1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13 /*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69
stripe_hash(struct r5conf * conf,sector_t sect)70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74 }
75
stripe_hash_locks_hash(struct r5conf * conf,sector_t sect)76 static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77 {
78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79 }
80
lock_device_hash_lock(struct r5conf * conf,int hash)81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85 }
86
unlock_device_hash_lock(struct r5conf * conf,int hash)87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91 }
92
lock_all_device_hash_locks_irq(struct r5conf * conf)93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100 }
101
unlock_all_device_hash_locks_irq(struct r5conf * conf)102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
109 }
110
111 /* Find first data disk in a raid6 stripe */
raid6_d0(struct stripe_head * sh)112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122 }
raid6_next_disk(int disk,int raid_disks)123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127 }
128
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
raid6_idx_to_slot(int idx,struct stripe_head * sh,int * count,int syndrome_disks)134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
136 {
137 int slot = *count;
138
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
148 }
149
150 static void print_raid5_conf (struct r5conf *conf);
151
stripe_operations_active(struct stripe_head * sh)152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158
stripe_is_lowprio(struct stripe_head * sh)159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165
raid5_wakeup_stripe_thread(struct stripe_head * sh)166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
210 }
211
do_release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
214 {
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
225 /*
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
231 */
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
239
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 }
293 }
294 }
295 }
296
__release_stripe(struct r5conf * conf,struct stripe_head * sh,struct list_head * temp_inactive_list)297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
299 {
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
302 }
303
304 /*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
release_inactive_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list,int hash)311 static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314 {
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
351 }
352
353 /* should hold conf->device_lock already */
release_stripe_list(struct r5conf * conf,struct list_head * temp_inactive_list)354 static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
356 {
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
365
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
377 }
378
379 return count;
380 }
381
raid5_release_stripe(struct stripe_head * sh)382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
389
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402 slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411 }
412
remove_hash(struct stripe_head * sh)413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
417
418 hlist_del_init(&sh->hash);
419 }
420
insert_hash(struct r5conf * conf,struct stripe_head * sh)421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_add_head(&sh->hash, hp);
429 }
430
431 /* find an idle stripe, make sure it is unhashed, and return it. */
get_free_stripe(struct r5conf * conf,int hash)432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 return sh;
449 }
450
451 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
free_stripe_pages(struct stripe_head * sh)452 static void free_stripe_pages(struct stripe_head *sh)
453 {
454 int i;
455 struct page *p;
456
457 /* Have not allocate page pool */
458 if (!sh->pages)
459 return;
460
461 for (i = 0; i < sh->nr_pages; i++) {
462 p = sh->pages[i];
463 if (p)
464 put_page(p);
465 sh->pages[i] = NULL;
466 }
467 }
468
alloc_stripe_pages(struct stripe_head * sh,gfp_t gfp)469 static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
470 {
471 int i;
472 struct page *p;
473
474 for (i = 0; i < sh->nr_pages; i++) {
475 /* The page have allocated. */
476 if (sh->pages[i])
477 continue;
478
479 p = alloc_page(gfp);
480 if (!p) {
481 free_stripe_pages(sh);
482 return -ENOMEM;
483 }
484 sh->pages[i] = p;
485 }
486 return 0;
487 }
488
489 static int
init_stripe_shared_pages(struct stripe_head * sh,struct r5conf * conf,int disks)490 init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
491 {
492 int nr_pages, cnt;
493
494 if (sh->pages)
495 return 0;
496
497 /* Each of the sh->dev[i] need one conf->stripe_size */
498 cnt = PAGE_SIZE / conf->stripe_size;
499 nr_pages = (disks + cnt - 1) / cnt;
500
501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
502 if (!sh->pages)
503 return -ENOMEM;
504 sh->nr_pages = nr_pages;
505 sh->stripes_per_page = cnt;
506 return 0;
507 }
508 #endif
509
shrink_buffers(struct stripe_head * sh)510 static void shrink_buffers(struct stripe_head *sh)
511 {
512 int i;
513 int num = sh->raid_conf->pool_size;
514
515 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
516 for (i = 0; i < num ; i++) {
517 struct page *p;
518
519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
520 p = sh->dev[i].page;
521 if (!p)
522 continue;
523 sh->dev[i].page = NULL;
524 put_page(p);
525 }
526 #else
527 for (i = 0; i < num; i++)
528 sh->dev[i].page = NULL;
529 free_stripe_pages(sh); /* Free pages */
530 #endif
531 }
532
grow_buffers(struct stripe_head * sh,gfp_t gfp)533 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
534 {
535 int i;
536 int num = sh->raid_conf->pool_size;
537
538 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
539 for (i = 0; i < num; i++) {
540 struct page *page;
541
542 if (!(page = alloc_page(gfp))) {
543 return 1;
544 }
545 sh->dev[i].page = page;
546 sh->dev[i].orig_page = page;
547 sh->dev[i].offset = 0;
548 }
549 #else
550 if (alloc_stripe_pages(sh, gfp))
551 return -ENOMEM;
552
553 for (i = 0; i < num; i++) {
554 sh->dev[i].page = raid5_get_dev_page(sh, i);
555 sh->dev[i].orig_page = sh->dev[i].page;
556 sh->dev[i].offset = raid5_get_page_offset(sh, i);
557 }
558 #endif
559 return 0;
560 }
561
562 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
563 struct stripe_head *sh);
564
init_stripe(struct stripe_head * sh,sector_t sector,int previous)565 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
566 {
567 struct r5conf *conf = sh->raid_conf;
568 int i, seq;
569
570 BUG_ON(atomic_read(&sh->count) != 0);
571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
572 BUG_ON(stripe_operations_active(sh));
573 BUG_ON(sh->batch_head);
574
575 pr_debug("init_stripe called, stripe %llu\n",
576 (unsigned long long)sector);
577 retry:
578 seq = read_seqcount_begin(&conf->gen_lock);
579 sh->generation = conf->generation - previous;
580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
581 sh->sector = sector;
582 stripe_set_idx(sector, conf, previous, sh);
583 sh->state = 0;
584
585 for (i = sh->disks; i--; ) {
586 struct r5dev *dev = &sh->dev[i];
587
588 if (dev->toread || dev->read || dev->towrite || dev->written ||
589 test_bit(R5_LOCKED, &dev->flags)) {
590 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
591 (unsigned long long)sh->sector, i, dev->toread,
592 dev->read, dev->towrite, dev->written,
593 test_bit(R5_LOCKED, &dev->flags));
594 WARN_ON(1);
595 }
596 dev->flags = 0;
597 dev->sector = raid5_compute_blocknr(sh, i, previous);
598 }
599 if (read_seqcount_retry(&conf->gen_lock, seq))
600 goto retry;
601 sh->overwrite_disks = 0;
602 insert_hash(conf, sh);
603 sh->cpu = smp_processor_id();
604 set_bit(STRIPE_BATCH_READY, &sh->state);
605 }
606
__find_stripe(struct r5conf * conf,sector_t sector,short generation)607 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
608 short generation)
609 {
610 struct stripe_head *sh;
611
612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
614 if (sh->sector == sector && sh->generation == generation)
615 return sh;
616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
617 return NULL;
618 }
619
620 /*
621 * Need to check if array has failed when deciding whether to:
622 * - start an array
623 * - remove non-faulty devices
624 * - add a spare
625 * - allow a reshape
626 * This determination is simple when no reshape is happening.
627 * However if there is a reshape, we need to carefully check
628 * both the before and after sections.
629 * This is because some failed devices may only affect one
630 * of the two sections, and some non-in_sync devices may
631 * be insync in the section most affected by failed devices.
632 */
raid5_calc_degraded(struct r5conf * conf)633 int raid5_calc_degraded(struct r5conf *conf)
634 {
635 int degraded, degraded2;
636 int i;
637
638 rcu_read_lock();
639 degraded = 0;
640 for (i = 0; i < conf->previous_raid_disks; i++) {
641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
642 if (rdev && test_bit(Faulty, &rdev->flags))
643 rdev = rcu_dereference(conf->disks[i].replacement);
644 if (!rdev || test_bit(Faulty, &rdev->flags))
645 degraded++;
646 else if (test_bit(In_sync, &rdev->flags))
647 ;
648 else
649 /* not in-sync or faulty.
650 * If the reshape increases the number of devices,
651 * this is being recovered by the reshape, so
652 * this 'previous' section is not in_sync.
653 * If the number of devices is being reduced however,
654 * the device can only be part of the array if
655 * we are reverting a reshape, so this section will
656 * be in-sync.
657 */
658 if (conf->raid_disks >= conf->previous_raid_disks)
659 degraded++;
660 }
661 rcu_read_unlock();
662 if (conf->raid_disks == conf->previous_raid_disks)
663 return degraded;
664 rcu_read_lock();
665 degraded2 = 0;
666 for (i = 0; i < conf->raid_disks; i++) {
667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
668 if (rdev && test_bit(Faulty, &rdev->flags))
669 rdev = rcu_dereference(conf->disks[i].replacement);
670 if (!rdev || test_bit(Faulty, &rdev->flags))
671 degraded2++;
672 else if (test_bit(In_sync, &rdev->flags))
673 ;
674 else
675 /* not in-sync or faulty.
676 * If reshape increases the number of devices, this
677 * section has already been recovered, else it
678 * almost certainly hasn't.
679 */
680 if (conf->raid_disks <= conf->previous_raid_disks)
681 degraded2++;
682 }
683 rcu_read_unlock();
684 if (degraded2 > degraded)
685 return degraded2;
686 return degraded;
687 }
688
has_failed(struct r5conf * conf)689 static int has_failed(struct r5conf *conf)
690 {
691 int degraded;
692
693 if (conf->mddev->reshape_position == MaxSector)
694 return conf->mddev->degraded > conf->max_degraded;
695
696 degraded = raid5_calc_degraded(conf);
697 if (degraded > conf->max_degraded)
698 return 1;
699 return 0;
700 }
701
702 struct stripe_head *
raid5_get_active_stripe(struct r5conf * conf,sector_t sector,int previous,int noblock,int noquiesce)703 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 int previous, int noblock, int noquiesce)
705 {
706 struct stripe_head *sh;
707 int hash = stripe_hash_locks_hash(conf, sector);
708 int inc_empty_inactive_list_flag;
709
710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
711
712 spin_lock_irq(conf->hash_locks + hash);
713
714 do {
715 wait_event_lock_irq(conf->wait_for_quiescent,
716 conf->quiesce == 0 || noquiesce,
717 *(conf->hash_locks + hash));
718 sh = __find_stripe(conf, sector, conf->generation - previous);
719 if (!sh) {
720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
721 sh = get_free_stripe(conf, hash);
722 if (!sh && !test_bit(R5_DID_ALLOC,
723 &conf->cache_state))
724 set_bit(R5_ALLOC_MORE,
725 &conf->cache_state);
726 }
727 if (noblock && sh == NULL)
728 break;
729
730 r5c_check_stripe_cache_usage(conf);
731 if (!sh) {
732 set_bit(R5_INACTIVE_BLOCKED,
733 &conf->cache_state);
734 r5l_wake_reclaim(conf->log, 0);
735 wait_event_lock_irq(
736 conf->wait_for_stripe,
737 !list_empty(conf->inactive_list + hash) &&
738 (atomic_read(&conf->active_stripes)
739 < (conf->max_nr_stripes * 3 / 4)
740 || !test_bit(R5_INACTIVE_BLOCKED,
741 &conf->cache_state)),
742 *(conf->hash_locks + hash));
743 clear_bit(R5_INACTIVE_BLOCKED,
744 &conf->cache_state);
745 } else {
746 init_stripe(sh, sector, previous);
747 atomic_inc(&sh->count);
748 }
749 } else if (!atomic_inc_not_zero(&sh->count)) {
750 spin_lock(&conf->device_lock);
751 if (!atomic_read(&sh->count)) {
752 if (!test_bit(STRIPE_HANDLE, &sh->state))
753 atomic_inc(&conf->active_stripes);
754 BUG_ON(list_empty(&sh->lru) &&
755 !test_bit(STRIPE_EXPANDING, &sh->state));
756 inc_empty_inactive_list_flag = 0;
757 if (!list_empty(conf->inactive_list + hash))
758 inc_empty_inactive_list_flag = 1;
759 list_del_init(&sh->lru);
760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 atomic_inc(&conf->empty_inactive_list_nr);
762 if (sh->group) {
763 sh->group->stripes_cnt--;
764 sh->group = NULL;
765 }
766 }
767 atomic_inc(&sh->count);
768 spin_unlock(&conf->device_lock);
769 }
770 } while (sh == NULL);
771
772 spin_unlock_irq(conf->hash_locks + hash);
773 return sh;
774 }
775
is_full_stripe_write(struct stripe_head * sh)776 static bool is_full_stripe_write(struct stripe_head *sh)
777 {
778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
780 }
781
lock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)782 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
783 __acquires(&sh1->stripe_lock)
784 __acquires(&sh2->stripe_lock)
785 {
786 if (sh1 > sh2) {
787 spin_lock_irq(&sh2->stripe_lock);
788 spin_lock_nested(&sh1->stripe_lock, 1);
789 } else {
790 spin_lock_irq(&sh1->stripe_lock);
791 spin_lock_nested(&sh2->stripe_lock, 1);
792 }
793 }
794
unlock_two_stripes(struct stripe_head * sh1,struct stripe_head * sh2)795 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
796 __releases(&sh1->stripe_lock)
797 __releases(&sh2->stripe_lock)
798 {
799 spin_unlock(&sh1->stripe_lock);
800 spin_unlock_irq(&sh2->stripe_lock);
801 }
802
803 /* Only freshly new full stripe normal write stripe can be added to a batch list */
stripe_can_batch(struct stripe_head * sh)804 static bool stripe_can_batch(struct stripe_head *sh)
805 {
806 struct r5conf *conf = sh->raid_conf;
807
808 if (raid5_has_log(conf) || raid5_has_ppl(conf))
809 return false;
810 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
812 is_full_stripe_write(sh);
813 }
814
815 /* we only do back search */
stripe_add_to_batch_list(struct r5conf * conf,struct stripe_head * sh)816 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
817 {
818 struct stripe_head *head;
819 sector_t head_sector, tmp_sec;
820 int hash;
821 int dd_idx;
822 int inc_empty_inactive_list_flag;
823
824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 tmp_sec = sh->sector;
826 if (!sector_div(tmp_sec, conf->chunk_sectors))
827 return;
828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
829
830 hash = stripe_hash_locks_hash(conf, head_sector);
831 spin_lock_irq(conf->hash_locks + hash);
832 head = __find_stripe(conf, head_sector, conf->generation);
833 if (head && !atomic_inc_not_zero(&head->count)) {
834 spin_lock(&conf->device_lock);
835 if (!atomic_read(&head->count)) {
836 if (!test_bit(STRIPE_HANDLE, &head->state))
837 atomic_inc(&conf->active_stripes);
838 BUG_ON(list_empty(&head->lru) &&
839 !test_bit(STRIPE_EXPANDING, &head->state));
840 inc_empty_inactive_list_flag = 0;
841 if (!list_empty(conf->inactive_list + hash))
842 inc_empty_inactive_list_flag = 1;
843 list_del_init(&head->lru);
844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 atomic_inc(&conf->empty_inactive_list_nr);
846 if (head->group) {
847 head->group->stripes_cnt--;
848 head->group = NULL;
849 }
850 }
851 atomic_inc(&head->count);
852 spin_unlock(&conf->device_lock);
853 }
854 spin_unlock_irq(conf->hash_locks + hash);
855
856 if (!head)
857 return;
858 if (!stripe_can_batch(head))
859 goto out;
860
861 lock_two_stripes(head, sh);
862 /* clear_batch_ready clear the flag */
863 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
864 goto unlock_out;
865
866 if (sh->batch_head)
867 goto unlock_out;
868
869 dd_idx = 0;
870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
871 dd_idx++;
872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
874 goto unlock_out;
875
876 if (head->batch_head) {
877 spin_lock(&head->batch_head->batch_lock);
878 /* This batch list is already running */
879 if (!stripe_can_batch(head)) {
880 spin_unlock(&head->batch_head->batch_lock);
881 goto unlock_out;
882 }
883 /*
884 * We must assign batch_head of this stripe within the
885 * batch_lock, otherwise clear_batch_ready of batch head
886 * stripe could clear BATCH_READY bit of this stripe and
887 * this stripe->batch_head doesn't get assigned, which
888 * could confuse clear_batch_ready for this stripe
889 */
890 sh->batch_head = head->batch_head;
891
892 /*
893 * at this point, head's BATCH_READY could be cleared, but we
894 * can still add the stripe to batch list
895 */
896 list_add(&sh->batch_list, &head->batch_list);
897 spin_unlock(&head->batch_head->batch_lock);
898 } else {
899 head->batch_head = head;
900 sh->batch_head = head->batch_head;
901 spin_lock(&head->batch_lock);
902 list_add_tail(&sh->batch_list, &head->batch_list);
903 spin_unlock(&head->batch_lock);
904 }
905
906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 if (atomic_dec_return(&conf->preread_active_stripes)
908 < IO_THRESHOLD)
909 md_wakeup_thread(conf->mddev->thread);
910
911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 int seq = sh->bm_seq;
913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 sh->batch_head->bm_seq > seq)
915 seq = sh->batch_head->bm_seq;
916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 sh->batch_head->bm_seq = seq;
918 }
919
920 atomic_inc(&sh->count);
921 unlock_out:
922 unlock_two_stripes(head, sh);
923 out:
924 raid5_release_stripe(head);
925 }
926
927 /* Determine if 'data_offset' or 'new_data_offset' should be used
928 * in this stripe_head.
929 */
use_new_offset(struct r5conf * conf,struct stripe_head * sh)930 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
931 {
932 sector_t progress = conf->reshape_progress;
933 /* Need a memory barrier to make sure we see the value
934 * of conf->generation, or ->data_offset that was set before
935 * reshape_progress was updated.
936 */
937 smp_rmb();
938 if (progress == MaxSector)
939 return 0;
940 if (sh->generation == conf->generation - 1)
941 return 0;
942 /* We are in a reshape, and this is a new-generation stripe,
943 * so use new_data_offset.
944 */
945 return 1;
946 }
947
dispatch_bio_list(struct bio_list * tmp)948 static void dispatch_bio_list(struct bio_list *tmp)
949 {
950 struct bio *bio;
951
952 while ((bio = bio_list_pop(tmp)))
953 submit_bio_noacct(bio);
954 }
955
cmp_stripe(void * priv,struct list_head * a,struct list_head * b)956 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
957 {
958 const struct r5pending_data *da = list_entry(a,
959 struct r5pending_data, sibling);
960 const struct r5pending_data *db = list_entry(b,
961 struct r5pending_data, sibling);
962 if (da->sector > db->sector)
963 return 1;
964 if (da->sector < db->sector)
965 return -1;
966 return 0;
967 }
968
dispatch_defer_bios(struct r5conf * conf,int target,struct bio_list * list)969 static void dispatch_defer_bios(struct r5conf *conf, int target,
970 struct bio_list *list)
971 {
972 struct r5pending_data *data;
973 struct list_head *first, *next = NULL;
974 int cnt = 0;
975
976 if (conf->pending_data_cnt == 0)
977 return;
978
979 list_sort(NULL, &conf->pending_list, cmp_stripe);
980
981 first = conf->pending_list.next;
982
983 /* temporarily move the head */
984 if (conf->next_pending_data)
985 list_move_tail(&conf->pending_list,
986 &conf->next_pending_data->sibling);
987
988 while (!list_empty(&conf->pending_list)) {
989 data = list_first_entry(&conf->pending_list,
990 struct r5pending_data, sibling);
991 if (&data->sibling == first)
992 first = data->sibling.next;
993 next = data->sibling.next;
994
995 bio_list_merge(list, &data->bios);
996 list_move(&data->sibling, &conf->free_list);
997 cnt++;
998 if (cnt >= target)
999 break;
1000 }
1001 conf->pending_data_cnt -= cnt;
1002 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1003
1004 if (next != &conf->pending_list)
1005 conf->next_pending_data = list_entry(next,
1006 struct r5pending_data, sibling);
1007 else
1008 conf->next_pending_data = NULL;
1009 /* list isn't empty */
1010 if (first != &conf->pending_list)
1011 list_move_tail(&conf->pending_list, first);
1012 }
1013
flush_deferred_bios(struct r5conf * conf)1014 static void flush_deferred_bios(struct r5conf *conf)
1015 {
1016 struct bio_list tmp = BIO_EMPTY_LIST;
1017
1018 if (conf->pending_data_cnt == 0)
1019 return;
1020
1021 spin_lock(&conf->pending_bios_lock);
1022 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1023 BUG_ON(conf->pending_data_cnt != 0);
1024 spin_unlock(&conf->pending_bios_lock);
1025
1026 dispatch_bio_list(&tmp);
1027 }
1028
defer_issue_bios(struct r5conf * conf,sector_t sector,struct bio_list * bios)1029 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1030 struct bio_list *bios)
1031 {
1032 struct bio_list tmp = BIO_EMPTY_LIST;
1033 struct r5pending_data *ent;
1034
1035 spin_lock(&conf->pending_bios_lock);
1036 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1037 sibling);
1038 list_move_tail(&ent->sibling, &conf->pending_list);
1039 ent->sector = sector;
1040 bio_list_init(&ent->bios);
1041 bio_list_merge(&ent->bios, bios);
1042 conf->pending_data_cnt++;
1043 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1044 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1045
1046 spin_unlock(&conf->pending_bios_lock);
1047
1048 dispatch_bio_list(&tmp);
1049 }
1050
1051 static void
1052 raid5_end_read_request(struct bio *bi);
1053 static void
1054 raid5_end_write_request(struct bio *bi);
1055
ops_run_io(struct stripe_head * sh,struct stripe_head_state * s)1056 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1057 {
1058 struct r5conf *conf = sh->raid_conf;
1059 int i, disks = sh->disks;
1060 struct stripe_head *head_sh = sh;
1061 struct bio_list pending_bios = BIO_EMPTY_LIST;
1062 bool should_defer;
1063
1064 might_sleep();
1065
1066 if (log_stripe(sh, s) == 0)
1067 return;
1068
1069 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1070
1071 for (i = disks; i--; ) {
1072 int op, op_flags = 0;
1073 int replace_only = 0;
1074 struct bio *bi, *rbi;
1075 struct md_rdev *rdev, *rrdev = NULL;
1076
1077 sh = head_sh;
1078 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1079 op = REQ_OP_WRITE;
1080 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1081 op_flags = REQ_FUA;
1082 if (test_bit(R5_Discard, &sh->dev[i].flags))
1083 op = REQ_OP_DISCARD;
1084 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1085 op = REQ_OP_READ;
1086 else if (test_and_clear_bit(R5_WantReplace,
1087 &sh->dev[i].flags)) {
1088 op = REQ_OP_WRITE;
1089 replace_only = 1;
1090 } else
1091 continue;
1092 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1093 op_flags |= REQ_SYNC;
1094
1095 again:
1096 bi = &sh->dev[i].req;
1097 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1098
1099 rcu_read_lock();
1100 rrdev = rcu_dereference(conf->disks[i].replacement);
1101 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1102 rdev = rcu_dereference(conf->disks[i].rdev);
1103 if (!rdev) {
1104 rdev = rrdev;
1105 rrdev = NULL;
1106 }
1107 if (op_is_write(op)) {
1108 if (replace_only)
1109 rdev = NULL;
1110 if (rdev == rrdev)
1111 /* We raced and saw duplicates */
1112 rrdev = NULL;
1113 } else {
1114 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1115 rdev = rrdev;
1116 rrdev = NULL;
1117 }
1118
1119 if (rdev && test_bit(Faulty, &rdev->flags))
1120 rdev = NULL;
1121 if (rdev)
1122 atomic_inc(&rdev->nr_pending);
1123 if (rrdev && test_bit(Faulty, &rrdev->flags))
1124 rrdev = NULL;
1125 if (rrdev)
1126 atomic_inc(&rrdev->nr_pending);
1127 rcu_read_unlock();
1128
1129 /* We have already checked bad blocks for reads. Now
1130 * need to check for writes. We never accept write errors
1131 * on the replacement, so we don't to check rrdev.
1132 */
1133 while (op_is_write(op) && rdev &&
1134 test_bit(WriteErrorSeen, &rdev->flags)) {
1135 sector_t first_bad;
1136 int bad_sectors;
1137 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1138 &first_bad, &bad_sectors);
1139 if (!bad)
1140 break;
1141
1142 if (bad < 0) {
1143 set_bit(BlockedBadBlocks, &rdev->flags);
1144 if (!conf->mddev->external &&
1145 conf->mddev->sb_flags) {
1146 /* It is very unlikely, but we might
1147 * still need to write out the
1148 * bad block log - better give it
1149 * a chance*/
1150 md_check_recovery(conf->mddev);
1151 }
1152 /*
1153 * Because md_wait_for_blocked_rdev
1154 * will dec nr_pending, we must
1155 * increment it first.
1156 */
1157 atomic_inc(&rdev->nr_pending);
1158 md_wait_for_blocked_rdev(rdev, conf->mddev);
1159 } else {
1160 /* Acknowledged bad block - skip the write */
1161 rdev_dec_pending(rdev, conf->mddev);
1162 rdev = NULL;
1163 }
1164 }
1165
1166 if (rdev) {
1167 if (s->syncing || s->expanding || s->expanded
1168 || s->replacing)
1169 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1170
1171 set_bit(STRIPE_IO_STARTED, &sh->state);
1172
1173 bio_set_dev(bi, rdev->bdev);
1174 bio_set_op_attrs(bi, op, op_flags);
1175 bi->bi_end_io = op_is_write(op)
1176 ? raid5_end_write_request
1177 : raid5_end_read_request;
1178 bi->bi_private = sh;
1179
1180 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1181 __func__, (unsigned long long)sh->sector,
1182 bi->bi_opf, i);
1183 atomic_inc(&sh->count);
1184 if (sh != head_sh)
1185 atomic_inc(&head_sh->count);
1186 if (use_new_offset(conf, sh))
1187 bi->bi_iter.bi_sector = (sh->sector
1188 + rdev->new_data_offset);
1189 else
1190 bi->bi_iter.bi_sector = (sh->sector
1191 + rdev->data_offset);
1192 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1193 bi->bi_opf |= REQ_NOMERGE;
1194
1195 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1196 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1197
1198 if (!op_is_write(op) &&
1199 test_bit(R5_InJournal, &sh->dev[i].flags))
1200 /*
1201 * issuing read for a page in journal, this
1202 * must be preparing for prexor in rmw; read
1203 * the data into orig_page
1204 */
1205 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1206 else
1207 sh->dev[i].vec.bv_page = sh->dev[i].page;
1208 bi->bi_vcnt = 1;
1209 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1210 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1211 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1212 bi->bi_write_hint = sh->dev[i].write_hint;
1213 if (!rrdev)
1214 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1215 /*
1216 * If this is discard request, set bi_vcnt 0. We don't
1217 * want to confuse SCSI because SCSI will replace payload
1218 */
1219 if (op == REQ_OP_DISCARD)
1220 bi->bi_vcnt = 0;
1221 if (rrdev)
1222 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1223
1224 if (conf->mddev->gendisk)
1225 trace_block_bio_remap(bi->bi_disk->queue,
1226 bi, disk_devt(conf->mddev->gendisk),
1227 sh->dev[i].sector);
1228 if (should_defer && op_is_write(op))
1229 bio_list_add(&pending_bios, bi);
1230 else
1231 submit_bio_noacct(bi);
1232 }
1233 if (rrdev) {
1234 if (s->syncing || s->expanding || s->expanded
1235 || s->replacing)
1236 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1237
1238 set_bit(STRIPE_IO_STARTED, &sh->state);
1239
1240 bio_set_dev(rbi, rrdev->bdev);
1241 bio_set_op_attrs(rbi, op, op_flags);
1242 BUG_ON(!op_is_write(op));
1243 rbi->bi_end_io = raid5_end_write_request;
1244 rbi->bi_private = sh;
1245
1246 pr_debug("%s: for %llu schedule op %d on "
1247 "replacement disc %d\n",
1248 __func__, (unsigned long long)sh->sector,
1249 rbi->bi_opf, i);
1250 atomic_inc(&sh->count);
1251 if (sh != head_sh)
1252 atomic_inc(&head_sh->count);
1253 if (use_new_offset(conf, sh))
1254 rbi->bi_iter.bi_sector = (sh->sector
1255 + rrdev->new_data_offset);
1256 else
1257 rbi->bi_iter.bi_sector = (sh->sector
1258 + rrdev->data_offset);
1259 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1260 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1261 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1262 rbi->bi_vcnt = 1;
1263 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1264 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1265 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1266 rbi->bi_write_hint = sh->dev[i].write_hint;
1267 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1268 /*
1269 * If this is discard request, set bi_vcnt 0. We don't
1270 * want to confuse SCSI because SCSI will replace payload
1271 */
1272 if (op == REQ_OP_DISCARD)
1273 rbi->bi_vcnt = 0;
1274 if (conf->mddev->gendisk)
1275 trace_block_bio_remap(rbi->bi_disk->queue,
1276 rbi, disk_devt(conf->mddev->gendisk),
1277 sh->dev[i].sector);
1278 if (should_defer && op_is_write(op))
1279 bio_list_add(&pending_bios, rbi);
1280 else
1281 submit_bio_noacct(rbi);
1282 }
1283 if (!rdev && !rrdev) {
1284 if (op_is_write(op))
1285 set_bit(STRIPE_DEGRADED, &sh->state);
1286 pr_debug("skip op %d on disc %d for sector %llu\n",
1287 bi->bi_opf, i, (unsigned long long)sh->sector);
1288 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1289 set_bit(STRIPE_HANDLE, &sh->state);
1290 }
1291
1292 if (!head_sh->batch_head)
1293 continue;
1294 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1295 batch_list);
1296 if (sh != head_sh)
1297 goto again;
1298 }
1299
1300 if (should_defer && !bio_list_empty(&pending_bios))
1301 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1302 }
1303
1304 static struct dma_async_tx_descriptor *
async_copy_data(int frombio,struct bio * bio,struct page ** page,unsigned int poff,sector_t sector,struct dma_async_tx_descriptor * tx,struct stripe_head * sh,int no_skipcopy)1305 async_copy_data(int frombio, struct bio *bio, struct page **page,
1306 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1307 struct stripe_head *sh, int no_skipcopy)
1308 {
1309 struct bio_vec bvl;
1310 struct bvec_iter iter;
1311 struct page *bio_page;
1312 int page_offset;
1313 struct async_submit_ctl submit;
1314 enum async_tx_flags flags = 0;
1315 struct r5conf *conf = sh->raid_conf;
1316
1317 if (bio->bi_iter.bi_sector >= sector)
1318 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1319 else
1320 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1321
1322 if (frombio)
1323 flags |= ASYNC_TX_FENCE;
1324 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1325
1326 bio_for_each_segment(bvl, bio, iter) {
1327 int len = bvl.bv_len;
1328 int clen;
1329 int b_offset = 0;
1330
1331 if (page_offset < 0) {
1332 b_offset = -page_offset;
1333 page_offset += b_offset;
1334 len -= b_offset;
1335 }
1336
1337 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1338 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1339 else
1340 clen = len;
1341
1342 if (clen > 0) {
1343 b_offset += bvl.bv_offset;
1344 bio_page = bvl.bv_page;
1345 if (frombio) {
1346 if (conf->skip_copy &&
1347 b_offset == 0 && page_offset == 0 &&
1348 clen == RAID5_STRIPE_SIZE(conf) &&
1349 !no_skipcopy)
1350 *page = bio_page;
1351 else
1352 tx = async_memcpy(*page, bio_page, page_offset + poff,
1353 b_offset, clen, &submit);
1354 } else
1355 tx = async_memcpy(bio_page, *page, b_offset,
1356 page_offset + poff, clen, &submit);
1357 }
1358 /* chain the operations */
1359 submit.depend_tx = tx;
1360
1361 if (clen < len) /* hit end of page */
1362 break;
1363 page_offset += len;
1364 }
1365
1366 return tx;
1367 }
1368
ops_complete_biofill(void * stripe_head_ref)1369 static void ops_complete_biofill(void *stripe_head_ref)
1370 {
1371 struct stripe_head *sh = stripe_head_ref;
1372 int i;
1373 struct r5conf *conf = sh->raid_conf;
1374
1375 pr_debug("%s: stripe %llu\n", __func__,
1376 (unsigned long long)sh->sector);
1377
1378 /* clear completed biofills */
1379 for (i = sh->disks; i--; ) {
1380 struct r5dev *dev = &sh->dev[i];
1381
1382 /* acknowledge completion of a biofill operation */
1383 /* and check if we need to reply to a read request,
1384 * new R5_Wantfill requests are held off until
1385 * !STRIPE_BIOFILL_RUN
1386 */
1387 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1388 struct bio *rbi, *rbi2;
1389
1390 BUG_ON(!dev->read);
1391 rbi = dev->read;
1392 dev->read = NULL;
1393 while (rbi && rbi->bi_iter.bi_sector <
1394 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1395 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1396 bio_endio(rbi);
1397 rbi = rbi2;
1398 }
1399 }
1400 }
1401 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1402
1403 set_bit(STRIPE_HANDLE, &sh->state);
1404 raid5_release_stripe(sh);
1405 }
1406
ops_run_biofill(struct stripe_head * sh)1407 static void ops_run_biofill(struct stripe_head *sh)
1408 {
1409 struct dma_async_tx_descriptor *tx = NULL;
1410 struct async_submit_ctl submit;
1411 int i;
1412 struct r5conf *conf = sh->raid_conf;
1413
1414 BUG_ON(sh->batch_head);
1415 pr_debug("%s: stripe %llu\n", __func__,
1416 (unsigned long long)sh->sector);
1417
1418 for (i = sh->disks; i--; ) {
1419 struct r5dev *dev = &sh->dev[i];
1420 if (test_bit(R5_Wantfill, &dev->flags)) {
1421 struct bio *rbi;
1422 spin_lock_irq(&sh->stripe_lock);
1423 dev->read = rbi = dev->toread;
1424 dev->toread = NULL;
1425 spin_unlock_irq(&sh->stripe_lock);
1426 while (rbi && rbi->bi_iter.bi_sector <
1427 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1428 tx = async_copy_data(0, rbi, &dev->page,
1429 dev->offset,
1430 dev->sector, tx, sh, 0);
1431 rbi = r5_next_bio(conf, rbi, dev->sector);
1432 }
1433 }
1434 }
1435
1436 atomic_inc(&sh->count);
1437 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1438 async_trigger_callback(&submit);
1439 }
1440
mark_target_uptodate(struct stripe_head * sh,int target)1441 static void mark_target_uptodate(struct stripe_head *sh, int target)
1442 {
1443 struct r5dev *tgt;
1444
1445 if (target < 0)
1446 return;
1447
1448 tgt = &sh->dev[target];
1449 set_bit(R5_UPTODATE, &tgt->flags);
1450 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1451 clear_bit(R5_Wantcompute, &tgt->flags);
1452 }
1453
ops_complete_compute(void * stripe_head_ref)1454 static void ops_complete_compute(void *stripe_head_ref)
1455 {
1456 struct stripe_head *sh = stripe_head_ref;
1457
1458 pr_debug("%s: stripe %llu\n", __func__,
1459 (unsigned long long)sh->sector);
1460
1461 /* mark the computed target(s) as uptodate */
1462 mark_target_uptodate(sh, sh->ops.target);
1463 mark_target_uptodate(sh, sh->ops.target2);
1464
1465 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1466 if (sh->check_state == check_state_compute_run)
1467 sh->check_state = check_state_compute_result;
1468 set_bit(STRIPE_HANDLE, &sh->state);
1469 raid5_release_stripe(sh);
1470 }
1471
1472 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_page(struct raid5_percpu * percpu,int i)1473 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1474 {
1475 return percpu->scribble + i * percpu->scribble_obj_size;
1476 }
1477
1478 /* return a pointer to the address conversion region of the scribble buffer */
to_addr_conv(struct stripe_head * sh,struct raid5_percpu * percpu,int i)1479 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1480 struct raid5_percpu *percpu, int i)
1481 {
1482 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1483 }
1484
1485 /*
1486 * Return a pointer to record offset address.
1487 */
1488 static unsigned int *
to_addr_offs(struct stripe_head * sh,struct raid5_percpu * percpu)1489 to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1490 {
1491 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1492 }
1493
1494 static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head * sh,struct raid5_percpu * percpu)1495 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1496 {
1497 int disks = sh->disks;
1498 struct page **xor_srcs = to_addr_page(percpu, 0);
1499 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1500 int target = sh->ops.target;
1501 struct r5dev *tgt = &sh->dev[target];
1502 struct page *xor_dest = tgt->page;
1503 unsigned int off_dest = tgt->offset;
1504 int count = 0;
1505 struct dma_async_tx_descriptor *tx;
1506 struct async_submit_ctl submit;
1507 int i;
1508
1509 BUG_ON(sh->batch_head);
1510
1511 pr_debug("%s: stripe %llu block: %d\n",
1512 __func__, (unsigned long long)sh->sector, target);
1513 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514
1515 for (i = disks; i--; ) {
1516 if (i != target) {
1517 off_srcs[count] = sh->dev[i].offset;
1518 xor_srcs[count++] = sh->dev[i].page;
1519 }
1520 }
1521
1522 atomic_inc(&sh->count);
1523
1524 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1525 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1526 if (unlikely(count == 1))
1527 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1528 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1529 else
1530 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1531 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1532
1533 return tx;
1534 }
1535
1536 /* set_syndrome_sources - populate source buffers for gen_syndrome
1537 * @srcs - (struct page *) array of size sh->disks
1538 * @offs - (unsigned int) array of offset for each page
1539 * @sh - stripe_head to parse
1540 *
1541 * Populates srcs in proper layout order for the stripe and returns the
1542 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1543 * destination buffer is recorded in srcs[count] and the Q destination
1544 * is recorded in srcs[count+1]].
1545 */
set_syndrome_sources(struct page ** srcs,unsigned int * offs,struct stripe_head * sh,int srctype)1546 static int set_syndrome_sources(struct page **srcs,
1547 unsigned int *offs,
1548 struct stripe_head *sh,
1549 int srctype)
1550 {
1551 int disks = sh->disks;
1552 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1553 int d0_idx = raid6_d0(sh);
1554 int count;
1555 int i;
1556
1557 for (i = 0; i < disks; i++)
1558 srcs[i] = NULL;
1559
1560 count = 0;
1561 i = d0_idx;
1562 do {
1563 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1564 struct r5dev *dev = &sh->dev[i];
1565
1566 if (i == sh->qd_idx || i == sh->pd_idx ||
1567 (srctype == SYNDROME_SRC_ALL) ||
1568 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1569 (test_bit(R5_Wantdrain, &dev->flags) ||
1570 test_bit(R5_InJournal, &dev->flags))) ||
1571 (srctype == SYNDROME_SRC_WRITTEN &&
1572 (dev->written ||
1573 test_bit(R5_InJournal, &dev->flags)))) {
1574 if (test_bit(R5_InJournal, &dev->flags))
1575 srcs[slot] = sh->dev[i].orig_page;
1576 else
1577 srcs[slot] = sh->dev[i].page;
1578 /*
1579 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1580 * not shared page. In that case, dev[i].offset
1581 * is 0.
1582 */
1583 offs[slot] = sh->dev[i].offset;
1584 }
1585 i = raid6_next_disk(i, disks);
1586 } while (i != d0_idx);
1587
1588 return syndrome_disks;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head * sh,struct raid5_percpu * percpu)1592 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1593 {
1594 int disks = sh->disks;
1595 struct page **blocks = to_addr_page(percpu, 0);
1596 unsigned int *offs = to_addr_offs(sh, percpu);
1597 int target;
1598 int qd_idx = sh->qd_idx;
1599 struct dma_async_tx_descriptor *tx;
1600 struct async_submit_ctl submit;
1601 struct r5dev *tgt;
1602 struct page *dest;
1603 unsigned int dest_off;
1604 int i;
1605 int count;
1606
1607 BUG_ON(sh->batch_head);
1608 if (sh->ops.target < 0)
1609 target = sh->ops.target2;
1610 else if (sh->ops.target2 < 0)
1611 target = sh->ops.target;
1612 else
1613 /* we should only have one valid target */
1614 BUG();
1615 BUG_ON(target < 0);
1616 pr_debug("%s: stripe %llu block: %d\n",
1617 __func__, (unsigned long long)sh->sector, target);
1618
1619 tgt = &sh->dev[target];
1620 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1621 dest = tgt->page;
1622 dest_off = tgt->offset;
1623
1624 atomic_inc(&sh->count);
1625
1626 if (target == qd_idx) {
1627 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1628 blocks[count] = NULL; /* regenerating p is not necessary */
1629 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1630 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1631 ops_complete_compute, sh,
1632 to_addr_conv(sh, percpu, 0));
1633 tx = async_gen_syndrome(blocks, offs, count+2,
1634 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1635 } else {
1636 /* Compute any data- or p-drive using XOR */
1637 count = 0;
1638 for (i = disks; i-- ; ) {
1639 if (i == target || i == qd_idx)
1640 continue;
1641 offs[count] = sh->dev[i].offset;
1642 blocks[count++] = sh->dev[i].page;
1643 }
1644
1645 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1646 NULL, ops_complete_compute, sh,
1647 to_addr_conv(sh, percpu, 0));
1648 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1649 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1650 }
1651
1652 return tx;
1653 }
1654
1655 static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head * sh,struct raid5_percpu * percpu)1656 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1657 {
1658 int i, count, disks = sh->disks;
1659 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1660 int d0_idx = raid6_d0(sh);
1661 int faila = -1, failb = -1;
1662 int target = sh->ops.target;
1663 int target2 = sh->ops.target2;
1664 struct r5dev *tgt = &sh->dev[target];
1665 struct r5dev *tgt2 = &sh->dev[target2];
1666 struct dma_async_tx_descriptor *tx;
1667 struct page **blocks = to_addr_page(percpu, 0);
1668 unsigned int *offs = to_addr_offs(sh, percpu);
1669 struct async_submit_ctl submit;
1670
1671 BUG_ON(sh->batch_head);
1672 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1673 __func__, (unsigned long long)sh->sector, target, target2);
1674 BUG_ON(target < 0 || target2 < 0);
1675 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1677
1678 /* we need to open-code set_syndrome_sources to handle the
1679 * slot number conversion for 'faila' and 'failb'
1680 */
1681 for (i = 0; i < disks ; i++) {
1682 offs[i] = 0;
1683 blocks[i] = NULL;
1684 }
1685 count = 0;
1686 i = d0_idx;
1687 do {
1688 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1689
1690 offs[slot] = sh->dev[i].offset;
1691 blocks[slot] = sh->dev[i].page;
1692
1693 if (i == target)
1694 faila = slot;
1695 if (i == target2)
1696 failb = slot;
1697 i = raid6_next_disk(i, disks);
1698 } while (i != d0_idx);
1699
1700 BUG_ON(faila == failb);
1701 if (failb < faila)
1702 swap(faila, failb);
1703 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1704 __func__, (unsigned long long)sh->sector, faila, failb);
1705
1706 atomic_inc(&sh->count);
1707
1708 if (failb == syndrome_disks+1) {
1709 /* Q disk is one of the missing disks */
1710 if (faila == syndrome_disks) {
1711 /* Missing P+Q, just recompute */
1712 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1713 ops_complete_compute, sh,
1714 to_addr_conv(sh, percpu, 0));
1715 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1716 RAID5_STRIPE_SIZE(sh->raid_conf),
1717 &submit);
1718 } else {
1719 struct page *dest;
1720 unsigned int dest_off;
1721 int data_target;
1722 int qd_idx = sh->qd_idx;
1723
1724 /* Missing D+Q: recompute D from P, then recompute Q */
1725 if (target == qd_idx)
1726 data_target = target2;
1727 else
1728 data_target = target;
1729
1730 count = 0;
1731 for (i = disks; i-- ; ) {
1732 if (i == data_target || i == qd_idx)
1733 continue;
1734 offs[count] = sh->dev[i].offset;
1735 blocks[count++] = sh->dev[i].page;
1736 }
1737 dest = sh->dev[data_target].page;
1738 dest_off = sh->dev[data_target].offset;
1739 init_async_submit(&submit,
1740 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1741 NULL, NULL, NULL,
1742 to_addr_conv(sh, percpu, 0));
1743 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1744 RAID5_STRIPE_SIZE(sh->raid_conf),
1745 &submit);
1746
1747 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1748 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1749 ops_complete_compute, sh,
1750 to_addr_conv(sh, percpu, 0));
1751 return async_gen_syndrome(blocks, offs, count+2,
1752 RAID5_STRIPE_SIZE(sh->raid_conf),
1753 &submit);
1754 }
1755 } else {
1756 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1757 ops_complete_compute, sh,
1758 to_addr_conv(sh, percpu, 0));
1759 if (failb == syndrome_disks) {
1760 /* We're missing D+P. */
1761 return async_raid6_datap_recov(syndrome_disks+2,
1762 RAID5_STRIPE_SIZE(sh->raid_conf),
1763 faila,
1764 blocks, offs, &submit);
1765 } else {
1766 /* We're missing D+D. */
1767 return async_raid6_2data_recov(syndrome_disks+2,
1768 RAID5_STRIPE_SIZE(sh->raid_conf),
1769 faila, failb,
1770 blocks, offs, &submit);
1771 }
1772 }
1773 }
1774
ops_complete_prexor(void * stripe_head_ref)1775 static void ops_complete_prexor(void *stripe_head_ref)
1776 {
1777 struct stripe_head *sh = stripe_head_ref;
1778
1779 pr_debug("%s: stripe %llu\n", __func__,
1780 (unsigned long long)sh->sector);
1781
1782 if (r5c_is_writeback(sh->raid_conf->log))
1783 /*
1784 * raid5-cache write back uses orig_page during prexor.
1785 * After prexor, it is time to free orig_page
1786 */
1787 r5c_release_extra_page(sh);
1788 }
1789
1790 static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1791 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1792 struct dma_async_tx_descriptor *tx)
1793 {
1794 int disks = sh->disks;
1795 struct page **xor_srcs = to_addr_page(percpu, 0);
1796 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1797 int count = 0, pd_idx = sh->pd_idx, i;
1798 struct async_submit_ctl submit;
1799
1800 /* existing parity data subtracted */
1801 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1802 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1803
1804 BUG_ON(sh->batch_head);
1805 pr_debug("%s: stripe %llu\n", __func__,
1806 (unsigned long long)sh->sector);
1807
1808 for (i = disks; i--; ) {
1809 struct r5dev *dev = &sh->dev[i];
1810 /* Only process blocks that are known to be uptodate */
1811 if (test_bit(R5_InJournal, &dev->flags)) {
1812 /*
1813 * For this case, PAGE_SIZE must be equal to 4KB and
1814 * page offset is zero.
1815 */
1816 off_srcs[count] = dev->offset;
1817 xor_srcs[count++] = dev->orig_page;
1818 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1819 off_srcs[count] = dev->offset;
1820 xor_srcs[count++] = dev->page;
1821 }
1822 }
1823
1824 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1825 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1826 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1827 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1828
1829 return tx;
1830 }
1831
1832 static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1833 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1834 struct dma_async_tx_descriptor *tx)
1835 {
1836 struct page **blocks = to_addr_page(percpu, 0);
1837 unsigned int *offs = to_addr_offs(sh, percpu);
1838 int count;
1839 struct async_submit_ctl submit;
1840
1841 pr_debug("%s: stripe %llu\n", __func__,
1842 (unsigned long long)sh->sector);
1843
1844 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1845
1846 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1847 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1848 tx = async_gen_syndrome(blocks, offs, count+2,
1849 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1850
1851 return tx;
1852 }
1853
1854 static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head * sh,struct dma_async_tx_descriptor * tx)1855 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1856 {
1857 struct r5conf *conf = sh->raid_conf;
1858 int disks = sh->disks;
1859 int i;
1860 struct stripe_head *head_sh = sh;
1861
1862 pr_debug("%s: stripe %llu\n", __func__,
1863 (unsigned long long)sh->sector);
1864
1865 for (i = disks; i--; ) {
1866 struct r5dev *dev;
1867 struct bio *chosen;
1868
1869 sh = head_sh;
1870 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1871 struct bio *wbi;
1872
1873 again:
1874 dev = &sh->dev[i];
1875 /*
1876 * clear R5_InJournal, so when rewriting a page in
1877 * journal, it is not skipped by r5l_log_stripe()
1878 */
1879 clear_bit(R5_InJournal, &dev->flags);
1880 spin_lock_irq(&sh->stripe_lock);
1881 chosen = dev->towrite;
1882 dev->towrite = NULL;
1883 sh->overwrite_disks = 0;
1884 BUG_ON(dev->written);
1885 wbi = dev->written = chosen;
1886 spin_unlock_irq(&sh->stripe_lock);
1887 WARN_ON(dev->page != dev->orig_page);
1888
1889 while (wbi && wbi->bi_iter.bi_sector <
1890 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1891 if (wbi->bi_opf & REQ_FUA)
1892 set_bit(R5_WantFUA, &dev->flags);
1893 if (wbi->bi_opf & REQ_SYNC)
1894 set_bit(R5_SyncIO, &dev->flags);
1895 if (bio_op(wbi) == REQ_OP_DISCARD)
1896 set_bit(R5_Discard, &dev->flags);
1897 else {
1898 tx = async_copy_data(1, wbi, &dev->page,
1899 dev->offset,
1900 dev->sector, tx, sh,
1901 r5c_is_writeback(conf->log));
1902 if (dev->page != dev->orig_page &&
1903 !r5c_is_writeback(conf->log)) {
1904 set_bit(R5_SkipCopy, &dev->flags);
1905 clear_bit(R5_UPTODATE, &dev->flags);
1906 clear_bit(R5_OVERWRITE, &dev->flags);
1907 }
1908 }
1909 wbi = r5_next_bio(conf, wbi, dev->sector);
1910 }
1911
1912 if (head_sh->batch_head) {
1913 sh = list_first_entry(&sh->batch_list,
1914 struct stripe_head,
1915 batch_list);
1916 if (sh == head_sh)
1917 continue;
1918 goto again;
1919 }
1920 }
1921 }
1922
1923 return tx;
1924 }
1925
ops_complete_reconstruct(void * stripe_head_ref)1926 static void ops_complete_reconstruct(void *stripe_head_ref)
1927 {
1928 struct stripe_head *sh = stripe_head_ref;
1929 int disks = sh->disks;
1930 int pd_idx = sh->pd_idx;
1931 int qd_idx = sh->qd_idx;
1932 int i;
1933 bool fua = false, sync = false, discard = false;
1934
1935 pr_debug("%s: stripe %llu\n", __func__,
1936 (unsigned long long)sh->sector);
1937
1938 for (i = disks; i--; ) {
1939 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1940 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1941 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1942 }
1943
1944 for (i = disks; i--; ) {
1945 struct r5dev *dev = &sh->dev[i];
1946
1947 if (dev->written || i == pd_idx || i == qd_idx) {
1948 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1949 set_bit(R5_UPTODATE, &dev->flags);
1950 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1951 set_bit(R5_Expanded, &dev->flags);
1952 }
1953 if (fua)
1954 set_bit(R5_WantFUA, &dev->flags);
1955 if (sync)
1956 set_bit(R5_SyncIO, &dev->flags);
1957 }
1958 }
1959
1960 if (sh->reconstruct_state == reconstruct_state_drain_run)
1961 sh->reconstruct_state = reconstruct_state_drain_result;
1962 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1963 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1964 else {
1965 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1966 sh->reconstruct_state = reconstruct_state_result;
1967 }
1968
1969 set_bit(STRIPE_HANDLE, &sh->state);
1970 raid5_release_stripe(sh);
1971 }
1972
1973 static void
ops_run_reconstruct5(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)1974 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1975 struct dma_async_tx_descriptor *tx)
1976 {
1977 int disks = sh->disks;
1978 struct page **xor_srcs;
1979 unsigned int *off_srcs;
1980 struct async_submit_ctl submit;
1981 int count, pd_idx = sh->pd_idx, i;
1982 struct page *xor_dest;
1983 unsigned int off_dest;
1984 int prexor = 0;
1985 unsigned long flags;
1986 int j = 0;
1987 struct stripe_head *head_sh = sh;
1988 int last_stripe;
1989
1990 pr_debug("%s: stripe %llu\n", __func__,
1991 (unsigned long long)sh->sector);
1992
1993 for (i = 0; i < sh->disks; i++) {
1994 if (pd_idx == i)
1995 continue;
1996 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1997 break;
1998 }
1999 if (i >= sh->disks) {
2000 atomic_inc(&sh->count);
2001 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2002 ops_complete_reconstruct(sh);
2003 return;
2004 }
2005 again:
2006 count = 0;
2007 xor_srcs = to_addr_page(percpu, j);
2008 off_srcs = to_addr_offs(sh, percpu);
2009 /* check if prexor is active which means only process blocks
2010 * that are part of a read-modify-write (written)
2011 */
2012 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2013 prexor = 1;
2014 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2015 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2016 for (i = disks; i--; ) {
2017 struct r5dev *dev = &sh->dev[i];
2018 if (head_sh->dev[i].written ||
2019 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2020 off_srcs[count] = dev->offset;
2021 xor_srcs[count++] = dev->page;
2022 }
2023 }
2024 } else {
2025 xor_dest = sh->dev[pd_idx].page;
2026 off_dest = sh->dev[pd_idx].offset;
2027 for (i = disks; i--; ) {
2028 struct r5dev *dev = &sh->dev[i];
2029 if (i != pd_idx) {
2030 off_srcs[count] = dev->offset;
2031 xor_srcs[count++] = dev->page;
2032 }
2033 }
2034 }
2035
2036 /* 1/ if we prexor'd then the dest is reused as a source
2037 * 2/ if we did not prexor then we are redoing the parity
2038 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2039 * for the synchronous xor case
2040 */
2041 last_stripe = !head_sh->batch_head ||
2042 list_first_entry(&sh->batch_list,
2043 struct stripe_head, batch_list) == head_sh;
2044 if (last_stripe) {
2045 flags = ASYNC_TX_ACK |
2046 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2047
2048 atomic_inc(&head_sh->count);
2049 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2050 to_addr_conv(sh, percpu, j));
2051 } else {
2052 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2053 init_async_submit(&submit, flags, tx, NULL, NULL,
2054 to_addr_conv(sh, percpu, j));
2055 }
2056
2057 if (unlikely(count == 1))
2058 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2059 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2060 else
2061 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2062 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2063 if (!last_stripe) {
2064 j++;
2065 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2066 batch_list);
2067 goto again;
2068 }
2069 }
2070
2071 static void
ops_run_reconstruct6(struct stripe_head * sh,struct raid5_percpu * percpu,struct dma_async_tx_descriptor * tx)2072 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2073 struct dma_async_tx_descriptor *tx)
2074 {
2075 struct async_submit_ctl submit;
2076 struct page **blocks;
2077 unsigned int *offs;
2078 int count, i, j = 0;
2079 struct stripe_head *head_sh = sh;
2080 int last_stripe;
2081 int synflags;
2082 unsigned long txflags;
2083
2084 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2085
2086 for (i = 0; i < sh->disks; i++) {
2087 if (sh->pd_idx == i || sh->qd_idx == i)
2088 continue;
2089 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2090 break;
2091 }
2092 if (i >= sh->disks) {
2093 atomic_inc(&sh->count);
2094 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2095 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2096 ops_complete_reconstruct(sh);
2097 return;
2098 }
2099
2100 again:
2101 blocks = to_addr_page(percpu, j);
2102 offs = to_addr_offs(sh, percpu);
2103
2104 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2105 synflags = SYNDROME_SRC_WRITTEN;
2106 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2107 } else {
2108 synflags = SYNDROME_SRC_ALL;
2109 txflags = ASYNC_TX_ACK;
2110 }
2111
2112 count = set_syndrome_sources(blocks, offs, sh, synflags);
2113 last_stripe = !head_sh->batch_head ||
2114 list_first_entry(&sh->batch_list,
2115 struct stripe_head, batch_list) == head_sh;
2116
2117 if (last_stripe) {
2118 atomic_inc(&head_sh->count);
2119 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2120 head_sh, to_addr_conv(sh, percpu, j));
2121 } else
2122 init_async_submit(&submit, 0, tx, NULL, NULL,
2123 to_addr_conv(sh, percpu, j));
2124 tx = async_gen_syndrome(blocks, offs, count+2,
2125 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2126 if (!last_stripe) {
2127 j++;
2128 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2129 batch_list);
2130 goto again;
2131 }
2132 }
2133
ops_complete_check(void * stripe_head_ref)2134 static void ops_complete_check(void *stripe_head_ref)
2135 {
2136 struct stripe_head *sh = stripe_head_ref;
2137
2138 pr_debug("%s: stripe %llu\n", __func__,
2139 (unsigned long long)sh->sector);
2140
2141 sh->check_state = check_state_check_result;
2142 set_bit(STRIPE_HANDLE, &sh->state);
2143 raid5_release_stripe(sh);
2144 }
2145
ops_run_check_p(struct stripe_head * sh,struct raid5_percpu * percpu)2146 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2147 {
2148 int disks = sh->disks;
2149 int pd_idx = sh->pd_idx;
2150 int qd_idx = sh->qd_idx;
2151 struct page *xor_dest;
2152 unsigned int off_dest;
2153 struct page **xor_srcs = to_addr_page(percpu, 0);
2154 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2155 struct dma_async_tx_descriptor *tx;
2156 struct async_submit_ctl submit;
2157 int count;
2158 int i;
2159
2160 pr_debug("%s: stripe %llu\n", __func__,
2161 (unsigned long long)sh->sector);
2162
2163 BUG_ON(sh->batch_head);
2164 count = 0;
2165 xor_dest = sh->dev[pd_idx].page;
2166 off_dest = sh->dev[pd_idx].offset;
2167 off_srcs[count] = off_dest;
2168 xor_srcs[count++] = xor_dest;
2169 for (i = disks; i--; ) {
2170 if (i == pd_idx || i == qd_idx)
2171 continue;
2172 off_srcs[count] = sh->dev[i].offset;
2173 xor_srcs[count++] = sh->dev[i].page;
2174 }
2175
2176 init_async_submit(&submit, 0, NULL, NULL, NULL,
2177 to_addr_conv(sh, percpu, 0));
2178 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2179 RAID5_STRIPE_SIZE(sh->raid_conf),
2180 &sh->ops.zero_sum_result, &submit);
2181
2182 atomic_inc(&sh->count);
2183 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2184 tx = async_trigger_callback(&submit);
2185 }
2186
ops_run_check_pq(struct stripe_head * sh,struct raid5_percpu * percpu,int checkp)2187 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2188 {
2189 struct page **srcs = to_addr_page(percpu, 0);
2190 unsigned int *offs = to_addr_offs(sh, percpu);
2191 struct async_submit_ctl submit;
2192 int count;
2193
2194 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2195 (unsigned long long)sh->sector, checkp);
2196
2197 BUG_ON(sh->batch_head);
2198 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2199 if (!checkp)
2200 srcs[count] = NULL;
2201
2202 atomic_inc(&sh->count);
2203 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2204 sh, to_addr_conv(sh, percpu, 0));
2205 async_syndrome_val(srcs, offs, count+2,
2206 RAID5_STRIPE_SIZE(sh->raid_conf),
2207 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2208 }
2209
raid_run_ops(struct stripe_head * sh,unsigned long ops_request)2210 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2211 {
2212 int overlap_clear = 0, i, disks = sh->disks;
2213 struct dma_async_tx_descriptor *tx = NULL;
2214 struct r5conf *conf = sh->raid_conf;
2215 int level = conf->level;
2216 struct raid5_percpu *percpu;
2217 unsigned long cpu;
2218
2219 cpu = get_cpu();
2220 percpu = per_cpu_ptr(conf->percpu, cpu);
2221 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2222 ops_run_biofill(sh);
2223 overlap_clear++;
2224 }
2225
2226 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2227 if (level < 6)
2228 tx = ops_run_compute5(sh, percpu);
2229 else {
2230 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2231 tx = ops_run_compute6_1(sh, percpu);
2232 else
2233 tx = ops_run_compute6_2(sh, percpu);
2234 }
2235 /* terminate the chain if reconstruct is not set to be run */
2236 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2237 async_tx_ack(tx);
2238 }
2239
2240 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2241 if (level < 6)
2242 tx = ops_run_prexor5(sh, percpu, tx);
2243 else
2244 tx = ops_run_prexor6(sh, percpu, tx);
2245 }
2246
2247 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2248 tx = ops_run_partial_parity(sh, percpu, tx);
2249
2250 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2251 tx = ops_run_biodrain(sh, tx);
2252 overlap_clear++;
2253 }
2254
2255 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2256 if (level < 6)
2257 ops_run_reconstruct5(sh, percpu, tx);
2258 else
2259 ops_run_reconstruct6(sh, percpu, tx);
2260 }
2261
2262 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2263 if (sh->check_state == check_state_run)
2264 ops_run_check_p(sh, percpu);
2265 else if (sh->check_state == check_state_run_q)
2266 ops_run_check_pq(sh, percpu, 0);
2267 else if (sh->check_state == check_state_run_pq)
2268 ops_run_check_pq(sh, percpu, 1);
2269 else
2270 BUG();
2271 }
2272
2273 if (overlap_clear && !sh->batch_head)
2274 for (i = disks; i--; ) {
2275 struct r5dev *dev = &sh->dev[i];
2276 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2277 wake_up(&sh->raid_conf->wait_for_overlap);
2278 }
2279 put_cpu();
2280 }
2281
free_stripe(struct kmem_cache * sc,struct stripe_head * sh)2282 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2283 {
2284 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2285 kfree(sh->pages);
2286 #endif
2287 if (sh->ppl_page)
2288 __free_page(sh->ppl_page);
2289 kmem_cache_free(sc, sh);
2290 }
2291
alloc_stripe(struct kmem_cache * sc,gfp_t gfp,int disks,struct r5conf * conf)2292 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2293 int disks, struct r5conf *conf)
2294 {
2295 struct stripe_head *sh;
2296 int i;
2297
2298 sh = kmem_cache_zalloc(sc, gfp);
2299 if (sh) {
2300 spin_lock_init(&sh->stripe_lock);
2301 spin_lock_init(&sh->batch_lock);
2302 INIT_LIST_HEAD(&sh->batch_list);
2303 INIT_LIST_HEAD(&sh->lru);
2304 INIT_LIST_HEAD(&sh->r5c);
2305 INIT_LIST_HEAD(&sh->log_list);
2306 atomic_set(&sh->count, 1);
2307 sh->raid_conf = conf;
2308 sh->log_start = MaxSector;
2309 for (i = 0; i < disks; i++) {
2310 struct r5dev *dev = &sh->dev[i];
2311
2312 bio_init(&dev->req, &dev->vec, 1);
2313 bio_init(&dev->rreq, &dev->rvec, 1);
2314 }
2315
2316 if (raid5_has_ppl(conf)) {
2317 sh->ppl_page = alloc_page(gfp);
2318 if (!sh->ppl_page) {
2319 free_stripe(sc, sh);
2320 return NULL;
2321 }
2322 }
2323 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2324 if (init_stripe_shared_pages(sh, conf, disks)) {
2325 free_stripe(sc, sh);
2326 return NULL;
2327 }
2328 #endif
2329 }
2330 return sh;
2331 }
grow_one_stripe(struct r5conf * conf,gfp_t gfp)2332 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2333 {
2334 struct stripe_head *sh;
2335
2336 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2337 if (!sh)
2338 return 0;
2339
2340 if (grow_buffers(sh, gfp)) {
2341 shrink_buffers(sh);
2342 free_stripe(conf->slab_cache, sh);
2343 return 0;
2344 }
2345 sh->hash_lock_index =
2346 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2347 /* we just created an active stripe so... */
2348 atomic_inc(&conf->active_stripes);
2349
2350 raid5_release_stripe(sh);
2351 conf->max_nr_stripes++;
2352 return 1;
2353 }
2354
grow_stripes(struct r5conf * conf,int num)2355 static int grow_stripes(struct r5conf *conf, int num)
2356 {
2357 struct kmem_cache *sc;
2358 size_t namelen = sizeof(conf->cache_name[0]);
2359 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2360
2361 if (conf->mddev->gendisk)
2362 snprintf(conf->cache_name[0], namelen,
2363 "raid%d-%s", conf->level, mdname(conf->mddev));
2364 else
2365 snprintf(conf->cache_name[0], namelen,
2366 "raid%d-%p", conf->level, conf->mddev);
2367 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2368
2369 conf->active_name = 0;
2370 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2371 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2372 0, 0, NULL);
2373 if (!sc)
2374 return 1;
2375 conf->slab_cache = sc;
2376 conf->pool_size = devs;
2377 while (num--)
2378 if (!grow_one_stripe(conf, GFP_KERNEL))
2379 return 1;
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * scribble_alloc - allocate percpu scribble buffer for required size
2386 * of the scribble region
2387 * @percpu: from for_each_present_cpu() of the caller
2388 * @num: total number of disks in the array
2389 * @cnt: scribble objs count for required size of the scribble region
2390 *
2391 * The scribble buffer size must be enough to contain:
2392 * 1/ a struct page pointer for each device in the array +2
2393 * 2/ room to convert each entry in (1) to its corresponding dma
2394 * (dma_map_page()) or page (page_address()) address.
2395 *
2396 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2397 * calculate over all devices (not just the data blocks), using zeros in place
2398 * of the P and Q blocks.
2399 */
scribble_alloc(struct raid5_percpu * percpu,int num,int cnt)2400 static int scribble_alloc(struct raid5_percpu *percpu,
2401 int num, int cnt)
2402 {
2403 size_t obj_size =
2404 sizeof(struct page *) * (num + 2) +
2405 sizeof(addr_conv_t) * (num + 2) +
2406 sizeof(unsigned int) * (num + 2);
2407 void *scribble;
2408
2409 /*
2410 * If here is in raid array suspend context, it is in memalloc noio
2411 * context as well, there is no potential recursive memory reclaim
2412 * I/Os with the GFP_KERNEL flag.
2413 */
2414 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2415 if (!scribble)
2416 return -ENOMEM;
2417
2418 kvfree(percpu->scribble);
2419
2420 percpu->scribble = scribble;
2421 percpu->scribble_obj_size = obj_size;
2422 return 0;
2423 }
2424
resize_chunks(struct r5conf * conf,int new_disks,int new_sectors)2425 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2426 {
2427 unsigned long cpu;
2428 int err = 0;
2429
2430 /*
2431 * Never shrink. And mddev_suspend() could deadlock if this is called
2432 * from raid5d. In that case, scribble_disks and scribble_sectors
2433 * should equal to new_disks and new_sectors
2434 */
2435 if (conf->scribble_disks >= new_disks &&
2436 conf->scribble_sectors >= new_sectors)
2437 return 0;
2438 mddev_suspend(conf->mddev);
2439 get_online_cpus();
2440
2441 for_each_present_cpu(cpu) {
2442 struct raid5_percpu *percpu;
2443
2444 percpu = per_cpu_ptr(conf->percpu, cpu);
2445 err = scribble_alloc(percpu, new_disks,
2446 new_sectors / RAID5_STRIPE_SECTORS(conf));
2447 if (err)
2448 break;
2449 }
2450
2451 put_online_cpus();
2452 mddev_resume(conf->mddev);
2453 if (!err) {
2454 conf->scribble_disks = new_disks;
2455 conf->scribble_sectors = new_sectors;
2456 }
2457 return err;
2458 }
2459
resize_stripes(struct r5conf * conf,int newsize)2460 static int resize_stripes(struct r5conf *conf, int newsize)
2461 {
2462 /* Make all the stripes able to hold 'newsize' devices.
2463 * New slots in each stripe get 'page' set to a new page.
2464 *
2465 * This happens in stages:
2466 * 1/ create a new kmem_cache and allocate the required number of
2467 * stripe_heads.
2468 * 2/ gather all the old stripe_heads and transfer the pages across
2469 * to the new stripe_heads. This will have the side effect of
2470 * freezing the array as once all stripe_heads have been collected,
2471 * no IO will be possible. Old stripe heads are freed once their
2472 * pages have been transferred over, and the old kmem_cache is
2473 * freed when all stripes are done.
2474 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2475 * we simple return a failure status - no need to clean anything up.
2476 * 4/ allocate new pages for the new slots in the new stripe_heads.
2477 * If this fails, we don't bother trying the shrink the
2478 * stripe_heads down again, we just leave them as they are.
2479 * As each stripe_head is processed the new one is released into
2480 * active service.
2481 *
2482 * Once step2 is started, we cannot afford to wait for a write,
2483 * so we use GFP_NOIO allocations.
2484 */
2485 struct stripe_head *osh, *nsh;
2486 LIST_HEAD(newstripes);
2487 struct disk_info *ndisks;
2488 int err = 0;
2489 struct kmem_cache *sc;
2490 int i;
2491 int hash, cnt;
2492
2493 md_allow_write(conf->mddev);
2494
2495 /* Step 1 */
2496 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2497 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2498 0, 0, NULL);
2499 if (!sc)
2500 return -ENOMEM;
2501
2502 /* Need to ensure auto-resizing doesn't interfere */
2503 mutex_lock(&conf->cache_size_mutex);
2504
2505 for (i = conf->max_nr_stripes; i; i--) {
2506 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2507 if (!nsh)
2508 break;
2509
2510 list_add(&nsh->lru, &newstripes);
2511 }
2512 if (i) {
2513 /* didn't get enough, give up */
2514 while (!list_empty(&newstripes)) {
2515 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2516 list_del(&nsh->lru);
2517 free_stripe(sc, nsh);
2518 }
2519 kmem_cache_destroy(sc);
2520 mutex_unlock(&conf->cache_size_mutex);
2521 return -ENOMEM;
2522 }
2523 /* Step 2 - Must use GFP_NOIO now.
2524 * OK, we have enough stripes, start collecting inactive
2525 * stripes and copying them over
2526 */
2527 hash = 0;
2528 cnt = 0;
2529 list_for_each_entry(nsh, &newstripes, lru) {
2530 lock_device_hash_lock(conf, hash);
2531 wait_event_cmd(conf->wait_for_stripe,
2532 !list_empty(conf->inactive_list + hash),
2533 unlock_device_hash_lock(conf, hash),
2534 lock_device_hash_lock(conf, hash));
2535 osh = get_free_stripe(conf, hash);
2536 unlock_device_hash_lock(conf, hash);
2537
2538 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2539 for (i = 0; i < osh->nr_pages; i++) {
2540 nsh->pages[i] = osh->pages[i];
2541 osh->pages[i] = NULL;
2542 }
2543 #endif
2544 for(i=0; i<conf->pool_size; i++) {
2545 nsh->dev[i].page = osh->dev[i].page;
2546 nsh->dev[i].orig_page = osh->dev[i].page;
2547 nsh->dev[i].offset = osh->dev[i].offset;
2548 }
2549 nsh->hash_lock_index = hash;
2550 free_stripe(conf->slab_cache, osh);
2551 cnt++;
2552 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2553 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2554 hash++;
2555 cnt = 0;
2556 }
2557 }
2558 kmem_cache_destroy(conf->slab_cache);
2559
2560 /* Step 3.
2561 * At this point, we are holding all the stripes so the array
2562 * is completely stalled, so now is a good time to resize
2563 * conf->disks and the scribble region
2564 */
2565 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2566 if (ndisks) {
2567 for (i = 0; i < conf->pool_size; i++)
2568 ndisks[i] = conf->disks[i];
2569
2570 for (i = conf->pool_size; i < newsize; i++) {
2571 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2572 if (!ndisks[i].extra_page)
2573 err = -ENOMEM;
2574 }
2575
2576 if (err) {
2577 for (i = conf->pool_size; i < newsize; i++)
2578 if (ndisks[i].extra_page)
2579 put_page(ndisks[i].extra_page);
2580 kfree(ndisks);
2581 } else {
2582 kfree(conf->disks);
2583 conf->disks = ndisks;
2584 }
2585 } else
2586 err = -ENOMEM;
2587
2588 conf->slab_cache = sc;
2589 conf->active_name = 1-conf->active_name;
2590
2591 /* Step 4, return new stripes to service */
2592 while(!list_empty(&newstripes)) {
2593 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2594 list_del_init(&nsh->lru);
2595
2596 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2597 for (i = 0; i < nsh->nr_pages; i++) {
2598 if (nsh->pages[i])
2599 continue;
2600 nsh->pages[i] = alloc_page(GFP_NOIO);
2601 if (!nsh->pages[i])
2602 err = -ENOMEM;
2603 }
2604
2605 for (i = conf->raid_disks; i < newsize; i++) {
2606 if (nsh->dev[i].page)
2607 continue;
2608 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2609 nsh->dev[i].orig_page = nsh->dev[i].page;
2610 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2611 }
2612 #else
2613 for (i=conf->raid_disks; i < newsize; i++)
2614 if (nsh->dev[i].page == NULL) {
2615 struct page *p = alloc_page(GFP_NOIO);
2616 nsh->dev[i].page = p;
2617 nsh->dev[i].orig_page = p;
2618 nsh->dev[i].offset = 0;
2619 if (!p)
2620 err = -ENOMEM;
2621 }
2622 #endif
2623 raid5_release_stripe(nsh);
2624 }
2625 /* critical section pass, GFP_NOIO no longer needed */
2626
2627 if (!err)
2628 conf->pool_size = newsize;
2629 mutex_unlock(&conf->cache_size_mutex);
2630
2631 return err;
2632 }
2633
drop_one_stripe(struct r5conf * conf)2634 static int drop_one_stripe(struct r5conf *conf)
2635 {
2636 struct stripe_head *sh;
2637 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2638
2639 spin_lock_irq(conf->hash_locks + hash);
2640 sh = get_free_stripe(conf, hash);
2641 spin_unlock_irq(conf->hash_locks + hash);
2642 if (!sh)
2643 return 0;
2644 BUG_ON(atomic_read(&sh->count));
2645 shrink_buffers(sh);
2646 free_stripe(conf->slab_cache, sh);
2647 atomic_dec(&conf->active_stripes);
2648 conf->max_nr_stripes--;
2649 return 1;
2650 }
2651
shrink_stripes(struct r5conf * conf)2652 static void shrink_stripes(struct r5conf *conf)
2653 {
2654 while (conf->max_nr_stripes &&
2655 drop_one_stripe(conf))
2656 ;
2657
2658 kmem_cache_destroy(conf->slab_cache);
2659 conf->slab_cache = NULL;
2660 }
2661
raid5_end_read_request(struct bio * bi)2662 static void raid5_end_read_request(struct bio * bi)
2663 {
2664 struct stripe_head *sh = bi->bi_private;
2665 struct r5conf *conf = sh->raid_conf;
2666 int disks = sh->disks, i;
2667 char b[BDEVNAME_SIZE];
2668 struct md_rdev *rdev = NULL;
2669 sector_t s;
2670
2671 for (i=0 ; i<disks; i++)
2672 if (bi == &sh->dev[i].req)
2673 break;
2674
2675 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2676 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2677 bi->bi_status);
2678 if (i == disks) {
2679 bio_reset(bi);
2680 BUG();
2681 return;
2682 }
2683 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2684 /* If replacement finished while this request was outstanding,
2685 * 'replacement' might be NULL already.
2686 * In that case it moved down to 'rdev'.
2687 * rdev is not removed until all requests are finished.
2688 */
2689 rdev = conf->disks[i].replacement;
2690 if (!rdev)
2691 rdev = conf->disks[i].rdev;
2692
2693 if (use_new_offset(conf, sh))
2694 s = sh->sector + rdev->new_data_offset;
2695 else
2696 s = sh->sector + rdev->data_offset;
2697 if (!bi->bi_status) {
2698 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2699 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2700 /* Note that this cannot happen on a
2701 * replacement device. We just fail those on
2702 * any error
2703 */
2704 pr_info_ratelimited(
2705 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2706 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2707 (unsigned long long)s,
2708 bdevname(rdev->bdev, b));
2709 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2710 clear_bit(R5_ReadError, &sh->dev[i].flags);
2711 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2712 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2713 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2714
2715 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2716 /*
2717 * end read for a page in journal, this
2718 * must be preparing for prexor in rmw
2719 */
2720 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2721
2722 if (atomic_read(&rdev->read_errors))
2723 atomic_set(&rdev->read_errors, 0);
2724 } else {
2725 const char *bdn = bdevname(rdev->bdev, b);
2726 int retry = 0;
2727 int set_bad = 0;
2728
2729 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2730 if (!(bi->bi_status == BLK_STS_PROTECTION))
2731 atomic_inc(&rdev->read_errors);
2732 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2733 pr_warn_ratelimited(
2734 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2735 mdname(conf->mddev),
2736 (unsigned long long)s,
2737 bdn);
2738 else if (conf->mddev->degraded >= conf->max_degraded) {
2739 set_bad = 1;
2740 pr_warn_ratelimited(
2741 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2742 mdname(conf->mddev),
2743 (unsigned long long)s,
2744 bdn);
2745 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2746 /* Oh, no!!! */
2747 set_bad = 1;
2748 pr_warn_ratelimited(
2749 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2750 mdname(conf->mddev),
2751 (unsigned long long)s,
2752 bdn);
2753 } else if (atomic_read(&rdev->read_errors)
2754 > conf->max_nr_stripes) {
2755 if (!test_bit(Faulty, &rdev->flags)) {
2756 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2757 mdname(conf->mddev),
2758 atomic_read(&rdev->read_errors),
2759 conf->max_nr_stripes);
2760 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2761 mdname(conf->mddev), bdn);
2762 }
2763 } else
2764 retry = 1;
2765 if (set_bad && test_bit(In_sync, &rdev->flags)
2766 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2767 retry = 1;
2768 if (retry)
2769 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2770 set_bit(R5_ReadError, &sh->dev[i].flags);
2771 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2772 set_bit(R5_ReadError, &sh->dev[i].flags);
2773 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2774 } else
2775 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2776 else {
2777 clear_bit(R5_ReadError, &sh->dev[i].flags);
2778 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2779 if (!(set_bad
2780 && test_bit(In_sync, &rdev->flags)
2781 && rdev_set_badblocks(
2782 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2783 md_error(conf->mddev, rdev);
2784 }
2785 }
2786 rdev_dec_pending(rdev, conf->mddev);
2787 bio_reset(bi);
2788 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2789 set_bit(STRIPE_HANDLE, &sh->state);
2790 raid5_release_stripe(sh);
2791 }
2792
raid5_end_write_request(struct bio * bi)2793 static void raid5_end_write_request(struct bio *bi)
2794 {
2795 struct stripe_head *sh = bi->bi_private;
2796 struct r5conf *conf = sh->raid_conf;
2797 int disks = sh->disks, i;
2798 struct md_rdev *rdev;
2799 sector_t first_bad;
2800 int bad_sectors;
2801 int replacement = 0;
2802
2803 for (i = 0 ; i < disks; i++) {
2804 if (bi == &sh->dev[i].req) {
2805 rdev = conf->disks[i].rdev;
2806 break;
2807 }
2808 if (bi == &sh->dev[i].rreq) {
2809 rdev = conf->disks[i].replacement;
2810 if (rdev)
2811 replacement = 1;
2812 else
2813 /* rdev was removed and 'replacement'
2814 * replaced it. rdev is not removed
2815 * until all requests are finished.
2816 */
2817 rdev = conf->disks[i].rdev;
2818 break;
2819 }
2820 }
2821 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2822 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2823 bi->bi_status);
2824 if (i == disks) {
2825 bio_reset(bi);
2826 BUG();
2827 return;
2828 }
2829
2830 if (replacement) {
2831 if (bi->bi_status)
2832 md_error(conf->mddev, rdev);
2833 else if (is_badblock(rdev, sh->sector,
2834 RAID5_STRIPE_SECTORS(conf),
2835 &first_bad, &bad_sectors))
2836 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2837 } else {
2838 if (bi->bi_status) {
2839 set_bit(STRIPE_DEGRADED, &sh->state);
2840 set_bit(WriteErrorSeen, &rdev->flags);
2841 set_bit(R5_WriteError, &sh->dev[i].flags);
2842 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2843 set_bit(MD_RECOVERY_NEEDED,
2844 &rdev->mddev->recovery);
2845 } else if (is_badblock(rdev, sh->sector,
2846 RAID5_STRIPE_SECTORS(conf),
2847 &first_bad, &bad_sectors)) {
2848 set_bit(R5_MadeGood, &sh->dev[i].flags);
2849 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2850 /* That was a successful write so make
2851 * sure it looks like we already did
2852 * a re-write.
2853 */
2854 set_bit(R5_ReWrite, &sh->dev[i].flags);
2855 }
2856 }
2857 rdev_dec_pending(rdev, conf->mddev);
2858
2859 if (sh->batch_head && bi->bi_status && !replacement)
2860 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2861
2862 bio_reset(bi);
2863 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2864 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2865 set_bit(STRIPE_HANDLE, &sh->state);
2866 raid5_release_stripe(sh);
2867
2868 if (sh->batch_head && sh != sh->batch_head)
2869 raid5_release_stripe(sh->batch_head);
2870 }
2871
raid5_error(struct mddev * mddev,struct md_rdev * rdev)2872 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2873 {
2874 char b[BDEVNAME_SIZE];
2875 struct r5conf *conf = mddev->private;
2876 unsigned long flags;
2877 pr_debug("raid456: error called\n");
2878
2879 spin_lock_irqsave(&conf->device_lock, flags);
2880
2881 if (test_bit(In_sync, &rdev->flags) &&
2882 mddev->degraded == conf->max_degraded) {
2883 /*
2884 * Don't allow to achieve failed state
2885 * Don't try to recover this device
2886 */
2887 conf->recovery_disabled = mddev->recovery_disabled;
2888 spin_unlock_irqrestore(&conf->device_lock, flags);
2889 return;
2890 }
2891
2892 set_bit(Faulty, &rdev->flags);
2893 clear_bit(In_sync, &rdev->flags);
2894 mddev->degraded = raid5_calc_degraded(conf);
2895 spin_unlock_irqrestore(&conf->device_lock, flags);
2896 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2897
2898 set_bit(Blocked, &rdev->flags);
2899 set_mask_bits(&mddev->sb_flags, 0,
2900 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2901 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2902 "md/raid:%s: Operation continuing on %d devices.\n",
2903 mdname(mddev),
2904 bdevname(rdev->bdev, b),
2905 mdname(mddev),
2906 conf->raid_disks - mddev->degraded);
2907 r5c_update_on_rdev_error(mddev, rdev);
2908 }
2909
2910 /*
2911 * Input: a 'big' sector number,
2912 * Output: index of the data and parity disk, and the sector # in them.
2913 */
raid5_compute_sector(struct r5conf * conf,sector_t r_sector,int previous,int * dd_idx,struct stripe_head * sh)2914 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2915 int previous, int *dd_idx,
2916 struct stripe_head *sh)
2917 {
2918 sector_t stripe, stripe2;
2919 sector_t chunk_number;
2920 unsigned int chunk_offset;
2921 int pd_idx, qd_idx;
2922 int ddf_layout = 0;
2923 sector_t new_sector;
2924 int algorithm = previous ? conf->prev_algo
2925 : conf->algorithm;
2926 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2927 : conf->chunk_sectors;
2928 int raid_disks = previous ? conf->previous_raid_disks
2929 : conf->raid_disks;
2930 int data_disks = raid_disks - conf->max_degraded;
2931
2932 /* First compute the information on this sector */
2933
2934 /*
2935 * Compute the chunk number and the sector offset inside the chunk
2936 */
2937 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2938 chunk_number = r_sector;
2939
2940 /*
2941 * Compute the stripe number
2942 */
2943 stripe = chunk_number;
2944 *dd_idx = sector_div(stripe, data_disks);
2945 stripe2 = stripe;
2946 /*
2947 * Select the parity disk based on the user selected algorithm.
2948 */
2949 pd_idx = qd_idx = -1;
2950 switch(conf->level) {
2951 case 4:
2952 pd_idx = data_disks;
2953 break;
2954 case 5:
2955 switch (algorithm) {
2956 case ALGORITHM_LEFT_ASYMMETRIC:
2957 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2958 if (*dd_idx >= pd_idx)
2959 (*dd_idx)++;
2960 break;
2961 case ALGORITHM_RIGHT_ASYMMETRIC:
2962 pd_idx = sector_div(stripe2, raid_disks);
2963 if (*dd_idx >= pd_idx)
2964 (*dd_idx)++;
2965 break;
2966 case ALGORITHM_LEFT_SYMMETRIC:
2967 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2968 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2969 break;
2970 case ALGORITHM_RIGHT_SYMMETRIC:
2971 pd_idx = sector_div(stripe2, raid_disks);
2972 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2973 break;
2974 case ALGORITHM_PARITY_0:
2975 pd_idx = 0;
2976 (*dd_idx)++;
2977 break;
2978 case ALGORITHM_PARITY_N:
2979 pd_idx = data_disks;
2980 break;
2981 default:
2982 BUG();
2983 }
2984 break;
2985 case 6:
2986
2987 switch (algorithm) {
2988 case ALGORITHM_LEFT_ASYMMETRIC:
2989 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2990 qd_idx = pd_idx + 1;
2991 if (pd_idx == raid_disks-1) {
2992 (*dd_idx)++; /* Q D D D P */
2993 qd_idx = 0;
2994 } else if (*dd_idx >= pd_idx)
2995 (*dd_idx) += 2; /* D D P Q D */
2996 break;
2997 case ALGORITHM_RIGHT_ASYMMETRIC:
2998 pd_idx = sector_div(stripe2, raid_disks);
2999 qd_idx = pd_idx + 1;
3000 if (pd_idx == raid_disks-1) {
3001 (*dd_idx)++; /* Q D D D P */
3002 qd_idx = 0;
3003 } else if (*dd_idx >= pd_idx)
3004 (*dd_idx) += 2; /* D D P Q D */
3005 break;
3006 case ALGORITHM_LEFT_SYMMETRIC:
3007 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3008 qd_idx = (pd_idx + 1) % raid_disks;
3009 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3010 break;
3011 case ALGORITHM_RIGHT_SYMMETRIC:
3012 pd_idx = sector_div(stripe2, raid_disks);
3013 qd_idx = (pd_idx + 1) % raid_disks;
3014 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3015 break;
3016
3017 case ALGORITHM_PARITY_0:
3018 pd_idx = 0;
3019 qd_idx = 1;
3020 (*dd_idx) += 2;
3021 break;
3022 case ALGORITHM_PARITY_N:
3023 pd_idx = data_disks;
3024 qd_idx = data_disks + 1;
3025 break;
3026
3027 case ALGORITHM_ROTATING_ZERO_RESTART:
3028 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3029 * of blocks for computing Q is different.
3030 */
3031 pd_idx = sector_div(stripe2, raid_disks);
3032 qd_idx = pd_idx + 1;
3033 if (pd_idx == raid_disks-1) {
3034 (*dd_idx)++; /* Q D D D P */
3035 qd_idx = 0;
3036 } else if (*dd_idx >= pd_idx)
3037 (*dd_idx) += 2; /* D D P Q D */
3038 ddf_layout = 1;
3039 break;
3040
3041 case ALGORITHM_ROTATING_N_RESTART:
3042 /* Same a left_asymmetric, by first stripe is
3043 * D D D P Q rather than
3044 * Q D D D P
3045 */
3046 stripe2 += 1;
3047 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3048 qd_idx = pd_idx + 1;
3049 if (pd_idx == raid_disks-1) {
3050 (*dd_idx)++; /* Q D D D P */
3051 qd_idx = 0;
3052 } else if (*dd_idx >= pd_idx)
3053 (*dd_idx) += 2; /* D D P Q D */
3054 ddf_layout = 1;
3055 break;
3056
3057 case ALGORITHM_ROTATING_N_CONTINUE:
3058 /* Same as left_symmetric but Q is before P */
3059 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3060 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3061 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3062 ddf_layout = 1;
3063 break;
3064
3065 case ALGORITHM_LEFT_ASYMMETRIC_6:
3066 /* RAID5 left_asymmetric, with Q on last device */
3067 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3068 if (*dd_idx >= pd_idx)
3069 (*dd_idx)++;
3070 qd_idx = raid_disks - 1;
3071 break;
3072
3073 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3074 pd_idx = sector_div(stripe2, raid_disks-1);
3075 if (*dd_idx >= pd_idx)
3076 (*dd_idx)++;
3077 qd_idx = raid_disks - 1;
3078 break;
3079
3080 case ALGORITHM_LEFT_SYMMETRIC_6:
3081 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3082 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3083 qd_idx = raid_disks - 1;
3084 break;
3085
3086 case ALGORITHM_RIGHT_SYMMETRIC_6:
3087 pd_idx = sector_div(stripe2, raid_disks-1);
3088 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3089 qd_idx = raid_disks - 1;
3090 break;
3091
3092 case ALGORITHM_PARITY_0_6:
3093 pd_idx = 0;
3094 (*dd_idx)++;
3095 qd_idx = raid_disks - 1;
3096 break;
3097
3098 default:
3099 BUG();
3100 }
3101 break;
3102 }
3103
3104 if (sh) {
3105 sh->pd_idx = pd_idx;
3106 sh->qd_idx = qd_idx;
3107 sh->ddf_layout = ddf_layout;
3108 }
3109 /*
3110 * Finally, compute the new sector number
3111 */
3112 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3113 return new_sector;
3114 }
3115
raid5_compute_blocknr(struct stripe_head * sh,int i,int previous)3116 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3117 {
3118 struct r5conf *conf = sh->raid_conf;
3119 int raid_disks = sh->disks;
3120 int data_disks = raid_disks - conf->max_degraded;
3121 sector_t new_sector = sh->sector, check;
3122 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3123 : conf->chunk_sectors;
3124 int algorithm = previous ? conf->prev_algo
3125 : conf->algorithm;
3126 sector_t stripe;
3127 int chunk_offset;
3128 sector_t chunk_number;
3129 int dummy1, dd_idx = i;
3130 sector_t r_sector;
3131 struct stripe_head sh2;
3132
3133 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3134 stripe = new_sector;
3135
3136 if (i == sh->pd_idx)
3137 return 0;
3138 switch(conf->level) {
3139 case 4: break;
3140 case 5:
3141 switch (algorithm) {
3142 case ALGORITHM_LEFT_ASYMMETRIC:
3143 case ALGORITHM_RIGHT_ASYMMETRIC:
3144 if (i > sh->pd_idx)
3145 i--;
3146 break;
3147 case ALGORITHM_LEFT_SYMMETRIC:
3148 case ALGORITHM_RIGHT_SYMMETRIC:
3149 if (i < sh->pd_idx)
3150 i += raid_disks;
3151 i -= (sh->pd_idx + 1);
3152 break;
3153 case ALGORITHM_PARITY_0:
3154 i -= 1;
3155 break;
3156 case ALGORITHM_PARITY_N:
3157 break;
3158 default:
3159 BUG();
3160 }
3161 break;
3162 case 6:
3163 if (i == sh->qd_idx)
3164 return 0; /* It is the Q disk */
3165 switch (algorithm) {
3166 case ALGORITHM_LEFT_ASYMMETRIC:
3167 case ALGORITHM_RIGHT_ASYMMETRIC:
3168 case ALGORITHM_ROTATING_ZERO_RESTART:
3169 case ALGORITHM_ROTATING_N_RESTART:
3170 if (sh->pd_idx == raid_disks-1)
3171 i--; /* Q D D D P */
3172 else if (i > sh->pd_idx)
3173 i -= 2; /* D D P Q D */
3174 break;
3175 case ALGORITHM_LEFT_SYMMETRIC:
3176 case ALGORITHM_RIGHT_SYMMETRIC:
3177 if (sh->pd_idx == raid_disks-1)
3178 i--; /* Q D D D P */
3179 else {
3180 /* D D P Q D */
3181 if (i < sh->pd_idx)
3182 i += raid_disks;
3183 i -= (sh->pd_idx + 2);
3184 }
3185 break;
3186 case ALGORITHM_PARITY_0:
3187 i -= 2;
3188 break;
3189 case ALGORITHM_PARITY_N:
3190 break;
3191 case ALGORITHM_ROTATING_N_CONTINUE:
3192 /* Like left_symmetric, but P is before Q */
3193 if (sh->pd_idx == 0)
3194 i--; /* P D D D Q */
3195 else {
3196 /* D D Q P D */
3197 if (i < sh->pd_idx)
3198 i += raid_disks;
3199 i -= (sh->pd_idx + 1);
3200 }
3201 break;
3202 case ALGORITHM_LEFT_ASYMMETRIC_6:
3203 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3204 if (i > sh->pd_idx)
3205 i--;
3206 break;
3207 case ALGORITHM_LEFT_SYMMETRIC_6:
3208 case ALGORITHM_RIGHT_SYMMETRIC_6:
3209 if (i < sh->pd_idx)
3210 i += data_disks + 1;
3211 i -= (sh->pd_idx + 1);
3212 break;
3213 case ALGORITHM_PARITY_0_6:
3214 i -= 1;
3215 break;
3216 default:
3217 BUG();
3218 }
3219 break;
3220 }
3221
3222 chunk_number = stripe * data_disks + i;
3223 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3224
3225 check = raid5_compute_sector(conf, r_sector,
3226 previous, &dummy1, &sh2);
3227 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3228 || sh2.qd_idx != sh->qd_idx) {
3229 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3230 mdname(conf->mddev));
3231 return 0;
3232 }
3233 return r_sector;
3234 }
3235
3236 /*
3237 * There are cases where we want handle_stripe_dirtying() and
3238 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3239 *
3240 * This function checks whether we want to delay the towrite. Specifically,
3241 * we delay the towrite when:
3242 *
3243 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3244 * stripe has data in journal (for other devices).
3245 *
3246 * In this case, when reading data for the non-overwrite dev, it is
3247 * necessary to handle complex rmw of write back cache (prexor with
3248 * orig_page, and xor with page). To keep read path simple, we would
3249 * like to flush data in journal to RAID disks first, so complex rmw
3250 * is handled in the write patch (handle_stripe_dirtying).
3251 *
3252 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3253 *
3254 * It is important to be able to flush all stripes in raid5-cache.
3255 * Therefore, we need reserve some space on the journal device for
3256 * these flushes. If flush operation includes pending writes to the
3257 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3258 * for the flush out. If we exclude these pending writes from flush
3259 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3260 * Therefore, excluding pending writes in these cases enables more
3261 * efficient use of the journal device.
3262 *
3263 * Note: To make sure the stripe makes progress, we only delay
3264 * towrite for stripes with data already in journal (injournal > 0).
3265 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3266 * no_space_stripes list.
3267 *
3268 * 3. during journal failure
3269 * In journal failure, we try to flush all cached data to raid disks
3270 * based on data in stripe cache. The array is read-only to upper
3271 * layers, so we would skip all pending writes.
3272 *
3273 */
delay_towrite(struct r5conf * conf,struct r5dev * dev,struct stripe_head_state * s)3274 static inline bool delay_towrite(struct r5conf *conf,
3275 struct r5dev *dev,
3276 struct stripe_head_state *s)
3277 {
3278 /* case 1 above */
3279 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3280 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3281 return true;
3282 /* case 2 above */
3283 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3284 s->injournal > 0)
3285 return true;
3286 /* case 3 above */
3287 if (s->log_failed && s->injournal)
3288 return true;
3289 return false;
3290 }
3291
3292 static void
schedule_reconstruction(struct stripe_head * sh,struct stripe_head_state * s,int rcw,int expand)3293 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3294 int rcw, int expand)
3295 {
3296 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3297 struct r5conf *conf = sh->raid_conf;
3298 int level = conf->level;
3299
3300 if (rcw) {
3301 /*
3302 * In some cases, handle_stripe_dirtying initially decided to
3303 * run rmw and allocates extra page for prexor. However, rcw is
3304 * cheaper later on. We need to free the extra page now,
3305 * because we won't be able to do that in ops_complete_prexor().
3306 */
3307 r5c_release_extra_page(sh);
3308
3309 for (i = disks; i--; ) {
3310 struct r5dev *dev = &sh->dev[i];
3311
3312 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3313 set_bit(R5_LOCKED, &dev->flags);
3314 set_bit(R5_Wantdrain, &dev->flags);
3315 if (!expand)
3316 clear_bit(R5_UPTODATE, &dev->flags);
3317 s->locked++;
3318 } else if (test_bit(R5_InJournal, &dev->flags)) {
3319 set_bit(R5_LOCKED, &dev->flags);
3320 s->locked++;
3321 }
3322 }
3323 /* if we are not expanding this is a proper write request, and
3324 * there will be bios with new data to be drained into the
3325 * stripe cache
3326 */
3327 if (!expand) {
3328 if (!s->locked)
3329 /* False alarm, nothing to do */
3330 return;
3331 sh->reconstruct_state = reconstruct_state_drain_run;
3332 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3333 } else
3334 sh->reconstruct_state = reconstruct_state_run;
3335
3336 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3337
3338 if (s->locked + conf->max_degraded == disks)
3339 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3340 atomic_inc(&conf->pending_full_writes);
3341 } else {
3342 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3343 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3344 BUG_ON(level == 6 &&
3345 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3346 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3347
3348 for (i = disks; i--; ) {
3349 struct r5dev *dev = &sh->dev[i];
3350 if (i == pd_idx || i == qd_idx)
3351 continue;
3352
3353 if (dev->towrite &&
3354 (test_bit(R5_UPTODATE, &dev->flags) ||
3355 test_bit(R5_Wantcompute, &dev->flags))) {
3356 set_bit(R5_Wantdrain, &dev->flags);
3357 set_bit(R5_LOCKED, &dev->flags);
3358 clear_bit(R5_UPTODATE, &dev->flags);
3359 s->locked++;
3360 } else if (test_bit(R5_InJournal, &dev->flags)) {
3361 set_bit(R5_LOCKED, &dev->flags);
3362 s->locked++;
3363 }
3364 }
3365 if (!s->locked)
3366 /* False alarm - nothing to do */
3367 return;
3368 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3369 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3370 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3371 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3372 }
3373
3374 /* keep the parity disk(s) locked while asynchronous operations
3375 * are in flight
3376 */
3377 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3378 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3379 s->locked++;
3380
3381 if (level == 6) {
3382 int qd_idx = sh->qd_idx;
3383 struct r5dev *dev = &sh->dev[qd_idx];
3384
3385 set_bit(R5_LOCKED, &dev->flags);
3386 clear_bit(R5_UPTODATE, &dev->flags);
3387 s->locked++;
3388 }
3389
3390 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3391 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3392 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3393 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3394 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3395
3396 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3397 __func__, (unsigned long long)sh->sector,
3398 s->locked, s->ops_request);
3399 }
3400
3401 /*
3402 * Each stripe/dev can have one or more bion attached.
3403 * toread/towrite point to the first in a chain.
3404 * The bi_next chain must be in order.
3405 */
add_stripe_bio(struct stripe_head * sh,struct bio * bi,int dd_idx,int forwrite,int previous)3406 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3407 int forwrite, int previous)
3408 {
3409 struct bio **bip;
3410 struct r5conf *conf = sh->raid_conf;
3411 int firstwrite=0;
3412
3413 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3414 (unsigned long long)bi->bi_iter.bi_sector,
3415 (unsigned long long)sh->sector);
3416
3417 spin_lock_irq(&sh->stripe_lock);
3418 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3419 /* Don't allow new IO added to stripes in batch list */
3420 if (sh->batch_head)
3421 goto overlap;
3422 if (forwrite) {
3423 bip = &sh->dev[dd_idx].towrite;
3424 if (*bip == NULL)
3425 firstwrite = 1;
3426 } else
3427 bip = &sh->dev[dd_idx].toread;
3428 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3429 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3430 goto overlap;
3431 bip = & (*bip)->bi_next;
3432 }
3433 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3434 goto overlap;
3435
3436 if (forwrite && raid5_has_ppl(conf)) {
3437 /*
3438 * With PPL only writes to consecutive data chunks within a
3439 * stripe are allowed because for a single stripe_head we can
3440 * only have one PPL entry at a time, which describes one data
3441 * range. Not really an overlap, but wait_for_overlap can be
3442 * used to handle this.
3443 */
3444 sector_t sector;
3445 sector_t first = 0;
3446 sector_t last = 0;
3447 int count = 0;
3448 int i;
3449
3450 for (i = 0; i < sh->disks; i++) {
3451 if (i != sh->pd_idx &&
3452 (i == dd_idx || sh->dev[i].towrite)) {
3453 sector = sh->dev[i].sector;
3454 if (count == 0 || sector < first)
3455 first = sector;
3456 if (sector > last)
3457 last = sector;
3458 count++;
3459 }
3460 }
3461
3462 if (first + conf->chunk_sectors * (count - 1) != last)
3463 goto overlap;
3464 }
3465
3466 if (!forwrite || previous)
3467 clear_bit(STRIPE_BATCH_READY, &sh->state);
3468
3469 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3470 if (*bip)
3471 bi->bi_next = *bip;
3472 *bip = bi;
3473 bio_inc_remaining(bi);
3474 md_write_inc(conf->mddev, bi);
3475
3476 if (forwrite) {
3477 /* check if page is covered */
3478 sector_t sector = sh->dev[dd_idx].sector;
3479 for (bi=sh->dev[dd_idx].towrite;
3480 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3481 bi && bi->bi_iter.bi_sector <= sector;
3482 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3483 if (bio_end_sector(bi) >= sector)
3484 sector = bio_end_sector(bi);
3485 }
3486 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3487 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3488 sh->overwrite_disks++;
3489 }
3490
3491 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3492 (unsigned long long)(*bip)->bi_iter.bi_sector,
3493 (unsigned long long)sh->sector, dd_idx);
3494
3495 if (conf->mddev->bitmap && firstwrite) {
3496 /* Cannot hold spinlock over bitmap_startwrite,
3497 * but must ensure this isn't added to a batch until
3498 * we have added to the bitmap and set bm_seq.
3499 * So set STRIPE_BITMAP_PENDING to prevent
3500 * batching.
3501 * If multiple add_stripe_bio() calls race here they
3502 * much all set STRIPE_BITMAP_PENDING. So only the first one
3503 * to complete "bitmap_startwrite" gets to set
3504 * STRIPE_BIT_DELAY. This is important as once a stripe
3505 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3506 * any more.
3507 */
3508 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3509 spin_unlock_irq(&sh->stripe_lock);
3510 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3511 RAID5_STRIPE_SECTORS(conf), 0);
3512 spin_lock_irq(&sh->stripe_lock);
3513 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3514 if (!sh->batch_head) {
3515 sh->bm_seq = conf->seq_flush+1;
3516 set_bit(STRIPE_BIT_DELAY, &sh->state);
3517 }
3518 }
3519 spin_unlock_irq(&sh->stripe_lock);
3520
3521 if (stripe_can_batch(sh))
3522 stripe_add_to_batch_list(conf, sh);
3523 return 1;
3524
3525 overlap:
3526 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3527 spin_unlock_irq(&sh->stripe_lock);
3528 return 0;
3529 }
3530
3531 static void end_reshape(struct r5conf *conf);
3532
stripe_set_idx(sector_t stripe,struct r5conf * conf,int previous,struct stripe_head * sh)3533 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3534 struct stripe_head *sh)
3535 {
3536 int sectors_per_chunk =
3537 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3538 int dd_idx;
3539 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3540 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3541
3542 raid5_compute_sector(conf,
3543 stripe * (disks - conf->max_degraded)
3544 *sectors_per_chunk + chunk_offset,
3545 previous,
3546 &dd_idx, sh);
3547 }
3548
3549 static void
handle_failed_stripe(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)3550 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3551 struct stripe_head_state *s, int disks)
3552 {
3553 int i;
3554 BUG_ON(sh->batch_head);
3555 for (i = disks; i--; ) {
3556 struct bio *bi;
3557 int bitmap_end = 0;
3558
3559 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3560 struct md_rdev *rdev;
3561 rcu_read_lock();
3562 rdev = rcu_dereference(conf->disks[i].rdev);
3563 if (rdev && test_bit(In_sync, &rdev->flags) &&
3564 !test_bit(Faulty, &rdev->flags))
3565 atomic_inc(&rdev->nr_pending);
3566 else
3567 rdev = NULL;
3568 rcu_read_unlock();
3569 if (rdev) {
3570 if (!rdev_set_badblocks(
3571 rdev,
3572 sh->sector,
3573 RAID5_STRIPE_SECTORS(conf), 0))
3574 md_error(conf->mddev, rdev);
3575 rdev_dec_pending(rdev, conf->mddev);
3576 }
3577 }
3578 spin_lock_irq(&sh->stripe_lock);
3579 /* fail all writes first */
3580 bi = sh->dev[i].towrite;
3581 sh->dev[i].towrite = NULL;
3582 sh->overwrite_disks = 0;
3583 spin_unlock_irq(&sh->stripe_lock);
3584 if (bi)
3585 bitmap_end = 1;
3586
3587 log_stripe_write_finished(sh);
3588
3589 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3590 wake_up(&conf->wait_for_overlap);
3591
3592 while (bi && bi->bi_iter.bi_sector <
3593 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3594 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3595
3596 md_write_end(conf->mddev);
3597 bio_io_error(bi);
3598 bi = nextbi;
3599 }
3600 if (bitmap_end)
3601 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3602 RAID5_STRIPE_SECTORS(conf), 0, 0);
3603 bitmap_end = 0;
3604 /* and fail all 'written' */
3605 bi = sh->dev[i].written;
3606 sh->dev[i].written = NULL;
3607 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3608 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3609 sh->dev[i].page = sh->dev[i].orig_page;
3610 }
3611
3612 if (bi) bitmap_end = 1;
3613 while (bi && bi->bi_iter.bi_sector <
3614 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3615 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3616
3617 md_write_end(conf->mddev);
3618 bio_io_error(bi);
3619 bi = bi2;
3620 }
3621
3622 /* fail any reads if this device is non-operational and
3623 * the data has not reached the cache yet.
3624 */
3625 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3626 s->failed > conf->max_degraded &&
3627 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3628 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3629 spin_lock_irq(&sh->stripe_lock);
3630 bi = sh->dev[i].toread;
3631 sh->dev[i].toread = NULL;
3632 spin_unlock_irq(&sh->stripe_lock);
3633 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3634 wake_up(&conf->wait_for_overlap);
3635 if (bi)
3636 s->to_read--;
3637 while (bi && bi->bi_iter.bi_sector <
3638 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3639 struct bio *nextbi =
3640 r5_next_bio(conf, bi, sh->dev[i].sector);
3641
3642 bio_io_error(bi);
3643 bi = nextbi;
3644 }
3645 }
3646 if (bitmap_end)
3647 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3648 RAID5_STRIPE_SECTORS(conf), 0, 0);
3649 /* If we were in the middle of a write the parity block might
3650 * still be locked - so just clear all R5_LOCKED flags
3651 */
3652 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3653 }
3654 s->to_write = 0;
3655 s->written = 0;
3656
3657 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3658 if (atomic_dec_and_test(&conf->pending_full_writes))
3659 md_wakeup_thread(conf->mddev->thread);
3660 }
3661
3662 static void
handle_failed_sync(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s)3663 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3664 struct stripe_head_state *s)
3665 {
3666 int abort = 0;
3667 int i;
3668
3669 BUG_ON(sh->batch_head);
3670 clear_bit(STRIPE_SYNCING, &sh->state);
3671 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3672 wake_up(&conf->wait_for_overlap);
3673 s->syncing = 0;
3674 s->replacing = 0;
3675 /* There is nothing more to do for sync/check/repair.
3676 * Don't even need to abort as that is handled elsewhere
3677 * if needed, and not always wanted e.g. if there is a known
3678 * bad block here.
3679 * For recover/replace we need to record a bad block on all
3680 * non-sync devices, or abort the recovery
3681 */
3682 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3683 /* During recovery devices cannot be removed, so
3684 * locking and refcounting of rdevs is not needed
3685 */
3686 rcu_read_lock();
3687 for (i = 0; i < conf->raid_disks; i++) {
3688 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3689 if (rdev
3690 && !test_bit(Faulty, &rdev->flags)
3691 && !test_bit(In_sync, &rdev->flags)
3692 && !rdev_set_badblocks(rdev, sh->sector,
3693 RAID5_STRIPE_SECTORS(conf), 0))
3694 abort = 1;
3695 rdev = rcu_dereference(conf->disks[i].replacement);
3696 if (rdev
3697 && !test_bit(Faulty, &rdev->flags)
3698 && !test_bit(In_sync, &rdev->flags)
3699 && !rdev_set_badblocks(rdev, sh->sector,
3700 RAID5_STRIPE_SECTORS(conf), 0))
3701 abort = 1;
3702 }
3703 rcu_read_unlock();
3704 if (abort)
3705 conf->recovery_disabled =
3706 conf->mddev->recovery_disabled;
3707 }
3708 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3709 }
3710
want_replace(struct stripe_head * sh,int disk_idx)3711 static int want_replace(struct stripe_head *sh, int disk_idx)
3712 {
3713 struct md_rdev *rdev;
3714 int rv = 0;
3715
3716 rcu_read_lock();
3717 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3718 if (rdev
3719 && !test_bit(Faulty, &rdev->flags)
3720 && !test_bit(In_sync, &rdev->flags)
3721 && (rdev->recovery_offset <= sh->sector
3722 || rdev->mddev->recovery_cp <= sh->sector))
3723 rv = 1;
3724 rcu_read_unlock();
3725 return rv;
3726 }
3727
need_this_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3728 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3729 int disk_idx, int disks)
3730 {
3731 struct r5dev *dev = &sh->dev[disk_idx];
3732 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3733 &sh->dev[s->failed_num[1]] };
3734 int i;
3735 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3736
3737
3738 if (test_bit(R5_LOCKED, &dev->flags) ||
3739 test_bit(R5_UPTODATE, &dev->flags))
3740 /* No point reading this as we already have it or have
3741 * decided to get it.
3742 */
3743 return 0;
3744
3745 if (dev->toread ||
3746 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3747 /* We need this block to directly satisfy a request */
3748 return 1;
3749
3750 if (s->syncing || s->expanding ||
3751 (s->replacing && want_replace(sh, disk_idx)))
3752 /* When syncing, or expanding we read everything.
3753 * When replacing, we need the replaced block.
3754 */
3755 return 1;
3756
3757 if ((s->failed >= 1 && fdev[0]->toread) ||
3758 (s->failed >= 2 && fdev[1]->toread))
3759 /* If we want to read from a failed device, then
3760 * we need to actually read every other device.
3761 */
3762 return 1;
3763
3764 /* Sometimes neither read-modify-write nor reconstruct-write
3765 * cycles can work. In those cases we read every block we
3766 * can. Then the parity-update is certain to have enough to
3767 * work with.
3768 * This can only be a problem when we need to write something,
3769 * and some device has failed. If either of those tests
3770 * fail we need look no further.
3771 */
3772 if (!s->failed || !s->to_write)
3773 return 0;
3774
3775 if (test_bit(R5_Insync, &dev->flags) &&
3776 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3777 /* Pre-reads at not permitted until after short delay
3778 * to gather multiple requests. However if this
3779 * device is no Insync, the block could only be computed
3780 * and there is no need to delay that.
3781 */
3782 return 0;
3783
3784 for (i = 0; i < s->failed && i < 2; i++) {
3785 if (fdev[i]->towrite &&
3786 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3787 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3788 /* If we have a partial write to a failed
3789 * device, then we will need to reconstruct
3790 * the content of that device, so all other
3791 * devices must be read.
3792 */
3793 return 1;
3794
3795 if (s->failed >= 2 &&
3796 (fdev[i]->towrite ||
3797 s->failed_num[i] == sh->pd_idx ||
3798 s->failed_num[i] == sh->qd_idx) &&
3799 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3800 /* In max degraded raid6, If the failed disk is P, Q,
3801 * or we want to read the failed disk, we need to do
3802 * reconstruct-write.
3803 */
3804 force_rcw = true;
3805 }
3806
3807 /* If we are forced to do a reconstruct-write, because parity
3808 * cannot be trusted and we are currently recovering it, there
3809 * is extra need to be careful.
3810 * If one of the devices that we would need to read, because
3811 * it is not being overwritten (and maybe not written at all)
3812 * is missing/faulty, then we need to read everything we can.
3813 */
3814 if (!force_rcw &&
3815 sh->sector < sh->raid_conf->mddev->recovery_cp)
3816 /* reconstruct-write isn't being forced */
3817 return 0;
3818 for (i = 0; i < s->failed && i < 2; i++) {
3819 if (s->failed_num[i] != sh->pd_idx &&
3820 s->failed_num[i] != sh->qd_idx &&
3821 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3822 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3823 return 1;
3824 }
3825
3826 return 0;
3827 }
3828
3829 /* fetch_block - checks the given member device to see if its data needs
3830 * to be read or computed to satisfy a request.
3831 *
3832 * Returns 1 when no more member devices need to be checked, otherwise returns
3833 * 0 to tell the loop in handle_stripe_fill to continue
3834 */
fetch_block(struct stripe_head * sh,struct stripe_head_state * s,int disk_idx,int disks)3835 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3836 int disk_idx, int disks)
3837 {
3838 struct r5dev *dev = &sh->dev[disk_idx];
3839
3840 /* is the data in this block needed, and can we get it? */
3841 if (need_this_block(sh, s, disk_idx, disks)) {
3842 /* we would like to get this block, possibly by computing it,
3843 * otherwise read it if the backing disk is insync
3844 */
3845 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3846 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3847 BUG_ON(sh->batch_head);
3848
3849 /*
3850 * In the raid6 case if the only non-uptodate disk is P
3851 * then we already trusted P to compute the other failed
3852 * drives. It is safe to compute rather than re-read P.
3853 * In other cases we only compute blocks from failed
3854 * devices, otherwise check/repair might fail to detect
3855 * a real inconsistency.
3856 */
3857
3858 if ((s->uptodate == disks - 1) &&
3859 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3860 (s->failed && (disk_idx == s->failed_num[0] ||
3861 disk_idx == s->failed_num[1])))) {
3862 /* have disk failed, and we're requested to fetch it;
3863 * do compute it
3864 */
3865 pr_debug("Computing stripe %llu block %d\n",
3866 (unsigned long long)sh->sector, disk_idx);
3867 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3868 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3869 set_bit(R5_Wantcompute, &dev->flags);
3870 sh->ops.target = disk_idx;
3871 sh->ops.target2 = -1; /* no 2nd target */
3872 s->req_compute = 1;
3873 /* Careful: from this point on 'uptodate' is in the eye
3874 * of raid_run_ops which services 'compute' operations
3875 * before writes. R5_Wantcompute flags a block that will
3876 * be R5_UPTODATE by the time it is needed for a
3877 * subsequent operation.
3878 */
3879 s->uptodate++;
3880 return 1;
3881 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3882 /* Computing 2-failure is *very* expensive; only
3883 * do it if failed >= 2
3884 */
3885 int other;
3886 for (other = disks; other--; ) {
3887 if (other == disk_idx)
3888 continue;
3889 if (!test_bit(R5_UPTODATE,
3890 &sh->dev[other].flags))
3891 break;
3892 }
3893 BUG_ON(other < 0);
3894 pr_debug("Computing stripe %llu blocks %d,%d\n",
3895 (unsigned long long)sh->sector,
3896 disk_idx, other);
3897 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3898 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3899 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3900 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3901 sh->ops.target = disk_idx;
3902 sh->ops.target2 = other;
3903 s->uptodate += 2;
3904 s->req_compute = 1;
3905 return 1;
3906 } else if (test_bit(R5_Insync, &dev->flags)) {
3907 set_bit(R5_LOCKED, &dev->flags);
3908 set_bit(R5_Wantread, &dev->flags);
3909 s->locked++;
3910 pr_debug("Reading block %d (sync=%d)\n",
3911 disk_idx, s->syncing);
3912 }
3913 }
3914
3915 return 0;
3916 }
3917
3918 /*
3919 * handle_stripe_fill - read or compute data to satisfy pending requests.
3920 */
handle_stripe_fill(struct stripe_head * sh,struct stripe_head_state * s,int disks)3921 static void handle_stripe_fill(struct stripe_head *sh,
3922 struct stripe_head_state *s,
3923 int disks)
3924 {
3925 int i;
3926
3927 /* look for blocks to read/compute, skip this if a compute
3928 * is already in flight, or if the stripe contents are in the
3929 * midst of changing due to a write
3930 */
3931 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3932 !sh->reconstruct_state) {
3933
3934 /*
3935 * For degraded stripe with data in journal, do not handle
3936 * read requests yet, instead, flush the stripe to raid
3937 * disks first, this avoids handling complex rmw of write
3938 * back cache (prexor with orig_page, and then xor with
3939 * page) in the read path
3940 */
3941 if (s->injournal && s->failed) {
3942 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3943 r5c_make_stripe_write_out(sh);
3944 goto out;
3945 }
3946
3947 for (i = disks; i--; )
3948 if (fetch_block(sh, s, i, disks))
3949 break;
3950 }
3951 out:
3952 set_bit(STRIPE_HANDLE, &sh->state);
3953 }
3954
3955 static void break_stripe_batch_list(struct stripe_head *head_sh,
3956 unsigned long handle_flags);
3957 /* handle_stripe_clean_event
3958 * any written block on an uptodate or failed drive can be returned.
3959 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3960 * never LOCKED, so we don't need to test 'failed' directly.
3961 */
handle_stripe_clean_event(struct r5conf * conf,struct stripe_head * sh,int disks)3962 static void handle_stripe_clean_event(struct r5conf *conf,
3963 struct stripe_head *sh, int disks)
3964 {
3965 int i;
3966 struct r5dev *dev;
3967 int discard_pending = 0;
3968 struct stripe_head *head_sh = sh;
3969 bool do_endio = false;
3970
3971 for (i = disks; i--; )
3972 if (sh->dev[i].written) {
3973 dev = &sh->dev[i];
3974 if (!test_bit(R5_LOCKED, &dev->flags) &&
3975 (test_bit(R5_UPTODATE, &dev->flags) ||
3976 test_bit(R5_Discard, &dev->flags) ||
3977 test_bit(R5_SkipCopy, &dev->flags))) {
3978 /* We can return any write requests */
3979 struct bio *wbi, *wbi2;
3980 pr_debug("Return write for disc %d\n", i);
3981 if (test_and_clear_bit(R5_Discard, &dev->flags))
3982 clear_bit(R5_UPTODATE, &dev->flags);
3983 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3984 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3985 }
3986 do_endio = true;
3987
3988 returnbi:
3989 dev->page = dev->orig_page;
3990 wbi = dev->written;
3991 dev->written = NULL;
3992 while (wbi && wbi->bi_iter.bi_sector <
3993 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3994 wbi2 = r5_next_bio(conf, wbi, dev->sector);
3995 md_write_end(conf->mddev);
3996 bio_endio(wbi);
3997 wbi = wbi2;
3998 }
3999 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4000 RAID5_STRIPE_SECTORS(conf),
4001 !test_bit(STRIPE_DEGRADED, &sh->state),
4002 0);
4003 if (head_sh->batch_head) {
4004 sh = list_first_entry(&sh->batch_list,
4005 struct stripe_head,
4006 batch_list);
4007 if (sh != head_sh) {
4008 dev = &sh->dev[i];
4009 goto returnbi;
4010 }
4011 }
4012 sh = head_sh;
4013 dev = &sh->dev[i];
4014 } else if (test_bit(R5_Discard, &dev->flags))
4015 discard_pending = 1;
4016 }
4017
4018 log_stripe_write_finished(sh);
4019
4020 if (!discard_pending &&
4021 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4022 int hash;
4023 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4024 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4025 if (sh->qd_idx >= 0) {
4026 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4027 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4028 }
4029 /* now that discard is done we can proceed with any sync */
4030 clear_bit(STRIPE_DISCARD, &sh->state);
4031 /*
4032 * SCSI discard will change some bio fields and the stripe has
4033 * no updated data, so remove it from hash list and the stripe
4034 * will be reinitialized
4035 */
4036 unhash:
4037 hash = sh->hash_lock_index;
4038 spin_lock_irq(conf->hash_locks + hash);
4039 remove_hash(sh);
4040 spin_unlock_irq(conf->hash_locks + hash);
4041 if (head_sh->batch_head) {
4042 sh = list_first_entry(&sh->batch_list,
4043 struct stripe_head, batch_list);
4044 if (sh != head_sh)
4045 goto unhash;
4046 }
4047 sh = head_sh;
4048
4049 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4050 set_bit(STRIPE_HANDLE, &sh->state);
4051
4052 }
4053
4054 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4055 if (atomic_dec_and_test(&conf->pending_full_writes))
4056 md_wakeup_thread(conf->mddev->thread);
4057
4058 if (head_sh->batch_head && do_endio)
4059 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4060 }
4061
4062 /*
4063 * For RMW in write back cache, we need extra page in prexor to store the
4064 * old data. This page is stored in dev->orig_page.
4065 *
4066 * This function checks whether we have data for prexor. The exact logic
4067 * is:
4068 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4069 */
uptodate_for_rmw(struct r5dev * dev)4070 static inline bool uptodate_for_rmw(struct r5dev *dev)
4071 {
4072 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4073 (!test_bit(R5_InJournal, &dev->flags) ||
4074 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4075 }
4076
handle_stripe_dirtying(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4077 static int handle_stripe_dirtying(struct r5conf *conf,
4078 struct stripe_head *sh,
4079 struct stripe_head_state *s,
4080 int disks)
4081 {
4082 int rmw = 0, rcw = 0, i;
4083 sector_t recovery_cp = conf->mddev->recovery_cp;
4084
4085 /* Check whether resync is now happening or should start.
4086 * If yes, then the array is dirty (after unclean shutdown or
4087 * initial creation), so parity in some stripes might be inconsistent.
4088 * In this case, we need to always do reconstruct-write, to ensure
4089 * that in case of drive failure or read-error correction, we
4090 * generate correct data from the parity.
4091 */
4092 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4093 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4094 s->failed == 0)) {
4095 /* Calculate the real rcw later - for now make it
4096 * look like rcw is cheaper
4097 */
4098 rcw = 1; rmw = 2;
4099 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4100 conf->rmw_level, (unsigned long long)recovery_cp,
4101 (unsigned long long)sh->sector);
4102 } else for (i = disks; i--; ) {
4103 /* would I have to read this buffer for read_modify_write */
4104 struct r5dev *dev = &sh->dev[i];
4105 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4106 i == sh->pd_idx || i == sh->qd_idx ||
4107 test_bit(R5_InJournal, &dev->flags)) &&
4108 !test_bit(R5_LOCKED, &dev->flags) &&
4109 !(uptodate_for_rmw(dev) ||
4110 test_bit(R5_Wantcompute, &dev->flags))) {
4111 if (test_bit(R5_Insync, &dev->flags))
4112 rmw++;
4113 else
4114 rmw += 2*disks; /* cannot read it */
4115 }
4116 /* Would I have to read this buffer for reconstruct_write */
4117 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4118 i != sh->pd_idx && i != sh->qd_idx &&
4119 !test_bit(R5_LOCKED, &dev->flags) &&
4120 !(test_bit(R5_UPTODATE, &dev->flags) ||
4121 test_bit(R5_Wantcompute, &dev->flags))) {
4122 if (test_bit(R5_Insync, &dev->flags))
4123 rcw++;
4124 else
4125 rcw += 2*disks;
4126 }
4127 }
4128
4129 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4130 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4131 set_bit(STRIPE_HANDLE, &sh->state);
4132 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4133 /* prefer read-modify-write, but need to get some data */
4134 if (conf->mddev->queue)
4135 blk_add_trace_msg(conf->mddev->queue,
4136 "raid5 rmw %llu %d",
4137 (unsigned long long)sh->sector, rmw);
4138 for (i = disks; i--; ) {
4139 struct r5dev *dev = &sh->dev[i];
4140 if (test_bit(R5_InJournal, &dev->flags) &&
4141 dev->page == dev->orig_page &&
4142 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4143 /* alloc page for prexor */
4144 struct page *p = alloc_page(GFP_NOIO);
4145
4146 if (p) {
4147 dev->orig_page = p;
4148 continue;
4149 }
4150
4151 /*
4152 * alloc_page() failed, try use
4153 * disk_info->extra_page
4154 */
4155 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4156 &conf->cache_state)) {
4157 r5c_use_extra_page(sh);
4158 break;
4159 }
4160
4161 /* extra_page in use, add to delayed_list */
4162 set_bit(STRIPE_DELAYED, &sh->state);
4163 s->waiting_extra_page = 1;
4164 return -EAGAIN;
4165 }
4166 }
4167
4168 for (i = disks; i--; ) {
4169 struct r5dev *dev = &sh->dev[i];
4170 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4171 i == sh->pd_idx || i == sh->qd_idx ||
4172 test_bit(R5_InJournal, &dev->flags)) &&
4173 !test_bit(R5_LOCKED, &dev->flags) &&
4174 !(uptodate_for_rmw(dev) ||
4175 test_bit(R5_Wantcompute, &dev->flags)) &&
4176 test_bit(R5_Insync, &dev->flags)) {
4177 if (test_bit(STRIPE_PREREAD_ACTIVE,
4178 &sh->state)) {
4179 pr_debug("Read_old block %d for r-m-w\n",
4180 i);
4181 set_bit(R5_LOCKED, &dev->flags);
4182 set_bit(R5_Wantread, &dev->flags);
4183 s->locked++;
4184 } else
4185 set_bit(STRIPE_DELAYED, &sh->state);
4186 }
4187 }
4188 }
4189 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4190 /* want reconstruct write, but need to get some data */
4191 int qread =0;
4192 rcw = 0;
4193 for (i = disks; i--; ) {
4194 struct r5dev *dev = &sh->dev[i];
4195 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4196 i != sh->pd_idx && i != sh->qd_idx &&
4197 !test_bit(R5_LOCKED, &dev->flags) &&
4198 !(test_bit(R5_UPTODATE, &dev->flags) ||
4199 test_bit(R5_Wantcompute, &dev->flags))) {
4200 rcw++;
4201 if (test_bit(R5_Insync, &dev->flags) &&
4202 test_bit(STRIPE_PREREAD_ACTIVE,
4203 &sh->state)) {
4204 pr_debug("Read_old block "
4205 "%d for Reconstruct\n", i);
4206 set_bit(R5_LOCKED, &dev->flags);
4207 set_bit(R5_Wantread, &dev->flags);
4208 s->locked++;
4209 qread++;
4210 } else
4211 set_bit(STRIPE_DELAYED, &sh->state);
4212 }
4213 }
4214 if (rcw && conf->mddev->queue)
4215 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4216 (unsigned long long)sh->sector,
4217 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4218 }
4219
4220 if (rcw > disks && rmw > disks &&
4221 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4222 set_bit(STRIPE_DELAYED, &sh->state);
4223
4224 /* now if nothing is locked, and if we have enough data,
4225 * we can start a write request
4226 */
4227 /* since handle_stripe can be called at any time we need to handle the
4228 * case where a compute block operation has been submitted and then a
4229 * subsequent call wants to start a write request. raid_run_ops only
4230 * handles the case where compute block and reconstruct are requested
4231 * simultaneously. If this is not the case then new writes need to be
4232 * held off until the compute completes.
4233 */
4234 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4235 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4236 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4237 schedule_reconstruction(sh, s, rcw == 0, 0);
4238 return 0;
4239 }
4240
handle_parity_checks5(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4241 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4242 struct stripe_head_state *s, int disks)
4243 {
4244 struct r5dev *dev = NULL;
4245
4246 BUG_ON(sh->batch_head);
4247 set_bit(STRIPE_HANDLE, &sh->state);
4248
4249 switch (sh->check_state) {
4250 case check_state_idle:
4251 /* start a new check operation if there are no failures */
4252 if (s->failed == 0) {
4253 BUG_ON(s->uptodate != disks);
4254 sh->check_state = check_state_run;
4255 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4256 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4257 s->uptodate--;
4258 break;
4259 }
4260 dev = &sh->dev[s->failed_num[0]];
4261 fallthrough;
4262 case check_state_compute_result:
4263 sh->check_state = check_state_idle;
4264 if (!dev)
4265 dev = &sh->dev[sh->pd_idx];
4266
4267 /* check that a write has not made the stripe insync */
4268 if (test_bit(STRIPE_INSYNC, &sh->state))
4269 break;
4270
4271 /* either failed parity check, or recovery is happening */
4272 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4273 BUG_ON(s->uptodate != disks);
4274
4275 set_bit(R5_LOCKED, &dev->flags);
4276 s->locked++;
4277 set_bit(R5_Wantwrite, &dev->flags);
4278
4279 clear_bit(STRIPE_DEGRADED, &sh->state);
4280 set_bit(STRIPE_INSYNC, &sh->state);
4281 break;
4282 case check_state_run:
4283 break; /* we will be called again upon completion */
4284 case check_state_check_result:
4285 sh->check_state = check_state_idle;
4286
4287 /* if a failure occurred during the check operation, leave
4288 * STRIPE_INSYNC not set and let the stripe be handled again
4289 */
4290 if (s->failed)
4291 break;
4292
4293 /* handle a successful check operation, if parity is correct
4294 * we are done. Otherwise update the mismatch count and repair
4295 * parity if !MD_RECOVERY_CHECK
4296 */
4297 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4298 /* parity is correct (on disc,
4299 * not in buffer any more)
4300 */
4301 set_bit(STRIPE_INSYNC, &sh->state);
4302 else {
4303 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4304 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4305 /* don't try to repair!! */
4306 set_bit(STRIPE_INSYNC, &sh->state);
4307 pr_warn_ratelimited("%s: mismatch sector in range "
4308 "%llu-%llu\n", mdname(conf->mddev),
4309 (unsigned long long) sh->sector,
4310 (unsigned long long) sh->sector +
4311 RAID5_STRIPE_SECTORS(conf));
4312 } else {
4313 sh->check_state = check_state_compute_run;
4314 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4315 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4316 set_bit(R5_Wantcompute,
4317 &sh->dev[sh->pd_idx].flags);
4318 sh->ops.target = sh->pd_idx;
4319 sh->ops.target2 = -1;
4320 s->uptodate++;
4321 }
4322 }
4323 break;
4324 case check_state_compute_run:
4325 break;
4326 default:
4327 pr_err("%s: unknown check_state: %d sector: %llu\n",
4328 __func__, sh->check_state,
4329 (unsigned long long) sh->sector);
4330 BUG();
4331 }
4332 }
4333
handle_parity_checks6(struct r5conf * conf,struct stripe_head * sh,struct stripe_head_state * s,int disks)4334 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4335 struct stripe_head_state *s,
4336 int disks)
4337 {
4338 int pd_idx = sh->pd_idx;
4339 int qd_idx = sh->qd_idx;
4340 struct r5dev *dev;
4341
4342 BUG_ON(sh->batch_head);
4343 set_bit(STRIPE_HANDLE, &sh->state);
4344
4345 BUG_ON(s->failed > 2);
4346
4347 /* Want to check and possibly repair P and Q.
4348 * However there could be one 'failed' device, in which
4349 * case we can only check one of them, possibly using the
4350 * other to generate missing data
4351 */
4352
4353 switch (sh->check_state) {
4354 case check_state_idle:
4355 /* start a new check operation if there are < 2 failures */
4356 if (s->failed == s->q_failed) {
4357 /* The only possible failed device holds Q, so it
4358 * makes sense to check P (If anything else were failed,
4359 * we would have used P to recreate it).
4360 */
4361 sh->check_state = check_state_run;
4362 }
4363 if (!s->q_failed && s->failed < 2) {
4364 /* Q is not failed, and we didn't use it to generate
4365 * anything, so it makes sense to check it
4366 */
4367 if (sh->check_state == check_state_run)
4368 sh->check_state = check_state_run_pq;
4369 else
4370 sh->check_state = check_state_run_q;
4371 }
4372
4373 /* discard potentially stale zero_sum_result */
4374 sh->ops.zero_sum_result = 0;
4375
4376 if (sh->check_state == check_state_run) {
4377 /* async_xor_zero_sum destroys the contents of P */
4378 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4379 s->uptodate--;
4380 }
4381 if (sh->check_state >= check_state_run &&
4382 sh->check_state <= check_state_run_pq) {
4383 /* async_syndrome_zero_sum preserves P and Q, so
4384 * no need to mark them !uptodate here
4385 */
4386 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4387 break;
4388 }
4389
4390 /* we have 2-disk failure */
4391 BUG_ON(s->failed != 2);
4392 fallthrough;
4393 case check_state_compute_result:
4394 sh->check_state = check_state_idle;
4395
4396 /* check that a write has not made the stripe insync */
4397 if (test_bit(STRIPE_INSYNC, &sh->state))
4398 break;
4399
4400 /* now write out any block on a failed drive,
4401 * or P or Q if they were recomputed
4402 */
4403 dev = NULL;
4404 if (s->failed == 2) {
4405 dev = &sh->dev[s->failed_num[1]];
4406 s->locked++;
4407 set_bit(R5_LOCKED, &dev->flags);
4408 set_bit(R5_Wantwrite, &dev->flags);
4409 }
4410 if (s->failed >= 1) {
4411 dev = &sh->dev[s->failed_num[0]];
4412 s->locked++;
4413 set_bit(R5_LOCKED, &dev->flags);
4414 set_bit(R5_Wantwrite, &dev->flags);
4415 }
4416 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4417 dev = &sh->dev[pd_idx];
4418 s->locked++;
4419 set_bit(R5_LOCKED, &dev->flags);
4420 set_bit(R5_Wantwrite, &dev->flags);
4421 }
4422 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4423 dev = &sh->dev[qd_idx];
4424 s->locked++;
4425 set_bit(R5_LOCKED, &dev->flags);
4426 set_bit(R5_Wantwrite, &dev->flags);
4427 }
4428 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4429 "%s: disk%td not up to date\n",
4430 mdname(conf->mddev),
4431 dev - (struct r5dev *) &sh->dev)) {
4432 clear_bit(R5_LOCKED, &dev->flags);
4433 clear_bit(R5_Wantwrite, &dev->flags);
4434 s->locked--;
4435 }
4436 clear_bit(STRIPE_DEGRADED, &sh->state);
4437
4438 set_bit(STRIPE_INSYNC, &sh->state);
4439 break;
4440 case check_state_run:
4441 case check_state_run_q:
4442 case check_state_run_pq:
4443 break; /* we will be called again upon completion */
4444 case check_state_check_result:
4445 sh->check_state = check_state_idle;
4446
4447 /* handle a successful check operation, if parity is correct
4448 * we are done. Otherwise update the mismatch count and repair
4449 * parity if !MD_RECOVERY_CHECK
4450 */
4451 if (sh->ops.zero_sum_result == 0) {
4452 /* both parities are correct */
4453 if (!s->failed)
4454 set_bit(STRIPE_INSYNC, &sh->state);
4455 else {
4456 /* in contrast to the raid5 case we can validate
4457 * parity, but still have a failure to write
4458 * back
4459 */
4460 sh->check_state = check_state_compute_result;
4461 /* Returning at this point means that we may go
4462 * off and bring p and/or q uptodate again so
4463 * we make sure to check zero_sum_result again
4464 * to verify if p or q need writeback
4465 */
4466 }
4467 } else {
4468 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4469 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4470 /* don't try to repair!! */
4471 set_bit(STRIPE_INSYNC, &sh->state);
4472 pr_warn_ratelimited("%s: mismatch sector in range "
4473 "%llu-%llu\n", mdname(conf->mddev),
4474 (unsigned long long) sh->sector,
4475 (unsigned long long) sh->sector +
4476 RAID5_STRIPE_SECTORS(conf));
4477 } else {
4478 int *target = &sh->ops.target;
4479
4480 sh->ops.target = -1;
4481 sh->ops.target2 = -1;
4482 sh->check_state = check_state_compute_run;
4483 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4484 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4485 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4486 set_bit(R5_Wantcompute,
4487 &sh->dev[pd_idx].flags);
4488 *target = pd_idx;
4489 target = &sh->ops.target2;
4490 s->uptodate++;
4491 }
4492 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4493 set_bit(R5_Wantcompute,
4494 &sh->dev[qd_idx].flags);
4495 *target = qd_idx;
4496 s->uptodate++;
4497 }
4498 }
4499 }
4500 break;
4501 case check_state_compute_run:
4502 break;
4503 default:
4504 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4505 __func__, sh->check_state,
4506 (unsigned long long) sh->sector);
4507 BUG();
4508 }
4509 }
4510
handle_stripe_expansion(struct r5conf * conf,struct stripe_head * sh)4511 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4512 {
4513 int i;
4514
4515 /* We have read all the blocks in this stripe and now we need to
4516 * copy some of them into a target stripe for expand.
4517 */
4518 struct dma_async_tx_descriptor *tx = NULL;
4519 BUG_ON(sh->batch_head);
4520 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4521 for (i = 0; i < sh->disks; i++)
4522 if (i != sh->pd_idx && i != sh->qd_idx) {
4523 int dd_idx, j;
4524 struct stripe_head *sh2;
4525 struct async_submit_ctl submit;
4526
4527 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4528 sector_t s = raid5_compute_sector(conf, bn, 0,
4529 &dd_idx, NULL);
4530 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4531 if (sh2 == NULL)
4532 /* so far only the early blocks of this stripe
4533 * have been requested. When later blocks
4534 * get requested, we will try again
4535 */
4536 continue;
4537 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4538 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4539 /* must have already done this block */
4540 raid5_release_stripe(sh2);
4541 continue;
4542 }
4543
4544 /* place all the copies on one channel */
4545 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4546 tx = async_memcpy(sh2->dev[dd_idx].page,
4547 sh->dev[i].page, sh2->dev[dd_idx].offset,
4548 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4549 &submit);
4550
4551 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4552 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4553 for (j = 0; j < conf->raid_disks; j++)
4554 if (j != sh2->pd_idx &&
4555 j != sh2->qd_idx &&
4556 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4557 break;
4558 if (j == conf->raid_disks) {
4559 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4560 set_bit(STRIPE_HANDLE, &sh2->state);
4561 }
4562 raid5_release_stripe(sh2);
4563
4564 }
4565 /* done submitting copies, wait for them to complete */
4566 async_tx_quiesce(&tx);
4567 }
4568
4569 /*
4570 * handle_stripe - do things to a stripe.
4571 *
4572 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4573 * state of various bits to see what needs to be done.
4574 * Possible results:
4575 * return some read requests which now have data
4576 * return some write requests which are safely on storage
4577 * schedule a read on some buffers
4578 * schedule a write of some buffers
4579 * return confirmation of parity correctness
4580 *
4581 */
4582
analyse_stripe(struct stripe_head * sh,struct stripe_head_state * s)4583 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4584 {
4585 struct r5conf *conf = sh->raid_conf;
4586 int disks = sh->disks;
4587 struct r5dev *dev;
4588 int i;
4589 int do_recovery = 0;
4590
4591 memset(s, 0, sizeof(*s));
4592
4593 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4594 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4595 s->failed_num[0] = -1;
4596 s->failed_num[1] = -1;
4597 s->log_failed = r5l_log_disk_error(conf);
4598
4599 /* Now to look around and see what can be done */
4600 rcu_read_lock();
4601 for (i=disks; i--; ) {
4602 struct md_rdev *rdev;
4603 sector_t first_bad;
4604 int bad_sectors;
4605 int is_bad = 0;
4606
4607 dev = &sh->dev[i];
4608
4609 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4610 i, dev->flags,
4611 dev->toread, dev->towrite, dev->written);
4612 /* maybe we can reply to a read
4613 *
4614 * new wantfill requests are only permitted while
4615 * ops_complete_biofill is guaranteed to be inactive
4616 */
4617 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4618 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4619 set_bit(R5_Wantfill, &dev->flags);
4620
4621 /* now count some things */
4622 if (test_bit(R5_LOCKED, &dev->flags))
4623 s->locked++;
4624 if (test_bit(R5_UPTODATE, &dev->flags))
4625 s->uptodate++;
4626 if (test_bit(R5_Wantcompute, &dev->flags)) {
4627 s->compute++;
4628 BUG_ON(s->compute > 2);
4629 }
4630
4631 if (test_bit(R5_Wantfill, &dev->flags))
4632 s->to_fill++;
4633 else if (dev->toread)
4634 s->to_read++;
4635 if (dev->towrite) {
4636 s->to_write++;
4637 if (!test_bit(R5_OVERWRITE, &dev->flags))
4638 s->non_overwrite++;
4639 }
4640 if (dev->written)
4641 s->written++;
4642 /* Prefer to use the replacement for reads, but only
4643 * if it is recovered enough and has no bad blocks.
4644 */
4645 rdev = rcu_dereference(conf->disks[i].replacement);
4646 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4647 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4648 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4649 &first_bad, &bad_sectors))
4650 set_bit(R5_ReadRepl, &dev->flags);
4651 else {
4652 if (rdev && !test_bit(Faulty, &rdev->flags))
4653 set_bit(R5_NeedReplace, &dev->flags);
4654 else
4655 clear_bit(R5_NeedReplace, &dev->flags);
4656 rdev = rcu_dereference(conf->disks[i].rdev);
4657 clear_bit(R5_ReadRepl, &dev->flags);
4658 }
4659 if (rdev && test_bit(Faulty, &rdev->flags))
4660 rdev = NULL;
4661 if (rdev) {
4662 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4663 &first_bad, &bad_sectors);
4664 if (s->blocked_rdev == NULL
4665 && (test_bit(Blocked, &rdev->flags)
4666 || is_bad < 0)) {
4667 if (is_bad < 0)
4668 set_bit(BlockedBadBlocks,
4669 &rdev->flags);
4670 s->blocked_rdev = rdev;
4671 atomic_inc(&rdev->nr_pending);
4672 }
4673 }
4674 clear_bit(R5_Insync, &dev->flags);
4675 if (!rdev)
4676 /* Not in-sync */;
4677 else if (is_bad) {
4678 /* also not in-sync */
4679 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4680 test_bit(R5_UPTODATE, &dev->flags)) {
4681 /* treat as in-sync, but with a read error
4682 * which we can now try to correct
4683 */
4684 set_bit(R5_Insync, &dev->flags);
4685 set_bit(R5_ReadError, &dev->flags);
4686 }
4687 } else if (test_bit(In_sync, &rdev->flags))
4688 set_bit(R5_Insync, &dev->flags);
4689 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4690 /* in sync if before recovery_offset */
4691 set_bit(R5_Insync, &dev->flags);
4692 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4693 test_bit(R5_Expanded, &dev->flags))
4694 /* If we've reshaped into here, we assume it is Insync.
4695 * We will shortly update recovery_offset to make
4696 * it official.
4697 */
4698 set_bit(R5_Insync, &dev->flags);
4699
4700 if (test_bit(R5_WriteError, &dev->flags)) {
4701 /* This flag does not apply to '.replacement'
4702 * only to .rdev, so make sure to check that*/
4703 struct md_rdev *rdev2 = rcu_dereference(
4704 conf->disks[i].rdev);
4705 if (rdev2 == rdev)
4706 clear_bit(R5_Insync, &dev->flags);
4707 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4708 s->handle_bad_blocks = 1;
4709 atomic_inc(&rdev2->nr_pending);
4710 } else
4711 clear_bit(R5_WriteError, &dev->flags);
4712 }
4713 if (test_bit(R5_MadeGood, &dev->flags)) {
4714 /* This flag does not apply to '.replacement'
4715 * only to .rdev, so make sure to check that*/
4716 struct md_rdev *rdev2 = rcu_dereference(
4717 conf->disks[i].rdev);
4718 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4719 s->handle_bad_blocks = 1;
4720 atomic_inc(&rdev2->nr_pending);
4721 } else
4722 clear_bit(R5_MadeGood, &dev->flags);
4723 }
4724 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4725 struct md_rdev *rdev2 = rcu_dereference(
4726 conf->disks[i].replacement);
4727 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4728 s->handle_bad_blocks = 1;
4729 atomic_inc(&rdev2->nr_pending);
4730 } else
4731 clear_bit(R5_MadeGoodRepl, &dev->flags);
4732 }
4733 if (!test_bit(R5_Insync, &dev->flags)) {
4734 /* The ReadError flag will just be confusing now */
4735 clear_bit(R5_ReadError, &dev->flags);
4736 clear_bit(R5_ReWrite, &dev->flags);
4737 }
4738 if (test_bit(R5_ReadError, &dev->flags))
4739 clear_bit(R5_Insync, &dev->flags);
4740 if (!test_bit(R5_Insync, &dev->flags)) {
4741 if (s->failed < 2)
4742 s->failed_num[s->failed] = i;
4743 s->failed++;
4744 if (rdev && !test_bit(Faulty, &rdev->flags))
4745 do_recovery = 1;
4746 else if (!rdev) {
4747 rdev = rcu_dereference(
4748 conf->disks[i].replacement);
4749 if (rdev && !test_bit(Faulty, &rdev->flags))
4750 do_recovery = 1;
4751 }
4752 }
4753
4754 if (test_bit(R5_InJournal, &dev->flags))
4755 s->injournal++;
4756 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4757 s->just_cached++;
4758 }
4759 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4760 /* If there is a failed device being replaced,
4761 * we must be recovering.
4762 * else if we are after recovery_cp, we must be syncing
4763 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4764 * else we can only be replacing
4765 * sync and recovery both need to read all devices, and so
4766 * use the same flag.
4767 */
4768 if (do_recovery ||
4769 sh->sector >= conf->mddev->recovery_cp ||
4770 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4771 s->syncing = 1;
4772 else
4773 s->replacing = 1;
4774 }
4775 rcu_read_unlock();
4776 }
4777
4778 /*
4779 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4780 * a head which can now be handled.
4781 */
clear_batch_ready(struct stripe_head * sh)4782 static int clear_batch_ready(struct stripe_head *sh)
4783 {
4784 struct stripe_head *tmp;
4785 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4786 return (sh->batch_head && sh->batch_head != sh);
4787 spin_lock(&sh->stripe_lock);
4788 if (!sh->batch_head) {
4789 spin_unlock(&sh->stripe_lock);
4790 return 0;
4791 }
4792
4793 /*
4794 * this stripe could be added to a batch list before we check
4795 * BATCH_READY, skips it
4796 */
4797 if (sh->batch_head != sh) {
4798 spin_unlock(&sh->stripe_lock);
4799 return 1;
4800 }
4801 spin_lock(&sh->batch_lock);
4802 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4803 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4804 spin_unlock(&sh->batch_lock);
4805 spin_unlock(&sh->stripe_lock);
4806
4807 /*
4808 * BATCH_READY is cleared, no new stripes can be added.
4809 * batch_list can be accessed without lock
4810 */
4811 return 0;
4812 }
4813
break_stripe_batch_list(struct stripe_head * head_sh,unsigned long handle_flags)4814 static void break_stripe_batch_list(struct stripe_head *head_sh,
4815 unsigned long handle_flags)
4816 {
4817 struct stripe_head *sh, *next;
4818 int i;
4819 int do_wakeup = 0;
4820
4821 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4822
4823 list_del_init(&sh->batch_list);
4824
4825 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4826 (1 << STRIPE_SYNCING) |
4827 (1 << STRIPE_REPLACED) |
4828 (1 << STRIPE_DELAYED) |
4829 (1 << STRIPE_BIT_DELAY) |
4830 (1 << STRIPE_FULL_WRITE) |
4831 (1 << STRIPE_BIOFILL_RUN) |
4832 (1 << STRIPE_COMPUTE_RUN) |
4833 (1 << STRIPE_DISCARD) |
4834 (1 << STRIPE_BATCH_READY) |
4835 (1 << STRIPE_BATCH_ERR) |
4836 (1 << STRIPE_BITMAP_PENDING)),
4837 "stripe state: %lx\n", sh->state);
4838 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4839 (1 << STRIPE_REPLACED)),
4840 "head stripe state: %lx\n", head_sh->state);
4841
4842 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4843 (1 << STRIPE_PREREAD_ACTIVE) |
4844 (1 << STRIPE_DEGRADED) |
4845 (1 << STRIPE_ON_UNPLUG_LIST)),
4846 head_sh->state & (1 << STRIPE_INSYNC));
4847
4848 sh->check_state = head_sh->check_state;
4849 sh->reconstruct_state = head_sh->reconstruct_state;
4850 spin_lock_irq(&sh->stripe_lock);
4851 sh->batch_head = NULL;
4852 spin_unlock_irq(&sh->stripe_lock);
4853 for (i = 0; i < sh->disks; i++) {
4854 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4855 do_wakeup = 1;
4856 sh->dev[i].flags = head_sh->dev[i].flags &
4857 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4858 }
4859 if (handle_flags == 0 ||
4860 sh->state & handle_flags)
4861 set_bit(STRIPE_HANDLE, &sh->state);
4862 raid5_release_stripe(sh);
4863 }
4864 spin_lock_irq(&head_sh->stripe_lock);
4865 head_sh->batch_head = NULL;
4866 spin_unlock_irq(&head_sh->stripe_lock);
4867 for (i = 0; i < head_sh->disks; i++)
4868 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4869 do_wakeup = 1;
4870 if (head_sh->state & handle_flags)
4871 set_bit(STRIPE_HANDLE, &head_sh->state);
4872
4873 if (do_wakeup)
4874 wake_up(&head_sh->raid_conf->wait_for_overlap);
4875 }
4876
handle_stripe(struct stripe_head * sh)4877 static void handle_stripe(struct stripe_head *sh)
4878 {
4879 struct stripe_head_state s;
4880 struct r5conf *conf = sh->raid_conf;
4881 int i;
4882 int prexor;
4883 int disks = sh->disks;
4884 struct r5dev *pdev, *qdev;
4885
4886 clear_bit(STRIPE_HANDLE, &sh->state);
4887
4888 /*
4889 * handle_stripe should not continue handle the batched stripe, only
4890 * the head of batch list or lone stripe can continue. Otherwise we
4891 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4892 * is set for the batched stripe.
4893 */
4894 if (clear_batch_ready(sh))
4895 return;
4896
4897 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4898 /* already being handled, ensure it gets handled
4899 * again when current action finishes */
4900 set_bit(STRIPE_HANDLE, &sh->state);
4901 return;
4902 }
4903
4904 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4905 break_stripe_batch_list(sh, 0);
4906
4907 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4908 spin_lock(&sh->stripe_lock);
4909 /*
4910 * Cannot process 'sync' concurrently with 'discard'.
4911 * Flush data in r5cache before 'sync'.
4912 */
4913 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4914 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4915 !test_bit(STRIPE_DISCARD, &sh->state) &&
4916 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4917 set_bit(STRIPE_SYNCING, &sh->state);
4918 clear_bit(STRIPE_INSYNC, &sh->state);
4919 clear_bit(STRIPE_REPLACED, &sh->state);
4920 }
4921 spin_unlock(&sh->stripe_lock);
4922 }
4923 clear_bit(STRIPE_DELAYED, &sh->state);
4924
4925 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4926 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4927 (unsigned long long)sh->sector, sh->state,
4928 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4929 sh->check_state, sh->reconstruct_state);
4930
4931 analyse_stripe(sh, &s);
4932
4933 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4934 goto finish;
4935
4936 if (s.handle_bad_blocks ||
4937 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4938 set_bit(STRIPE_HANDLE, &sh->state);
4939 goto finish;
4940 }
4941
4942 if (unlikely(s.blocked_rdev)) {
4943 if (s.syncing || s.expanding || s.expanded ||
4944 s.replacing || s.to_write || s.written) {
4945 set_bit(STRIPE_HANDLE, &sh->state);
4946 goto finish;
4947 }
4948 /* There is nothing for the blocked_rdev to block */
4949 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4950 s.blocked_rdev = NULL;
4951 }
4952
4953 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4954 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4955 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4956 }
4957
4958 pr_debug("locked=%d uptodate=%d to_read=%d"
4959 " to_write=%d failed=%d failed_num=%d,%d\n",
4960 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4961 s.failed_num[0], s.failed_num[1]);
4962 /*
4963 * check if the array has lost more than max_degraded devices and,
4964 * if so, some requests might need to be failed.
4965 *
4966 * When journal device failed (log_failed), we will only process
4967 * the stripe if there is data need write to raid disks
4968 */
4969 if (s.failed > conf->max_degraded ||
4970 (s.log_failed && s.injournal == 0)) {
4971 sh->check_state = 0;
4972 sh->reconstruct_state = 0;
4973 break_stripe_batch_list(sh, 0);
4974 if (s.to_read+s.to_write+s.written)
4975 handle_failed_stripe(conf, sh, &s, disks);
4976 if (s.syncing + s.replacing)
4977 handle_failed_sync(conf, sh, &s);
4978 }
4979
4980 /* Now we check to see if any write operations have recently
4981 * completed
4982 */
4983 prexor = 0;
4984 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4985 prexor = 1;
4986 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4987 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4988 sh->reconstruct_state = reconstruct_state_idle;
4989
4990 /* All the 'written' buffers and the parity block are ready to
4991 * be written back to disk
4992 */
4993 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4994 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4995 BUG_ON(sh->qd_idx >= 0 &&
4996 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4997 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4998 for (i = disks; i--; ) {
4999 struct r5dev *dev = &sh->dev[i];
5000 if (test_bit(R5_LOCKED, &dev->flags) &&
5001 (i == sh->pd_idx || i == sh->qd_idx ||
5002 dev->written || test_bit(R5_InJournal,
5003 &dev->flags))) {
5004 pr_debug("Writing block %d\n", i);
5005 set_bit(R5_Wantwrite, &dev->flags);
5006 if (prexor)
5007 continue;
5008 if (s.failed > 1)
5009 continue;
5010 if (!test_bit(R5_Insync, &dev->flags) ||
5011 ((i == sh->pd_idx || i == sh->qd_idx) &&
5012 s.failed == 0))
5013 set_bit(STRIPE_INSYNC, &sh->state);
5014 }
5015 }
5016 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5017 s.dec_preread_active = 1;
5018 }
5019
5020 /*
5021 * might be able to return some write requests if the parity blocks
5022 * are safe, or on a failed drive
5023 */
5024 pdev = &sh->dev[sh->pd_idx];
5025 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5026 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5027 qdev = &sh->dev[sh->qd_idx];
5028 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5029 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5030 || conf->level < 6;
5031
5032 if (s.written &&
5033 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5034 && !test_bit(R5_LOCKED, &pdev->flags)
5035 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5036 test_bit(R5_Discard, &pdev->flags))))) &&
5037 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5038 && !test_bit(R5_LOCKED, &qdev->flags)
5039 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5040 test_bit(R5_Discard, &qdev->flags))))))
5041 handle_stripe_clean_event(conf, sh, disks);
5042
5043 if (s.just_cached)
5044 r5c_handle_cached_data_endio(conf, sh, disks);
5045 log_stripe_write_finished(sh);
5046
5047 /* Now we might consider reading some blocks, either to check/generate
5048 * parity, or to satisfy requests
5049 * or to load a block that is being partially written.
5050 */
5051 if (s.to_read || s.non_overwrite
5052 || (s.to_write && s.failed)
5053 || (s.syncing && (s.uptodate + s.compute < disks))
5054 || s.replacing
5055 || s.expanding)
5056 handle_stripe_fill(sh, &s, disks);
5057
5058 /*
5059 * When the stripe finishes full journal write cycle (write to journal
5060 * and raid disk), this is the clean up procedure so it is ready for
5061 * next operation.
5062 */
5063 r5c_finish_stripe_write_out(conf, sh, &s);
5064
5065 /*
5066 * Now to consider new write requests, cache write back and what else,
5067 * if anything should be read. We do not handle new writes when:
5068 * 1/ A 'write' operation (copy+xor) is already in flight.
5069 * 2/ A 'check' operation is in flight, as it may clobber the parity
5070 * block.
5071 * 3/ A r5c cache log write is in flight.
5072 */
5073
5074 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5075 if (!r5c_is_writeback(conf->log)) {
5076 if (s.to_write)
5077 handle_stripe_dirtying(conf, sh, &s, disks);
5078 } else { /* write back cache */
5079 int ret = 0;
5080
5081 /* First, try handle writes in caching phase */
5082 if (s.to_write)
5083 ret = r5c_try_caching_write(conf, sh, &s,
5084 disks);
5085 /*
5086 * If caching phase failed: ret == -EAGAIN
5087 * OR
5088 * stripe under reclaim: !caching && injournal
5089 *
5090 * fall back to handle_stripe_dirtying()
5091 */
5092 if (ret == -EAGAIN ||
5093 /* stripe under reclaim: !caching && injournal */
5094 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5095 s.injournal > 0)) {
5096 ret = handle_stripe_dirtying(conf, sh, &s,
5097 disks);
5098 if (ret == -EAGAIN)
5099 goto finish;
5100 }
5101 }
5102 }
5103
5104 /* maybe we need to check and possibly fix the parity for this stripe
5105 * Any reads will already have been scheduled, so we just see if enough
5106 * data is available. The parity check is held off while parity
5107 * dependent operations are in flight.
5108 */
5109 if (sh->check_state ||
5110 (s.syncing && s.locked == 0 &&
5111 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5112 !test_bit(STRIPE_INSYNC, &sh->state))) {
5113 if (conf->level == 6)
5114 handle_parity_checks6(conf, sh, &s, disks);
5115 else
5116 handle_parity_checks5(conf, sh, &s, disks);
5117 }
5118
5119 if ((s.replacing || s.syncing) && s.locked == 0
5120 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5121 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5122 /* Write out to replacement devices where possible */
5123 for (i = 0; i < conf->raid_disks; i++)
5124 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5125 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5126 set_bit(R5_WantReplace, &sh->dev[i].flags);
5127 set_bit(R5_LOCKED, &sh->dev[i].flags);
5128 s.locked++;
5129 }
5130 if (s.replacing)
5131 set_bit(STRIPE_INSYNC, &sh->state);
5132 set_bit(STRIPE_REPLACED, &sh->state);
5133 }
5134 if ((s.syncing || s.replacing) && s.locked == 0 &&
5135 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5136 test_bit(STRIPE_INSYNC, &sh->state)) {
5137 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5138 clear_bit(STRIPE_SYNCING, &sh->state);
5139 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5140 wake_up(&conf->wait_for_overlap);
5141 }
5142
5143 /* If the failed drives are just a ReadError, then we might need
5144 * to progress the repair/check process
5145 */
5146 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5147 for (i = 0; i < s.failed; i++) {
5148 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5149 if (test_bit(R5_ReadError, &dev->flags)
5150 && !test_bit(R5_LOCKED, &dev->flags)
5151 && test_bit(R5_UPTODATE, &dev->flags)
5152 ) {
5153 if (!test_bit(R5_ReWrite, &dev->flags)) {
5154 set_bit(R5_Wantwrite, &dev->flags);
5155 set_bit(R5_ReWrite, &dev->flags);
5156 } else
5157 /* let's read it back */
5158 set_bit(R5_Wantread, &dev->flags);
5159 set_bit(R5_LOCKED, &dev->flags);
5160 s.locked++;
5161 }
5162 }
5163
5164 /* Finish reconstruct operations initiated by the expansion process */
5165 if (sh->reconstruct_state == reconstruct_state_result) {
5166 struct stripe_head *sh_src
5167 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5168 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5169 /* sh cannot be written until sh_src has been read.
5170 * so arrange for sh to be delayed a little
5171 */
5172 set_bit(STRIPE_DELAYED, &sh->state);
5173 set_bit(STRIPE_HANDLE, &sh->state);
5174 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5175 &sh_src->state))
5176 atomic_inc(&conf->preread_active_stripes);
5177 raid5_release_stripe(sh_src);
5178 goto finish;
5179 }
5180 if (sh_src)
5181 raid5_release_stripe(sh_src);
5182
5183 sh->reconstruct_state = reconstruct_state_idle;
5184 clear_bit(STRIPE_EXPANDING, &sh->state);
5185 for (i = conf->raid_disks; i--; ) {
5186 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5187 set_bit(R5_LOCKED, &sh->dev[i].flags);
5188 s.locked++;
5189 }
5190 }
5191
5192 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5193 !sh->reconstruct_state) {
5194 /* Need to write out all blocks after computing parity */
5195 sh->disks = conf->raid_disks;
5196 stripe_set_idx(sh->sector, conf, 0, sh);
5197 schedule_reconstruction(sh, &s, 1, 1);
5198 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5199 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5200 atomic_dec(&conf->reshape_stripes);
5201 wake_up(&conf->wait_for_overlap);
5202 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5203 }
5204
5205 if (s.expanding && s.locked == 0 &&
5206 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5207 handle_stripe_expansion(conf, sh);
5208
5209 finish:
5210 /* wait for this device to become unblocked */
5211 if (unlikely(s.blocked_rdev)) {
5212 if (conf->mddev->external)
5213 md_wait_for_blocked_rdev(s.blocked_rdev,
5214 conf->mddev);
5215 else
5216 /* Internal metadata will immediately
5217 * be written by raid5d, so we don't
5218 * need to wait here.
5219 */
5220 rdev_dec_pending(s.blocked_rdev,
5221 conf->mddev);
5222 }
5223
5224 if (s.handle_bad_blocks)
5225 for (i = disks; i--; ) {
5226 struct md_rdev *rdev;
5227 struct r5dev *dev = &sh->dev[i];
5228 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5229 /* We own a safe reference to the rdev */
5230 rdev = conf->disks[i].rdev;
5231 if (!rdev_set_badblocks(rdev, sh->sector,
5232 RAID5_STRIPE_SECTORS(conf), 0))
5233 md_error(conf->mddev, rdev);
5234 rdev_dec_pending(rdev, conf->mddev);
5235 }
5236 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5237 rdev = conf->disks[i].rdev;
5238 rdev_clear_badblocks(rdev, sh->sector,
5239 RAID5_STRIPE_SECTORS(conf), 0);
5240 rdev_dec_pending(rdev, conf->mddev);
5241 }
5242 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5243 rdev = conf->disks[i].replacement;
5244 if (!rdev)
5245 /* rdev have been moved down */
5246 rdev = conf->disks[i].rdev;
5247 rdev_clear_badblocks(rdev, sh->sector,
5248 RAID5_STRIPE_SECTORS(conf), 0);
5249 rdev_dec_pending(rdev, conf->mddev);
5250 }
5251 }
5252
5253 if (s.ops_request)
5254 raid_run_ops(sh, s.ops_request);
5255
5256 ops_run_io(sh, &s);
5257
5258 if (s.dec_preread_active) {
5259 /* We delay this until after ops_run_io so that if make_request
5260 * is waiting on a flush, it won't continue until the writes
5261 * have actually been submitted.
5262 */
5263 atomic_dec(&conf->preread_active_stripes);
5264 if (atomic_read(&conf->preread_active_stripes) <
5265 IO_THRESHOLD)
5266 md_wakeup_thread(conf->mddev->thread);
5267 }
5268
5269 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5270 }
5271
raid5_activate_delayed(struct r5conf * conf)5272 static void raid5_activate_delayed(struct r5conf *conf)
5273 {
5274 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5275 while (!list_empty(&conf->delayed_list)) {
5276 struct list_head *l = conf->delayed_list.next;
5277 struct stripe_head *sh;
5278 sh = list_entry(l, struct stripe_head, lru);
5279 list_del_init(l);
5280 clear_bit(STRIPE_DELAYED, &sh->state);
5281 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5282 atomic_inc(&conf->preread_active_stripes);
5283 list_add_tail(&sh->lru, &conf->hold_list);
5284 raid5_wakeup_stripe_thread(sh);
5285 }
5286 }
5287 }
5288
activate_bit_delay(struct r5conf * conf,struct list_head * temp_inactive_list)5289 static void activate_bit_delay(struct r5conf *conf,
5290 struct list_head *temp_inactive_list)
5291 {
5292 /* device_lock is held */
5293 struct list_head head;
5294 list_add(&head, &conf->bitmap_list);
5295 list_del_init(&conf->bitmap_list);
5296 while (!list_empty(&head)) {
5297 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5298 int hash;
5299 list_del_init(&sh->lru);
5300 atomic_inc(&sh->count);
5301 hash = sh->hash_lock_index;
5302 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5303 }
5304 }
5305
in_chunk_boundary(struct mddev * mddev,struct bio * bio)5306 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5307 {
5308 struct r5conf *conf = mddev->private;
5309 sector_t sector = bio->bi_iter.bi_sector;
5310 unsigned int chunk_sectors;
5311 unsigned int bio_sectors = bio_sectors(bio);
5312
5313 WARN_ON_ONCE(bio->bi_partno);
5314
5315 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5316 return chunk_sectors >=
5317 ((sector & (chunk_sectors - 1)) + bio_sectors);
5318 }
5319
5320 /*
5321 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5322 * later sampled by raid5d.
5323 */
add_bio_to_retry(struct bio * bi,struct r5conf * conf)5324 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5325 {
5326 unsigned long flags;
5327
5328 spin_lock_irqsave(&conf->device_lock, flags);
5329
5330 bi->bi_next = conf->retry_read_aligned_list;
5331 conf->retry_read_aligned_list = bi;
5332
5333 spin_unlock_irqrestore(&conf->device_lock, flags);
5334 md_wakeup_thread(conf->mddev->thread);
5335 }
5336
remove_bio_from_retry(struct r5conf * conf,unsigned int * offset)5337 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5338 unsigned int *offset)
5339 {
5340 struct bio *bi;
5341
5342 bi = conf->retry_read_aligned;
5343 if (bi) {
5344 *offset = conf->retry_read_offset;
5345 conf->retry_read_aligned = NULL;
5346 return bi;
5347 }
5348 bi = conf->retry_read_aligned_list;
5349 if(bi) {
5350 conf->retry_read_aligned_list = bi->bi_next;
5351 bi->bi_next = NULL;
5352 *offset = 0;
5353 }
5354
5355 return bi;
5356 }
5357
5358 /*
5359 * The "raid5_align_endio" should check if the read succeeded and if it
5360 * did, call bio_endio on the original bio (having bio_put the new bio
5361 * first).
5362 * If the read failed..
5363 */
raid5_align_endio(struct bio * bi)5364 static void raid5_align_endio(struct bio *bi)
5365 {
5366 struct bio* raid_bi = bi->bi_private;
5367 struct mddev *mddev;
5368 struct r5conf *conf;
5369 struct md_rdev *rdev;
5370 blk_status_t error = bi->bi_status;
5371
5372 bio_put(bi);
5373
5374 rdev = (void*)raid_bi->bi_next;
5375 raid_bi->bi_next = NULL;
5376 mddev = rdev->mddev;
5377 conf = mddev->private;
5378
5379 rdev_dec_pending(rdev, conf->mddev);
5380
5381 if (!error) {
5382 bio_endio(raid_bi);
5383 if (atomic_dec_and_test(&conf->active_aligned_reads))
5384 wake_up(&conf->wait_for_quiescent);
5385 return;
5386 }
5387
5388 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5389
5390 add_bio_to_retry(raid_bi, conf);
5391 }
5392
raid5_read_one_chunk(struct mddev * mddev,struct bio * raid_bio)5393 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5394 {
5395 struct r5conf *conf = mddev->private;
5396 int dd_idx;
5397 struct bio* align_bi;
5398 struct md_rdev *rdev;
5399 sector_t end_sector;
5400
5401 if (!in_chunk_boundary(mddev, raid_bio)) {
5402 pr_debug("%s: non aligned\n", __func__);
5403 return 0;
5404 }
5405 /*
5406 * use bio_clone_fast to make a copy of the bio
5407 */
5408 align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5409 if (!align_bi)
5410 return 0;
5411 /*
5412 * set bi_end_io to a new function, and set bi_private to the
5413 * original bio.
5414 */
5415 align_bi->bi_end_io = raid5_align_endio;
5416 align_bi->bi_private = raid_bio;
5417 /*
5418 * compute position
5419 */
5420 align_bi->bi_iter.bi_sector =
5421 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5422 0, &dd_idx, NULL);
5423
5424 end_sector = bio_end_sector(align_bi);
5425 rcu_read_lock();
5426 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5427 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5428 rdev->recovery_offset < end_sector) {
5429 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5430 if (rdev &&
5431 (test_bit(Faulty, &rdev->flags) ||
5432 !(test_bit(In_sync, &rdev->flags) ||
5433 rdev->recovery_offset >= end_sector)))
5434 rdev = NULL;
5435 }
5436
5437 if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5438 rcu_read_unlock();
5439 bio_put(align_bi);
5440 return 0;
5441 }
5442
5443 if (rdev) {
5444 sector_t first_bad;
5445 int bad_sectors;
5446
5447 atomic_inc(&rdev->nr_pending);
5448 rcu_read_unlock();
5449 raid_bio->bi_next = (void*)rdev;
5450 bio_set_dev(align_bi, rdev->bdev);
5451
5452 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5453 bio_sectors(align_bi),
5454 &first_bad, &bad_sectors)) {
5455 bio_put(align_bi);
5456 rdev_dec_pending(rdev, mddev);
5457 return 0;
5458 }
5459
5460 /* No reshape active, so we can trust rdev->data_offset */
5461 align_bi->bi_iter.bi_sector += rdev->data_offset;
5462
5463 spin_lock_irq(&conf->device_lock);
5464 wait_event_lock_irq(conf->wait_for_quiescent,
5465 conf->quiesce == 0,
5466 conf->device_lock);
5467 atomic_inc(&conf->active_aligned_reads);
5468 spin_unlock_irq(&conf->device_lock);
5469
5470 if (mddev->gendisk)
5471 trace_block_bio_remap(align_bi->bi_disk->queue,
5472 align_bi, disk_devt(mddev->gendisk),
5473 raid_bio->bi_iter.bi_sector);
5474 submit_bio_noacct(align_bi);
5475 return 1;
5476 } else {
5477 rcu_read_unlock();
5478 bio_put(align_bi);
5479 return 0;
5480 }
5481 }
5482
chunk_aligned_read(struct mddev * mddev,struct bio * raid_bio)5483 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5484 {
5485 struct bio *split;
5486 sector_t sector = raid_bio->bi_iter.bi_sector;
5487 unsigned chunk_sects = mddev->chunk_sectors;
5488 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5489
5490 if (sectors < bio_sectors(raid_bio)) {
5491 struct r5conf *conf = mddev->private;
5492 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5493 bio_chain(split, raid_bio);
5494 submit_bio_noacct(raid_bio);
5495 raid_bio = split;
5496 }
5497
5498 if (!raid5_read_one_chunk(mddev, raid_bio))
5499 return raid_bio;
5500
5501 return NULL;
5502 }
5503
5504 /* __get_priority_stripe - get the next stripe to process
5505 *
5506 * Full stripe writes are allowed to pass preread active stripes up until
5507 * the bypass_threshold is exceeded. In general the bypass_count
5508 * increments when the handle_list is handled before the hold_list; however, it
5509 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5510 * stripe with in flight i/o. The bypass_count will be reset when the
5511 * head of the hold_list has changed, i.e. the head was promoted to the
5512 * handle_list.
5513 */
__get_priority_stripe(struct r5conf * conf,int group)5514 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5515 {
5516 struct stripe_head *sh, *tmp;
5517 struct list_head *handle_list = NULL;
5518 struct r5worker_group *wg;
5519 bool second_try = !r5c_is_writeback(conf->log) &&
5520 !r5l_log_disk_error(conf);
5521 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5522 r5l_log_disk_error(conf);
5523
5524 again:
5525 wg = NULL;
5526 sh = NULL;
5527 if (conf->worker_cnt_per_group == 0) {
5528 handle_list = try_loprio ? &conf->loprio_list :
5529 &conf->handle_list;
5530 } else if (group != ANY_GROUP) {
5531 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5532 &conf->worker_groups[group].handle_list;
5533 wg = &conf->worker_groups[group];
5534 } else {
5535 int i;
5536 for (i = 0; i < conf->group_cnt; i++) {
5537 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5538 &conf->worker_groups[i].handle_list;
5539 wg = &conf->worker_groups[i];
5540 if (!list_empty(handle_list))
5541 break;
5542 }
5543 }
5544
5545 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5546 __func__,
5547 list_empty(handle_list) ? "empty" : "busy",
5548 list_empty(&conf->hold_list) ? "empty" : "busy",
5549 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5550
5551 if (!list_empty(handle_list)) {
5552 sh = list_entry(handle_list->next, typeof(*sh), lru);
5553
5554 if (list_empty(&conf->hold_list))
5555 conf->bypass_count = 0;
5556 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5557 if (conf->hold_list.next == conf->last_hold)
5558 conf->bypass_count++;
5559 else {
5560 conf->last_hold = conf->hold_list.next;
5561 conf->bypass_count -= conf->bypass_threshold;
5562 if (conf->bypass_count < 0)
5563 conf->bypass_count = 0;
5564 }
5565 }
5566 } else if (!list_empty(&conf->hold_list) &&
5567 ((conf->bypass_threshold &&
5568 conf->bypass_count > conf->bypass_threshold) ||
5569 atomic_read(&conf->pending_full_writes) == 0)) {
5570
5571 list_for_each_entry(tmp, &conf->hold_list, lru) {
5572 if (conf->worker_cnt_per_group == 0 ||
5573 group == ANY_GROUP ||
5574 !cpu_online(tmp->cpu) ||
5575 cpu_to_group(tmp->cpu) == group) {
5576 sh = tmp;
5577 break;
5578 }
5579 }
5580
5581 if (sh) {
5582 conf->bypass_count -= conf->bypass_threshold;
5583 if (conf->bypass_count < 0)
5584 conf->bypass_count = 0;
5585 }
5586 wg = NULL;
5587 }
5588
5589 if (!sh) {
5590 if (second_try)
5591 return NULL;
5592 second_try = true;
5593 try_loprio = !try_loprio;
5594 goto again;
5595 }
5596
5597 if (wg) {
5598 wg->stripes_cnt--;
5599 sh->group = NULL;
5600 }
5601 list_del_init(&sh->lru);
5602 BUG_ON(atomic_inc_return(&sh->count) != 1);
5603 return sh;
5604 }
5605
5606 struct raid5_plug_cb {
5607 struct blk_plug_cb cb;
5608 struct list_head list;
5609 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5610 };
5611
raid5_unplug(struct blk_plug_cb * blk_cb,bool from_schedule)5612 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5613 {
5614 struct raid5_plug_cb *cb = container_of(
5615 blk_cb, struct raid5_plug_cb, cb);
5616 struct stripe_head *sh;
5617 struct mddev *mddev = cb->cb.data;
5618 struct r5conf *conf = mddev->private;
5619 int cnt = 0;
5620 int hash;
5621
5622 if (cb->list.next && !list_empty(&cb->list)) {
5623 spin_lock_irq(&conf->device_lock);
5624 while (!list_empty(&cb->list)) {
5625 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5626 list_del_init(&sh->lru);
5627 /*
5628 * avoid race release_stripe_plug() sees
5629 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5630 * is still in our list
5631 */
5632 smp_mb__before_atomic();
5633 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5634 /*
5635 * STRIPE_ON_RELEASE_LIST could be set here. In that
5636 * case, the count is always > 1 here
5637 */
5638 hash = sh->hash_lock_index;
5639 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5640 cnt++;
5641 }
5642 spin_unlock_irq(&conf->device_lock);
5643 }
5644 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5645 NR_STRIPE_HASH_LOCKS);
5646 if (mddev->queue)
5647 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5648 kfree(cb);
5649 }
5650
release_stripe_plug(struct mddev * mddev,struct stripe_head * sh)5651 static void release_stripe_plug(struct mddev *mddev,
5652 struct stripe_head *sh)
5653 {
5654 struct blk_plug_cb *blk_cb = blk_check_plugged(
5655 raid5_unplug, mddev,
5656 sizeof(struct raid5_plug_cb));
5657 struct raid5_plug_cb *cb;
5658
5659 if (!blk_cb) {
5660 raid5_release_stripe(sh);
5661 return;
5662 }
5663
5664 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5665
5666 if (cb->list.next == NULL) {
5667 int i;
5668 INIT_LIST_HEAD(&cb->list);
5669 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5670 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5671 }
5672
5673 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5674 list_add_tail(&sh->lru, &cb->list);
5675 else
5676 raid5_release_stripe(sh);
5677 }
5678
make_discard_request(struct mddev * mddev,struct bio * bi)5679 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5680 {
5681 struct r5conf *conf = mddev->private;
5682 sector_t logical_sector, last_sector;
5683 struct stripe_head *sh;
5684 int stripe_sectors;
5685
5686 if (mddev->reshape_position != MaxSector)
5687 /* Skip discard while reshape is happening */
5688 return;
5689
5690 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5691 last_sector = bio_end_sector(bi);
5692
5693 bi->bi_next = NULL;
5694
5695 stripe_sectors = conf->chunk_sectors *
5696 (conf->raid_disks - conf->max_degraded);
5697 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5698 stripe_sectors);
5699 sector_div(last_sector, stripe_sectors);
5700
5701 logical_sector *= conf->chunk_sectors;
5702 last_sector *= conf->chunk_sectors;
5703
5704 for (; logical_sector < last_sector;
5705 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5706 DEFINE_WAIT(w);
5707 int d;
5708 again:
5709 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5710 prepare_to_wait(&conf->wait_for_overlap, &w,
5711 TASK_UNINTERRUPTIBLE);
5712 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5713 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5714 raid5_release_stripe(sh);
5715 schedule();
5716 goto again;
5717 }
5718 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5719 spin_lock_irq(&sh->stripe_lock);
5720 for (d = 0; d < conf->raid_disks; d++) {
5721 if (d == sh->pd_idx || d == sh->qd_idx)
5722 continue;
5723 if (sh->dev[d].towrite || sh->dev[d].toread) {
5724 set_bit(R5_Overlap, &sh->dev[d].flags);
5725 spin_unlock_irq(&sh->stripe_lock);
5726 raid5_release_stripe(sh);
5727 schedule();
5728 goto again;
5729 }
5730 }
5731 set_bit(STRIPE_DISCARD, &sh->state);
5732 finish_wait(&conf->wait_for_overlap, &w);
5733 sh->overwrite_disks = 0;
5734 for (d = 0; d < conf->raid_disks; d++) {
5735 if (d == sh->pd_idx || d == sh->qd_idx)
5736 continue;
5737 sh->dev[d].towrite = bi;
5738 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5739 bio_inc_remaining(bi);
5740 md_write_inc(mddev, bi);
5741 sh->overwrite_disks++;
5742 }
5743 spin_unlock_irq(&sh->stripe_lock);
5744 if (conf->mddev->bitmap) {
5745 for (d = 0;
5746 d < conf->raid_disks - conf->max_degraded;
5747 d++)
5748 md_bitmap_startwrite(mddev->bitmap,
5749 sh->sector,
5750 RAID5_STRIPE_SECTORS(conf),
5751 0);
5752 sh->bm_seq = conf->seq_flush + 1;
5753 set_bit(STRIPE_BIT_DELAY, &sh->state);
5754 }
5755
5756 set_bit(STRIPE_HANDLE, &sh->state);
5757 clear_bit(STRIPE_DELAYED, &sh->state);
5758 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5759 atomic_inc(&conf->preread_active_stripes);
5760 release_stripe_plug(mddev, sh);
5761 }
5762
5763 bio_endio(bi);
5764 }
5765
raid5_make_request(struct mddev * mddev,struct bio * bi)5766 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5767 {
5768 struct r5conf *conf = mddev->private;
5769 int dd_idx;
5770 sector_t new_sector;
5771 sector_t logical_sector, last_sector;
5772 struct stripe_head *sh;
5773 const int rw = bio_data_dir(bi);
5774 DEFINE_WAIT(w);
5775 bool do_prepare;
5776 bool do_flush = false;
5777
5778 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5779 int ret = log_handle_flush_request(conf, bi);
5780
5781 if (ret == 0)
5782 return true;
5783 if (ret == -ENODEV) {
5784 if (md_flush_request(mddev, bi))
5785 return true;
5786 }
5787 /* ret == -EAGAIN, fallback */
5788 /*
5789 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5790 * we need to flush journal device
5791 */
5792 do_flush = bi->bi_opf & REQ_PREFLUSH;
5793 }
5794
5795 if (!md_write_start(mddev, bi))
5796 return false;
5797 /*
5798 * If array is degraded, better not do chunk aligned read because
5799 * later we might have to read it again in order to reconstruct
5800 * data on failed drives.
5801 */
5802 if (rw == READ && mddev->degraded == 0 &&
5803 mddev->reshape_position == MaxSector) {
5804 bi = chunk_aligned_read(mddev, bi);
5805 if (!bi)
5806 return true;
5807 }
5808
5809 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5810 make_discard_request(mddev, bi);
5811 md_write_end(mddev);
5812 return true;
5813 }
5814
5815 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5816 last_sector = bio_end_sector(bi);
5817 bi->bi_next = NULL;
5818
5819 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5820 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5821 int previous;
5822 int seq;
5823
5824 do_prepare = false;
5825 retry:
5826 seq = read_seqcount_begin(&conf->gen_lock);
5827 previous = 0;
5828 if (do_prepare)
5829 prepare_to_wait(&conf->wait_for_overlap, &w,
5830 TASK_UNINTERRUPTIBLE);
5831 if (unlikely(conf->reshape_progress != MaxSector)) {
5832 /* spinlock is needed as reshape_progress may be
5833 * 64bit on a 32bit platform, and so it might be
5834 * possible to see a half-updated value
5835 * Of course reshape_progress could change after
5836 * the lock is dropped, so once we get a reference
5837 * to the stripe that we think it is, we will have
5838 * to check again.
5839 */
5840 spin_lock_irq(&conf->device_lock);
5841 if (mddev->reshape_backwards
5842 ? logical_sector < conf->reshape_progress
5843 : logical_sector >= conf->reshape_progress) {
5844 previous = 1;
5845 } else {
5846 if (mddev->reshape_backwards
5847 ? logical_sector < conf->reshape_safe
5848 : logical_sector >= conf->reshape_safe) {
5849 spin_unlock_irq(&conf->device_lock);
5850 schedule();
5851 do_prepare = true;
5852 goto retry;
5853 }
5854 }
5855 spin_unlock_irq(&conf->device_lock);
5856 }
5857
5858 new_sector = raid5_compute_sector(conf, logical_sector,
5859 previous,
5860 &dd_idx, NULL);
5861 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5862 (unsigned long long)new_sector,
5863 (unsigned long long)logical_sector);
5864
5865 sh = raid5_get_active_stripe(conf, new_sector, previous,
5866 (bi->bi_opf & REQ_RAHEAD), 0);
5867 if (sh) {
5868 if (unlikely(previous)) {
5869 /* expansion might have moved on while waiting for a
5870 * stripe, so we must do the range check again.
5871 * Expansion could still move past after this
5872 * test, but as we are holding a reference to
5873 * 'sh', we know that if that happens,
5874 * STRIPE_EXPANDING will get set and the expansion
5875 * won't proceed until we finish with the stripe.
5876 */
5877 int must_retry = 0;
5878 spin_lock_irq(&conf->device_lock);
5879 if (mddev->reshape_backwards
5880 ? logical_sector >= conf->reshape_progress
5881 : logical_sector < conf->reshape_progress)
5882 /* mismatch, need to try again */
5883 must_retry = 1;
5884 spin_unlock_irq(&conf->device_lock);
5885 if (must_retry) {
5886 raid5_release_stripe(sh);
5887 schedule();
5888 do_prepare = true;
5889 goto retry;
5890 }
5891 }
5892 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5893 /* Might have got the wrong stripe_head
5894 * by accident
5895 */
5896 raid5_release_stripe(sh);
5897 goto retry;
5898 }
5899
5900 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5901 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5902 /* Stripe is busy expanding or
5903 * add failed due to overlap. Flush everything
5904 * and wait a while
5905 */
5906 md_wakeup_thread(mddev->thread);
5907 raid5_release_stripe(sh);
5908 schedule();
5909 do_prepare = true;
5910 goto retry;
5911 }
5912 if (do_flush) {
5913 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5914 /* we only need flush for one stripe */
5915 do_flush = false;
5916 }
5917
5918 set_bit(STRIPE_HANDLE, &sh->state);
5919 clear_bit(STRIPE_DELAYED, &sh->state);
5920 if ((!sh->batch_head || sh == sh->batch_head) &&
5921 (bi->bi_opf & REQ_SYNC) &&
5922 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5923 atomic_inc(&conf->preread_active_stripes);
5924 release_stripe_plug(mddev, sh);
5925 } else {
5926 /* cannot get stripe for read-ahead, just give-up */
5927 bi->bi_status = BLK_STS_IOERR;
5928 break;
5929 }
5930 }
5931 finish_wait(&conf->wait_for_overlap, &w);
5932
5933 if (rw == WRITE)
5934 md_write_end(mddev);
5935 bio_endio(bi);
5936 return true;
5937 }
5938
5939 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5940
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)5941 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5942 {
5943 /* reshaping is quite different to recovery/resync so it is
5944 * handled quite separately ... here.
5945 *
5946 * On each call to sync_request, we gather one chunk worth of
5947 * destination stripes and flag them as expanding.
5948 * Then we find all the source stripes and request reads.
5949 * As the reads complete, handle_stripe will copy the data
5950 * into the destination stripe and release that stripe.
5951 */
5952 struct r5conf *conf = mddev->private;
5953 struct stripe_head *sh;
5954 struct md_rdev *rdev;
5955 sector_t first_sector, last_sector;
5956 int raid_disks = conf->previous_raid_disks;
5957 int data_disks = raid_disks - conf->max_degraded;
5958 int new_data_disks = conf->raid_disks - conf->max_degraded;
5959 int i;
5960 int dd_idx;
5961 sector_t writepos, readpos, safepos;
5962 sector_t stripe_addr;
5963 int reshape_sectors;
5964 struct list_head stripes;
5965 sector_t retn;
5966
5967 if (sector_nr == 0) {
5968 /* If restarting in the middle, skip the initial sectors */
5969 if (mddev->reshape_backwards &&
5970 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5971 sector_nr = raid5_size(mddev, 0, 0)
5972 - conf->reshape_progress;
5973 } else if (mddev->reshape_backwards &&
5974 conf->reshape_progress == MaxSector) {
5975 /* shouldn't happen, but just in case, finish up.*/
5976 sector_nr = MaxSector;
5977 } else if (!mddev->reshape_backwards &&
5978 conf->reshape_progress > 0)
5979 sector_nr = conf->reshape_progress;
5980 sector_div(sector_nr, new_data_disks);
5981 if (sector_nr) {
5982 mddev->curr_resync_completed = sector_nr;
5983 sysfs_notify_dirent_safe(mddev->sysfs_completed);
5984 *skipped = 1;
5985 retn = sector_nr;
5986 goto finish;
5987 }
5988 }
5989
5990 /* We need to process a full chunk at a time.
5991 * If old and new chunk sizes differ, we need to process the
5992 * largest of these
5993 */
5994
5995 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5996
5997 /* We update the metadata at least every 10 seconds, or when
5998 * the data about to be copied would over-write the source of
5999 * the data at the front of the range. i.e. one new_stripe
6000 * along from reshape_progress new_maps to after where
6001 * reshape_safe old_maps to
6002 */
6003 writepos = conf->reshape_progress;
6004 sector_div(writepos, new_data_disks);
6005 readpos = conf->reshape_progress;
6006 sector_div(readpos, data_disks);
6007 safepos = conf->reshape_safe;
6008 sector_div(safepos, data_disks);
6009 if (mddev->reshape_backwards) {
6010 BUG_ON(writepos < reshape_sectors);
6011 writepos -= reshape_sectors;
6012 readpos += reshape_sectors;
6013 safepos += reshape_sectors;
6014 } else {
6015 writepos += reshape_sectors;
6016 /* readpos and safepos are worst-case calculations.
6017 * A negative number is overly pessimistic, and causes
6018 * obvious problems for unsigned storage. So clip to 0.
6019 */
6020 readpos -= min_t(sector_t, reshape_sectors, readpos);
6021 safepos -= min_t(sector_t, reshape_sectors, safepos);
6022 }
6023
6024 /* Having calculated the 'writepos' possibly use it
6025 * to set 'stripe_addr' which is where we will write to.
6026 */
6027 if (mddev->reshape_backwards) {
6028 BUG_ON(conf->reshape_progress == 0);
6029 stripe_addr = writepos;
6030 BUG_ON((mddev->dev_sectors &
6031 ~((sector_t)reshape_sectors - 1))
6032 - reshape_sectors - stripe_addr
6033 != sector_nr);
6034 } else {
6035 BUG_ON(writepos != sector_nr + reshape_sectors);
6036 stripe_addr = sector_nr;
6037 }
6038
6039 /* 'writepos' is the most advanced device address we might write.
6040 * 'readpos' is the least advanced device address we might read.
6041 * 'safepos' is the least address recorded in the metadata as having
6042 * been reshaped.
6043 * If there is a min_offset_diff, these are adjusted either by
6044 * increasing the safepos/readpos if diff is negative, or
6045 * increasing writepos if diff is positive.
6046 * If 'readpos' is then behind 'writepos', there is no way that we can
6047 * ensure safety in the face of a crash - that must be done by userspace
6048 * making a backup of the data. So in that case there is no particular
6049 * rush to update metadata.
6050 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6051 * update the metadata to advance 'safepos' to match 'readpos' so that
6052 * we can be safe in the event of a crash.
6053 * So we insist on updating metadata if safepos is behind writepos and
6054 * readpos is beyond writepos.
6055 * In any case, update the metadata every 10 seconds.
6056 * Maybe that number should be configurable, but I'm not sure it is
6057 * worth it.... maybe it could be a multiple of safemode_delay???
6058 */
6059 if (conf->min_offset_diff < 0) {
6060 safepos += -conf->min_offset_diff;
6061 readpos += -conf->min_offset_diff;
6062 } else
6063 writepos += conf->min_offset_diff;
6064
6065 if ((mddev->reshape_backwards
6066 ? (safepos > writepos && readpos < writepos)
6067 : (safepos < writepos && readpos > writepos)) ||
6068 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6069 /* Cannot proceed until we've updated the superblock... */
6070 wait_event(conf->wait_for_overlap,
6071 atomic_read(&conf->reshape_stripes)==0
6072 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6073 if (atomic_read(&conf->reshape_stripes) != 0)
6074 return 0;
6075 mddev->reshape_position = conf->reshape_progress;
6076 mddev->curr_resync_completed = sector_nr;
6077 if (!mddev->reshape_backwards)
6078 /* Can update recovery_offset */
6079 rdev_for_each(rdev, mddev)
6080 if (rdev->raid_disk >= 0 &&
6081 !test_bit(Journal, &rdev->flags) &&
6082 !test_bit(In_sync, &rdev->flags) &&
6083 rdev->recovery_offset < sector_nr)
6084 rdev->recovery_offset = sector_nr;
6085
6086 conf->reshape_checkpoint = jiffies;
6087 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6088 md_wakeup_thread(mddev->thread);
6089 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6090 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6091 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6092 return 0;
6093 spin_lock_irq(&conf->device_lock);
6094 conf->reshape_safe = mddev->reshape_position;
6095 spin_unlock_irq(&conf->device_lock);
6096 wake_up(&conf->wait_for_overlap);
6097 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6098 }
6099
6100 INIT_LIST_HEAD(&stripes);
6101 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6102 int j;
6103 int skipped_disk = 0;
6104 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6105 set_bit(STRIPE_EXPANDING, &sh->state);
6106 atomic_inc(&conf->reshape_stripes);
6107 /* If any of this stripe is beyond the end of the old
6108 * array, then we need to zero those blocks
6109 */
6110 for (j=sh->disks; j--;) {
6111 sector_t s;
6112 if (j == sh->pd_idx)
6113 continue;
6114 if (conf->level == 6 &&
6115 j == sh->qd_idx)
6116 continue;
6117 s = raid5_compute_blocknr(sh, j, 0);
6118 if (s < raid5_size(mddev, 0, 0)) {
6119 skipped_disk = 1;
6120 continue;
6121 }
6122 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6123 set_bit(R5_Expanded, &sh->dev[j].flags);
6124 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6125 }
6126 if (!skipped_disk) {
6127 set_bit(STRIPE_EXPAND_READY, &sh->state);
6128 set_bit(STRIPE_HANDLE, &sh->state);
6129 }
6130 list_add(&sh->lru, &stripes);
6131 }
6132 spin_lock_irq(&conf->device_lock);
6133 if (mddev->reshape_backwards)
6134 conf->reshape_progress -= reshape_sectors * new_data_disks;
6135 else
6136 conf->reshape_progress += reshape_sectors * new_data_disks;
6137 spin_unlock_irq(&conf->device_lock);
6138 /* Ok, those stripe are ready. We can start scheduling
6139 * reads on the source stripes.
6140 * The source stripes are determined by mapping the first and last
6141 * block on the destination stripes.
6142 */
6143 first_sector =
6144 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6145 1, &dd_idx, NULL);
6146 last_sector =
6147 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6148 * new_data_disks - 1),
6149 1, &dd_idx, NULL);
6150 if (last_sector >= mddev->dev_sectors)
6151 last_sector = mddev->dev_sectors - 1;
6152 while (first_sector <= last_sector) {
6153 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6154 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6155 set_bit(STRIPE_HANDLE, &sh->state);
6156 raid5_release_stripe(sh);
6157 first_sector += RAID5_STRIPE_SECTORS(conf);
6158 }
6159 /* Now that the sources are clearly marked, we can release
6160 * the destination stripes
6161 */
6162 while (!list_empty(&stripes)) {
6163 sh = list_entry(stripes.next, struct stripe_head, lru);
6164 list_del_init(&sh->lru);
6165 raid5_release_stripe(sh);
6166 }
6167 /* If this takes us to the resync_max point where we have to pause,
6168 * then we need to write out the superblock.
6169 */
6170 sector_nr += reshape_sectors;
6171 retn = reshape_sectors;
6172 finish:
6173 if (mddev->curr_resync_completed > mddev->resync_max ||
6174 (sector_nr - mddev->curr_resync_completed) * 2
6175 >= mddev->resync_max - mddev->curr_resync_completed) {
6176 /* Cannot proceed until we've updated the superblock... */
6177 wait_event(conf->wait_for_overlap,
6178 atomic_read(&conf->reshape_stripes) == 0
6179 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6180 if (atomic_read(&conf->reshape_stripes) != 0)
6181 goto ret;
6182 mddev->reshape_position = conf->reshape_progress;
6183 mddev->curr_resync_completed = sector_nr;
6184 if (!mddev->reshape_backwards)
6185 /* Can update recovery_offset */
6186 rdev_for_each(rdev, mddev)
6187 if (rdev->raid_disk >= 0 &&
6188 !test_bit(Journal, &rdev->flags) &&
6189 !test_bit(In_sync, &rdev->flags) &&
6190 rdev->recovery_offset < sector_nr)
6191 rdev->recovery_offset = sector_nr;
6192 conf->reshape_checkpoint = jiffies;
6193 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6194 md_wakeup_thread(mddev->thread);
6195 wait_event(mddev->sb_wait,
6196 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6197 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6198 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6199 goto ret;
6200 spin_lock_irq(&conf->device_lock);
6201 conf->reshape_safe = mddev->reshape_position;
6202 spin_unlock_irq(&conf->device_lock);
6203 wake_up(&conf->wait_for_overlap);
6204 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6205 }
6206 ret:
6207 return retn;
6208 }
6209
raid5_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)6210 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6211 int *skipped)
6212 {
6213 struct r5conf *conf = mddev->private;
6214 struct stripe_head *sh;
6215 sector_t max_sector = mddev->dev_sectors;
6216 sector_t sync_blocks;
6217 int still_degraded = 0;
6218 int i;
6219
6220 if (sector_nr >= max_sector) {
6221 /* just being told to finish up .. nothing much to do */
6222
6223 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6224 end_reshape(conf);
6225 return 0;
6226 }
6227
6228 if (mddev->curr_resync < max_sector) /* aborted */
6229 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6230 &sync_blocks, 1);
6231 else /* completed sync */
6232 conf->fullsync = 0;
6233 md_bitmap_close_sync(mddev->bitmap);
6234
6235 return 0;
6236 }
6237
6238 /* Allow raid5_quiesce to complete */
6239 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6240
6241 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6242 return reshape_request(mddev, sector_nr, skipped);
6243
6244 /* No need to check resync_max as we never do more than one
6245 * stripe, and as resync_max will always be on a chunk boundary,
6246 * if the check in md_do_sync didn't fire, there is no chance
6247 * of overstepping resync_max here
6248 */
6249
6250 /* if there is too many failed drives and we are trying
6251 * to resync, then assert that we are finished, because there is
6252 * nothing we can do.
6253 */
6254 if (mddev->degraded >= conf->max_degraded &&
6255 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6256 sector_t rv = mddev->dev_sectors - sector_nr;
6257 *skipped = 1;
6258 return rv;
6259 }
6260 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6261 !conf->fullsync &&
6262 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6263 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6264 /* we can skip this block, and probably more */
6265 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6266 *skipped = 1;
6267 /* keep things rounded to whole stripes */
6268 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6269 }
6270
6271 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6272
6273 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6274 if (sh == NULL) {
6275 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6276 /* make sure we don't swamp the stripe cache if someone else
6277 * is trying to get access
6278 */
6279 schedule_timeout_uninterruptible(1);
6280 }
6281 /* Need to check if array will still be degraded after recovery/resync
6282 * Note in case of > 1 drive failures it's possible we're rebuilding
6283 * one drive while leaving another faulty drive in array.
6284 */
6285 rcu_read_lock();
6286 for (i = 0; i < conf->raid_disks; i++) {
6287 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6288
6289 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6290 still_degraded = 1;
6291 }
6292 rcu_read_unlock();
6293
6294 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6295
6296 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6297 set_bit(STRIPE_HANDLE, &sh->state);
6298
6299 raid5_release_stripe(sh);
6300
6301 return RAID5_STRIPE_SECTORS(conf);
6302 }
6303
retry_aligned_read(struct r5conf * conf,struct bio * raid_bio,unsigned int offset)6304 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6305 unsigned int offset)
6306 {
6307 /* We may not be able to submit a whole bio at once as there
6308 * may not be enough stripe_heads available.
6309 * We cannot pre-allocate enough stripe_heads as we may need
6310 * more than exist in the cache (if we allow ever large chunks).
6311 * So we do one stripe head at a time and record in
6312 * ->bi_hw_segments how many have been done.
6313 *
6314 * We *know* that this entire raid_bio is in one chunk, so
6315 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6316 */
6317 struct stripe_head *sh;
6318 int dd_idx;
6319 sector_t sector, logical_sector, last_sector;
6320 int scnt = 0;
6321 int handled = 0;
6322
6323 logical_sector = raid_bio->bi_iter.bi_sector &
6324 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6325 sector = raid5_compute_sector(conf, logical_sector,
6326 0, &dd_idx, NULL);
6327 last_sector = bio_end_sector(raid_bio);
6328
6329 for (; logical_sector < last_sector;
6330 logical_sector += RAID5_STRIPE_SECTORS(conf),
6331 sector += RAID5_STRIPE_SECTORS(conf),
6332 scnt++) {
6333
6334 if (scnt < offset)
6335 /* already done this stripe */
6336 continue;
6337
6338 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6339
6340 if (!sh) {
6341 /* failed to get a stripe - must wait */
6342 conf->retry_read_aligned = raid_bio;
6343 conf->retry_read_offset = scnt;
6344 return handled;
6345 }
6346
6347 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6348 raid5_release_stripe(sh);
6349 conf->retry_read_aligned = raid_bio;
6350 conf->retry_read_offset = scnt;
6351 return handled;
6352 }
6353
6354 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6355 handle_stripe(sh);
6356 raid5_release_stripe(sh);
6357 handled++;
6358 }
6359
6360 bio_endio(raid_bio);
6361
6362 if (atomic_dec_and_test(&conf->active_aligned_reads))
6363 wake_up(&conf->wait_for_quiescent);
6364 return handled;
6365 }
6366
handle_active_stripes(struct r5conf * conf,int group,struct r5worker * worker,struct list_head * temp_inactive_list)6367 static int handle_active_stripes(struct r5conf *conf, int group,
6368 struct r5worker *worker,
6369 struct list_head *temp_inactive_list)
6370 __releases(&conf->device_lock)
6371 __acquires(&conf->device_lock)
6372 {
6373 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6374 int i, batch_size = 0, hash;
6375 bool release_inactive = false;
6376
6377 while (batch_size < MAX_STRIPE_BATCH &&
6378 (sh = __get_priority_stripe(conf, group)) != NULL)
6379 batch[batch_size++] = sh;
6380
6381 if (batch_size == 0) {
6382 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6383 if (!list_empty(temp_inactive_list + i))
6384 break;
6385 if (i == NR_STRIPE_HASH_LOCKS) {
6386 spin_unlock_irq(&conf->device_lock);
6387 log_flush_stripe_to_raid(conf);
6388 spin_lock_irq(&conf->device_lock);
6389 return batch_size;
6390 }
6391 release_inactive = true;
6392 }
6393 spin_unlock_irq(&conf->device_lock);
6394
6395 release_inactive_stripe_list(conf, temp_inactive_list,
6396 NR_STRIPE_HASH_LOCKS);
6397
6398 r5l_flush_stripe_to_raid(conf->log);
6399 if (release_inactive) {
6400 spin_lock_irq(&conf->device_lock);
6401 return 0;
6402 }
6403
6404 for (i = 0; i < batch_size; i++)
6405 handle_stripe(batch[i]);
6406 log_write_stripe_run(conf);
6407
6408 cond_resched();
6409
6410 spin_lock_irq(&conf->device_lock);
6411 for (i = 0; i < batch_size; i++) {
6412 hash = batch[i]->hash_lock_index;
6413 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6414 }
6415 return batch_size;
6416 }
6417
raid5_do_work(struct work_struct * work)6418 static void raid5_do_work(struct work_struct *work)
6419 {
6420 struct r5worker *worker = container_of(work, struct r5worker, work);
6421 struct r5worker_group *group = worker->group;
6422 struct r5conf *conf = group->conf;
6423 struct mddev *mddev = conf->mddev;
6424 int group_id = group - conf->worker_groups;
6425 int handled;
6426 struct blk_plug plug;
6427
6428 pr_debug("+++ raid5worker active\n");
6429
6430 blk_start_plug(&plug);
6431 handled = 0;
6432 spin_lock_irq(&conf->device_lock);
6433 while (1) {
6434 int batch_size, released;
6435
6436 released = release_stripe_list(conf, worker->temp_inactive_list);
6437
6438 batch_size = handle_active_stripes(conf, group_id, worker,
6439 worker->temp_inactive_list);
6440 worker->working = false;
6441 if (!batch_size && !released)
6442 break;
6443 handled += batch_size;
6444 wait_event_lock_irq(mddev->sb_wait,
6445 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6446 conf->device_lock);
6447 }
6448 pr_debug("%d stripes handled\n", handled);
6449
6450 spin_unlock_irq(&conf->device_lock);
6451
6452 flush_deferred_bios(conf);
6453
6454 r5l_flush_stripe_to_raid(conf->log);
6455
6456 async_tx_issue_pending_all();
6457 blk_finish_plug(&plug);
6458
6459 pr_debug("--- raid5worker inactive\n");
6460 }
6461
6462 /*
6463 * This is our raid5 kernel thread.
6464 *
6465 * We scan the hash table for stripes which can be handled now.
6466 * During the scan, completed stripes are saved for us by the interrupt
6467 * handler, so that they will not have to wait for our next wakeup.
6468 */
raid5d(struct md_thread * thread)6469 static void raid5d(struct md_thread *thread)
6470 {
6471 struct mddev *mddev = thread->mddev;
6472 struct r5conf *conf = mddev->private;
6473 int handled;
6474 struct blk_plug plug;
6475
6476 pr_debug("+++ raid5d active\n");
6477
6478 md_check_recovery(mddev);
6479
6480 blk_start_plug(&plug);
6481 handled = 0;
6482 spin_lock_irq(&conf->device_lock);
6483 while (1) {
6484 struct bio *bio;
6485 int batch_size, released;
6486 unsigned int offset;
6487
6488 released = release_stripe_list(conf, conf->temp_inactive_list);
6489 if (released)
6490 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6491
6492 if (
6493 !list_empty(&conf->bitmap_list)) {
6494 /* Now is a good time to flush some bitmap updates */
6495 conf->seq_flush++;
6496 spin_unlock_irq(&conf->device_lock);
6497 md_bitmap_unplug(mddev->bitmap);
6498 spin_lock_irq(&conf->device_lock);
6499 conf->seq_write = conf->seq_flush;
6500 activate_bit_delay(conf, conf->temp_inactive_list);
6501 }
6502 raid5_activate_delayed(conf);
6503
6504 while ((bio = remove_bio_from_retry(conf, &offset))) {
6505 int ok;
6506 spin_unlock_irq(&conf->device_lock);
6507 ok = retry_aligned_read(conf, bio, offset);
6508 spin_lock_irq(&conf->device_lock);
6509 if (!ok)
6510 break;
6511 handled++;
6512 }
6513
6514 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6515 conf->temp_inactive_list);
6516 if (!batch_size && !released)
6517 break;
6518 handled += batch_size;
6519
6520 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6521 spin_unlock_irq(&conf->device_lock);
6522 md_check_recovery(mddev);
6523 spin_lock_irq(&conf->device_lock);
6524 }
6525 }
6526 pr_debug("%d stripes handled\n", handled);
6527
6528 spin_unlock_irq(&conf->device_lock);
6529 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6530 mutex_trylock(&conf->cache_size_mutex)) {
6531 grow_one_stripe(conf, __GFP_NOWARN);
6532 /* Set flag even if allocation failed. This helps
6533 * slow down allocation requests when mem is short
6534 */
6535 set_bit(R5_DID_ALLOC, &conf->cache_state);
6536 mutex_unlock(&conf->cache_size_mutex);
6537 }
6538
6539 flush_deferred_bios(conf);
6540
6541 r5l_flush_stripe_to_raid(conf->log);
6542
6543 async_tx_issue_pending_all();
6544 blk_finish_plug(&plug);
6545
6546 pr_debug("--- raid5d inactive\n");
6547 }
6548
6549 static ssize_t
raid5_show_stripe_cache_size(struct mddev * mddev,char * page)6550 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6551 {
6552 struct r5conf *conf;
6553 int ret = 0;
6554 spin_lock(&mddev->lock);
6555 conf = mddev->private;
6556 if (conf)
6557 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6558 spin_unlock(&mddev->lock);
6559 return ret;
6560 }
6561
6562 int
raid5_set_cache_size(struct mddev * mddev,int size)6563 raid5_set_cache_size(struct mddev *mddev, int size)
6564 {
6565 int result = 0;
6566 struct r5conf *conf = mddev->private;
6567
6568 if (size <= 16 || size > 32768)
6569 return -EINVAL;
6570
6571 conf->min_nr_stripes = size;
6572 mutex_lock(&conf->cache_size_mutex);
6573 while (size < conf->max_nr_stripes &&
6574 drop_one_stripe(conf))
6575 ;
6576 mutex_unlock(&conf->cache_size_mutex);
6577
6578 md_allow_write(mddev);
6579
6580 mutex_lock(&conf->cache_size_mutex);
6581 while (size > conf->max_nr_stripes)
6582 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6583 conf->min_nr_stripes = conf->max_nr_stripes;
6584 result = -ENOMEM;
6585 break;
6586 }
6587 mutex_unlock(&conf->cache_size_mutex);
6588
6589 return result;
6590 }
6591 EXPORT_SYMBOL(raid5_set_cache_size);
6592
6593 static ssize_t
raid5_store_stripe_cache_size(struct mddev * mddev,const char * page,size_t len)6594 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6595 {
6596 struct r5conf *conf;
6597 unsigned long new;
6598 int err;
6599
6600 if (len >= PAGE_SIZE)
6601 return -EINVAL;
6602 if (kstrtoul(page, 10, &new))
6603 return -EINVAL;
6604 err = mddev_lock(mddev);
6605 if (err)
6606 return err;
6607 conf = mddev->private;
6608 if (!conf)
6609 err = -ENODEV;
6610 else
6611 err = raid5_set_cache_size(mddev, new);
6612 mddev_unlock(mddev);
6613
6614 return err ?: len;
6615 }
6616
6617 static struct md_sysfs_entry
6618 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6619 raid5_show_stripe_cache_size,
6620 raid5_store_stripe_cache_size);
6621
6622 static ssize_t
raid5_show_rmw_level(struct mddev * mddev,char * page)6623 raid5_show_rmw_level(struct mddev *mddev, char *page)
6624 {
6625 struct r5conf *conf = mddev->private;
6626 if (conf)
6627 return sprintf(page, "%d\n", conf->rmw_level);
6628 else
6629 return 0;
6630 }
6631
6632 static ssize_t
raid5_store_rmw_level(struct mddev * mddev,const char * page,size_t len)6633 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6634 {
6635 struct r5conf *conf = mddev->private;
6636 unsigned long new;
6637
6638 if (!conf)
6639 return -ENODEV;
6640
6641 if (len >= PAGE_SIZE)
6642 return -EINVAL;
6643
6644 if (kstrtoul(page, 10, &new))
6645 return -EINVAL;
6646
6647 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6648 return -EINVAL;
6649
6650 if (new != PARITY_DISABLE_RMW &&
6651 new != PARITY_ENABLE_RMW &&
6652 new != PARITY_PREFER_RMW)
6653 return -EINVAL;
6654
6655 conf->rmw_level = new;
6656 return len;
6657 }
6658
6659 static struct md_sysfs_entry
6660 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6661 raid5_show_rmw_level,
6662 raid5_store_rmw_level);
6663
6664 static ssize_t
raid5_show_stripe_size(struct mddev * mddev,char * page)6665 raid5_show_stripe_size(struct mddev *mddev, char *page)
6666 {
6667 struct r5conf *conf;
6668 int ret = 0;
6669
6670 spin_lock(&mddev->lock);
6671 conf = mddev->private;
6672 if (conf)
6673 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6674 spin_unlock(&mddev->lock);
6675 return ret;
6676 }
6677
6678 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6679 static ssize_t
raid5_store_stripe_size(struct mddev * mddev,const char * page,size_t len)6680 raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6681 {
6682 struct r5conf *conf;
6683 unsigned long new;
6684 int err;
6685 int size;
6686
6687 if (len >= PAGE_SIZE)
6688 return -EINVAL;
6689 if (kstrtoul(page, 10, &new))
6690 return -EINVAL;
6691
6692 /*
6693 * The value should not be bigger than PAGE_SIZE. It requires to
6694 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6695 * of two.
6696 */
6697 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6698 new > PAGE_SIZE || new == 0 ||
6699 new != roundup_pow_of_two(new))
6700 return -EINVAL;
6701
6702 err = mddev_lock(mddev);
6703 if (err)
6704 return err;
6705
6706 conf = mddev->private;
6707 if (!conf) {
6708 err = -ENODEV;
6709 goto out_unlock;
6710 }
6711
6712 if (new == conf->stripe_size)
6713 goto out_unlock;
6714
6715 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6716 conf->stripe_size, new);
6717
6718 if (mddev->sync_thread ||
6719 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6720 mddev->reshape_position != MaxSector ||
6721 mddev->sysfs_active) {
6722 err = -EBUSY;
6723 goto out_unlock;
6724 }
6725
6726 mddev_suspend(mddev);
6727 mutex_lock(&conf->cache_size_mutex);
6728 size = conf->max_nr_stripes;
6729
6730 shrink_stripes(conf);
6731
6732 conf->stripe_size = new;
6733 conf->stripe_shift = ilog2(new) - 9;
6734 conf->stripe_sectors = new >> 9;
6735 if (grow_stripes(conf, size)) {
6736 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6737 mdname(mddev));
6738 err = -ENOMEM;
6739 }
6740 mutex_unlock(&conf->cache_size_mutex);
6741 mddev_resume(mddev);
6742
6743 out_unlock:
6744 mddev_unlock(mddev);
6745 return err ?: len;
6746 }
6747
6748 static struct md_sysfs_entry
6749 raid5_stripe_size = __ATTR(stripe_size, 0644,
6750 raid5_show_stripe_size,
6751 raid5_store_stripe_size);
6752 #else
6753 static struct md_sysfs_entry
6754 raid5_stripe_size = __ATTR(stripe_size, 0444,
6755 raid5_show_stripe_size,
6756 NULL);
6757 #endif
6758
6759 static ssize_t
raid5_show_preread_threshold(struct mddev * mddev,char * page)6760 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6761 {
6762 struct r5conf *conf;
6763 int ret = 0;
6764 spin_lock(&mddev->lock);
6765 conf = mddev->private;
6766 if (conf)
6767 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6768 spin_unlock(&mddev->lock);
6769 return ret;
6770 }
6771
6772 static ssize_t
raid5_store_preread_threshold(struct mddev * mddev,const char * page,size_t len)6773 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6774 {
6775 struct r5conf *conf;
6776 unsigned long new;
6777 int err;
6778
6779 if (len >= PAGE_SIZE)
6780 return -EINVAL;
6781 if (kstrtoul(page, 10, &new))
6782 return -EINVAL;
6783
6784 err = mddev_lock(mddev);
6785 if (err)
6786 return err;
6787 conf = mddev->private;
6788 if (!conf)
6789 err = -ENODEV;
6790 else if (new > conf->min_nr_stripes)
6791 err = -EINVAL;
6792 else
6793 conf->bypass_threshold = new;
6794 mddev_unlock(mddev);
6795 return err ?: len;
6796 }
6797
6798 static struct md_sysfs_entry
6799 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6800 S_IRUGO | S_IWUSR,
6801 raid5_show_preread_threshold,
6802 raid5_store_preread_threshold);
6803
6804 static ssize_t
raid5_show_skip_copy(struct mddev * mddev,char * page)6805 raid5_show_skip_copy(struct mddev *mddev, char *page)
6806 {
6807 struct r5conf *conf;
6808 int ret = 0;
6809 spin_lock(&mddev->lock);
6810 conf = mddev->private;
6811 if (conf)
6812 ret = sprintf(page, "%d\n", conf->skip_copy);
6813 spin_unlock(&mddev->lock);
6814 return ret;
6815 }
6816
6817 static ssize_t
raid5_store_skip_copy(struct mddev * mddev,const char * page,size_t len)6818 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6819 {
6820 struct r5conf *conf;
6821 unsigned long new;
6822 int err;
6823
6824 if (len >= PAGE_SIZE)
6825 return -EINVAL;
6826 if (kstrtoul(page, 10, &new))
6827 return -EINVAL;
6828 new = !!new;
6829
6830 err = mddev_lock(mddev);
6831 if (err)
6832 return err;
6833 conf = mddev->private;
6834 if (!conf)
6835 err = -ENODEV;
6836 else if (new != conf->skip_copy) {
6837 struct request_queue *q = mddev->queue;
6838
6839 mddev_suspend(mddev);
6840 conf->skip_copy = new;
6841 if (new)
6842 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6843 else
6844 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6845 mddev_resume(mddev);
6846 }
6847 mddev_unlock(mddev);
6848 return err ?: len;
6849 }
6850
6851 static struct md_sysfs_entry
6852 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6853 raid5_show_skip_copy,
6854 raid5_store_skip_copy);
6855
6856 static ssize_t
stripe_cache_active_show(struct mddev * mddev,char * page)6857 stripe_cache_active_show(struct mddev *mddev, char *page)
6858 {
6859 struct r5conf *conf = mddev->private;
6860 if (conf)
6861 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6862 else
6863 return 0;
6864 }
6865
6866 static struct md_sysfs_entry
6867 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6868
6869 static ssize_t
raid5_show_group_thread_cnt(struct mddev * mddev,char * page)6870 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6871 {
6872 struct r5conf *conf;
6873 int ret = 0;
6874 spin_lock(&mddev->lock);
6875 conf = mddev->private;
6876 if (conf)
6877 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6878 spin_unlock(&mddev->lock);
6879 return ret;
6880 }
6881
6882 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6883 int *group_cnt,
6884 struct r5worker_group **worker_groups);
6885 static ssize_t
raid5_store_group_thread_cnt(struct mddev * mddev,const char * page,size_t len)6886 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6887 {
6888 struct r5conf *conf;
6889 unsigned int new;
6890 int err;
6891 struct r5worker_group *new_groups, *old_groups;
6892 int group_cnt;
6893
6894 if (len >= PAGE_SIZE)
6895 return -EINVAL;
6896 if (kstrtouint(page, 10, &new))
6897 return -EINVAL;
6898 /* 8192 should be big enough */
6899 if (new > 8192)
6900 return -EINVAL;
6901
6902 err = mddev_lock(mddev);
6903 if (err)
6904 return err;
6905 conf = mddev->private;
6906 if (!conf)
6907 err = -ENODEV;
6908 else if (new != conf->worker_cnt_per_group) {
6909 mddev_suspend(mddev);
6910
6911 old_groups = conf->worker_groups;
6912 if (old_groups)
6913 flush_workqueue(raid5_wq);
6914
6915 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6916 if (!err) {
6917 spin_lock_irq(&conf->device_lock);
6918 conf->group_cnt = group_cnt;
6919 conf->worker_cnt_per_group = new;
6920 conf->worker_groups = new_groups;
6921 spin_unlock_irq(&conf->device_lock);
6922
6923 if (old_groups)
6924 kfree(old_groups[0].workers);
6925 kfree(old_groups);
6926 }
6927 mddev_resume(mddev);
6928 }
6929 mddev_unlock(mddev);
6930
6931 return err ?: len;
6932 }
6933
6934 static struct md_sysfs_entry
6935 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6936 raid5_show_group_thread_cnt,
6937 raid5_store_group_thread_cnt);
6938
6939 static struct attribute *raid5_attrs[] = {
6940 &raid5_stripecache_size.attr,
6941 &raid5_stripecache_active.attr,
6942 &raid5_preread_bypass_threshold.attr,
6943 &raid5_group_thread_cnt.attr,
6944 &raid5_skip_copy.attr,
6945 &raid5_rmw_level.attr,
6946 &raid5_stripe_size.attr,
6947 &r5c_journal_mode.attr,
6948 &ppl_write_hint.attr,
6949 NULL,
6950 };
6951 static struct attribute_group raid5_attrs_group = {
6952 .name = NULL,
6953 .attrs = raid5_attrs,
6954 };
6955
alloc_thread_groups(struct r5conf * conf,int cnt,int * group_cnt,struct r5worker_group ** worker_groups)6956 static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6957 struct r5worker_group **worker_groups)
6958 {
6959 int i, j, k;
6960 ssize_t size;
6961 struct r5worker *workers;
6962
6963 if (cnt == 0) {
6964 *group_cnt = 0;
6965 *worker_groups = NULL;
6966 return 0;
6967 }
6968 *group_cnt = num_possible_nodes();
6969 size = sizeof(struct r5worker) * cnt;
6970 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6971 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6972 GFP_NOIO);
6973 if (!*worker_groups || !workers) {
6974 kfree(workers);
6975 kfree(*worker_groups);
6976 return -ENOMEM;
6977 }
6978
6979 for (i = 0; i < *group_cnt; i++) {
6980 struct r5worker_group *group;
6981
6982 group = &(*worker_groups)[i];
6983 INIT_LIST_HEAD(&group->handle_list);
6984 INIT_LIST_HEAD(&group->loprio_list);
6985 group->conf = conf;
6986 group->workers = workers + i * cnt;
6987
6988 for (j = 0; j < cnt; j++) {
6989 struct r5worker *worker = group->workers + j;
6990 worker->group = group;
6991 INIT_WORK(&worker->work, raid5_do_work);
6992
6993 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6994 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6995 }
6996 }
6997
6998 return 0;
6999 }
7000
free_thread_groups(struct r5conf * conf)7001 static void free_thread_groups(struct r5conf *conf)
7002 {
7003 if (conf->worker_groups)
7004 kfree(conf->worker_groups[0].workers);
7005 kfree(conf->worker_groups);
7006 conf->worker_groups = NULL;
7007 }
7008
7009 static sector_t
raid5_size(struct mddev * mddev,sector_t sectors,int raid_disks)7010 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7011 {
7012 struct r5conf *conf = mddev->private;
7013
7014 if (!sectors)
7015 sectors = mddev->dev_sectors;
7016 if (!raid_disks)
7017 /* size is defined by the smallest of previous and new size */
7018 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7019
7020 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7021 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7022 return sectors * (raid_disks - conf->max_degraded);
7023 }
7024
free_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7025 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7026 {
7027 safe_put_page(percpu->spare_page);
7028 percpu->spare_page = NULL;
7029 kvfree(percpu->scribble);
7030 percpu->scribble = NULL;
7031 }
7032
alloc_scratch_buffer(struct r5conf * conf,struct raid5_percpu * percpu)7033 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7034 {
7035 if (conf->level == 6 && !percpu->spare_page) {
7036 percpu->spare_page = alloc_page(GFP_KERNEL);
7037 if (!percpu->spare_page)
7038 return -ENOMEM;
7039 }
7040
7041 if (scribble_alloc(percpu,
7042 max(conf->raid_disks,
7043 conf->previous_raid_disks),
7044 max(conf->chunk_sectors,
7045 conf->prev_chunk_sectors)
7046 / RAID5_STRIPE_SECTORS(conf))) {
7047 free_scratch_buffer(conf, percpu);
7048 return -ENOMEM;
7049 }
7050
7051 return 0;
7052 }
7053
raid456_cpu_dead(unsigned int cpu,struct hlist_node * node)7054 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7055 {
7056 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7057
7058 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7059 return 0;
7060 }
7061
raid5_free_percpu(struct r5conf * conf)7062 static void raid5_free_percpu(struct r5conf *conf)
7063 {
7064 if (!conf->percpu)
7065 return;
7066
7067 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7068 free_percpu(conf->percpu);
7069 }
7070
free_conf(struct r5conf * conf)7071 static void free_conf(struct r5conf *conf)
7072 {
7073 int i;
7074
7075 log_exit(conf);
7076
7077 unregister_shrinker(&conf->shrinker);
7078 free_thread_groups(conf);
7079 shrink_stripes(conf);
7080 raid5_free_percpu(conf);
7081 for (i = 0; i < conf->pool_size; i++)
7082 if (conf->disks[i].extra_page)
7083 put_page(conf->disks[i].extra_page);
7084 kfree(conf->disks);
7085 bioset_exit(&conf->bio_split);
7086 kfree(conf->stripe_hashtbl);
7087 kfree(conf->pending_data);
7088 kfree(conf);
7089 }
7090
raid456_cpu_up_prepare(unsigned int cpu,struct hlist_node * node)7091 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7092 {
7093 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7094 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7095
7096 if (alloc_scratch_buffer(conf, percpu)) {
7097 pr_warn("%s: failed memory allocation for cpu%u\n",
7098 __func__, cpu);
7099 return -ENOMEM;
7100 }
7101 return 0;
7102 }
7103
raid5_alloc_percpu(struct r5conf * conf)7104 static int raid5_alloc_percpu(struct r5conf *conf)
7105 {
7106 int err = 0;
7107
7108 conf->percpu = alloc_percpu(struct raid5_percpu);
7109 if (!conf->percpu)
7110 return -ENOMEM;
7111
7112 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7113 if (!err) {
7114 conf->scribble_disks = max(conf->raid_disks,
7115 conf->previous_raid_disks);
7116 conf->scribble_sectors = max(conf->chunk_sectors,
7117 conf->prev_chunk_sectors);
7118 }
7119 return err;
7120 }
7121
raid5_cache_scan(struct shrinker * shrink,struct shrink_control * sc)7122 static unsigned long raid5_cache_scan(struct shrinker *shrink,
7123 struct shrink_control *sc)
7124 {
7125 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7126 unsigned long ret = SHRINK_STOP;
7127
7128 if (mutex_trylock(&conf->cache_size_mutex)) {
7129 ret= 0;
7130 while (ret < sc->nr_to_scan &&
7131 conf->max_nr_stripes > conf->min_nr_stripes) {
7132 if (drop_one_stripe(conf) == 0) {
7133 ret = SHRINK_STOP;
7134 break;
7135 }
7136 ret++;
7137 }
7138 mutex_unlock(&conf->cache_size_mutex);
7139 }
7140 return ret;
7141 }
7142
raid5_cache_count(struct shrinker * shrink,struct shrink_control * sc)7143 static unsigned long raid5_cache_count(struct shrinker *shrink,
7144 struct shrink_control *sc)
7145 {
7146 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7147
7148 if (conf->max_nr_stripes < conf->min_nr_stripes)
7149 /* unlikely, but not impossible */
7150 return 0;
7151 return conf->max_nr_stripes - conf->min_nr_stripes;
7152 }
7153
setup_conf(struct mddev * mddev)7154 static struct r5conf *setup_conf(struct mddev *mddev)
7155 {
7156 struct r5conf *conf;
7157 int raid_disk, memory, max_disks;
7158 struct md_rdev *rdev;
7159 struct disk_info *disk;
7160 char pers_name[6];
7161 int i;
7162 int group_cnt;
7163 struct r5worker_group *new_group;
7164 int ret;
7165
7166 if (mddev->new_level != 5
7167 && mddev->new_level != 4
7168 && mddev->new_level != 6) {
7169 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7170 mdname(mddev), mddev->new_level);
7171 return ERR_PTR(-EIO);
7172 }
7173 if ((mddev->new_level == 5
7174 && !algorithm_valid_raid5(mddev->new_layout)) ||
7175 (mddev->new_level == 6
7176 && !algorithm_valid_raid6(mddev->new_layout))) {
7177 pr_warn("md/raid:%s: layout %d not supported\n",
7178 mdname(mddev), mddev->new_layout);
7179 return ERR_PTR(-EIO);
7180 }
7181 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7182 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7183 mdname(mddev), mddev->raid_disks);
7184 return ERR_PTR(-EINVAL);
7185 }
7186
7187 if (!mddev->new_chunk_sectors ||
7188 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7189 !is_power_of_2(mddev->new_chunk_sectors)) {
7190 pr_warn("md/raid:%s: invalid chunk size %d\n",
7191 mdname(mddev), mddev->new_chunk_sectors << 9);
7192 return ERR_PTR(-EINVAL);
7193 }
7194
7195 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7196 if (conf == NULL)
7197 goto abort;
7198
7199 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7200 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7201 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7202 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7203 #endif
7204 INIT_LIST_HEAD(&conf->free_list);
7205 INIT_LIST_HEAD(&conf->pending_list);
7206 conf->pending_data = kcalloc(PENDING_IO_MAX,
7207 sizeof(struct r5pending_data),
7208 GFP_KERNEL);
7209 if (!conf->pending_data)
7210 goto abort;
7211 for (i = 0; i < PENDING_IO_MAX; i++)
7212 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7213 /* Don't enable multi-threading by default*/
7214 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7215 conf->group_cnt = group_cnt;
7216 conf->worker_cnt_per_group = 0;
7217 conf->worker_groups = new_group;
7218 } else
7219 goto abort;
7220 spin_lock_init(&conf->device_lock);
7221 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7222 mutex_init(&conf->cache_size_mutex);
7223 init_waitqueue_head(&conf->wait_for_quiescent);
7224 init_waitqueue_head(&conf->wait_for_stripe);
7225 init_waitqueue_head(&conf->wait_for_overlap);
7226 INIT_LIST_HEAD(&conf->handle_list);
7227 INIT_LIST_HEAD(&conf->loprio_list);
7228 INIT_LIST_HEAD(&conf->hold_list);
7229 INIT_LIST_HEAD(&conf->delayed_list);
7230 INIT_LIST_HEAD(&conf->bitmap_list);
7231 init_llist_head(&conf->released_stripes);
7232 atomic_set(&conf->active_stripes, 0);
7233 atomic_set(&conf->preread_active_stripes, 0);
7234 atomic_set(&conf->active_aligned_reads, 0);
7235 spin_lock_init(&conf->pending_bios_lock);
7236 conf->batch_bio_dispatch = true;
7237 rdev_for_each(rdev, mddev) {
7238 if (test_bit(Journal, &rdev->flags))
7239 continue;
7240 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7241 conf->batch_bio_dispatch = false;
7242 break;
7243 }
7244 }
7245
7246 conf->bypass_threshold = BYPASS_THRESHOLD;
7247 conf->recovery_disabled = mddev->recovery_disabled - 1;
7248
7249 conf->raid_disks = mddev->raid_disks;
7250 if (mddev->reshape_position == MaxSector)
7251 conf->previous_raid_disks = mddev->raid_disks;
7252 else
7253 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7254 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7255
7256 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7257 GFP_KERNEL);
7258
7259 if (!conf->disks)
7260 goto abort;
7261
7262 for (i = 0; i < max_disks; i++) {
7263 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7264 if (!conf->disks[i].extra_page)
7265 goto abort;
7266 }
7267
7268 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7269 if (ret)
7270 goto abort;
7271 conf->mddev = mddev;
7272
7273 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7274 goto abort;
7275
7276 /* We init hash_locks[0] separately to that it can be used
7277 * as the reference lock in the spin_lock_nest_lock() call
7278 * in lock_all_device_hash_locks_irq in order to convince
7279 * lockdep that we know what we are doing.
7280 */
7281 spin_lock_init(conf->hash_locks);
7282 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7283 spin_lock_init(conf->hash_locks + i);
7284
7285 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7286 INIT_LIST_HEAD(conf->inactive_list + i);
7287
7288 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7289 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7290
7291 atomic_set(&conf->r5c_cached_full_stripes, 0);
7292 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7293 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7294 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7295 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7296 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7297
7298 conf->level = mddev->new_level;
7299 conf->chunk_sectors = mddev->new_chunk_sectors;
7300 if (raid5_alloc_percpu(conf) != 0)
7301 goto abort;
7302
7303 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7304
7305 rdev_for_each(rdev, mddev) {
7306 raid_disk = rdev->raid_disk;
7307 if (raid_disk >= max_disks
7308 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7309 continue;
7310 disk = conf->disks + raid_disk;
7311
7312 if (test_bit(Replacement, &rdev->flags)) {
7313 if (disk->replacement)
7314 goto abort;
7315 disk->replacement = rdev;
7316 } else {
7317 if (disk->rdev)
7318 goto abort;
7319 disk->rdev = rdev;
7320 }
7321
7322 if (test_bit(In_sync, &rdev->flags)) {
7323 char b[BDEVNAME_SIZE];
7324 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7325 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7326 } else if (rdev->saved_raid_disk != raid_disk)
7327 /* Cannot rely on bitmap to complete recovery */
7328 conf->fullsync = 1;
7329 }
7330
7331 conf->level = mddev->new_level;
7332 if (conf->level == 6) {
7333 conf->max_degraded = 2;
7334 if (raid6_call.xor_syndrome)
7335 conf->rmw_level = PARITY_ENABLE_RMW;
7336 else
7337 conf->rmw_level = PARITY_DISABLE_RMW;
7338 } else {
7339 conf->max_degraded = 1;
7340 conf->rmw_level = PARITY_ENABLE_RMW;
7341 }
7342 conf->algorithm = mddev->new_layout;
7343 conf->reshape_progress = mddev->reshape_position;
7344 if (conf->reshape_progress != MaxSector) {
7345 conf->prev_chunk_sectors = mddev->chunk_sectors;
7346 conf->prev_algo = mddev->layout;
7347 } else {
7348 conf->prev_chunk_sectors = conf->chunk_sectors;
7349 conf->prev_algo = conf->algorithm;
7350 }
7351
7352 conf->min_nr_stripes = NR_STRIPES;
7353 if (mddev->reshape_position != MaxSector) {
7354 int stripes = max_t(int,
7355 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7356 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7357 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7358 if (conf->min_nr_stripes != NR_STRIPES)
7359 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7360 mdname(mddev), conf->min_nr_stripes);
7361 }
7362 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7363 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7364 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7365 if (grow_stripes(conf, conf->min_nr_stripes)) {
7366 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7367 mdname(mddev), memory);
7368 goto abort;
7369 } else
7370 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7371 /*
7372 * Losing a stripe head costs more than the time to refill it,
7373 * it reduces the queue depth and so can hurt throughput.
7374 * So set it rather large, scaled by number of devices.
7375 */
7376 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7377 conf->shrinker.scan_objects = raid5_cache_scan;
7378 conf->shrinker.count_objects = raid5_cache_count;
7379 conf->shrinker.batch = 128;
7380 conf->shrinker.flags = 0;
7381 if (register_shrinker(&conf->shrinker)) {
7382 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7383 mdname(mddev));
7384 goto abort;
7385 }
7386
7387 sprintf(pers_name, "raid%d", mddev->new_level);
7388 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7389 if (!conf->thread) {
7390 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7391 mdname(mddev));
7392 goto abort;
7393 }
7394
7395 return conf;
7396
7397 abort:
7398 if (conf) {
7399 free_conf(conf);
7400 return ERR_PTR(-EIO);
7401 } else
7402 return ERR_PTR(-ENOMEM);
7403 }
7404
only_parity(int raid_disk,int algo,int raid_disks,int max_degraded)7405 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7406 {
7407 switch (algo) {
7408 case ALGORITHM_PARITY_0:
7409 if (raid_disk < max_degraded)
7410 return 1;
7411 break;
7412 case ALGORITHM_PARITY_N:
7413 if (raid_disk >= raid_disks - max_degraded)
7414 return 1;
7415 break;
7416 case ALGORITHM_PARITY_0_6:
7417 if (raid_disk == 0 ||
7418 raid_disk == raid_disks - 1)
7419 return 1;
7420 break;
7421 case ALGORITHM_LEFT_ASYMMETRIC_6:
7422 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7423 case ALGORITHM_LEFT_SYMMETRIC_6:
7424 case ALGORITHM_RIGHT_SYMMETRIC_6:
7425 if (raid_disk == raid_disks - 1)
7426 return 1;
7427 }
7428 return 0;
7429 }
7430
raid5_set_io_opt(struct r5conf * conf)7431 static void raid5_set_io_opt(struct r5conf *conf)
7432 {
7433 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7434 (conf->raid_disks - conf->max_degraded));
7435 }
7436
raid5_run(struct mddev * mddev)7437 static int raid5_run(struct mddev *mddev)
7438 {
7439 struct r5conf *conf;
7440 int working_disks = 0;
7441 int dirty_parity_disks = 0;
7442 struct md_rdev *rdev;
7443 struct md_rdev *journal_dev = NULL;
7444 sector_t reshape_offset = 0;
7445 int i;
7446 long long min_offset_diff = 0;
7447 int first = 1;
7448
7449 if (mddev_init_writes_pending(mddev) < 0)
7450 return -ENOMEM;
7451
7452 if (mddev->recovery_cp != MaxSector)
7453 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7454 mdname(mddev));
7455
7456 rdev_for_each(rdev, mddev) {
7457 long long diff;
7458
7459 if (test_bit(Journal, &rdev->flags)) {
7460 journal_dev = rdev;
7461 continue;
7462 }
7463 if (rdev->raid_disk < 0)
7464 continue;
7465 diff = (rdev->new_data_offset - rdev->data_offset);
7466 if (first) {
7467 min_offset_diff = diff;
7468 first = 0;
7469 } else if (mddev->reshape_backwards &&
7470 diff < min_offset_diff)
7471 min_offset_diff = diff;
7472 else if (!mddev->reshape_backwards &&
7473 diff > min_offset_diff)
7474 min_offset_diff = diff;
7475 }
7476
7477 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7478 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7479 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7480 mdname(mddev));
7481 return -EINVAL;
7482 }
7483
7484 if (mddev->reshape_position != MaxSector) {
7485 /* Check that we can continue the reshape.
7486 * Difficulties arise if the stripe we would write to
7487 * next is at or after the stripe we would read from next.
7488 * For a reshape that changes the number of devices, this
7489 * is only possible for a very short time, and mdadm makes
7490 * sure that time appears to have past before assembling
7491 * the array. So we fail if that time hasn't passed.
7492 * For a reshape that keeps the number of devices the same
7493 * mdadm must be monitoring the reshape can keeping the
7494 * critical areas read-only and backed up. It will start
7495 * the array in read-only mode, so we check for that.
7496 */
7497 sector_t here_new, here_old;
7498 int old_disks;
7499 int max_degraded = (mddev->level == 6 ? 2 : 1);
7500 int chunk_sectors;
7501 int new_data_disks;
7502
7503 if (journal_dev) {
7504 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7505 mdname(mddev));
7506 return -EINVAL;
7507 }
7508
7509 if (mddev->new_level != mddev->level) {
7510 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7511 mdname(mddev));
7512 return -EINVAL;
7513 }
7514 old_disks = mddev->raid_disks - mddev->delta_disks;
7515 /* reshape_position must be on a new-stripe boundary, and one
7516 * further up in new geometry must map after here in old
7517 * geometry.
7518 * If the chunk sizes are different, then as we perform reshape
7519 * in units of the largest of the two, reshape_position needs
7520 * be a multiple of the largest chunk size times new data disks.
7521 */
7522 here_new = mddev->reshape_position;
7523 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7524 new_data_disks = mddev->raid_disks - max_degraded;
7525 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7526 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7527 mdname(mddev));
7528 return -EINVAL;
7529 }
7530 reshape_offset = here_new * chunk_sectors;
7531 /* here_new is the stripe we will write to */
7532 here_old = mddev->reshape_position;
7533 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7534 /* here_old is the first stripe that we might need to read
7535 * from */
7536 if (mddev->delta_disks == 0) {
7537 /* We cannot be sure it is safe to start an in-place
7538 * reshape. It is only safe if user-space is monitoring
7539 * and taking constant backups.
7540 * mdadm always starts a situation like this in
7541 * readonly mode so it can take control before
7542 * allowing any writes. So just check for that.
7543 */
7544 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7545 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7546 /* not really in-place - so OK */;
7547 else if (mddev->ro == 0) {
7548 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7549 mdname(mddev));
7550 return -EINVAL;
7551 }
7552 } else if (mddev->reshape_backwards
7553 ? (here_new * chunk_sectors + min_offset_diff <=
7554 here_old * chunk_sectors)
7555 : (here_new * chunk_sectors >=
7556 here_old * chunk_sectors + (-min_offset_diff))) {
7557 /* Reading from the same stripe as writing to - bad */
7558 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7559 mdname(mddev));
7560 return -EINVAL;
7561 }
7562 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7563 /* OK, we should be able to continue; */
7564 } else {
7565 BUG_ON(mddev->level != mddev->new_level);
7566 BUG_ON(mddev->layout != mddev->new_layout);
7567 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7568 BUG_ON(mddev->delta_disks != 0);
7569 }
7570
7571 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7572 test_bit(MD_HAS_PPL, &mddev->flags)) {
7573 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7574 mdname(mddev));
7575 clear_bit(MD_HAS_PPL, &mddev->flags);
7576 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7577 }
7578
7579 if (mddev->private == NULL)
7580 conf = setup_conf(mddev);
7581 else
7582 conf = mddev->private;
7583
7584 if (IS_ERR(conf))
7585 return PTR_ERR(conf);
7586
7587 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7588 if (!journal_dev) {
7589 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7590 mdname(mddev));
7591 mddev->ro = 1;
7592 set_disk_ro(mddev->gendisk, 1);
7593 } else if (mddev->recovery_cp == MaxSector)
7594 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7595 }
7596
7597 conf->min_offset_diff = min_offset_diff;
7598 mddev->thread = conf->thread;
7599 conf->thread = NULL;
7600 mddev->private = conf;
7601
7602 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7603 i++) {
7604 rdev = conf->disks[i].rdev;
7605 if (!rdev && conf->disks[i].replacement) {
7606 /* The replacement is all we have yet */
7607 rdev = conf->disks[i].replacement;
7608 conf->disks[i].replacement = NULL;
7609 clear_bit(Replacement, &rdev->flags);
7610 conf->disks[i].rdev = rdev;
7611 }
7612 if (!rdev)
7613 continue;
7614 if (conf->disks[i].replacement &&
7615 conf->reshape_progress != MaxSector) {
7616 /* replacements and reshape simply do not mix. */
7617 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7618 goto abort;
7619 }
7620 if (test_bit(In_sync, &rdev->flags)) {
7621 working_disks++;
7622 continue;
7623 }
7624 /* This disc is not fully in-sync. However if it
7625 * just stored parity (beyond the recovery_offset),
7626 * when we don't need to be concerned about the
7627 * array being dirty.
7628 * When reshape goes 'backwards', we never have
7629 * partially completed devices, so we only need
7630 * to worry about reshape going forwards.
7631 */
7632 /* Hack because v0.91 doesn't store recovery_offset properly. */
7633 if (mddev->major_version == 0 &&
7634 mddev->minor_version > 90)
7635 rdev->recovery_offset = reshape_offset;
7636
7637 if (rdev->recovery_offset < reshape_offset) {
7638 /* We need to check old and new layout */
7639 if (!only_parity(rdev->raid_disk,
7640 conf->algorithm,
7641 conf->raid_disks,
7642 conf->max_degraded))
7643 continue;
7644 }
7645 if (!only_parity(rdev->raid_disk,
7646 conf->prev_algo,
7647 conf->previous_raid_disks,
7648 conf->max_degraded))
7649 continue;
7650 dirty_parity_disks++;
7651 }
7652
7653 /*
7654 * 0 for a fully functional array, 1 or 2 for a degraded array.
7655 */
7656 mddev->degraded = raid5_calc_degraded(conf);
7657
7658 if (has_failed(conf)) {
7659 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7660 mdname(mddev), mddev->degraded, conf->raid_disks);
7661 goto abort;
7662 }
7663
7664 /* device size must be a multiple of chunk size */
7665 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7666 mddev->resync_max_sectors = mddev->dev_sectors;
7667
7668 if (mddev->degraded > dirty_parity_disks &&
7669 mddev->recovery_cp != MaxSector) {
7670 if (test_bit(MD_HAS_PPL, &mddev->flags))
7671 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7672 mdname(mddev));
7673 else if (mddev->ok_start_degraded)
7674 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7675 mdname(mddev));
7676 else {
7677 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7678 mdname(mddev));
7679 goto abort;
7680 }
7681 }
7682
7683 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7684 mdname(mddev), conf->level,
7685 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7686 mddev->new_layout);
7687
7688 print_raid5_conf(conf);
7689
7690 if (conf->reshape_progress != MaxSector) {
7691 conf->reshape_safe = conf->reshape_progress;
7692 atomic_set(&conf->reshape_stripes, 0);
7693 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7694 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7695 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7696 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7697 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7698 "reshape");
7699 if (!mddev->sync_thread)
7700 goto abort;
7701 }
7702
7703 /* Ok, everything is just fine now */
7704 if (mddev->to_remove == &raid5_attrs_group)
7705 mddev->to_remove = NULL;
7706 else if (mddev->kobj.sd &&
7707 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7708 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7709 mdname(mddev));
7710 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7711
7712 if (mddev->queue) {
7713 int chunk_size;
7714 /* read-ahead size must cover two whole stripes, which
7715 * is 2 * (datadisks) * chunksize where 'n' is the
7716 * number of raid devices
7717 */
7718 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7719 int stripe = data_disks *
7720 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7721
7722 chunk_size = mddev->chunk_sectors << 9;
7723 blk_queue_io_min(mddev->queue, chunk_size);
7724 raid5_set_io_opt(conf);
7725 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7726 /*
7727 * We can only discard a whole stripe. It doesn't make sense to
7728 * discard data disk but write parity disk
7729 */
7730 stripe = stripe * PAGE_SIZE;
7731 /* Round up to power of 2, as discard handling
7732 * currently assumes that */
7733 while ((stripe-1) & stripe)
7734 stripe = (stripe | (stripe-1)) + 1;
7735 mddev->queue->limits.discard_alignment = stripe;
7736 mddev->queue->limits.discard_granularity = stripe;
7737
7738 blk_queue_max_write_same_sectors(mddev->queue, 0);
7739 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7740
7741 rdev_for_each(rdev, mddev) {
7742 disk_stack_limits(mddev->gendisk, rdev->bdev,
7743 rdev->data_offset << 9);
7744 disk_stack_limits(mddev->gendisk, rdev->bdev,
7745 rdev->new_data_offset << 9);
7746 }
7747
7748 /*
7749 * zeroing is required, otherwise data
7750 * could be lost. Consider a scenario: discard a stripe
7751 * (the stripe could be inconsistent if
7752 * discard_zeroes_data is 0); write one disk of the
7753 * stripe (the stripe could be inconsistent again
7754 * depending on which disks are used to calculate
7755 * parity); the disk is broken; The stripe data of this
7756 * disk is lost.
7757 *
7758 * We only allow DISCARD if the sysadmin has confirmed that
7759 * only safe devices are in use by setting a module parameter.
7760 * A better idea might be to turn DISCARD into WRITE_ZEROES
7761 * requests, as that is required to be safe.
7762 */
7763 if (devices_handle_discard_safely &&
7764 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7765 mddev->queue->limits.discard_granularity >= stripe)
7766 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7767 mddev->queue);
7768 else
7769 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7770 mddev->queue);
7771
7772 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7773 }
7774
7775 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7776 goto abort;
7777
7778 return 0;
7779 abort:
7780 md_unregister_thread(&mddev->thread);
7781 print_raid5_conf(conf);
7782 free_conf(conf);
7783 mddev->private = NULL;
7784 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7785 return -EIO;
7786 }
7787
raid5_free(struct mddev * mddev,void * priv)7788 static void raid5_free(struct mddev *mddev, void *priv)
7789 {
7790 struct r5conf *conf = priv;
7791
7792 free_conf(conf);
7793 mddev->to_remove = &raid5_attrs_group;
7794 }
7795
raid5_status(struct seq_file * seq,struct mddev * mddev)7796 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7797 {
7798 struct r5conf *conf = mddev->private;
7799 int i;
7800
7801 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7802 conf->chunk_sectors / 2, mddev->layout);
7803 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7804 rcu_read_lock();
7805 for (i = 0; i < conf->raid_disks; i++) {
7806 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7807 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7808 }
7809 rcu_read_unlock();
7810 seq_printf (seq, "]");
7811 }
7812
print_raid5_conf(struct r5conf * conf)7813 static void print_raid5_conf (struct r5conf *conf)
7814 {
7815 int i;
7816 struct disk_info *tmp;
7817
7818 pr_debug("RAID conf printout:\n");
7819 if (!conf) {
7820 pr_debug("(conf==NULL)\n");
7821 return;
7822 }
7823 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7824 conf->raid_disks,
7825 conf->raid_disks - conf->mddev->degraded);
7826
7827 for (i = 0; i < conf->raid_disks; i++) {
7828 char b[BDEVNAME_SIZE];
7829 tmp = conf->disks + i;
7830 if (tmp->rdev)
7831 pr_debug(" disk %d, o:%d, dev:%s\n",
7832 i, !test_bit(Faulty, &tmp->rdev->flags),
7833 bdevname(tmp->rdev->bdev, b));
7834 }
7835 }
7836
raid5_spare_active(struct mddev * mddev)7837 static int raid5_spare_active(struct mddev *mddev)
7838 {
7839 int i;
7840 struct r5conf *conf = mddev->private;
7841 struct disk_info *tmp;
7842 int count = 0;
7843 unsigned long flags;
7844
7845 for (i = 0; i < conf->raid_disks; i++) {
7846 tmp = conf->disks + i;
7847 if (tmp->replacement
7848 && tmp->replacement->recovery_offset == MaxSector
7849 && !test_bit(Faulty, &tmp->replacement->flags)
7850 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7851 /* Replacement has just become active. */
7852 if (!tmp->rdev
7853 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7854 count++;
7855 if (tmp->rdev) {
7856 /* Replaced device not technically faulty,
7857 * but we need to be sure it gets removed
7858 * and never re-added.
7859 */
7860 set_bit(Faulty, &tmp->rdev->flags);
7861 sysfs_notify_dirent_safe(
7862 tmp->rdev->sysfs_state);
7863 }
7864 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7865 } else if (tmp->rdev
7866 && tmp->rdev->recovery_offset == MaxSector
7867 && !test_bit(Faulty, &tmp->rdev->flags)
7868 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7869 count++;
7870 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7871 }
7872 }
7873 spin_lock_irqsave(&conf->device_lock, flags);
7874 mddev->degraded = raid5_calc_degraded(conf);
7875 spin_unlock_irqrestore(&conf->device_lock, flags);
7876 print_raid5_conf(conf);
7877 return count;
7878 }
7879
raid5_remove_disk(struct mddev * mddev,struct md_rdev * rdev)7880 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7881 {
7882 struct r5conf *conf = mddev->private;
7883 int err = 0;
7884 int number = rdev->raid_disk;
7885 struct md_rdev **rdevp;
7886 struct disk_info *p = conf->disks + number;
7887
7888 print_raid5_conf(conf);
7889 if (test_bit(Journal, &rdev->flags) && conf->log) {
7890 /*
7891 * we can't wait pending write here, as this is called in
7892 * raid5d, wait will deadlock.
7893 * neilb: there is no locking about new writes here,
7894 * so this cannot be safe.
7895 */
7896 if (atomic_read(&conf->active_stripes) ||
7897 atomic_read(&conf->r5c_cached_full_stripes) ||
7898 atomic_read(&conf->r5c_cached_partial_stripes)) {
7899 return -EBUSY;
7900 }
7901 log_exit(conf);
7902 return 0;
7903 }
7904 if (rdev == p->rdev)
7905 rdevp = &p->rdev;
7906 else if (rdev == p->replacement)
7907 rdevp = &p->replacement;
7908 else
7909 return 0;
7910
7911 if (number >= conf->raid_disks &&
7912 conf->reshape_progress == MaxSector)
7913 clear_bit(In_sync, &rdev->flags);
7914
7915 if (test_bit(In_sync, &rdev->flags) ||
7916 atomic_read(&rdev->nr_pending)) {
7917 err = -EBUSY;
7918 goto abort;
7919 }
7920 /* Only remove non-faulty devices if recovery
7921 * isn't possible.
7922 */
7923 if (!test_bit(Faulty, &rdev->flags) &&
7924 mddev->recovery_disabled != conf->recovery_disabled &&
7925 !has_failed(conf) &&
7926 (!p->replacement || p->replacement == rdev) &&
7927 number < conf->raid_disks) {
7928 err = -EBUSY;
7929 goto abort;
7930 }
7931 *rdevp = NULL;
7932 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7933 synchronize_rcu();
7934 if (atomic_read(&rdev->nr_pending)) {
7935 /* lost the race, try later */
7936 err = -EBUSY;
7937 *rdevp = rdev;
7938 }
7939 }
7940 if (!err) {
7941 err = log_modify(conf, rdev, false);
7942 if (err)
7943 goto abort;
7944 }
7945 if (p->replacement) {
7946 /* We must have just cleared 'rdev' */
7947 p->rdev = p->replacement;
7948 clear_bit(Replacement, &p->replacement->flags);
7949 smp_mb(); /* Make sure other CPUs may see both as identical
7950 * but will never see neither - if they are careful
7951 */
7952 p->replacement = NULL;
7953
7954 if (!err)
7955 err = log_modify(conf, p->rdev, true);
7956 }
7957
7958 clear_bit(WantReplacement, &rdev->flags);
7959 abort:
7960
7961 print_raid5_conf(conf);
7962 return err;
7963 }
7964
raid5_add_disk(struct mddev * mddev,struct md_rdev * rdev)7965 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7966 {
7967 struct r5conf *conf = mddev->private;
7968 int ret, err = -EEXIST;
7969 int disk;
7970 struct disk_info *p;
7971 int first = 0;
7972 int last = conf->raid_disks - 1;
7973
7974 if (test_bit(Journal, &rdev->flags)) {
7975 if (conf->log)
7976 return -EBUSY;
7977
7978 rdev->raid_disk = 0;
7979 /*
7980 * The array is in readonly mode if journal is missing, so no
7981 * write requests running. We should be safe
7982 */
7983 ret = log_init(conf, rdev, false);
7984 if (ret)
7985 return ret;
7986
7987 ret = r5l_start(conf->log);
7988 if (ret)
7989 return ret;
7990
7991 return 0;
7992 }
7993 if (mddev->recovery_disabled == conf->recovery_disabled)
7994 return -EBUSY;
7995
7996 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7997 /* no point adding a device */
7998 return -EINVAL;
7999
8000 if (rdev->raid_disk >= 0)
8001 first = last = rdev->raid_disk;
8002
8003 /*
8004 * find the disk ... but prefer rdev->saved_raid_disk
8005 * if possible.
8006 */
8007 if (rdev->saved_raid_disk >= 0 &&
8008 rdev->saved_raid_disk >= first &&
8009 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8010 first = rdev->saved_raid_disk;
8011
8012 for (disk = first; disk <= last; disk++) {
8013 p = conf->disks + disk;
8014 if (p->rdev == NULL) {
8015 clear_bit(In_sync, &rdev->flags);
8016 rdev->raid_disk = disk;
8017 if (rdev->saved_raid_disk != disk)
8018 conf->fullsync = 1;
8019 rcu_assign_pointer(p->rdev, rdev);
8020
8021 err = log_modify(conf, rdev, true);
8022
8023 goto out;
8024 }
8025 }
8026 for (disk = first; disk <= last; disk++) {
8027 p = conf->disks + disk;
8028 if (test_bit(WantReplacement, &p->rdev->flags) &&
8029 p->replacement == NULL) {
8030 clear_bit(In_sync, &rdev->flags);
8031 set_bit(Replacement, &rdev->flags);
8032 rdev->raid_disk = disk;
8033 err = 0;
8034 conf->fullsync = 1;
8035 rcu_assign_pointer(p->replacement, rdev);
8036 break;
8037 }
8038 }
8039 out:
8040 print_raid5_conf(conf);
8041 return err;
8042 }
8043
raid5_resize(struct mddev * mddev,sector_t sectors)8044 static int raid5_resize(struct mddev *mddev, sector_t sectors)
8045 {
8046 /* no resync is happening, and there is enough space
8047 * on all devices, so we can resize.
8048 * We need to make sure resync covers any new space.
8049 * If the array is shrinking we should possibly wait until
8050 * any io in the removed space completes, but it hardly seems
8051 * worth it.
8052 */
8053 sector_t newsize;
8054 struct r5conf *conf = mddev->private;
8055
8056 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8057 return -EINVAL;
8058 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8059 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8060 if (mddev->external_size &&
8061 mddev->array_sectors > newsize)
8062 return -EINVAL;
8063 if (mddev->bitmap) {
8064 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8065 if (ret)
8066 return ret;
8067 }
8068 md_set_array_sectors(mddev, newsize);
8069 if (sectors > mddev->dev_sectors &&
8070 mddev->recovery_cp > mddev->dev_sectors) {
8071 mddev->recovery_cp = mddev->dev_sectors;
8072 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8073 }
8074 mddev->dev_sectors = sectors;
8075 mddev->resync_max_sectors = sectors;
8076 return 0;
8077 }
8078
check_stripe_cache(struct mddev * mddev)8079 static int check_stripe_cache(struct mddev *mddev)
8080 {
8081 /* Can only proceed if there are plenty of stripe_heads.
8082 * We need a minimum of one full stripe,, and for sensible progress
8083 * it is best to have about 4 times that.
8084 * If we require 4 times, then the default 256 4K stripe_heads will
8085 * allow for chunk sizes up to 256K, which is probably OK.
8086 * If the chunk size is greater, user-space should request more
8087 * stripe_heads first.
8088 */
8089 struct r5conf *conf = mddev->private;
8090 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8091 > conf->min_nr_stripes ||
8092 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8093 > conf->min_nr_stripes) {
8094 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8095 mdname(mddev),
8096 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8097 / RAID5_STRIPE_SIZE(conf))*4);
8098 return 0;
8099 }
8100 return 1;
8101 }
8102
check_reshape(struct mddev * mddev)8103 static int check_reshape(struct mddev *mddev)
8104 {
8105 struct r5conf *conf = mddev->private;
8106
8107 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8108 return -EINVAL;
8109 if (mddev->delta_disks == 0 &&
8110 mddev->new_layout == mddev->layout &&
8111 mddev->new_chunk_sectors == mddev->chunk_sectors)
8112 return 0; /* nothing to do */
8113 if (has_failed(conf))
8114 return -EINVAL;
8115 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8116 /* We might be able to shrink, but the devices must
8117 * be made bigger first.
8118 * For raid6, 4 is the minimum size.
8119 * Otherwise 2 is the minimum
8120 */
8121 int min = 2;
8122 if (mddev->level == 6)
8123 min = 4;
8124 if (mddev->raid_disks + mddev->delta_disks < min)
8125 return -EINVAL;
8126 }
8127
8128 if (!check_stripe_cache(mddev))
8129 return -ENOSPC;
8130
8131 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8132 mddev->delta_disks > 0)
8133 if (resize_chunks(conf,
8134 conf->previous_raid_disks
8135 + max(0, mddev->delta_disks),
8136 max(mddev->new_chunk_sectors,
8137 mddev->chunk_sectors)
8138 ) < 0)
8139 return -ENOMEM;
8140
8141 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8142 return 0; /* never bother to shrink */
8143 return resize_stripes(conf, (conf->previous_raid_disks
8144 + mddev->delta_disks));
8145 }
8146
raid5_start_reshape(struct mddev * mddev)8147 static int raid5_start_reshape(struct mddev *mddev)
8148 {
8149 struct r5conf *conf = mddev->private;
8150 struct md_rdev *rdev;
8151 int spares = 0;
8152 unsigned long flags;
8153
8154 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8155 return -EBUSY;
8156
8157 if (!check_stripe_cache(mddev))
8158 return -ENOSPC;
8159
8160 if (has_failed(conf))
8161 return -EINVAL;
8162
8163 rdev_for_each(rdev, mddev) {
8164 if (!test_bit(In_sync, &rdev->flags)
8165 && !test_bit(Faulty, &rdev->flags))
8166 spares++;
8167 }
8168
8169 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8170 /* Not enough devices even to make a degraded array
8171 * of that size
8172 */
8173 return -EINVAL;
8174
8175 /* Refuse to reduce size of the array. Any reductions in
8176 * array size must be through explicit setting of array_size
8177 * attribute.
8178 */
8179 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8180 < mddev->array_sectors) {
8181 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8182 mdname(mddev));
8183 return -EINVAL;
8184 }
8185
8186 atomic_set(&conf->reshape_stripes, 0);
8187 spin_lock_irq(&conf->device_lock);
8188 write_seqcount_begin(&conf->gen_lock);
8189 conf->previous_raid_disks = conf->raid_disks;
8190 conf->raid_disks += mddev->delta_disks;
8191 conf->prev_chunk_sectors = conf->chunk_sectors;
8192 conf->chunk_sectors = mddev->new_chunk_sectors;
8193 conf->prev_algo = conf->algorithm;
8194 conf->algorithm = mddev->new_layout;
8195 conf->generation++;
8196 /* Code that selects data_offset needs to see the generation update
8197 * if reshape_progress has been set - so a memory barrier needed.
8198 */
8199 smp_mb();
8200 if (mddev->reshape_backwards)
8201 conf->reshape_progress = raid5_size(mddev, 0, 0);
8202 else
8203 conf->reshape_progress = 0;
8204 conf->reshape_safe = conf->reshape_progress;
8205 write_seqcount_end(&conf->gen_lock);
8206 spin_unlock_irq(&conf->device_lock);
8207
8208 /* Now make sure any requests that proceeded on the assumption
8209 * the reshape wasn't running - like Discard or Read - have
8210 * completed.
8211 */
8212 mddev_suspend(mddev);
8213 mddev_resume(mddev);
8214
8215 /* Add some new drives, as many as will fit.
8216 * We know there are enough to make the newly sized array work.
8217 * Don't add devices if we are reducing the number of
8218 * devices in the array. This is because it is not possible
8219 * to correctly record the "partially reconstructed" state of
8220 * such devices during the reshape and confusion could result.
8221 */
8222 if (mddev->delta_disks >= 0) {
8223 rdev_for_each(rdev, mddev)
8224 if (rdev->raid_disk < 0 &&
8225 !test_bit(Faulty, &rdev->flags)) {
8226 if (raid5_add_disk(mddev, rdev) == 0) {
8227 if (rdev->raid_disk
8228 >= conf->previous_raid_disks)
8229 set_bit(In_sync, &rdev->flags);
8230 else
8231 rdev->recovery_offset = 0;
8232
8233 /* Failure here is OK */
8234 sysfs_link_rdev(mddev, rdev);
8235 }
8236 } else if (rdev->raid_disk >= conf->previous_raid_disks
8237 && !test_bit(Faulty, &rdev->flags)) {
8238 /* This is a spare that was manually added */
8239 set_bit(In_sync, &rdev->flags);
8240 }
8241
8242 /* When a reshape changes the number of devices,
8243 * ->degraded is measured against the larger of the
8244 * pre and post number of devices.
8245 */
8246 spin_lock_irqsave(&conf->device_lock, flags);
8247 mddev->degraded = raid5_calc_degraded(conf);
8248 spin_unlock_irqrestore(&conf->device_lock, flags);
8249 }
8250 mddev->raid_disks = conf->raid_disks;
8251 mddev->reshape_position = conf->reshape_progress;
8252 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8253
8254 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8255 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8256 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8257 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8258 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8259 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8260 "reshape");
8261 if (!mddev->sync_thread) {
8262 mddev->recovery = 0;
8263 spin_lock_irq(&conf->device_lock);
8264 write_seqcount_begin(&conf->gen_lock);
8265 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8266 mddev->new_chunk_sectors =
8267 conf->chunk_sectors = conf->prev_chunk_sectors;
8268 mddev->new_layout = conf->algorithm = conf->prev_algo;
8269 rdev_for_each(rdev, mddev)
8270 rdev->new_data_offset = rdev->data_offset;
8271 smp_wmb();
8272 conf->generation --;
8273 conf->reshape_progress = MaxSector;
8274 mddev->reshape_position = MaxSector;
8275 write_seqcount_end(&conf->gen_lock);
8276 spin_unlock_irq(&conf->device_lock);
8277 return -EAGAIN;
8278 }
8279 conf->reshape_checkpoint = jiffies;
8280 md_wakeup_thread(mddev->sync_thread);
8281 md_new_event(mddev);
8282 return 0;
8283 }
8284
8285 /* This is called from the reshape thread and should make any
8286 * changes needed in 'conf'
8287 */
end_reshape(struct r5conf * conf)8288 static void end_reshape(struct r5conf *conf)
8289 {
8290
8291 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8292 struct md_rdev *rdev;
8293
8294 spin_lock_irq(&conf->device_lock);
8295 conf->previous_raid_disks = conf->raid_disks;
8296 md_finish_reshape(conf->mddev);
8297 smp_wmb();
8298 conf->reshape_progress = MaxSector;
8299 conf->mddev->reshape_position = MaxSector;
8300 rdev_for_each(rdev, conf->mddev)
8301 if (rdev->raid_disk >= 0 &&
8302 !test_bit(Journal, &rdev->flags) &&
8303 !test_bit(In_sync, &rdev->flags))
8304 rdev->recovery_offset = MaxSector;
8305 spin_unlock_irq(&conf->device_lock);
8306 wake_up(&conf->wait_for_overlap);
8307
8308 if (conf->mddev->queue)
8309 raid5_set_io_opt(conf);
8310 }
8311 }
8312
8313 /* This is called from the raid5d thread with mddev_lock held.
8314 * It makes config changes to the device.
8315 */
raid5_finish_reshape(struct mddev * mddev)8316 static void raid5_finish_reshape(struct mddev *mddev)
8317 {
8318 struct r5conf *conf = mddev->private;
8319
8320 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8321
8322 if (mddev->delta_disks <= 0) {
8323 int d;
8324 spin_lock_irq(&conf->device_lock);
8325 mddev->degraded = raid5_calc_degraded(conf);
8326 spin_unlock_irq(&conf->device_lock);
8327 for (d = conf->raid_disks ;
8328 d < conf->raid_disks - mddev->delta_disks;
8329 d++) {
8330 struct md_rdev *rdev = conf->disks[d].rdev;
8331 if (rdev)
8332 clear_bit(In_sync, &rdev->flags);
8333 rdev = conf->disks[d].replacement;
8334 if (rdev)
8335 clear_bit(In_sync, &rdev->flags);
8336 }
8337 }
8338 mddev->layout = conf->algorithm;
8339 mddev->chunk_sectors = conf->chunk_sectors;
8340 mddev->reshape_position = MaxSector;
8341 mddev->delta_disks = 0;
8342 mddev->reshape_backwards = 0;
8343 }
8344 }
8345
raid5_quiesce(struct mddev * mddev,int quiesce)8346 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8347 {
8348 struct r5conf *conf = mddev->private;
8349
8350 if (quiesce) {
8351 /* stop all writes */
8352 lock_all_device_hash_locks_irq(conf);
8353 /* '2' tells resync/reshape to pause so that all
8354 * active stripes can drain
8355 */
8356 r5c_flush_cache(conf, INT_MAX);
8357 conf->quiesce = 2;
8358 wait_event_cmd(conf->wait_for_quiescent,
8359 atomic_read(&conf->active_stripes) == 0 &&
8360 atomic_read(&conf->active_aligned_reads) == 0,
8361 unlock_all_device_hash_locks_irq(conf),
8362 lock_all_device_hash_locks_irq(conf));
8363 conf->quiesce = 1;
8364 unlock_all_device_hash_locks_irq(conf);
8365 /* allow reshape to continue */
8366 wake_up(&conf->wait_for_overlap);
8367 } else {
8368 /* re-enable writes */
8369 lock_all_device_hash_locks_irq(conf);
8370 conf->quiesce = 0;
8371 wake_up(&conf->wait_for_quiescent);
8372 wake_up(&conf->wait_for_overlap);
8373 unlock_all_device_hash_locks_irq(conf);
8374 }
8375 log_quiesce(conf, quiesce);
8376 }
8377
raid45_takeover_raid0(struct mddev * mddev,int level)8378 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8379 {
8380 struct r0conf *raid0_conf = mddev->private;
8381 sector_t sectors;
8382
8383 /* for raid0 takeover only one zone is supported */
8384 if (raid0_conf->nr_strip_zones > 1) {
8385 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8386 mdname(mddev));
8387 return ERR_PTR(-EINVAL);
8388 }
8389
8390 sectors = raid0_conf->strip_zone[0].zone_end;
8391 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8392 mddev->dev_sectors = sectors;
8393 mddev->new_level = level;
8394 mddev->new_layout = ALGORITHM_PARITY_N;
8395 mddev->new_chunk_sectors = mddev->chunk_sectors;
8396 mddev->raid_disks += 1;
8397 mddev->delta_disks = 1;
8398 /* make sure it will be not marked as dirty */
8399 mddev->recovery_cp = MaxSector;
8400
8401 return setup_conf(mddev);
8402 }
8403
raid5_takeover_raid1(struct mddev * mddev)8404 static void *raid5_takeover_raid1(struct mddev *mddev)
8405 {
8406 int chunksect;
8407 void *ret;
8408
8409 if (mddev->raid_disks != 2 ||
8410 mddev->degraded > 1)
8411 return ERR_PTR(-EINVAL);
8412
8413 /* Should check if there are write-behind devices? */
8414
8415 chunksect = 64*2; /* 64K by default */
8416
8417 /* The array must be an exact multiple of chunksize */
8418 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8419 chunksect >>= 1;
8420
8421 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8422 /* array size does not allow a suitable chunk size */
8423 return ERR_PTR(-EINVAL);
8424
8425 mddev->new_level = 5;
8426 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8427 mddev->new_chunk_sectors = chunksect;
8428
8429 ret = setup_conf(mddev);
8430 if (!IS_ERR(ret))
8431 mddev_clear_unsupported_flags(mddev,
8432 UNSUPPORTED_MDDEV_FLAGS);
8433 return ret;
8434 }
8435
raid5_takeover_raid6(struct mddev * mddev)8436 static void *raid5_takeover_raid6(struct mddev *mddev)
8437 {
8438 int new_layout;
8439
8440 switch (mddev->layout) {
8441 case ALGORITHM_LEFT_ASYMMETRIC_6:
8442 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8443 break;
8444 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8445 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8446 break;
8447 case ALGORITHM_LEFT_SYMMETRIC_6:
8448 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8449 break;
8450 case ALGORITHM_RIGHT_SYMMETRIC_6:
8451 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8452 break;
8453 case ALGORITHM_PARITY_0_6:
8454 new_layout = ALGORITHM_PARITY_0;
8455 break;
8456 case ALGORITHM_PARITY_N:
8457 new_layout = ALGORITHM_PARITY_N;
8458 break;
8459 default:
8460 return ERR_PTR(-EINVAL);
8461 }
8462 mddev->new_level = 5;
8463 mddev->new_layout = new_layout;
8464 mddev->delta_disks = -1;
8465 mddev->raid_disks -= 1;
8466 return setup_conf(mddev);
8467 }
8468
raid5_check_reshape(struct mddev * mddev)8469 static int raid5_check_reshape(struct mddev *mddev)
8470 {
8471 /* For a 2-drive array, the layout and chunk size can be changed
8472 * immediately as not restriping is needed.
8473 * For larger arrays we record the new value - after validation
8474 * to be used by a reshape pass.
8475 */
8476 struct r5conf *conf = mddev->private;
8477 int new_chunk = mddev->new_chunk_sectors;
8478
8479 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8480 return -EINVAL;
8481 if (new_chunk > 0) {
8482 if (!is_power_of_2(new_chunk))
8483 return -EINVAL;
8484 if (new_chunk < (PAGE_SIZE>>9))
8485 return -EINVAL;
8486 if (mddev->array_sectors & (new_chunk-1))
8487 /* not factor of array size */
8488 return -EINVAL;
8489 }
8490
8491 /* They look valid */
8492
8493 if (mddev->raid_disks == 2) {
8494 /* can make the change immediately */
8495 if (mddev->new_layout >= 0) {
8496 conf->algorithm = mddev->new_layout;
8497 mddev->layout = mddev->new_layout;
8498 }
8499 if (new_chunk > 0) {
8500 conf->chunk_sectors = new_chunk ;
8501 mddev->chunk_sectors = new_chunk;
8502 }
8503 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8504 md_wakeup_thread(mddev->thread);
8505 }
8506 return check_reshape(mddev);
8507 }
8508
raid6_check_reshape(struct mddev * mddev)8509 static int raid6_check_reshape(struct mddev *mddev)
8510 {
8511 int new_chunk = mddev->new_chunk_sectors;
8512
8513 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8514 return -EINVAL;
8515 if (new_chunk > 0) {
8516 if (!is_power_of_2(new_chunk))
8517 return -EINVAL;
8518 if (new_chunk < (PAGE_SIZE >> 9))
8519 return -EINVAL;
8520 if (mddev->array_sectors & (new_chunk-1))
8521 /* not factor of array size */
8522 return -EINVAL;
8523 }
8524
8525 /* They look valid */
8526 return check_reshape(mddev);
8527 }
8528
raid5_takeover(struct mddev * mddev)8529 static void *raid5_takeover(struct mddev *mddev)
8530 {
8531 /* raid5 can take over:
8532 * raid0 - if there is only one strip zone - make it a raid4 layout
8533 * raid1 - if there are two drives. We need to know the chunk size
8534 * raid4 - trivial - just use a raid4 layout.
8535 * raid6 - Providing it is a *_6 layout
8536 */
8537 if (mddev->level == 0)
8538 return raid45_takeover_raid0(mddev, 5);
8539 if (mddev->level == 1)
8540 return raid5_takeover_raid1(mddev);
8541 if (mddev->level == 4) {
8542 mddev->new_layout = ALGORITHM_PARITY_N;
8543 mddev->new_level = 5;
8544 return setup_conf(mddev);
8545 }
8546 if (mddev->level == 6)
8547 return raid5_takeover_raid6(mddev);
8548
8549 return ERR_PTR(-EINVAL);
8550 }
8551
raid4_takeover(struct mddev * mddev)8552 static void *raid4_takeover(struct mddev *mddev)
8553 {
8554 /* raid4 can take over:
8555 * raid0 - if there is only one strip zone
8556 * raid5 - if layout is right
8557 */
8558 if (mddev->level == 0)
8559 return raid45_takeover_raid0(mddev, 4);
8560 if (mddev->level == 5 &&
8561 mddev->layout == ALGORITHM_PARITY_N) {
8562 mddev->new_layout = 0;
8563 mddev->new_level = 4;
8564 return setup_conf(mddev);
8565 }
8566 return ERR_PTR(-EINVAL);
8567 }
8568
8569 static struct md_personality raid5_personality;
8570
raid6_takeover(struct mddev * mddev)8571 static void *raid6_takeover(struct mddev *mddev)
8572 {
8573 /* Currently can only take over a raid5. We map the
8574 * personality to an equivalent raid6 personality
8575 * with the Q block at the end.
8576 */
8577 int new_layout;
8578
8579 if (mddev->pers != &raid5_personality)
8580 return ERR_PTR(-EINVAL);
8581 if (mddev->degraded > 1)
8582 return ERR_PTR(-EINVAL);
8583 if (mddev->raid_disks > 253)
8584 return ERR_PTR(-EINVAL);
8585 if (mddev->raid_disks < 3)
8586 return ERR_PTR(-EINVAL);
8587
8588 switch (mddev->layout) {
8589 case ALGORITHM_LEFT_ASYMMETRIC:
8590 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8591 break;
8592 case ALGORITHM_RIGHT_ASYMMETRIC:
8593 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8594 break;
8595 case ALGORITHM_LEFT_SYMMETRIC:
8596 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8597 break;
8598 case ALGORITHM_RIGHT_SYMMETRIC:
8599 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8600 break;
8601 case ALGORITHM_PARITY_0:
8602 new_layout = ALGORITHM_PARITY_0_6;
8603 break;
8604 case ALGORITHM_PARITY_N:
8605 new_layout = ALGORITHM_PARITY_N;
8606 break;
8607 default:
8608 return ERR_PTR(-EINVAL);
8609 }
8610 mddev->new_level = 6;
8611 mddev->new_layout = new_layout;
8612 mddev->delta_disks = 1;
8613 mddev->raid_disks += 1;
8614 return setup_conf(mddev);
8615 }
8616
raid5_change_consistency_policy(struct mddev * mddev,const char * buf)8617 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8618 {
8619 struct r5conf *conf;
8620 int err;
8621
8622 err = mddev_lock(mddev);
8623 if (err)
8624 return err;
8625 conf = mddev->private;
8626 if (!conf) {
8627 mddev_unlock(mddev);
8628 return -ENODEV;
8629 }
8630
8631 if (strncmp(buf, "ppl", 3) == 0) {
8632 /* ppl only works with RAID 5 */
8633 if (!raid5_has_ppl(conf) && conf->level == 5) {
8634 err = log_init(conf, NULL, true);
8635 if (!err) {
8636 err = resize_stripes(conf, conf->pool_size);
8637 if (err)
8638 log_exit(conf);
8639 }
8640 } else
8641 err = -EINVAL;
8642 } else if (strncmp(buf, "resync", 6) == 0) {
8643 if (raid5_has_ppl(conf)) {
8644 mddev_suspend(mddev);
8645 log_exit(conf);
8646 mddev_resume(mddev);
8647 err = resize_stripes(conf, conf->pool_size);
8648 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8649 r5l_log_disk_error(conf)) {
8650 bool journal_dev_exists = false;
8651 struct md_rdev *rdev;
8652
8653 rdev_for_each(rdev, mddev)
8654 if (test_bit(Journal, &rdev->flags)) {
8655 journal_dev_exists = true;
8656 break;
8657 }
8658
8659 if (!journal_dev_exists) {
8660 mddev_suspend(mddev);
8661 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8662 mddev_resume(mddev);
8663 } else /* need remove journal device first */
8664 err = -EBUSY;
8665 } else
8666 err = -EINVAL;
8667 } else {
8668 err = -EINVAL;
8669 }
8670
8671 if (!err)
8672 md_update_sb(mddev, 1);
8673
8674 mddev_unlock(mddev);
8675
8676 return err;
8677 }
8678
raid5_start(struct mddev * mddev)8679 static int raid5_start(struct mddev *mddev)
8680 {
8681 struct r5conf *conf = mddev->private;
8682
8683 return r5l_start(conf->log);
8684 }
8685
8686 static struct md_personality raid6_personality =
8687 {
8688 .name = "raid6",
8689 .level = 6,
8690 .owner = THIS_MODULE,
8691 .make_request = raid5_make_request,
8692 .run = raid5_run,
8693 .start = raid5_start,
8694 .free = raid5_free,
8695 .status = raid5_status,
8696 .error_handler = raid5_error,
8697 .hot_add_disk = raid5_add_disk,
8698 .hot_remove_disk= raid5_remove_disk,
8699 .spare_active = raid5_spare_active,
8700 .sync_request = raid5_sync_request,
8701 .resize = raid5_resize,
8702 .size = raid5_size,
8703 .check_reshape = raid6_check_reshape,
8704 .start_reshape = raid5_start_reshape,
8705 .finish_reshape = raid5_finish_reshape,
8706 .quiesce = raid5_quiesce,
8707 .takeover = raid6_takeover,
8708 .change_consistency_policy = raid5_change_consistency_policy,
8709 };
8710 static struct md_personality raid5_personality =
8711 {
8712 .name = "raid5",
8713 .level = 5,
8714 .owner = THIS_MODULE,
8715 .make_request = raid5_make_request,
8716 .run = raid5_run,
8717 .start = raid5_start,
8718 .free = raid5_free,
8719 .status = raid5_status,
8720 .error_handler = raid5_error,
8721 .hot_add_disk = raid5_add_disk,
8722 .hot_remove_disk= raid5_remove_disk,
8723 .spare_active = raid5_spare_active,
8724 .sync_request = raid5_sync_request,
8725 .resize = raid5_resize,
8726 .size = raid5_size,
8727 .check_reshape = raid5_check_reshape,
8728 .start_reshape = raid5_start_reshape,
8729 .finish_reshape = raid5_finish_reshape,
8730 .quiesce = raid5_quiesce,
8731 .takeover = raid5_takeover,
8732 .change_consistency_policy = raid5_change_consistency_policy,
8733 };
8734
8735 static struct md_personality raid4_personality =
8736 {
8737 .name = "raid4",
8738 .level = 4,
8739 .owner = THIS_MODULE,
8740 .make_request = raid5_make_request,
8741 .run = raid5_run,
8742 .start = raid5_start,
8743 .free = raid5_free,
8744 .status = raid5_status,
8745 .error_handler = raid5_error,
8746 .hot_add_disk = raid5_add_disk,
8747 .hot_remove_disk= raid5_remove_disk,
8748 .spare_active = raid5_spare_active,
8749 .sync_request = raid5_sync_request,
8750 .resize = raid5_resize,
8751 .size = raid5_size,
8752 .check_reshape = raid5_check_reshape,
8753 .start_reshape = raid5_start_reshape,
8754 .finish_reshape = raid5_finish_reshape,
8755 .quiesce = raid5_quiesce,
8756 .takeover = raid4_takeover,
8757 .change_consistency_policy = raid5_change_consistency_policy,
8758 };
8759
raid5_init(void)8760 static int __init raid5_init(void)
8761 {
8762 int ret;
8763
8764 raid5_wq = alloc_workqueue("raid5wq",
8765 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8766 if (!raid5_wq)
8767 return -ENOMEM;
8768
8769 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8770 "md/raid5:prepare",
8771 raid456_cpu_up_prepare,
8772 raid456_cpu_dead);
8773 if (ret) {
8774 destroy_workqueue(raid5_wq);
8775 return ret;
8776 }
8777 register_md_personality(&raid6_personality);
8778 register_md_personality(&raid5_personality);
8779 register_md_personality(&raid4_personality);
8780 return 0;
8781 }
8782
raid5_exit(void)8783 static void raid5_exit(void)
8784 {
8785 unregister_md_personality(&raid6_personality);
8786 unregister_md_personality(&raid5_personality);
8787 unregister_md_personality(&raid4_personality);
8788 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8789 destroy_workqueue(raid5_wq);
8790 }
8791
8792 module_init(raid5_init);
8793 module_exit(raid5_exit);
8794 MODULE_LICENSE("GPL");
8795 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8796 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8797 MODULE_ALIAS("md-raid5");
8798 MODULE_ALIAS("md-raid4");
8799 MODULE_ALIAS("md-level-5");
8800 MODULE_ALIAS("md-level-4");
8801 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8802 MODULE_ALIAS("md-raid6");
8803 MODULE_ALIAS("md-level-6");
8804
8805 /* This used to be two separate modules, they were: */
8806 MODULE_ALIAS("raid5");
8807 MODULE_ALIAS("raid6");
8808