1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI Camera Access Layer (CAL) - CAMERARX
4  *
5  * Copyright (c) 2015-2020 Texas Instruments Inc.
6  *
7  * Authors:
8  *	Benoit Parrot <bparrot@ti.com>
9  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/of_graph.h>
17 #include <linux/platform_device.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-fwnode.h>
23 #include <media/v4l2-subdev.h>
24 
25 #include "cal.h"
26 #include "cal_regs.h"
27 
28 /* ------------------------------------------------------------------
29  *	I/O Register Accessors
30  * ------------------------------------------------------------------
31  */
32 
camerarx_read(struct cal_camerarx * phy,u32 offset)33 static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
34 {
35 	return ioread32(phy->base + offset);
36 }
37 
camerarx_write(struct cal_camerarx * phy,u32 offset,u32 val)38 static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
39 {
40 	iowrite32(val, phy->base + offset);
41 }
42 
43 /* ------------------------------------------------------------------
44  *	CAMERARX Management
45  * ------------------------------------------------------------------
46  */
47 
cal_camerarx_get_external_rate(struct cal_camerarx * phy)48 static s64 cal_camerarx_get_external_rate(struct cal_camerarx *phy)
49 {
50 	struct v4l2_ctrl *ctrl;
51 	s64 rate;
52 
53 	ctrl = v4l2_ctrl_find(phy->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE);
54 	if (!ctrl) {
55 		phy_err(phy, "no pixel rate control in subdev: %s\n",
56 			phy->sensor->name);
57 		return -EPIPE;
58 	}
59 
60 	rate = v4l2_ctrl_g_ctrl_int64(ctrl);
61 	phy_dbg(3, phy, "sensor Pixel Rate: %llu\n", rate);
62 
63 	return rate;
64 }
65 
cal_camerarx_lane_config(struct cal_camerarx * phy)66 static void cal_camerarx_lane_config(struct cal_camerarx *phy)
67 {
68 	u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
69 	u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
70 	u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
71 	struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
72 		&phy->endpoint.bus.mipi_csi2;
73 	int lane;
74 
75 	cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
76 	cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
77 	for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
78 		/*
79 		 * Every lane are one nibble apart starting with the
80 		 * clock followed by the data lanes so shift masks by 4.
81 		 */
82 		lane_mask <<= 4;
83 		polarity_mask <<= 4;
84 		cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
85 		cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
86 			      polarity_mask);
87 	}
88 
89 	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
90 	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
91 		phy->instance, val);
92 }
93 
cal_camerarx_enable(struct cal_camerarx * phy)94 static void cal_camerarx_enable(struct cal_camerarx *phy)
95 {
96 	u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
97 
98 	regmap_field_write(phy->fields[F_CAMMODE], 0);
99 	/* Always enable all lanes at the phy control level */
100 	regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
101 	/* F_CSI_MODE is not present on every architecture */
102 	if (phy->fields[F_CSI_MODE])
103 		regmap_field_write(phy->fields[F_CSI_MODE], 1);
104 	regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
105 }
106 
cal_camerarx_disable(struct cal_camerarx * phy)107 void cal_camerarx_disable(struct cal_camerarx *phy)
108 {
109 	regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
110 }
111 
112 /*
113  * TCLK values are OK at their reset values
114  */
115 #define TCLK_TERM	0
116 #define TCLK_MISS	1
117 #define TCLK_SETTLE	14
118 
cal_camerarx_config(struct cal_camerarx * phy,s64 external_rate,const struct cal_fmt * fmt)119 static void cal_camerarx_config(struct cal_camerarx *phy, s64 external_rate,
120 				const struct cal_fmt *fmt)
121 {
122 	unsigned int reg0, reg1;
123 	unsigned int ths_term, ths_settle;
124 	unsigned int csi2_ddrclk_khz;
125 	struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 =
126 			&phy->endpoint.bus.mipi_csi2;
127 	u32 num_lanes = mipi_csi2->num_data_lanes;
128 
129 	/* DPHY timing configuration */
130 
131 	/*
132 	 * CSI-2 is DDR and we only count used lanes.
133 	 *
134 	 * csi2_ddrclk_khz = external_rate / 1000
135 	 *		   / (2 * num_lanes) * fmt->bpp;
136 	 */
137 	csi2_ddrclk_khz = div_s64(external_rate * fmt->bpp,
138 				  2 * num_lanes * 1000);
139 
140 	phy_dbg(1, phy, "csi2_ddrclk_khz: %d\n", csi2_ddrclk_khz);
141 
142 	/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
143 	ths_term = 20 * csi2_ddrclk_khz / 1000000;
144 	phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
145 
146 	/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
147 	ths_settle = (105 * csi2_ddrclk_khz / 1000000) + 4;
148 	phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
149 
150 	reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
151 	cal_set_field(&reg0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
152 		      CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
153 	cal_set_field(&reg0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
154 	cal_set_field(&reg0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
155 
156 	phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
157 	camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
158 
159 	reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
160 	cal_set_field(&reg1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
161 	cal_set_field(&reg1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
162 	cal_set_field(&reg1, TCLK_MISS,
163 		      CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
164 	cal_set_field(&reg1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
165 
166 	phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
167 	camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
168 }
169 
cal_camerarx_power(struct cal_camerarx * phy,bool enable)170 static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
171 {
172 	u32 target_state;
173 	unsigned int i;
174 
175 	target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
176 		       CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
177 
178 	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
179 			target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
180 
181 	for (i = 0; i < 10; i++) {
182 		u32 current_state;
183 
184 		current_state = cal_read_field(phy->cal,
185 					       CAL_CSI2_COMPLEXIO_CFG(phy->instance),
186 					       CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
187 
188 		if (current_state == target_state)
189 			break;
190 
191 		usleep_range(1000, 1100);
192 	}
193 
194 	if (i == 10)
195 		phy_err(phy, "Failed to power %s complexio\n",
196 			enable ? "up" : "down");
197 }
198 
cal_camerarx_wait_reset(struct cal_camerarx * phy)199 static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
200 {
201 	unsigned long timeout;
202 
203 	timeout = jiffies + msecs_to_jiffies(750);
204 	while (time_before(jiffies, timeout)) {
205 		if (cal_read_field(phy->cal,
206 				   CAL_CSI2_COMPLEXIO_CFG(phy->instance),
207 				   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
208 		    CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
209 			break;
210 		usleep_range(500, 5000);
211 	}
212 
213 	if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
214 			   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
215 			   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
216 		phy_err(phy, "Timeout waiting for Complex IO reset done\n");
217 }
218 
cal_camerarx_wait_stop_state(struct cal_camerarx * phy)219 static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
220 {
221 	unsigned long timeout;
222 
223 	timeout = jiffies + msecs_to_jiffies(750);
224 	while (time_before(jiffies, timeout)) {
225 		if (cal_read_field(phy->cal,
226 				   CAL_CSI2_TIMING(phy->instance),
227 				   CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
228 			break;
229 		usleep_range(500, 5000);
230 	}
231 
232 	if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
233 			   CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
234 		phy_err(phy, "Timeout waiting for stop state\n");
235 }
236 
cal_camerarx_start(struct cal_camerarx * phy,const struct cal_fmt * fmt)237 int cal_camerarx_start(struct cal_camerarx *phy, const struct cal_fmt *fmt)
238 {
239 	s64 external_rate;
240 	u32 sscounter;
241 	u32 val;
242 	int ret;
243 
244 	external_rate = cal_camerarx_get_external_rate(phy);
245 	if (external_rate < 0)
246 		return external_rate;
247 
248 	ret = v4l2_subdev_call(phy->sensor, core, s_power, 1);
249 	if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
250 		phy_err(phy, "power on failed in subdev\n");
251 		return ret;
252 	}
253 
254 	/*
255 	 * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
256 	 * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
257 	 * DRA80xM TRMs have a a slightly simplified sequence.
258 	 */
259 
260 	/*
261 	 * 1. Configure all CSI-2 low level protocol registers to be ready to
262 	 *    receive signals/data from the CSI-2 PHY.
263 	 *
264 	 *    i.-v. Configure the lanes position and polarity.
265 	 */
266 	cal_camerarx_lane_config(phy);
267 
268 	/*
269 	 *    vi.-vii. Configure D-PHY mode, enable the required lanes and
270 	 *             enable the CAMERARX clock.
271 	 */
272 	cal_camerarx_enable(phy);
273 
274 	/*
275 	 * 2. CSI PHY and link initialization sequence.
276 	 *
277 	 *    a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
278 	 *       at this point, as it requires the external sensor to send the
279 	 *       CSI-2 HS clock.
280 	 */
281 	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
282 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
283 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
284 	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
285 		phy->instance,
286 		cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
287 
288 	/* Dummy read to allow SCP reset to complete. */
289 	camerarx_read(phy, CAL_CSI2_PHY_REG0);
290 
291 	/* Program the PHY timing parameters. */
292 	cal_camerarx_config(phy, external_rate, fmt);
293 
294 	/*
295 	 *    b. Assert the FORCERXMODE signal.
296 	 *
297 	 * The stop-state-counter is based on fclk cycles, and we always use
298 	 * the x16 and x4 settings, so stop-state-timeout =
299 	 * fclk-cycle * 16 * 4 * counter.
300 	 *
301 	 * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
302 	 * calculate a timeout that's 100us (rounding up).
303 	 */
304 	sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 *  16 * 4);
305 
306 	val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
307 	cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
308 	cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
309 	cal_set_field(&val, sscounter,
310 		      CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
311 	cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
312 	phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
313 		phy->instance,
314 		cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
315 
316 	/* Assert the FORCERXMODE signal. */
317 	cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
318 			1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
319 	phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
320 		phy->instance,
321 		cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
322 
323 	/*
324 	 * c. Connect pull-down on CSI-2 PHY link (using pad control).
325 	 *
326 	 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
327 	 * implemented.
328 	 */
329 
330 	/*
331 	 * d. Power up the CSI-2 PHY.
332 	 * e. Check whether the state status reaches the ON state.
333 	 */
334 	cal_camerarx_power(phy, true);
335 
336 	/*
337 	 * Start the sensor to enable the CSI-2 HS clock. We can now wait for
338 	 * CSI-2 PHY reset to complete.
339 	 */
340 	ret = v4l2_subdev_call(phy->sensor, video, s_stream, 1);
341 	if (ret) {
342 		v4l2_subdev_call(phy->sensor, core, s_power, 0);
343 		phy_err(phy, "stream on failed in subdev\n");
344 		return ret;
345 	}
346 
347 	cal_camerarx_wait_reset(phy);
348 
349 	/* f. Wait for STOPSTATE=1 for all enabled lane modules. */
350 	cal_camerarx_wait_stop_state(phy);
351 
352 	phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
353 		phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
354 
355 	/*
356 	 * g. Disable pull-down on CSI-2 PHY link (using pad control).
357 	 *
358 	 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
359 	 * implemented.
360 	 */
361 
362 	return 0;
363 }
364 
cal_camerarx_stop(struct cal_camerarx * phy)365 void cal_camerarx_stop(struct cal_camerarx *phy)
366 {
367 	unsigned int i;
368 	int ret;
369 
370 	cal_camerarx_power(phy, false);
371 
372 	/* Assert Complex IO Reset */
373 	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
374 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
375 			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
376 
377 	/* Wait for power down completion */
378 	for (i = 0; i < 10; i++) {
379 		if (cal_read_field(phy->cal,
380 				   CAL_CSI2_COMPLEXIO_CFG(phy->instance),
381 				   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
382 		    CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETONGOING)
383 			break;
384 		usleep_range(1000, 1100);
385 	}
386 	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset (%d) %s\n",
387 		phy->instance,
388 		cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)), i,
389 		(i >= 10) ? "(timeout)" : "");
390 
391 	/* Disable the phy */
392 	cal_camerarx_disable(phy);
393 
394 	if (v4l2_subdev_call(phy->sensor, video, s_stream, 0))
395 		phy_err(phy, "stream off failed in subdev\n");
396 
397 	ret = v4l2_subdev_call(phy->sensor, core, s_power, 0);
398 	if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
399 		phy_err(phy, "power off failed in subdev\n");
400 }
401 
402 /*
403  *   Errata i913: CSI2 LDO Needs to be disabled when module is powered on
404  *
405  *   Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
406  *   LDOs on the device are disabled if CSI-2 module is powered on
407  *   (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
408  *   | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
409  *   current draw on the module supply in active mode.
410  *
411  *   Errata does not apply when CSI-2 module is powered off
412  *   (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
413  *
414  * SW Workaround:
415  *	Set the following register bits to disable the LDO,
416  *	which is essentially CSI2 REG10 bit 6:
417  *
418  *		Core 0:  0x4845 B828 = 0x0000 0040
419  *		Core 1:  0x4845 B928 = 0x0000 0040
420  */
cal_camerarx_i913_errata(struct cal_camerarx * phy)421 void cal_camerarx_i913_errata(struct cal_camerarx *phy)
422 {
423 	u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
424 
425 	cal_set_field(&reg10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
426 
427 	phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
428 	camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
429 }
430 
431 /*
432  * Enable the expected IRQ sources
433  */
cal_camerarx_enable_irqs(struct cal_camerarx * phy)434 void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
435 {
436 	u32 val;
437 
438 	const u32 cio_err_mask =
439 		CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
440 		CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
441 		CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
442 		CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
443 
444 	/* Enable CIO error irqs */
445 	cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
446 		  CAL_HL_IRQ_CIO_MASK(phy->instance));
447 	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
448 		  cio_err_mask);
449 
450 	/* Always enable OCPO error */
451 	cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_OCPO_ERR_MASK);
452 
453 	/* Enable IRQ_WDMA_END 0/1 */
454 	val = 0;
455 	cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
456 	cal_write(phy->cal, CAL_HL_IRQENABLE_SET(1), val);
457 	/* Enable IRQ_WDMA_START 0/1 */
458 	val = 0;
459 	cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
460 	cal_write(phy->cal, CAL_HL_IRQENABLE_SET(2), val);
461 	/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
462 	cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0xFF000000);
463 }
464 
cal_camerarx_disable_irqs(struct cal_camerarx * phy)465 void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
466 {
467 	u32 val;
468 
469 	/* Disable CIO error irqs */
470 	cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
471 		  CAL_HL_IRQ_CIO_MASK(phy->instance));
472 	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
473 
474 	/* Disable IRQ_WDMA_END 0/1 */
475 	val = 0;
476 	cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
477 	cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(1), val);
478 	/* Disable IRQ_WDMA_START 0/1 */
479 	val = 0;
480 	cal_set_field(&val, 1, CAL_HL_IRQ_MASK(phy->instance));
481 	cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(2), val);
482 	/* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */
483 	cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(0), 0);
484 }
485 
cal_camerarx_ppi_enable(struct cal_camerarx * phy)486 void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
487 {
488 	cal_write(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), BIT(3));
489 	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
490 			1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
491 }
492 
cal_camerarx_ppi_disable(struct cal_camerarx * phy)493 void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
494 {
495 	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
496 			0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
497 }
498 
cal_camerarx_regmap_init(struct cal_dev * cal,struct cal_camerarx * phy)499 static int cal_camerarx_regmap_init(struct cal_dev *cal,
500 				    struct cal_camerarx *phy)
501 {
502 	const struct cal_camerarx_data *phy_data;
503 	unsigned int i;
504 
505 	if (!cal->data)
506 		return -EINVAL;
507 
508 	phy_data = &cal->data->camerarx[phy->instance];
509 
510 	for (i = 0; i < F_MAX_FIELDS; i++) {
511 		struct reg_field field = {
512 			.reg = cal->syscon_camerrx_offset,
513 			.lsb = phy_data->fields[i].lsb,
514 			.msb = phy_data->fields[i].msb,
515 		};
516 
517 		/*
518 		 * Here we update the reg offset with the
519 		 * value found in DT
520 		 */
521 		phy->fields[i] = devm_regmap_field_alloc(cal->dev,
522 							 cal->syscon_camerrx,
523 							 field);
524 		if (IS_ERR(phy->fields[i])) {
525 			cal_err(cal, "Unable to allocate regmap fields\n");
526 			return PTR_ERR(phy->fields[i]);
527 		}
528 	}
529 
530 	return 0;
531 }
532 
cal_camerarx_parse_dt(struct cal_camerarx * phy)533 static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
534 {
535 	struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
536 	struct device_node *ep_node;
537 	char data_lanes[V4L2_FWNODE_CSI2_MAX_DATA_LANES * 2];
538 	unsigned int i;
539 	int ret;
540 
541 	/*
542 	 * Find the endpoint node for the port corresponding to the PHY
543 	 * instance, and parse its CSI-2-related properties.
544 	 */
545 	ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
546 						phy->instance, 0);
547 	if (!ep_node) {
548 		/*
549 		 * The endpoint is not mandatory, not all PHY instances need to
550 		 * be connected in DT.
551 		 */
552 		phy_dbg(3, phy, "Port has no endpoint\n");
553 		return 0;
554 	}
555 
556 	endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
557 	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
558 	if (ret < 0) {
559 		phy_err(phy, "Failed to parse endpoint\n");
560 		goto done;
561 	}
562 
563 	for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
564 		unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
565 
566 		if (lane > 4) {
567 			phy_err(phy, "Invalid position %u for data lane %u\n",
568 				lane, i);
569 			ret = -EINVAL;
570 			goto done;
571 		}
572 
573 		data_lanes[i*2] = '0' + lane;
574 		data_lanes[i*2+1] = ' ';
575 	}
576 
577 	data_lanes[i*2-1] = '\0';
578 
579 	phy_dbg(3, phy,
580 		"CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
581 		endpoint->bus.mipi_csi2.clock_lane, data_lanes,
582 		endpoint->bus.mipi_csi2.flags);
583 
584 	/* Retrieve the connected device and store it for later use. */
585 	phy->sensor_node = of_graph_get_remote_port_parent(ep_node);
586 	if (!phy->sensor_node) {
587 		phy_dbg(3, phy, "Can't get remote parent\n");
588 		ret = -EINVAL;
589 		goto done;
590 	}
591 
592 	phy_dbg(1, phy, "Found connected device %pOFn\n", phy->sensor_node);
593 
594 done:
595 	of_node_put(ep_node);
596 	return ret;
597 }
598 
cal_camerarx_create(struct cal_dev * cal,unsigned int instance)599 struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
600 					 unsigned int instance)
601 {
602 	struct platform_device *pdev = to_platform_device(cal->dev);
603 	struct cal_camerarx *phy;
604 	int ret;
605 
606 	phy = kzalloc(sizeof(*phy), GFP_KERNEL);
607 	if (!phy)
608 		return ERR_PTR(-ENOMEM);
609 
610 	phy->cal = cal;
611 	phy->instance = instance;
612 
613 	phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
614 						(instance == 0) ?
615 						"cal_rx_core0" :
616 						"cal_rx_core1");
617 	phy->base = devm_ioremap_resource(cal->dev, phy->res);
618 	if (IS_ERR(phy->base)) {
619 		cal_err(cal, "failed to ioremap\n");
620 		ret = PTR_ERR(phy->base);
621 		goto error;
622 	}
623 
624 	cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
625 		phy->res->name, &phy->res->start, &phy->res->end);
626 
627 	ret = cal_camerarx_regmap_init(cal, phy);
628 	if (ret)
629 		goto error;
630 
631 	ret = cal_camerarx_parse_dt(phy);
632 	if (ret)
633 		goto error;
634 
635 	return phy;
636 
637 error:
638 	kfree(phy);
639 	return ERR_PTR(ret);
640 }
641 
cal_camerarx_destroy(struct cal_camerarx * phy)642 void cal_camerarx_destroy(struct cal_camerarx *phy)
643 {
644 	if (!phy)
645 		return;
646 
647 	of_node_put(phy->sensor_node);
648 	kfree(phy);
649 }
650