count == 1) {
1233 		vmci_q_header_init((*produce_q)->q_header, *handle);
1234 		vmci_q_header_init((*consume_q)->q_header, *handle);
1235 	}
1236 
1237 	mutex_unlock(&qp_guest_endpoints.mutex);
1238 
1239 	return VMCI_SUCCESS;
1240 
1241  error:
1242 	mutex_unlock(&qp_guest_endpoints.mutex);
1243 	if (queue_pair_entry) {
1244 		/* The queues will be freed inside the destroy routine. */
1245 		qp_guest_endpoint_destroy(queue_pair_entry);
1246 	} else {
1247 		qp_free_queue(my_produce_q, produce_size);
1248 		qp_free_queue(my_consume_q, consume_size);
1249 	}
1250 	return result;
1251 
1252  error_keep_entry:
1253 	/* This path should only be used when an existing entry was found. */
1254 	mutex_unlock(&qp_guest_endpoints.mutex);
1255 	return result;
1256 }
1257 
1258 /*
1259  * The first endpoint issuing a queue pair allocation will create the state
1260  * of the queue pair in the queue pair broker.
1261  *
1262  * If the creator is a guest, it will associate a VMX virtual address range
1263  * with the queue pair as specified by the page_store. For compatibility with
1264  * older VMX'en, that would use a separate step to set the VMX virtual
1265  * address range, the virtual address range can be registered later using
1266  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1267  * used.
1268  *
1269  * If the creator is the host, a page_store of NULL should be used as well,
1270  * since the host is not able to supply a page store for the queue pair.
1271  *
1272  * For older VMX and host callers, the queue pair will be created in the
1273  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1274  * created in VMCOQPB_CREATED_MEM state.
1275  */
qp_broker_create(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1276 static int qp_broker_create(struct vmci_handle handle,
1277 			    u32 peer,
1278 			    u32 flags,
1279 			    u32 priv_flags,
1280 			    u64 produce_size,
1281 			    u64 consume_size,
1282 			    struct vmci_qp_page_store *page_store,
1283 			    struct vmci_ctx *context,
1284 			    vmci_event_release_cb wakeup_cb,
1285 			    void *client_data, struct qp_broker_entry **ent)
1286 {
1287 	struct qp_broker_entry *entry = NULL;
1288 	const u32 context_id = vmci_ctx_get_id(context);
1289 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1290 	int result;
1291 	u64 guest_produce_size;
1292 	u64 guest_consume_size;
1293 
1294 	/* Do not create if the caller asked not to. */
1295 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1296 		return VMCI_ERROR_NOT_FOUND;
1297 
1298 	/*
1299 	 * Creator's context ID should match handle's context ID or the creator
1300 	 * must allow the context in handle's context ID as the "peer".
1301 	 */
1302 	if (handle.context != context_id && handle.context != peer)
1303 		return VMCI_ERROR_NO_ACCESS;
1304 
1305 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1306 		return VMCI_ERROR_DST_UNREACHABLE;
1307 
1308 	/*
1309 	 * Creator's context ID for local queue pairs should match the
1310 	 * peer, if a peer is specified.
1311 	 */
1312 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1313 		return VMCI_ERROR_NO_ACCESS;
1314 
1315 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1316 	if (!entry)
1317 		return VMCI_ERROR_NO_MEM;
1318 
1319 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1320 		/*
1321 		 * The queue pair broker entry stores values from the guest
1322 		 * point of view, so a creating host side endpoint should swap
1323 		 * produce and consume values -- unless it is a local queue
1324 		 * pair, in which case no swapping is necessary, since the local
1325 		 * attacher will swap queues.
1326 		 */
1327 
1328 		guest_produce_size = consume_size;
1329 		guest_consume_size = produce_size;
1330 	} else {
1331 		guest_produce_size = produce_size;
1332 		guest_consume_size = consume_size;
1333 	}
1334 
1335 	entry->qp.handle = handle;
1336 	entry->qp.peer = peer;
1337 	entry->qp.flags = flags;
1338 	entry->qp.produce_size = guest_produce_size;
1339 	entry->qp.consume_size = guest_consume_size;
1340 	entry->qp.ref_count = 1;
1341 	entry->create_id = context_id;
1342 	entry->attach_id = VMCI_INVALID_ID;
1343 	entry->state = VMCIQPB_NEW;
1344 	entry->require_trusted_attach =
1345 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1346 	entry->created_by_trusted =
1347 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1348 	entry->vmci_page_files = false;
1349 	entry->wakeup_cb = wakeup_cb;
1350 	entry->client_data = client_data;
1351 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1352 	if (entry->produce_q == NULL) {
1353 		result = VMCI_ERROR_NO_MEM;
1354 		goto error;
1355 	}
1356 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1357 	if (entry->consume_q == NULL) {
1358 		result = VMCI_ERROR_NO_MEM;
1359 		goto error;
1360 	}
1361 
1362 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1363 
1364 	INIT_LIST_HEAD(&entry->qp.list_item);
1365 
1366 	if (is_local) {
1367 		u8 *tmp;
1368 
1369 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1370 					   PAGE_SIZE, GFP_KERNEL);
1371 		if (entry->local_mem == NULL) {
1372 			result = VMCI_ERROR_NO_MEM;
1373 			goto error;
1374 		}
1375 		entry->state = VMCIQPB_CREATED_MEM;
1376 		entry->produce_q->q_header = entry->local_mem;
1377 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1378 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1379 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1380 	} else if (page_store) {
1381 		/*
1382 		 * The VMX already initialized the queue pair headers, so no
1383 		 * need for the kernel side to do that.
1384 		 */
1385 		result = qp_host_register_user_memory(page_store,
1386 						      entry->produce_q,
1387 						      entry->consume_q);
1388 		if (result < VMCI_SUCCESS)
1389 			goto error;
1390 
1391 		entry->state = VMCIQPB_CREATED_MEM;
1392 	} else {
1393 		/*
1394 		 * A create without a page_store may be either a host
1395 		 * side create (in which case we are waiting for the
1396 		 * guest side to supply the memory) or an old style
1397 		 * queue pair create (in which case we will expect a
1398 		 * set page store call as the next step).
1399 		 */
1400 		entry->state = VMCIQPB_CREATED_NO_MEM;
1401 	}
1402 
1403 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1404 	if (ent != NULL)
1405 		*ent = entry;
1406 
1407 	/* Add to resource obj */
1408 	result = vmci_resource_add(&entry->resource,
1409 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1410 				   handle);
1411 	if (result != VMCI_SUCCESS) {
1412 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1413 			handle.context, handle.resource, result);
1414 		goto error;
1415 	}
1416 
1417 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1418 	if (is_local) {
1419 		vmci_q_header_init(entry->produce_q->q_header,
1420 				   entry->qp.handle);
1421 		vmci_q_header_init(entry->consume_q->q_header,
1422 				   entry->qp.handle);
1423 	}
1424 
1425 	vmci_ctx_qp_create(context, entry->qp.handle);
1426 
1427 	return VMCI_SUCCESS;
1428 
1429  error:
1430 	if (entry != NULL) {
1431 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1432 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1433 		kfree(entry);
1434 	}
1435 
1436 	return result;
1437 }
1438 
1439 /*
1440  * Enqueues an event datagram to notify the peer VM attached to
1441  * the given queue pair handle about attach/detach event by the
1442  * given VM.  Returns Payload size of datagram enqueued on
1443  * success, error code otherwise.
1444  */
qp_notify_peer(bool attach,struct vmci_handle handle,u32 my_id,u32 peer_id)1445 static int qp_notify_peer(bool attach,
1446 			  struct vmci_handle handle,
1447 			  u32 my_id,
1448 			  u32 peer_id)
1449 {
1450 	int rv;
1451 	struct vmci_event_qp ev;
1452 
1453 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1454 	    peer_id == VMCI_INVALID_ID)
1455 		return VMCI_ERROR_INVALID_ARGS;
1456 
1457 	/*
1458 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1459 	 * number of pending events from the hypervisor to a given VM
1460 	 * otherwise a rogue VM could do an arbitrary number of attach
1461 	 * and detach operations causing memory pressure in the host
1462 	 * kernel.
1463 	 */
1464 
1465 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1466 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1467 					  VMCI_CONTEXT_RESOURCE_ID);
1468 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1469 	ev.msg.event_data.event = attach ?
1470 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1471 	ev.payload.handle = handle;
1472 	ev.payload.peer_id = my_id;
1473 
1474 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1475 				    &ev.msg.hdr, false);
1476 	if (rv < VMCI_SUCCESS)
1477 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1478 			attach ? "ATTACH" : "DETACH", peer_id);
1479 
1480 	return rv;
1481 }
1482 
1483 /*
1484  * The second endpoint issuing a queue pair allocation will attach to
1485  * the queue pair registered with the queue pair broker.
1486  *
1487  * If the attacher is a guest, it will associate a VMX virtual address
1488  * range with the queue pair as specified by the page_store. At this
1489  * point, the already attach host endpoint may start using the queue
1490  * pair, and an attach event is sent to it. For compatibility with
1491  * older VMX'en, that used a separate step to set the VMX virtual
1492  * address range, the virtual address range can be registered later
1493  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1494  * NULL should be used, and the attach event will be generated once
1495  * the actual page store has been set.
1496  *
1497  * If the attacher is the host, a page_store of NULL should be used as
1498  * well, since the page store information is already set by the guest.
1499  *
1500  * For new VMX and host callers, the queue pair will be moved to the
1501  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1502  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1503  */
qp_broker_attach(struct qp_broker_entry * entry,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1504 static int qp_broker_attach(struct qp_broker_entry *entry,
1505 			    u32 peer,
1506 			    u32 flags,
1507 			    u32 priv_flags,
1508 			    u64 produce_size,
1509 			    u64 consume_size,
1510 			    struct vmci_qp_page_store *page_store,
1511 			    struct vmci_ctx *context,
1512 			    vmci_event_release_cb wakeup_cb,
1513 			    void *client_data,
1514 			    struct qp_broker_entry **ent)
1515 {
1516 	const u32 context_id = vmci_ctx_get_id(context);
1517 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1518 	int result;
1519 
1520 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1521 	    entry->state != VMCIQPB_CREATED_MEM)
1522 		return VMCI_ERROR_UNAVAILABLE;
1523 
1524 	if (is_local) {
1525 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1526 		    context_id != entry->create_id) {
1527 			return VMCI_ERROR_INVALID_ARGS;
1528 		}
1529 	} else if (context_id == entry->create_id ||
1530 		   context_id == entry->attach_id) {
1531 		return VMCI_ERROR_ALREADY_EXISTS;
1532 	}
1533 
1534 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1535 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1536 		return VMCI_ERROR_DST_UNREACHABLE;
1537 
1538 	/*
1539 	 * If we are attaching from a restricted context then the queuepair
1540 	 * must have been created by a trusted endpoint.
1541 	 */
1542 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1543 	    !entry->created_by_trusted)
1544 		return VMCI_ERROR_NO_ACCESS;
1545 
1546 	/*
1547 	 * If we are attaching to a queuepair that was created by a restricted
1548 	 * context then we must be trusted.
1549 	 */
1550 	if (entry->require_trusted_attach &&
1551 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1552 		return VMCI_ERROR_NO_ACCESS;
1553 
1554 	/*
1555 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1556 	 * control check is not performed.
1557 	 */
1558 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1559 		return VMCI_ERROR_NO_ACCESS;
1560 
1561 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1562 		/*
1563 		 * Do not attach if the caller doesn't support Host Queue Pairs
1564 		 * and a host created this queue pair.
1565 		 */
1566 
1567 		if (!vmci_ctx_supports_host_qp(context))
1568 			return VMCI_ERROR_INVALID_RESOURCE;
1569 
1570 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1571 		struct vmci_ctx *create_context;
1572 		bool supports_host_qp;
1573 
1574 		/*
1575 		 * Do not attach a host to a user created queue pair if that
1576 		 * user doesn't support host queue pair end points.
1577 		 */
1578 
1579 		create_context = vmci_ctx_get(entry->create_id);
1580 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1581 		vmci_ctx_put(create_context);
1582 
1583 		if (!supports_host_qp)
1584 			return VMCI_ERROR_INVALID_RESOURCE;
1585 	}
1586 
1587 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1588 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1589 
1590 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1591 		/*
1592 		 * The queue pair broker entry stores values from the guest
1593 		 * point of view, so an attaching guest should match the values
1594 		 * stored in the entry.
1595 		 */
1596 
1597 		if (entry->qp.produce_size != produce_size ||
1598 		    entry->qp.consume_size != consume_size) {
1599 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1600 		}
1601 	} else if (entry->qp.produce_size != consume_size ||
1602 		   entry->qp.consume_size != produce_size) {
1603 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1604 	}
1605 
1606 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1607 		/*
1608 		 * If a guest attached to a queue pair, it will supply
1609 		 * the backing memory.  If this is a pre NOVMVM vmx,
1610 		 * the backing memory will be supplied by calling
1611 		 * vmci_qp_broker_set_page_store() following the
1612 		 * return of the vmci_qp_broker_alloc() call. If it is
1613 		 * a vmx of version NOVMVM or later, the page store
1614 		 * must be supplied as part of the
1615 		 * vmci_qp_broker_alloc call.  Under all circumstances
1616 		 * must the initially created queue pair not have any
1617 		 * memory associated with it already.
1618 		 */
1619 
1620 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1621 			return VMCI_ERROR_INVALID_ARGS;
1622 
1623 		if (page_store != NULL) {
1624 			/*
1625 			 * Patch up host state to point to guest
1626 			 * supplied memory. The VMX already
1627 			 * initialized the queue pair headers, so no
1628 			 * need for the kernel side to do that.
1629 			 */
1630 
1631 			result = qp_host_register_user_memory(page_store,
1632 							      entry->produce_q,
1633 							      entry->consume_q);
1634 			if (result < VMCI_SUCCESS)
1635 				return result;
1636 
1637 			entry->state = VMCIQPB_ATTACHED_MEM;
1638 		} else {
1639 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1640 		}
1641 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1642 		/*
1643 		 * The host side is attempting to attach to a queue
1644 		 * pair that doesn't have any memory associated with
1645 		 * it. This must be a pre NOVMVM vmx that hasn't set
1646 		 * the page store information yet, or a quiesced VM.
1647 		 */
1648 
1649 		return VMCI_ERROR_UNAVAILABLE;
1650 	} else {
1651 		/* The host side has successfully attached to a queue pair. */
1652 		entry->state = VMCIQPB_ATTACHED_MEM;
1653 	}
1654 
1655 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1656 		result =
1657 		    qp_notify_peer(true, entry->qp.handle, context_id,
1658 				   entry->create_id);
1659 		if (result < VMCI_SUCCESS)
1660 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1661 				entry->create_id, entry->qp.handle.context,
1662 				entry->qp.handle.resource);
1663 	}
1664 
1665 	entry->attach_id = context_id;
1666 	entry->qp.ref_count++;
1667 	if (wakeup_cb) {
1668 		entry->wakeup_cb = wakeup_cb;
1669 		entry->client_data = client_data;
1670 	}
1671 
1672 	/*
1673 	 * When attaching to local queue pairs, the context already has
1674 	 * an entry tracking the queue pair, so don't add another one.
1675 	 */
1676 	if (!is_local)
1677 		vmci_ctx_qp_create(context, entry->qp.handle);
1678 
1679 	if (ent != NULL)
1680 		*ent = entry;
1681 
1682 	return VMCI_SUCCESS;
1683 }
1684 
1685 /*
1686  * queue_pair_Alloc for use when setting up queue pair endpoints
1687  * on the host.
1688  */
qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent,bool * swap)1689 static int qp_broker_alloc(struct vmci_handle handle,
1690 			   u32 peer,
1691 			   u32 flags,
1692 			   u32 priv_flags,
1693 			   u64 produce_size,
1694 			   u64 consume_size,
1695 			   struct vmci_qp_page_store *page_store,
1696 			   struct vmci_ctx *context,
1697 			   vmci_event_release_cb wakeup_cb,
1698 			   void *client_data,
1699 			   struct qp_broker_entry **ent,
1700 			   bool *swap)
1701 {
1702 	const u32 context_id = vmci_ctx_get_id(context);
1703 	bool create;
1704 	struct qp_broker_entry *entry = NULL;
1705 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1706 	int result;
1707 
1708 	if (vmci_handle_is_invalid(handle) ||
1709 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1710 	    !(produce_size || consume_size) ||
1711 	    !context || context_id == VMCI_INVALID_ID ||
1712 	    handle.context == VMCI_INVALID_ID) {
1713 		return VMCI_ERROR_INVALID_ARGS;
1714 	}
1715 
1716 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1717 		return VMCI_ERROR_INVALID_ARGS;
1718 
1719 	/*
1720 	 * In the initial argument check, we ensure that non-vmkernel hosts
1721 	 * are not allowed to create local queue pairs.
1722 	 */
1723 
1724 	mutex_lock(&qp_broker_list.mutex);
1725 
1726 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1727 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1728 			 context_id, handle.context, handle.resource);
1729 		mutex_unlock(&qp_broker_list.mutex);
1730 		return VMCI_ERROR_ALREADY_EXISTS;
1731 	}
1732 
1733 	if (handle.resource != VMCI_INVALID_ID)
1734 		entry = qp_broker_handle_to_entry(handle);
1735 
1736 	if (!entry) {
1737 		create = true;
1738 		result =
1739 		    qp_broker_create(handle, peer, flags, priv_flags,
1740 				     produce_size, consume_size, page_store,
1741 				     context, wakeup_cb, client_data, ent);
1742 	} else {
1743 		create = false;
1744 		result =
1745 		    qp_broker_attach(entry, peer, flags, priv_flags,
1746 				     produce_size, consume_size, page_store,
1747 				     context, wakeup_cb, client_data, ent);
1748 	}
1749 
1750 	mutex_unlock(&qp_broker_list.mutex);
1751 
1752 	if (swap)
1753 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1754 		    !(create && is_local);
1755 
1756 	return result;
1757 }
1758 
1759 /*
1760  * This function implements the kernel API for allocating a queue
1761  * pair.
1762  */
qp_alloc_host_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,vmci_event_release_cb wakeup_cb,void * client_data)1763 static int qp_alloc_host_work(struct vmci_handle *handle,
1764 			      struct vmci_queue **produce_q,
1765 			      u64 produce_size,
1766 			      struct vmci_queue **consume_q,
1767 			      u64 consume_size,
1768 			      u32 peer,
1769 			      u32 flags,
1770 			      u32 priv_flags,
1771 			      vmci_event_release_cb wakeup_cb,
1772 			      void *client_data)
1773 {
1774 	struct vmci_handle new_handle;
1775 	struct vmci_ctx *context;
1776 	struct qp_broker_entry *entry;
1777 	int result;
1778 	bool swap;
1779 
1780 	if (vmci_handle_is_invalid(*handle)) {
1781 		new_handle = vmci_make_handle(
1782 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1783 	} else
1784 		new_handle = *handle;
1785 
1786 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1787 	entry = NULL;
1788 	result =
1789 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1790 			    produce_size, consume_size, NULL, context,
1791 			    wakeup_cb, client_data, &entry, &swap);
1792 	if (result == VMCI_SUCCESS) {
1793 		if (swap) {
1794 			/*
1795 			 * If this is a local queue pair, the attacher
1796 			 * will swap around produce and consume
1797 			 * queues.
1798 			 */
1799 
1800 			*produce_q = entry->consume_q;
1801 			*consume_q = entry->produce_q;
1802 		} else {
1803 			*produce_q = entry->produce_q;
1804 			*consume_q = entry->consume_q;
1805 		}
1806 
1807 		*handle = vmci_resource_handle(&entry->resource);
1808 	} else {
1809 		*handle = VMCI_INVALID_HANDLE;
1810 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1811 			 result);
1812 	}
1813 	vmci_ctx_put(context);
1814 	return result;
1815 }
1816 
1817 /*
1818  * Allocates a VMCI queue_pair. Only checks validity of input
1819  * arguments. The real work is done in the host or guest
1820  * specific function.
1821  */
vmci_qp_alloc(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,bool guest_endpoint,vmci_event_release_cb wakeup_cb,void * client_data)1822 int vmci_qp_alloc(struct vmci_handle *handle,
1823 		  struct vmci_queue **produce_q,
1824 		  u64 produce_size,
1825 		  struct vmci_queue **consume_q,
1826 		  u64 consume_size,
1827 		  u32 peer,
1828 		  u32 flags,
1829 		  u32 priv_flags,
1830 		  bool guest_endpoint,
1831 		  vmci_event_release_cb wakeup_cb,
1832 		  void *client_data)
1833 {
1834 	if (!handle || !produce_q || !consume_q ||
1835 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1836 		return VMCI_ERROR_INVALID_ARGS;
1837 
1838 	if (guest_endpoint) {
1839 		return qp_alloc_guest_work(handle, produce_q,
1840 					   produce_size, consume_q,
1841 					   consume_size, peer,
1842 					   flags, priv_flags);
1843 	} else {
1844 		return qp_alloc_host_work(handle, produce_q,
1845 					  produce_size, consume_q,
1846 					  consume_size, peer, flags,
1847 					  priv_flags, wakeup_cb, client_data);
1848 	}
1849 }
1850 
1851 /*
1852  * This function implements the host kernel API for detaching from
1853  * a queue pair.
1854  */
qp_detatch_host_work(struct vmci_handle handle)1855 static int qp_detatch_host_work(struct vmci_handle handle)
1856 {
1857 	int result;
1858 	struct vmci_ctx *context;
1859 
1860 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1861 
1862 	result = vmci_qp_broker_detach(handle, context);
1863 
1864 	vmci_ctx_put(context);
1865 	return result;
1866 }
1867 
1868 /*
1869  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1870  * Real work is done in the host or guest specific function.
1871  */
qp_detatch(struct vmci_handle handle,bool guest_endpoint)1872 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1873 {
1874 	if (vmci_handle_is_invalid(handle))
1875 		return VMCI_ERROR_INVALID_ARGS;
1876 
1877 	if (guest_endpoint)
1878 		return qp_detatch_guest_work(handle);
1879 	else
1880 		return qp_detatch_host_work(handle);
1881 }
1882 
1883 /*
1884  * Returns the entry from the head of the list. Assumes that the list is
1885  * locked.
1886  */
qp_list_get_head(struct qp_list * qp_list)1887 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1888 {
1889 	if (!list_empty(&qp_list->head)) {
1890 		struct qp_entry *entry =
1891 		    list_first_entry(&qp_list->head, struct qp_entry,
1892 				     list_item);
1893 		return entry;
1894 	}
1895 
1896 	return NULL;
1897 }
1898 
vmci_qp_broker_exit(void)1899 void vmci_qp_broker_exit(void)
1900 {
1901 	struct qp_entry *entry;
1902 	struct qp_broker_entry *be;
1903 
1904 	mutex_lock(&qp_broker_list.mutex);
1905 
1906 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1907 		be = (struct qp_broker_entry *)entry;
1908 
1909 		qp_list_remove_entry(&qp_broker_list, entry);
1910 		kfree(be);
1911 	}
1912 
1913 	mutex_unlock(&qp_broker_list.mutex);
1914 }
1915 
1916 /*
1917  * Requests that a queue pair be allocated with the VMCI queue
1918  * pair broker. Allocates a queue pair entry if one does not
1919  * exist. Attaches to one if it exists, and retrieves the page
1920  * files backing that queue_pair.  Assumes that the queue pair
1921  * broker lock is held.
1922  */
vmci_qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context)1923 int vmci_qp_broker_alloc(struct vmci_handle handle,
1924 			 u32 peer,
1925 			 u32 flags,
1926 			 u32 priv_flags,
1927 			 u64 produce_size,
1928 			 u64 consume_size,
1929 			 struct vmci_qp_page_store *page_store,
1930 			 struct vmci_ctx *context)
1931 {
1932 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1933 			       produce_size, consume_size,
1934 			       page_store, context, NULL, NULL, NULL, NULL);
1935 }
1936 
1937 /*
1938  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1939  * step to add the UVAs of the VMX mapping of the queue pair. This function
1940  * provides backwards compatibility with such VMX'en, and takes care of
1941  * registering the page store for a queue pair previously allocated by the
1942  * VMX during create or attach. This function will move the queue pair state
1943  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1944  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1945  * attached state with memory, the queue pair is ready to be used by the
1946  * host peer, and an attached event will be generated.
1947  *
1948  * Assumes that the queue pair broker lock is held.
1949  *
1950  * This function is only used by the hosted platform, since there is no
1951  * issue with backwards compatibility for vmkernel.
1952  */
vmci_qp_broker_set_page_store(struct vmci_handle handle,u64 produce_uva,u64 consume_uva,struct vmci_ctx * context)1953 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1954 				  u64 produce_uva,
1955 				  u64 consume_uva,
1956 				  struct vmci_ctx *context)
1957 {
1958 	struct qp_broker_entry *entry;
1959 	int result;
1960 	const u32 context_id = vmci_ctx_get_id(context);
1961 
1962 	if (vmci_handle_is_invalid(handle) || !context ||
1963 	    context_id == VMCI_INVALID_ID)
1964 		return VMCI_ERROR_INVALID_ARGS;
1965 
1966 	/*
1967 	 * We only support guest to host queue pairs, so the VMX must
1968 	 * supply UVAs for the mapped page files.
1969 	 */
1970 
1971 	if (produce_uva == 0 || consume_uva == 0)
1972 		return VMCI_ERROR_INVALID_ARGS;
1973 
1974 	mutex_lock(&qp_broker_list.mutex);
1975 
1976 	if (!vmci_ctx_qp_exists(context, handle)) {
1977 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1978 			context_id, handle.context, handle.resource);
1979 		result = VMCI_ERROR_NOT_FOUND;
1980 		goto out;
1981 	}
1982 
1983 	entry = qp_broker_handle_to_entry(handle);
1984 	if (!entry) {
1985 		result = VMCI_ERROR_NOT_FOUND;
1986 		goto out;
1987 	}
1988 
1989 	/*
1990 	 * If I'm the owner then I can set the page store.
1991 	 *
1992 	 * Or, if a host created the queue_pair and I'm the attached peer
1993 	 * then I can set the page store.
1994 	 */
1995 	if (entry->create_id != context_id &&
1996 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
1997 	     entry->attach_id != context_id)) {
1998 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
1999 		goto out;
2000 	}
2001 
2002 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2003 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2004 		result = VMCI_ERROR_UNAVAILABLE;
2005 		goto out;
2006 	}
2007 
2008 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2009 					 entry->produce_q, entry->consume_q);
2010 	if (result < VMCI_SUCCESS)
2011 		goto out;
2012 
2013 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2014 	if (result < VMCI_SUCCESS) {
2015 		qp_host_unregister_user_memory(entry->produce_q,
2016 					       entry->consume_q);
2017 		goto out;
2018 	}
2019 
2020 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2021 		entry->state = VMCIQPB_CREATED_MEM;
2022 	else
2023 		entry->state = VMCIQPB_ATTACHED_MEM;
2024 
2025 	entry->vmci_page_files = true;
2026 
2027 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2028 		result =
2029 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2030 		if (result < VMCI_SUCCESS) {
2031 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2032 				entry->create_id, entry->qp.handle.context,
2033 				entry->qp.handle.resource);
2034 		}
2035 	}
2036 
2037 	result = VMCI_SUCCESS;
2038  out:
2039 	mutex_unlock(&qp_broker_list.mutex);
2040 	return result;
2041 }
2042 
2043 /*
2044  * Resets saved queue headers for the given QP broker
2045  * entry. Should be used when guest memory becomes available
2046  * again, or the guest detaches.
2047  */
qp_reset_saved_headers(struct qp_broker_entry * entry)2048 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2049 {
2050 	entry->produce_q->saved_header = NULL;
2051 	entry->consume_q->saved_header = NULL;
2052 }
2053 
2054 /*
2055  * The main entry point for detaching from a queue pair registered with the
2056  * queue pair broker. If more than one endpoint is attached to the queue
2057  * pair, the first endpoint will mainly decrement a reference count and
2058  * generate a notification to its peer. The last endpoint will clean up
2059  * the queue pair state registered with the broker.
2060  *
2061  * When a guest endpoint detaches, it will unmap and unregister the guest
2062  * memory backing the queue pair. If the host is still attached, it will
2063  * no longer be able to access the queue pair content.
2064  *
2065  * If the queue pair is already in a state where there is no memory
2066  * registered for the queue pair (any *_NO_MEM state), it will transition to
2067  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2068  * endpoint is the first of two endpoints to detach. If the host endpoint is
2069  * the first out of two to detach, the queue pair will move to the
2070  * VMCIQPB_SHUTDOWN_MEM state.
2071  */
vmci_qp_broker_detach(struct vmci_handle handle,struct vmci_ctx * context)2072 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2073 {
2074 	struct qp_broker_entry *entry;
2075 	const u32 context_id = vmci_ctx_get_id(context);
2076 	u32 peer_id;
2077 	bool is_local = false;
2078 	int result;
2079 
2080 	if (vmci_handle_is_invalid(handle) || !context ||
2081 	    context_id == VMCI_INVALID_ID) {
2082 		return VMCI_ERROR_INVALID_ARGS;
2083 	}
2084 
2085 	mutex_lock(&qp_broker_list.mutex);
2086 
2087 	if (!vmci_ctx_qp_exists(context, handle)) {
2088 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2089 			 context_id, handle.context, handle.resource);
2090 		result = VMCI_ERROR_NOT_FOUND;
2091 		goto out;
2092 	}
2093 
2094 	entry = qp_broker_handle_to_entry(handle);
2095 	if (!entry) {
2096 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2097 			 context_id, handle.context, handle.resource);
2098 		result = VMCI_ERROR_NOT_FOUND;
2099 		goto out;
2100 	}
2101 
2102 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2103 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2104 		goto out;
2105 	}
2106 
2107 	if (context_id == entry->create_id) {
2108 		peer_id = entry->attach_id;
2109 		entry->create_id = VMCI_INVALID_ID;
2110 	} else {
2111 		peer_id = entry->create_id;
2112 		entry->attach_id = VMCI_INVALID_ID;
2113 	}
2114 	entry->qp.ref_count--;
2115 
2116 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2117 
2118 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2119 		bool headers_mapped;
2120 
2121 		/*
2122 		 * Pre NOVMVM vmx'en may detach from a queue pair
2123 		 * before setting the page store, and in that case
2124 		 * there is no user memory to detach from. Also, more
2125 		 * recent VMX'en may detach from a queue pair in the
2126 		 * quiesced state.
2127 		 */
2128 
2129 		qp_acquire_queue_mutex(entry->produce_q);
2130 		headers_mapped = entry->produce_q->q_header ||
2131 		    entry->consume_q->q_header;
2132 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2133 			result =
2134 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2135 						 entry->produce_q,
2136 						 entry->consume_q);
2137 			if (result < VMCI_SUCCESS)
2138 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2139 					handle.context, handle.resource,
2140 					result);
2141 
2142 			qp_host_unregister_user_memory(entry->produce_q,
2143 						       entry->consume_q);
2144 
2145 		}
2146 
2147 		if (!headers_mapped)
2148 			qp_reset_saved_headers(entry);
2149 
2150 		qp_release_queue_mutex(entry->produce_q);
2151 
2152 		if (!headers_mapped && entry->wakeup_cb)
2153 			entry->wakeup_cb(entry->client_data);
2154 
2155 	} else {
2156 		if (entry->wakeup_cb) {
2157 			entry->wakeup_cb = NULL;
2158 			entry->client_data = NULL;
2159 		}
2160 	}
2161 
2162 	if (entry->qp.ref_count == 0) {
2163 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2164 
2165 		if (is_local)
2166 			kfree(entry->local_mem);
2167 
2168 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2169 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2170 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2171 		/* Unlink from resource hash table and free callback */
2172 		vmci_resource_remove(&entry->resource);
2173 
2174 		kfree(entry);
2175 
2176 		vmci_ctx_qp_destroy(context, handle);
2177 	} else {
2178 		qp_notify_peer(false, handle, context_id, peer_id);
2179 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2180 		    QPBROKERSTATE_HAS_MEM(entry)) {
2181 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2182 		} else {
2183 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2184 		}
2185 
2186 		if (!is_local)
2187 			vmci_ctx_qp_destroy(context, handle);
2188 
2189 	}
2190 	result = VMCI_SUCCESS;
2191  out:
2192 	mutex_unlock(&qp_broker_list.mutex);
2193 	return result;
2194 }
2195 
2196 /*
2197  * Establishes the necessary mappings for a queue pair given a
2198  * reference to the queue pair guest memory. This is usually
2199  * called when a guest is unquiesced and the VMX is allowed to
2200  * map guest memory once again.
2201  */
vmci_qp_broker_map(struct vmci_handle handle,struct vmci_ctx * context,u64 guest_mem)2202 int vmci_qp_broker_map(struct vmci_handle handle,
2203 		       struct vmci_ctx *context,
2204 		       u64 guest_mem)
2205 {
2206 	struct qp_broker_entry *entry;
2207 	const u32 context_id = vmci_ctx_get_id(context);
2208 	int result;
2209 
2210 	if (vmci_handle_is_invalid(handle) || !context ||
2211 	    context_id == VMCI_INVALID_ID)
2212 		return VMCI_ERROR_INVALID_ARGS;
2213 
2214 	mutex_lock(&qp_broker_list.mutex);
2215 
2216 	if (!vmci_ctx_qp_exists(context, handle)) {
2217 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2218 			 context_id, handle.context, handle.resource);
2219 		result = VMCI_ERROR_NOT_FOUND;
2220 		goto out;
2221 	}
2222 
2223 	entry = qp_broker_handle_to_entry(handle);
2224 	if (!entry) {
2225 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2226 			 context_id, handle.context, handle.resource);
2227 		result = VMCI_ERROR_NOT_FOUND;
2228 		goto out;
2229 	}
2230 
2231 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2232 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2233 		goto out;
2234 	}
2235 
2236 	result = VMCI_SUCCESS;
2237 
2238 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2239 		struct vmci_qp_page_store page_store;
2240 
2241 		page_store.pages = guest_mem;
2242 		page_store.len = QPE_NUM_PAGES(entry->qp);
2243 
2244 		qp_acquire_queue_mutex(entry->produce_q);
2245 		qp_reset_saved_headers(entry);
2246 		result =
2247 		    qp_host_register_user_memory(&page_store,
2248 						 entry->produce_q,
2249 						 entry->consume_q);
2250 		qp_release_queue_mutex(entry->produce_q);
2251 		if (result == VMCI_SUCCESS) {
2252 			/* Move state from *_NO_MEM to *_MEM */
2253 
2254 			entry->state++;
2255 
2256 			if (entry->wakeup_cb)
2257 				entry->wakeup_cb(entry->client_data);
2258 		}
2259 	}
2260 
2261  out:
2262 	mutex_unlock(&qp_broker_list.mutex);
2263 	return result;
2264 }
2265 
2266 /*
2267  * Saves a snapshot of the queue headers for the given QP broker
2268  * entry. Should be used when guest memory is unmapped.
2269  * Results:
2270  * VMCI_SUCCESS on success, appropriate error code if guest memory
2271  * can't be accessed..
2272  */
qp_save_headers(struct qp_broker_entry * entry)2273 static int qp_save_headers(struct qp_broker_entry *entry)
2274 {
2275 	int result;
2276 
2277 	if (entry->produce_q->saved_header != NULL &&
2278 	    entry->consume_q->saved_header != NULL) {
2279 		/*
2280 		 *  If the headers have already been saved, we don't need to do
2281 		 *  it again, and we don't want to map in the headers
2282 		 *  unnecessarily.
2283 		 */
2284 
2285 		return VMCI_SUCCESS;
2286 	}
2287 
2288 	if (NULL == entry->produce_q->q_header ||
2289 	    NULL == entry->consume_q->q_header) {
2290 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2291 		if (result < VMCI_SUCCESS)
2292 			return result;
2293 	}
2294 
2295 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2296 	       sizeof(entry->saved_produce_q));
2297 	entry->produce_q->saved_header = &entry->saved_produce_q;
2298 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2299 	       sizeof(entry->saved_consume_q));
2300 	entry->consume_q->saved_header = &entry->saved_consume_q;
2301 
2302 	return VMCI_SUCCESS;
2303 }
2304 
2305 /*
2306  * Removes all references to the guest memory of a given queue pair, and
2307  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2308  * called when a VM is being quiesced where access to guest memory should
2309  * avoided.
2310  */
vmci_qp_broker_unmap(struct vmci_handle handle,struct vmci_ctx * context,u32 gid)2311 int vmci_qp_broker_unmap(struct vmci_handle handle,
2312 			 struct vmci_ctx *context,
2313 			 u32 gid)
2314 {
2315 	struct qp_broker_entry *entry;
2316 	const u32 context_id = vmci_ctx_get_id(context);
2317 	int result;
2318 
2319 	if (vmci_handle_is_invalid(handle) || !context ||
2320 	    context_id == VMCI_INVALID_ID)
2321 		return VMCI_ERROR_INVALID_ARGS;
2322 
2323 	mutex_lock(&qp_broker_list.mutex);
2324 
2325 	if (!vmci_ctx_qp_exists(context, handle)) {
2326 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2327 			 context_id, handle.context, handle.resource);
2328 		result = VMCI_ERROR_NOT_FOUND;
2329 		goto out;
2330 	}
2331 
2332 	entry = qp_broker_handle_to_entry(handle);
2333 	if (!entry) {
2334 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2335 			 context_id, handle.context, handle.resource);
2336 		result = VMCI_ERROR_NOT_FOUND;
2337 		goto out;
2338 	}
2339 
2340 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2341 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2342 		goto out;
2343 	}
2344 
2345 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2346 		qp_acquire_queue_mutex(entry->produce_q);
2347 		result = qp_save_headers(entry);
2348 		if (result < VMCI_SUCCESS)
2349 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2350 				handle.context, handle.resource, result);
2351 
2352 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2353 
2354 		/*
2355 		 * On hosted, when we unmap queue pairs, the VMX will also
2356 		 * unmap the guest memory, so we invalidate the previously
2357 		 * registered memory. If the queue pair is mapped again at a
2358 		 * later point in time, we will need to reregister the user
2359 		 * memory with a possibly new user VA.
2360 		 */
2361 		qp_host_unregister_user_memory(entry->produce_q,
2362 					       entry->consume_q);
2363 
2364 		/*
2365 		 * Move state from *_MEM to *_NO_MEM.
2366 		 */
2367 		entry->state--;
2368 
2369 		qp_release_queue_mutex(entry->produce_q);
2370 	}
2371 
2372 	result = VMCI_SUCCESS;
2373 
2374  out:
2375 	mutex_unlock(&qp_broker_list.mutex);
2376 	return result;
2377 }
2378 
2379 /*
2380  * Destroys all guest queue pair endpoints. If active guest queue
2381  * pairs still exist, hypercalls to attempt detach from these
2382  * queue pairs will be made. Any failure to detach is silently
2383  * ignored.
2384  */
vmci_qp_guest_endpoints_exit(void)2385 void vmci_qp_guest_endpoints_exit(void)
2386 {
2387 	struct qp_entry *entry;
2388 	struct qp_guest_endpoint *ep;
2389 
2390 	mutex_lock(&qp_guest_endpoints.mutex);
2391 
2392 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2393 		ep = (struct qp_guest_endpoint *)entry;
2394 
2395 		/* Don't make a hypercall for local queue_pairs. */
2396 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2397 			qp_detatch_hypercall(entry->handle);
2398 
2399 		/* We cannot fail the exit, so let's reset ref_count. */
2400 		entry->ref_count = 0;
2401 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2402 
2403 		qp_guest_endpoint_destroy(ep);
2404 	}
2405 
2406 	mutex_unlock(&qp_guest_endpoints.mutex);
2407 }
2408 
2409 /*
2410  * Helper routine that will lock the queue pair before subsequent
2411  * operations.
2412  * Note: Non-blocking on the host side is currently only implemented in ESX.
2413  * Since non-blocking isn't yet implemented on the host personality we
2414  * have no reason to acquire a spin lock.  So to avoid the use of an
2415  * unnecessary lock only acquire the mutex if we can block.
2416  */
qp_lock(const struct vmci_qp * qpair)2417 static void qp_lock(const struct vmci_qp *qpair)
2418 {
2419 	qp_acquire_queue_mutex(qpair->produce_q);
2420 }
2421 
2422 /*
2423  * Helper routine that unlocks the queue pair after calling
2424  * qp_lock.
2425  */
qp_unlock(const struct vmci_qp * qpair)2426 static void qp_unlock(const struct vmci_qp *qpair)
2427 {
2428 	qp_release_queue_mutex(qpair->produce_q);
2429 }
2430 
2431 /*
2432  * The queue headers may not be mapped at all times. If a queue is
2433  * currently not mapped, it will be attempted to do so.
2434  */
qp_map_queue_headers(struct vmci_queue * produce_q,struct vmci_queue * consume_q)2435 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2436 				struct vmci_queue *consume_q)
2437 {
2438 	int result;
2439 
2440 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2441 		result = qp_host_map_queues(produce_q, consume_q);
2442 		if (result < VMCI_SUCCESS)
2443 			return (produce_q->saved_header &&
2444 				consume_q->saved_header) ?
2445 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2446 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2447 	}
2448 
2449 	return VMCI_SUCCESS;
2450 }
2451 
2452 /*
2453  * Helper routine that will retrieve the produce and consume
2454  * headers of a given queue pair. If the guest memory of the
2455  * queue pair is currently not available, the saved queue headers
2456  * will be returned, if these are available.
2457  */
qp_get_queue_headers(const struct vmci_qp * qpair,struct vmci_queue_header ** produce_q_header,struct vmci_queue_header ** consume_q_header)2458 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2459 				struct vmci_queue_header **produce_q_header,
2460 				struct vmci_queue_header **consume_q_header)
2461 {
2462 	int result;
2463 
2464 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2465 	if (result == VMCI_SUCCESS) {
2466 		*produce_q_header = qpair->produce_q->q_header;
2467 		*consume_q_header = qpair->consume_q->q_header;
2468 	} else if (qpair->produce_q->saved_header &&
2469 		   qpair->consume_q->saved_header) {
2470 		*produce_q_header = qpair->produce_q->saved_header;
2471 		*consume_q_header = qpair->consume_q->saved_header;
2472 		result = VMCI_SUCCESS;
2473 	}
2474 
2475 	return result;
2476 }
2477 
2478 /*
2479  * Callback from VMCI queue pair broker indicating that a queue
2480  * pair that was previously not ready, now either is ready or
2481  * gone forever.
2482  */
qp_wakeup_cb(void * client_data)2483 static int qp_wakeup_cb(void *client_data)
2484 {
2485 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2486 
2487 	qp_lock(qpair);
2488 	while (qpair->blocked > 0) {
2489 		qpair->blocked--;
2490 		qpair->generation++;
2491 		wake_up(&qpair->event);
2492 	}
2493 	qp_unlock(qpair);
2494 
2495 	return VMCI_SUCCESS;
2496 }
2497 
2498 /*
2499  * Makes the calling thread wait for the queue pair to become
2500  * ready for host side access.  Returns true when thread is
2501  * woken up after queue pair state change, false otherwise.
2502  */
qp_wait_for_ready_queue(struct vmci_qp * qpair)2503 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2504 {
2505 	unsigned int generation;
2506 
2507 	qpair->blocked++;
2508 	generation = qpair->generation;
2509 	qp_unlock(qpair);
2510 	wait_event(qpair->event, generation != qpair->generation);
2511 	qp_lock(qpair);
2512 
2513 	return true;
2514 }
2515 
2516 /*
2517  * Enqueues a given buffer to the produce queue using the provided
2518  * function. As many bytes as possible (space available in the queue)
2519  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2520  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2521  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2522  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2523  * an error occured when accessing the buffer,
2524  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2525  * available.  Otherwise, the number of bytes written to the queue is
2526  * returned.  Updates the tail pointer of the produce queue.
2527  */
qp_enqueue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 produce_q_size,struct iov_iter * from)2528 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2529 				 struct vmci_queue *consume_q,
2530 				 const u64 produce_q_size,
2531 				 struct iov_iter *from)
2532 {
2533 	s64 free_space;
2534 	u64 tail;
2535 	size_t buf_size = iov_iter_count(from);
2536 	size_t written;
2537 	ssize_t result;
2538 
2539 	result = qp_map_queue_headers(produce_q, consume_q);
2540 	if (unlikely(result != VMCI_SUCCESS))
2541 		return result;
2542 
2543 	free_space = vmci_q_header_free_space(produce_q->q_header,
2544 					      consume_q->q_header,
2545 					      produce_q_size);
2546 	if (free_space == 0)
2547 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2548 
2549 	if (free_space < VMCI_SUCCESS)
2550 		return (ssize_t) free_space;
2551 
2552 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2553 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2554 	if (likely(tail + written < produce_q_size)) {
2555 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2556 	} else {
2557 		/* Tail pointer wraps around. */
2558 
2559 		const size_t tmp = (size_t) (produce_q_size - tail);
2560 
2561 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2562 		if (result >= VMCI_SUCCESS)
2563 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2564 						 written - tmp);
2565 	}
2566 
2567 	if (result < VMCI_SUCCESS)
2568 		return result;
2569 
2570 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2571 					produce_q_size);
2572 	return written;
2573 }
2574 
2575 /*
2576  * Dequeues data (if available) from the given consume queue. Writes data
2577  * to the user provided buffer using the provided function.
2578  * Assumes the queue->mutex has been acquired.
2579  * Results:
2580  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2581  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2582  * (as defined by the queue size).
2583  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2584  * Otherwise the number of bytes dequeued is returned.
2585  * Side effects:
2586  * Updates the head pointer of the consume queue.
2587  */
qp_dequeue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 consume_q_size,struct iov_iter * to,bool update_consumer)2588 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2589 				 struct vmci_queue *consume_q,
2590 				 const u64 consume_q_size,
2591 				 struct iov_iter *to,
2592 				 bool update_consumer)
2593 {
2594 	size_t buf_size = iov_iter_count(to);
2595 	s64 buf_ready;
2596 	u64 head;
2597 	size_t read;
2598 	ssize_t result;
2599 
2600 	result = qp_map_queue_headers(produce_q, consume_q);
2601 	if (unlikely(result != VMCI_SUCCESS))
2602 		return result;
2603 
2604 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2605 					    produce_q->q_header,
2606 					    consume_q_size);
2607 	if (buf_ready == 0)
2608 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2609 
2610 	if (buf_ready < VMCI_SUCCESS)
2611 		return (ssize_t) buf_ready;
2612 
2613 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2614 	head = vmci_q_header_consumer_head(produce_q->q_header);
2615 	if (likely(head + read < consume_q_size)) {
2616 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2617 	} else {
2618 		/* Head pointer wraps around. */
2619 
2620 		const size_t tmp = (size_t) (consume_q_size - head);
2621 
2622 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2623 		if (result >= VMCI_SUCCESS)
2624 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2625 						   read - tmp);
2626 
2627 	}
2628 
2629 	if (result < VMCI_SUCCESS)
2630 		return result;
2631 
2632 	if (update_consumer)
2633 		vmci_q_header_add_consumer_head(produce_q->q_header,
2634 						read, consume_q_size);
2635 
2636 	return read;
2637 }
2638 
2639 /*
2640  * vmci_qpair_alloc() - Allocates a queue pair.
2641  * @qpair:      Pointer for the new vmci_qp struct.
2642  * @handle:     Handle to track the resource.
2643  * @produce_qsize:      Desired size of the producer queue.
2644  * @consume_qsize:      Desired size of the consumer queue.
2645  * @peer:       ContextID of the peer.
2646  * @flags:      VMCI flags.
2647  * @priv_flags: VMCI priviledge flags.
2648  *
2649  * This is the client interface for allocating the memory for a
2650  * vmci_qp structure and then attaching to the underlying
2651  * queue.  If an error occurs allocating the memory for the
2652  * vmci_qp structure no attempt is made to attach.  If an
2653  * error occurs attaching, then the structure is freed.
2654  */
vmci_qpair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_qsize,u64 consume_qsize,u32 peer,u32 flags,u32 priv_flags)2655 int vmci_qpair_alloc(struct vmci_qp **qpair,
2656 		     struct vmci_handle *handle,
2657 		     u64 produce_qsize,
2658 		     u64 consume_qsize,
2659 		     u32 peer,
2660 		     u32 flags,
2661 		     u32 priv_flags)
2662 {
2663 	struct vmci_qp *my_qpair;
2664 	int retval;
2665 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2666 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2667 	enum vmci_route route;
2668 	vmci_event_release_cb wakeup_cb;
2669 	void *client_data;
2670 
2671 	/*
2672 	 * Restrict the size of a queuepair.  The device already
2673 	 * enforces a limit on the total amount of memory that can be
2674 	 * allocated to queuepairs for a guest.  However, we try to
2675 	 * allocate this memory before we make the queuepair
2676 	 * allocation hypercall.  On Linux, we allocate each page
2677 	 * separately, which means rather than fail, the guest will
2678 	 * thrash while it tries to allocate, and will become
2679 	 * increasingly unresponsive to the point where it appears to
2680 	 * be hung.  So we place a limit on the size of an individual
2681 	 * queuepair here, and leave the device to enforce the
2682 	 * restriction on total queuepair memory.  (Note that this
2683 	 * doesn't prevent all cases; a user with only this much
2684 	 * physical memory could still get into trouble.)  The error
2685 	 * used by the device is NO_RESOURCES, so use that here too.
2686 	 */
2687 
2688 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2689 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2690 		return VMCI_ERROR_NO_RESOURCES;
2691 
2692 	retval = vmci_route(&src, &dst, false, &route);
2693 	if (retval < VMCI_SUCCESS)
2694 		route = vmci_guest_code_active() ?
2695 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2696 
2697 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2698 		pr_devel("NONBLOCK OR PINNED set");
2699 		return VMCI_ERROR_INVALID_ARGS;
2700 	}
2701 
2702 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2703 	if (!my_qpair)
2704 		return VMCI_ERROR_NO_MEM;
2705 
2706 	my_qpair->produce_q_size = produce_qsize;
2707 	my_qpair->consume_q_size = consume_qsize;
2708 	my_qpair->peer = peer;
2709 	my_qpair->flags = flags;
2710 	my_qpair->priv_flags = priv_flags;
2711 
2712 	wakeup_cb = NULL;
2713 	client_data = NULL;
2714 
2715 	if (VMCI_ROUTE_AS_HOST == route) {
2716 		my_qpair->guest_endpoint = false;
2717 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2718 			my_qpair->blocked = 0;
2719 			my_qpair->generation = 0;
2720 			init_waitqueue_head(&my_qpair->event);
2721 			wakeup_cb = qp_wakeup_cb;
2722 			client_data = (void *)my_qpair;
2723 		}
2724 	} else {
2725 		my_qpair->guest_endpoint = true;
2726 	}
2727 
2728 	retval = vmci_qp_alloc(handle,
2729 			       &my_qpair->produce_q,
2730 			       my_qpair->produce_q_size,
2731 			       &my_qpair->consume_q,
2732 			       my_qpair->consume_q_size,
2733 			       my_qpair->peer,
2734 			       my_qpair->flags,
2735 			       my_qpair->priv_flags,
2736 			       my_qpair->guest_endpoint,
2737 			       wakeup_cb, client_data);
2738 
2739 	if (retval < VMCI_SUCCESS) {
2740 		kfree(my_qpair);
2741 		return retval;
2742 	}
2743 
2744 	*qpair = my_qpair;
2745 	my_qpair->handle = *handle;
2746 
2747 	return retval;
2748 }
2749 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2750 
2751 /*
2752  * vmci_qpair_detach() - Detatches the client from a queue pair.
2753  * @qpair:      Reference of a pointer to the qpair struct.
2754  *
2755  * This is the client interface for detaching from a VMCIQPair.
2756  * Note that this routine will free the memory allocated for the
2757  * vmci_qp structure too.
2758  */
vmci_qpair_detach(struct vmci_qp ** qpair)2759 int vmci_qpair_detach(struct vmci_qp **qpair)
2760 {
2761 	int result;
2762 	struct vmci_qp *old_qpair;
2763 
2764 	if (!qpair || !(*qpair))
2765 		return VMCI_ERROR_INVALID_ARGS;
2766 
2767 	old_qpair = *qpair;
2768 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2769 
2770 	/*
2771 	 * The guest can fail to detach for a number of reasons, and
2772 	 * if it does so, it will cleanup the entry (if there is one).
2773 	 * The host can fail too, but it won't cleanup the entry
2774 	 * immediately, it will do that later when the context is
2775 	 * freed.  Either way, we need to release the qpair struct
2776 	 * here; there isn't much the caller can do, and we don't want
2777 	 * to leak.
2778 	 */
2779 
2780 	memset(old_qpair, 0, sizeof(*old_qpair));
2781 	old_qpair->handle = VMCI_INVALID_HANDLE;
2782 	old_qpair->peer = VMCI_INVALID_ID;
2783 	kfree(old_qpair);
2784 	*qpair = NULL;
2785 
2786 	return result;
2787 }
2788 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2789 
2790 /*
2791  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2792  * @qpair:      Pointer to the queue pair struct.
2793  * @producer_tail:      Reference used for storing producer tail index.
2794  * @consumer_head:      Reference used for storing the consumer head index.
2795  *
2796  * This is the client interface for getting the current indexes of the
2797  * QPair from the point of the view of the caller as the producer.
2798  */
vmci_qpair_get_produce_indexes(const struct vmci_qp * qpair,u64 * producer_tail,u64 * consumer_head)2799 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2800 				   u64 *producer_tail,
2801 				   u64 *consumer_head)
2802 {
2803 	struct vmci_queue_header *produce_q_header;
2804 	struct vmci_queue_header *consume_q_header;
2805 	int result;
2806 
2807 	if (!qpair)
2808 		return VMCI_ERROR_INVALID_ARGS;
2809 
2810 	qp_lock(qpair);
2811 	result =
2812 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2813 	if (result == VMCI_SUCCESS)
2814 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2815 					   producer_tail, consumer_head);
2816 	qp_unlock(qpair);
2817 
2818 	if (result == VMCI_SUCCESS &&
2819 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2820 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2821 		return VMCI_ERROR_INVALID_SIZE;
2822 
2823 	return result;
2824 }
2825 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2826 
2827 /*
2828  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2829  * @qpair:      Pointer to the queue pair struct.
2830  * @consumer_tail:      Reference used for storing consumer tail index.
2831  * @producer_head:      Reference used for storing the producer head index.
2832  *
2833  * This is the client interface for getting the current indexes of the
2834  * QPair from the point of the view of the caller as the consumer.
2835  */
vmci_qpair_get_consume_indexes(const struct vmci_qp * qpair,u64 * consumer_tail,u64 * producer_head)2836 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2837 				   u64 *consumer_tail,
2838 				   u64 *producer_head)
2839 {
2840 	struct vmci_queue_header *produce_q_header;
2841 	struct vmci_queue_header *consume_q_header;
2842 	int result;
2843 
2844 	if (!qpair)
2845 		return VMCI_ERROR_INVALID_ARGS;
2846 
2847 	qp_lock(qpair);
2848 	result =
2849 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2850 	if (result == VMCI_SUCCESS)
2851 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2852 					   consumer_tail, producer_head);
2853 	qp_unlock(qpair);
2854 
2855 	if (result == VMCI_SUCCESS &&
2856 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2857 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2858 		return VMCI_ERROR_INVALID_SIZE;
2859 
2860 	return result;
2861 }
2862 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2863 
2864 /*
2865  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2866  * @qpair:      Pointer to the queue pair struct.
2867  *
2868  * This is the client interface for getting the amount of free
2869  * space in the QPair from the point of the view of the caller as
2870  * the producer which is the common case.  Returns < 0 if err, else
2871  * available bytes into which data can be enqueued if > 0.
2872  */
vmci_qpair_produce_free_space(const struct vmci_qp * qpair)2873 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2874 {
2875 	struct vmci_queue_header *produce_q_header;
2876 	struct vmci_queue_header *consume_q_header;
2877 	s64 result;
2878 
2879 	if (!qpair)
2880 		return VMCI_ERROR_INVALID_ARGS;
2881 
2882 	qp_lock(qpair);
2883 	result =
2884 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2885 	if (result == VMCI_SUCCESS)
2886 		result = vmci_q_header_free_space(produce_q_header,
2887 						  consume_q_header,
2888 						  qpair->produce_q_size);
2889 	else
2890 		result = 0;
2891 
2892 	qp_unlock(qpair);
2893 
2894 	return result;
2895 }
2896 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2897 
2898 /*
2899  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2900  * @qpair:      Pointer to the queue pair struct.
2901  *
2902  * This is the client interface for getting the amount of free
2903  * space in the QPair from the point of the view of the caller as
2904  * the consumer which is not the common case.  Returns < 0 if err, else
2905  * available bytes into which data can be enqueued if > 0.
2906  */
vmci_qpair_consume_free_space(const struct vmci_qp * qpair)2907 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2908 {
2909 	struct vmci_queue_header *produce_q_header;
2910 	struct vmci_queue_header *consume_q_header;
2911 	s64 result;
2912 
2913 	if (!qpair)
2914 		return VMCI_ERROR_INVALID_ARGS;
2915 
2916 	qp_lock(qpair);
2917 	result =
2918 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2919 	if (result == VMCI_SUCCESS)
2920 		result = vmci_q_header_free_space(consume_q_header,
2921 						  produce_q_header,
2922 						  qpair->consume_q_size);
2923 	else
2924 		result = 0;
2925 
2926 	qp_unlock(qpair);
2927 
2928 	return result;
2929 }
2930 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2931 
2932 /*
2933  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2934  * producer queue.
2935  * @qpair:      Pointer to the queue pair struct.
2936  *
2937  * This is the client interface for getting the amount of
2938  * enqueued data in the QPair from the point of the view of the
2939  * caller as the producer which is not the common case.  Returns < 0 if err,
2940  * else available bytes that may be read.
2941  */
vmci_qpair_produce_buf_ready(const struct vmci_qp * qpair)2942 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2943 {
2944 	struct vmci_queue_header *produce_q_header;
2945 	struct vmci_queue_header *consume_q_header;
2946 	s64 result;
2947 
2948 	if (!qpair)
2949 		return VMCI_ERROR_INVALID_ARGS;
2950 
2951 	qp_lock(qpair);
2952 	result =
2953 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2954 	if (result == VMCI_SUCCESS)
2955 		result = vmci_q_header_buf_ready(produce_q_header,
2956 						 consume_q_header,
2957 						 qpair->produce_q_size);
2958 	else
2959 		result = 0;
2960 
2961 	qp_unlock(qpair);
2962 
2963 	return result;
2964 }
2965 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2966 
2967 /*
2968  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2969  * consumer queue.
2970  * @qpair:      Pointer to the queue pair struct.
2971  *
2972  * This is the client interface for getting the amount of
2973  * enqueued data in the QPair from the point of the view of the
2974  * caller as the consumer which is the normal case.  Returns < 0 if err,
2975  * else available bytes that may be read.
2976  */
vmci_qpair_consume_buf_ready(const struct vmci_qp * qpair)2977 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2978 {
2979 	struct vmci_queue_header *produce_q_header;
2980 	struct vmci_queue_header *consume_q_header;
2981 	s64 result;
2982 
2983 	if (!qpair)
2984 		return VMCI_ERROR_INVALID_ARGS;
2985 
2986 	qp_lock(qpair);
2987 	result =
2988 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2989 	if (result == VMCI_SUCCESS)
2990 		result = vmci_q_header_buf_ready(consume_q_header,
2991 						 produce_q_header,
2992 						 qpair->consume_q_size);
2993 	else
2994 		result = 0;
2995 
2996 	qp_unlock(qpair);
2997 
2998 	return result;
2999 }
3000 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3001 
3002 /*
3003  * vmci_qpair_enqueue() - Throw data on the queue.
3004  * @qpair:      Pointer to the queue pair struct.
3005  * @buf:        Pointer to buffer containing data
3006  * @buf_size:   Length of buffer.
3007  * @buf_type:   Buffer type (Unused).
3008  *
3009  * This is the client interface for enqueueing data into the queue.
3010  * Returns number of bytes enqueued or < 0 on error.
3011  */
vmci_qpair_enqueue(struct vmci_qp * qpair,const void * buf,size_t buf_size,int buf_type)3012 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3013 			   const void *buf,
3014 			   size_t buf_size,
3015 			   int buf_type)
3016 {
3017 	ssize_t result;
3018 	struct iov_iter from;
3019 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3020 
3021 	if (!qpair || !buf)
3022 		return VMCI_ERROR_INVALID_ARGS;
3023 
3024 	iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3025 
3026 	qp_lock(qpair);
3027 
3028 	do {
3029 		result = qp_enqueue_locked(qpair->produce_q,
3030 					   qpair->consume_q,
3031 					   qpair->produce_q_size,
3032 					   &from);
3033 
3034 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3035 		    !qp_wait_for_ready_queue(qpair))
3036 			result = VMCI_ERROR_WOULD_BLOCK;
3037 
3038 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3039 
3040 	qp_unlock(qpair);
3041 
3042 	return result;
3043 }
3044 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3045 
3046 /*
3047  * vmci_qpair_dequeue() - Get data from the queue.
3048  * @qpair:      Pointer to the queue pair struct.
3049  * @buf:        Pointer to buffer for the data
3050  * @buf_size:   Length of buffer.
3051  * @buf_type:   Buffer type (Unused).
3052  *
3053  * This is the client interface for dequeueing data from the queue.
3054  * Returns number of bytes dequeued or < 0 on error.
3055  */
vmci_qpair_dequeue(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3056 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3057 			   void *buf,
3058 			   size_t buf_size,
3059 			   int buf_type)
3060 {
3061 	ssize_t result;
3062 	struct iov_iter to;
3063 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3064 
3065 	if (!qpair || !buf)
3066 		return VMCI_ERROR_INVALID_ARGS;
3067 
3068 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3069 
3070 	qp_lock(qpair);
3071 
3072 	do {
3073 		result = qp_dequeue_locked(qpair->produce_q,
3074 					   qpair->consume_q,
3075 					   qpair->consume_q_size,
3076 					   &to, true);
3077 
3078 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3079 		    !qp_wait_for_ready_queue(qpair))
3080 			result = VMCI_ERROR_WOULD_BLOCK;
3081 
3082 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3083 
3084 	qp_unlock(qpair);
3085 
3086 	return result;
3087 }
3088 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3089 
3090 /*
3091  * vmci_qpair_peek() - Peek at the data in the queue.
3092  * @qpair:      Pointer to the queue pair struct.
3093  * @buf:        Pointer to buffer for the data
3094  * @buf_size:   Length of buffer.
3095  * @buf_type:   Buffer type (Unused on Linux).
3096  *
3097  * This is the client interface for peeking into a queue.  (I.e.,
3098  * copy data from the queue without updating the head pointer.)
3099  * Returns number of bytes dequeued or < 0 on error.
3100  */
vmci_qpair_peek(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3101 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3102 			void *buf,
3103 			size_t buf_size,
3104 			int buf_type)
3105 {
3106 	struct iov_iter to;
3107 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3108 	ssize_t result;
3109 
3110 	if (!qpair || !buf)
3111 		return VMCI_ERROR_INVALID_ARGS;
3112 
3113 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3114 
3115 	qp_lock(qpair);
3116 
3117 	do {
3118 		result = qp_dequeue_locked(qpair->produce_q,
3119 					   qpair->consume_q,
3120 					   qpair->consume_q_size,
3121 					   &to, false);
3122 
3123 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3124 		    !qp_wait_for_ready_queue(qpair))
3125 			result = VMCI_ERROR_WOULD_BLOCK;
3126 
3127 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3128 
3129 	qp_unlock(qpair);
3130 
3131 	return result;
3132 }
3133 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3134 
3135 /*
3136  * vmci_qpair_enquev() - Throw data on the queue using iov.
3137  * @qpair:      Pointer to the queue pair struct.
3138  * @iov:        Pointer to buffer containing data
3139  * @iov_size:   Length of buffer.
3140  * @buf_type:   Buffer type (Unused).
3141  *
3142  * This is the client interface for enqueueing data into the queue.
3143  * This function uses IO vectors to handle the work. Returns number
3144  * of bytes enqueued or < 0 on error.
3145  */
vmci_qpair_enquev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3146 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3147 			  struct msghdr *msg,
3148 			  size_t iov_size,
3149 			  int buf_type)
3150 {
3151 	ssize_t result;
3152 
3153 	if (!qpair)
3154 		return VMCI_ERROR_INVALID_ARGS;
3155 
3156 	qp_lock(qpair);
3157 
3158 	do {
3159 		result = qp_enqueue_locked(qpair->produce_q,
3160 					   qpair->consume_q,
3161 					   qpair->produce_q_size,
3162 					   &msg->msg_iter);
3163 
3164 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3165 		    !qp_wait_for_ready_queue(qpair))
3166 			result = VMCI_ERROR_WOULD_BLOCK;
3167 
3168 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3169 
3170 	qp_unlock(qpair);
3171 
3172 	return result;
3173 }
3174 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3175 
3176 /*
3177  * vmci_qpair_dequev() - Get data from the queue using iov.
3178  * @qpair:      Pointer to the queue pair struct.
3179  * @iov:        Pointer to buffer for the data
3180  * @iov_size:   Length of buffer.
3181  * @buf_type:   Buffer type (Unused).
3182  *
3183  * This is the client interface for dequeueing data from the queue.
3184  * This function uses IO vectors to handle the work. Returns number
3185  * of bytes dequeued or < 0 on error.
3186  */
vmci_qpair_dequev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3187 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3188 			  struct msghdr *msg,
3189 			  size_t iov_size,
3190 			  int buf_type)
3191 {
3192 	ssize_t result;
3193 
3194 	if (!qpair)
3195 		return VMCI_ERROR_INVALID_ARGS;
3196 
3197 	qp_lock(qpair);
3198 
3199 	do {
3200 		result = qp_dequeue_locked(qpair->produce_q,
3201 					   qpair->consume_q,
3202 					   qpair->consume_q_size,
3203 					   &msg->msg_iter, true);
3204 
3205 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3206 		    !qp_wait_for_ready_queue(qpair))
3207 			result = VMCI_ERROR_WOULD_BLOCK;
3208 
3209 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3210 
3211 	qp_unlock(qpair);
3212 
3213 	return result;
3214 }
3215 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3216 
3217 /*
3218  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3219  * @qpair:      Pointer to the queue pair struct.
3220  * @iov:        Pointer to buffer for the data
3221  * @iov_size:   Length of buffer.
3222  * @buf_type:   Buffer type (Unused on Linux).
3223  *
3224  * This is the client interface for peeking into a queue.  (I.e.,
3225  * copy data from the queue without updating the head pointer.)
3226  * This function uses IO vectors to handle the work. Returns number
3227  * of bytes peeked or < 0 on error.
3228  */
vmci_qpair_peekv(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3229 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3230 			 struct msghdr *msg,
3231 			 size_t iov_size,
3232 			 int buf_type)
3233 {
3234 	ssize_t result;
3235 
3236 	if (!qpair)
3237 		return VMCI_ERROR_INVALID_ARGS;
3238 
3239 	qp_lock(qpair);
3240 
3241 	do {
3242 		result = qp_dequeue_locked(qpair->produce_q,
3243 					   qpair->consume_q,
3244 					   qpair->consume_q_size,
3245 					   &msg->msg_iter, false);
3246 
3247 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3248 		    !qp_wait_for_ready_queue(qpair))
3249 			result = VMCI_ERROR_WOULD_BLOCK;
3250 
3251 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3252 
3253 	qp_unlock(qpair);
3254 	return result;
3255 }
3256 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3257