1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/timer.h>
24 #include <linux/workqueue.h>
25 #include <linux/delay.h>
26 #include <scsi/scsi_dh.h>
27 #include <linux/atomic.h>
28 #include <linux/blk-mq.h>
29 
30 #define DM_MSG_PREFIX "multipath"
31 #define DM_PG_INIT_DELAY_MSECS 2000
32 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
33 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
34 
35 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
36 
37 /* Path properties */
38 struct pgpath {
39 	struct list_head list;
40 
41 	struct priority_group *pg;	/* Owning PG */
42 	unsigned fail_count;		/* Cumulative failure count */
43 
44 	struct dm_path path;
45 	struct delayed_work activate_path;
46 
47 	bool is_active:1;		/* Path status */
48 };
49 
50 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
51 
52 /*
53  * Paths are grouped into Priority Groups and numbered from 1 upwards.
54  * Each has a path selector which controls which path gets used.
55  */
56 struct priority_group {
57 	struct list_head list;
58 
59 	struct multipath *m;		/* Owning multipath instance */
60 	struct path_selector ps;
61 
62 	unsigned pg_num;		/* Reference number */
63 	unsigned nr_pgpaths;		/* Number of paths in PG */
64 	struct list_head pgpaths;
65 
66 	bool bypassed:1;		/* Temporarily bypass this PG? */
67 };
68 
69 /* Multipath context */
70 struct multipath {
71 	unsigned long flags;		/* Multipath state flags */
72 
73 	spinlock_t lock;
74 	enum dm_queue_mode queue_mode;
75 
76 	struct pgpath *current_pgpath;
77 	struct priority_group *current_pg;
78 	struct priority_group *next_pg;	/* Switch to this PG if set */
79 
80 	atomic_t nr_valid_paths;	/* Total number of usable paths */
81 	unsigned nr_priority_groups;
82 	struct list_head priority_groups;
83 
84 	const char *hw_handler_name;
85 	char *hw_handler_params;
86 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
87 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
88 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
89 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
90 	atomic_t pg_init_count;		/* Number of times pg_init called */
91 
92 	struct mutex work_mutex;
93 	struct work_struct trigger_event;
94 	struct dm_target *ti;
95 
96 	struct work_struct process_queued_bios;
97 	struct bio_list queued_bios;
98 
99 	struct timer_list nopath_timer;	/* Timeout for queue_if_no_path */
100 };
101 
102 /*
103  * Context information attached to each io we process.
104  */
105 struct dm_mpath_io {
106 	struct pgpath *pgpath;
107 	size_t nr_bytes;
108 };
109 
110 typedef int (*action_fn) (struct pgpath *pgpath);
111 
112 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
113 static void trigger_event(struct work_struct *work);
114 static void activate_or_offline_path(struct pgpath *pgpath);
115 static void activate_path_work(struct work_struct *work);
116 static void process_queued_bios(struct work_struct *work);
117 static void queue_if_no_path_timeout_work(struct timer_list *t);
118 
119 /*-----------------------------------------------
120  * Multipath state flags.
121  *-----------------------------------------------*/
122 
123 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
124 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
125 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
126 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
127 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
128 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
129 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
130 
mpath_double_check_test_bit(int MPATHF_bit,struct multipath * m)131 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m)
132 {
133 	bool r = test_bit(MPATHF_bit, &m->flags);
134 
135 	if (r) {
136 		unsigned long flags;
137 		spin_lock_irqsave(&m->lock, flags);
138 		r = test_bit(MPATHF_bit, &m->flags);
139 		spin_unlock_irqrestore(&m->lock, flags);
140 	}
141 
142 	return r;
143 }
144 
145 /*-----------------------------------------------
146  * Allocation routines
147  *-----------------------------------------------*/
148 
alloc_pgpath(void)149 static struct pgpath *alloc_pgpath(void)
150 {
151 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
152 
153 	if (!pgpath)
154 		return NULL;
155 
156 	pgpath->is_active = true;
157 
158 	return pgpath;
159 }
160 
free_pgpath(struct pgpath * pgpath)161 static void free_pgpath(struct pgpath *pgpath)
162 {
163 	kfree(pgpath);
164 }
165 
alloc_priority_group(void)166 static struct priority_group *alloc_priority_group(void)
167 {
168 	struct priority_group *pg;
169 
170 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
171 
172 	if (pg)
173 		INIT_LIST_HEAD(&pg->pgpaths);
174 
175 	return pg;
176 }
177 
free_pgpaths(struct list_head * pgpaths,struct dm_target * ti)178 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
179 {
180 	struct pgpath *pgpath, *tmp;
181 
182 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
183 		list_del(&pgpath->list);
184 		dm_put_device(ti, pgpath->path.dev);
185 		free_pgpath(pgpath);
186 	}
187 }
188 
free_priority_group(struct priority_group * pg,struct dm_target * ti)189 static void free_priority_group(struct priority_group *pg,
190 				struct dm_target *ti)
191 {
192 	struct path_selector *ps = &pg->ps;
193 
194 	if (ps->type) {
195 		ps->type->destroy(ps);
196 		dm_put_path_selector(ps->type);
197 	}
198 
199 	free_pgpaths(&pg->pgpaths, ti);
200 	kfree(pg);
201 }
202 
alloc_multipath(struct dm_target * ti)203 static struct multipath *alloc_multipath(struct dm_target *ti)
204 {
205 	struct multipath *m;
206 
207 	m = kzalloc(sizeof(*m), GFP_KERNEL);
208 	if (m) {
209 		INIT_LIST_HEAD(&m->priority_groups);
210 		spin_lock_init(&m->lock);
211 		atomic_set(&m->nr_valid_paths, 0);
212 		INIT_WORK(&m->trigger_event, trigger_event);
213 		mutex_init(&m->work_mutex);
214 
215 		m->queue_mode = DM_TYPE_NONE;
216 
217 		m->ti = ti;
218 		ti->private = m;
219 
220 		timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
221 	}
222 
223 	return m;
224 }
225 
alloc_multipath_stage2(struct dm_target * ti,struct multipath * m)226 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
227 {
228 	if (m->queue_mode == DM_TYPE_NONE) {
229 		m->queue_mode = DM_TYPE_REQUEST_BASED;
230 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
231 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
232 		/*
233 		 * bio-based doesn't support any direct scsi_dh management;
234 		 * it just discovers if a scsi_dh is attached.
235 		 */
236 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
237 	}
238 
239 	dm_table_set_type(ti->table, m->queue_mode);
240 
241 	/*
242 	 * Init fields that are only used when a scsi_dh is attached
243 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
244 	 */
245 	set_bit(MPATHF_QUEUE_IO, &m->flags);
246 	atomic_set(&m->pg_init_in_progress, 0);
247 	atomic_set(&m->pg_init_count, 0);
248 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
249 	init_waitqueue_head(&m->pg_init_wait);
250 
251 	return 0;
252 }
253 
free_multipath(struct multipath * m)254 static void free_multipath(struct multipath *m)
255 {
256 	struct priority_group *pg, *tmp;
257 
258 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
259 		list_del(&pg->list);
260 		free_priority_group(pg, m->ti);
261 	}
262 
263 	kfree(m->hw_handler_name);
264 	kfree(m->hw_handler_params);
265 	mutex_destroy(&m->work_mutex);
266 	kfree(m);
267 }
268 
get_mpio(union map_info * info)269 static struct dm_mpath_io *get_mpio(union map_info *info)
270 {
271 	return info->ptr;
272 }
273 
multipath_per_bio_data_size(void)274 static size_t multipath_per_bio_data_size(void)
275 {
276 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
277 }
278 
get_mpio_from_bio(struct bio * bio)279 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
280 {
281 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
282 }
283 
get_bio_details_from_mpio(struct dm_mpath_io * mpio)284 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
285 {
286 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
287 	void *bio_details = mpio + 1;
288 	return bio_details;
289 }
290 
multipath_init_per_bio_data(struct bio * bio,struct dm_mpath_io ** mpio_p)291 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
292 {
293 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
294 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
295 
296 	mpio->nr_bytes = bio->bi_iter.bi_size;
297 	mpio->pgpath = NULL;
298 	*mpio_p = mpio;
299 
300 	dm_bio_record(bio_details, bio);
301 }
302 
303 /*-----------------------------------------------
304  * Path selection
305  *-----------------------------------------------*/
306 
__pg_init_all_paths(struct multipath * m)307 static int __pg_init_all_paths(struct multipath *m)
308 {
309 	struct pgpath *pgpath;
310 	unsigned long pg_init_delay = 0;
311 
312 	lockdep_assert_held(&m->lock);
313 
314 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
315 		return 0;
316 
317 	atomic_inc(&m->pg_init_count);
318 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
319 
320 	/* Check here to reset pg_init_required */
321 	if (!m->current_pg)
322 		return 0;
323 
324 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
325 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
326 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
327 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
328 		/* Skip failed paths */
329 		if (!pgpath->is_active)
330 			continue;
331 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
332 				       pg_init_delay))
333 			atomic_inc(&m->pg_init_in_progress);
334 	}
335 	return atomic_read(&m->pg_init_in_progress);
336 }
337 
pg_init_all_paths(struct multipath * m)338 static int pg_init_all_paths(struct multipath *m)
339 {
340 	int ret;
341 	unsigned long flags;
342 
343 	spin_lock_irqsave(&m->lock, flags);
344 	ret = __pg_init_all_paths(m);
345 	spin_unlock_irqrestore(&m->lock, flags);
346 
347 	return ret;
348 }
349 
__switch_pg(struct multipath * m,struct priority_group * pg)350 static void __switch_pg(struct multipath *m, struct priority_group *pg)
351 {
352 	lockdep_assert_held(&m->lock);
353 
354 	m->current_pg = pg;
355 
356 	/* Must we initialise the PG first, and queue I/O till it's ready? */
357 	if (m->hw_handler_name) {
358 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
359 		set_bit(MPATHF_QUEUE_IO, &m->flags);
360 	} else {
361 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
362 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
363 	}
364 
365 	atomic_set(&m->pg_init_count, 0);
366 }
367 
choose_path_in_pg(struct multipath * m,struct priority_group * pg,size_t nr_bytes)368 static struct pgpath *choose_path_in_pg(struct multipath *m,
369 					struct priority_group *pg,
370 					size_t nr_bytes)
371 {
372 	unsigned long flags;
373 	struct dm_path *path;
374 	struct pgpath *pgpath;
375 
376 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
377 	if (!path)
378 		return ERR_PTR(-ENXIO);
379 
380 	pgpath = path_to_pgpath(path);
381 
382 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
383 		/* Only update current_pgpath if pg changed */
384 		spin_lock_irqsave(&m->lock, flags);
385 		m->current_pgpath = pgpath;
386 		__switch_pg(m, pg);
387 		spin_unlock_irqrestore(&m->lock, flags);
388 	}
389 
390 	return pgpath;
391 }
392 
choose_pgpath(struct multipath * m,size_t nr_bytes)393 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
394 {
395 	unsigned long flags;
396 	struct priority_group *pg;
397 	struct pgpath *pgpath;
398 	unsigned bypassed = 1;
399 
400 	if (!atomic_read(&m->nr_valid_paths)) {
401 		spin_lock_irqsave(&m->lock, flags);
402 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
403 		spin_unlock_irqrestore(&m->lock, flags);
404 		goto failed;
405 	}
406 
407 	/* Were we instructed to switch PG? */
408 	if (READ_ONCE(m->next_pg)) {
409 		spin_lock_irqsave(&m->lock, flags);
410 		pg = m->next_pg;
411 		if (!pg) {
412 			spin_unlock_irqrestore(&m->lock, flags);
413 			goto check_current_pg;
414 		}
415 		m->next_pg = NULL;
416 		spin_unlock_irqrestore(&m->lock, flags);
417 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
418 		if (!IS_ERR_OR_NULL(pgpath))
419 			return pgpath;
420 	}
421 
422 	/* Don't change PG until it has no remaining paths */
423 check_current_pg:
424 	pg = READ_ONCE(m->current_pg);
425 	if (pg) {
426 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
427 		if (!IS_ERR_OR_NULL(pgpath))
428 			return pgpath;
429 	}
430 
431 	/*
432 	 * Loop through priority groups until we find a valid path.
433 	 * First time we skip PGs marked 'bypassed'.
434 	 * Second time we only try the ones we skipped, but set
435 	 * pg_init_delay_retry so we do not hammer controllers.
436 	 */
437 	do {
438 		list_for_each_entry(pg, &m->priority_groups, list) {
439 			if (pg->bypassed == !!bypassed)
440 				continue;
441 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
442 			if (!IS_ERR_OR_NULL(pgpath)) {
443 				if (!bypassed) {
444 					spin_lock_irqsave(&m->lock, flags);
445 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
446 					spin_unlock_irqrestore(&m->lock, flags);
447 				}
448 				return pgpath;
449 			}
450 		}
451 	} while (bypassed--);
452 
453 failed:
454 	spin_lock_irqsave(&m->lock, flags);
455 	m->current_pgpath = NULL;
456 	m->current_pg = NULL;
457 	spin_unlock_irqrestore(&m->lock, flags);
458 
459 	return NULL;
460 }
461 
462 /*
463  * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited()
464  * report the function name and line number of the function from which
465  * it has been invoked.
466  */
467 #define dm_report_EIO(m)						\
468 do {									\
469 	DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \
470 		      dm_table_device_name((m)->ti->table),		\
471 		      test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
472 		      test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \
473 		      dm_noflush_suspending((m)->ti));			\
474 } while (0)
475 
476 /*
477  * Check whether bios must be queued in the device-mapper core rather
478  * than here in the target.
479  */
__must_push_back(struct multipath * m)480 static bool __must_push_back(struct multipath *m)
481 {
482 	return dm_noflush_suspending(m->ti);
483 }
484 
must_push_back_rq(struct multipath * m)485 static bool must_push_back_rq(struct multipath *m)
486 {
487 	unsigned long flags;
488 	bool ret;
489 
490 	spin_lock_irqsave(&m->lock, flags);
491 	ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m));
492 	spin_unlock_irqrestore(&m->lock, flags);
493 
494 	return ret;
495 }
496 
497 /*
498  * Map cloned requests (request-based multipath)
499  */
multipath_clone_and_map(struct dm_target * ti,struct request * rq,union map_info * map_context,struct request ** __clone)500 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
501 				   union map_info *map_context,
502 				   struct request **__clone)
503 {
504 	struct multipath *m = ti->private;
505 	size_t nr_bytes = blk_rq_bytes(rq);
506 	struct pgpath *pgpath;
507 	struct block_device *bdev;
508 	struct dm_mpath_io *mpio = get_mpio(map_context);
509 	struct request_queue *q;
510 	struct request *clone;
511 
512 	/* Do we need to select a new pgpath? */
513 	pgpath = READ_ONCE(m->current_pgpath);
514 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
515 		pgpath = choose_pgpath(m, nr_bytes);
516 
517 	if (!pgpath) {
518 		if (must_push_back_rq(m))
519 			return DM_MAPIO_DELAY_REQUEUE;
520 		dm_report_EIO(m);	/* Failed */
521 		return DM_MAPIO_KILL;
522 	} else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
523 		   mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
524 		pg_init_all_paths(m);
525 		return DM_MAPIO_DELAY_REQUEUE;
526 	}
527 
528 	mpio->pgpath = pgpath;
529 	mpio->nr_bytes = nr_bytes;
530 
531 	bdev = pgpath->path.dev->bdev;
532 	q = bdev_get_queue(bdev);
533 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
534 			BLK_MQ_REQ_NOWAIT);
535 	if (IS_ERR(clone)) {
536 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
537 		if (blk_queue_dying(q)) {
538 			atomic_inc(&m->pg_init_in_progress);
539 			activate_or_offline_path(pgpath);
540 			return DM_MAPIO_DELAY_REQUEUE;
541 		}
542 
543 		/*
544 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
545 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
546 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
547 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
548 		 * otherwise I/O merging can suffer.
549 		 */
550 		return DM_MAPIO_REQUEUE;
551 	}
552 	clone->bio = clone->biotail = NULL;
553 	clone->rq_disk = bdev->bd_disk;
554 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
555 	*__clone = clone;
556 
557 	if (pgpath->pg->ps.type->start_io)
558 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
559 					      &pgpath->path,
560 					      nr_bytes);
561 	return DM_MAPIO_REMAPPED;
562 }
563 
multipath_release_clone(struct request * clone,union map_info * map_context)564 static void multipath_release_clone(struct request *clone,
565 				    union map_info *map_context)
566 {
567 	if (unlikely(map_context)) {
568 		/*
569 		 * non-NULL map_context means caller is still map
570 		 * method; must undo multipath_clone_and_map()
571 		 */
572 		struct dm_mpath_io *mpio = get_mpio(map_context);
573 		struct pgpath *pgpath = mpio->pgpath;
574 
575 		if (pgpath && pgpath->pg->ps.type->end_io)
576 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
577 						    &pgpath->path,
578 						    mpio->nr_bytes,
579 						    clone->io_start_time_ns);
580 	}
581 
582 	blk_put_request(clone);
583 }
584 
585 /*
586  * Map cloned bios (bio-based multipath)
587  */
588 
__multipath_queue_bio(struct multipath * m,struct bio * bio)589 static void __multipath_queue_bio(struct multipath *m, struct bio *bio)
590 {
591 	/* Queue for the daemon to resubmit */
592 	bio_list_add(&m->queued_bios, bio);
593 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
594 		queue_work(kmultipathd, &m->process_queued_bios);
595 }
596 
multipath_queue_bio(struct multipath * m,struct bio * bio)597 static void multipath_queue_bio(struct multipath *m, struct bio *bio)
598 {
599 	unsigned long flags;
600 
601 	spin_lock_irqsave(&m->lock, flags);
602 	__multipath_queue_bio(m, bio);
603 	spin_unlock_irqrestore(&m->lock, flags);
604 }
605 
__map_bio(struct multipath * m,struct bio * bio)606 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
607 {
608 	struct pgpath *pgpath;
609 	unsigned long flags;
610 
611 	/* Do we need to select a new pgpath? */
612 	pgpath = READ_ONCE(m->current_pgpath);
613 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
614 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
615 
616 	if (!pgpath) {
617 		spin_lock_irqsave(&m->lock, flags);
618 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
619 			__multipath_queue_bio(m, bio);
620 			pgpath = ERR_PTR(-EAGAIN);
621 		}
622 		spin_unlock_irqrestore(&m->lock, flags);
623 
624 	} else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
625 		   mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
626 		multipath_queue_bio(m, bio);
627 		pg_init_all_paths(m);
628 		return ERR_PTR(-EAGAIN);
629 	}
630 
631 	return pgpath;
632 }
633 
__multipath_map_bio(struct multipath * m,struct bio * bio,struct dm_mpath_io * mpio)634 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
635 			       struct dm_mpath_io *mpio)
636 {
637 	struct pgpath *pgpath = __map_bio(m, bio);
638 
639 	if (IS_ERR(pgpath))
640 		return DM_MAPIO_SUBMITTED;
641 
642 	if (!pgpath) {
643 		if (__must_push_back(m))
644 			return DM_MAPIO_REQUEUE;
645 		dm_report_EIO(m);
646 		return DM_MAPIO_KILL;
647 	}
648 
649 	mpio->pgpath = pgpath;
650 
651 	bio->bi_status = 0;
652 	bio_set_dev(bio, pgpath->path.dev->bdev);
653 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
654 
655 	if (pgpath->pg->ps.type->start_io)
656 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
657 					      &pgpath->path,
658 					      mpio->nr_bytes);
659 	return DM_MAPIO_REMAPPED;
660 }
661 
multipath_map_bio(struct dm_target * ti,struct bio * bio)662 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
663 {
664 	struct multipath *m = ti->private;
665 	struct dm_mpath_io *mpio = NULL;
666 
667 	multipath_init_per_bio_data(bio, &mpio);
668 	return __multipath_map_bio(m, bio, mpio);
669 }
670 
process_queued_io_list(struct multipath * m)671 static void process_queued_io_list(struct multipath *m)
672 {
673 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
674 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
675 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
676 		queue_work(kmultipathd, &m->process_queued_bios);
677 }
678 
process_queued_bios(struct work_struct * work)679 static void process_queued_bios(struct work_struct *work)
680 {
681 	int r;
682 	unsigned long flags;
683 	struct bio *bio;
684 	struct bio_list bios;
685 	struct blk_plug plug;
686 	struct multipath *m =
687 		container_of(work, struct multipath, process_queued_bios);
688 
689 	bio_list_init(&bios);
690 
691 	spin_lock_irqsave(&m->lock, flags);
692 
693 	if (bio_list_empty(&m->queued_bios)) {
694 		spin_unlock_irqrestore(&m->lock, flags);
695 		return;
696 	}
697 
698 	bio_list_merge(&bios, &m->queued_bios);
699 	bio_list_init(&m->queued_bios);
700 
701 	spin_unlock_irqrestore(&m->lock, flags);
702 
703 	blk_start_plug(&plug);
704 	while ((bio = bio_list_pop(&bios))) {
705 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
706 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
707 		r = __multipath_map_bio(m, bio, mpio);
708 		switch (r) {
709 		case DM_MAPIO_KILL:
710 			bio->bi_status = BLK_STS_IOERR;
711 			bio_endio(bio);
712 			break;
713 		case DM_MAPIO_REQUEUE:
714 			bio->bi_status = BLK_STS_DM_REQUEUE;
715 			bio_endio(bio);
716 			break;
717 		case DM_MAPIO_REMAPPED:
718 			submit_bio_noacct(bio);
719 			break;
720 		case DM_MAPIO_SUBMITTED:
721 			break;
722 		default:
723 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
724 		}
725 	}
726 	blk_finish_plug(&plug);
727 }
728 
729 /*
730  * If we run out of usable paths, should we queue I/O or error it?
731  */
queue_if_no_path(struct multipath * m,bool queue_if_no_path,bool save_old_value,const char * caller)732 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
733 			    bool save_old_value, const char *caller)
734 {
735 	unsigned long flags;
736 	bool queue_if_no_path_bit, saved_queue_if_no_path_bit;
737 	const char *dm_dev_name = dm_table_device_name(m->ti->table);
738 
739 	DMDEBUG("%s: %s caller=%s queue_if_no_path=%d save_old_value=%d",
740 		dm_dev_name, __func__, caller, queue_if_no_path, save_old_value);
741 
742 	spin_lock_irqsave(&m->lock, flags);
743 
744 	queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
745 	saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
746 
747 	if (save_old_value) {
748 		if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) {
749 			DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!",
750 			      dm_dev_name);
751 		} else
752 			assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit);
753 	} else if (!queue_if_no_path && saved_queue_if_no_path_bit) {
754 		/* due to "fail_if_no_path" message, need to honor it. */
755 		clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
756 	}
757 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
758 
759 	DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d",
760 		dm_dev_name, __func__,
761 		test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
762 		test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
763 		dm_noflush_suspending(m->ti));
764 
765 	spin_unlock_irqrestore(&m->lock, flags);
766 
767 	if (!queue_if_no_path) {
768 		dm_table_run_md_queue_async(m->ti->table);
769 		process_queued_io_list(m);
770 	}
771 
772 	return 0;
773 }
774 
775 /*
776  * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
777  * process any queued I/O.
778  */
queue_if_no_path_timeout_work(struct timer_list * t)779 static void queue_if_no_path_timeout_work(struct timer_list *t)
780 {
781 	struct multipath *m = from_timer(m, t, nopath_timer);
782 
783 	DMWARN("queue_if_no_path timeout on %s, failing queued IO",
784 	       dm_table_device_name(m->ti->table));
785 	queue_if_no_path(m, false, false, __func__);
786 }
787 
788 /*
789  * Enable the queue_if_no_path timeout if necessary.
790  * Called with m->lock held.
791  */
enable_nopath_timeout(struct multipath * m)792 static void enable_nopath_timeout(struct multipath *m)
793 {
794 	unsigned long queue_if_no_path_timeout =
795 		READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
796 
797 	lockdep_assert_held(&m->lock);
798 
799 	if (queue_if_no_path_timeout > 0 &&
800 	    atomic_read(&m->nr_valid_paths) == 0 &&
801 	    test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
802 		mod_timer(&m->nopath_timer,
803 			  jiffies + queue_if_no_path_timeout);
804 	}
805 }
806 
disable_nopath_timeout(struct multipath * m)807 static void disable_nopath_timeout(struct multipath *m)
808 {
809 	del_timer_sync(&m->nopath_timer);
810 }
811 
812 /*
813  * An event is triggered whenever a path is taken out of use.
814  * Includes path failure and PG bypass.
815  */
trigger_event(struct work_struct * work)816 static void trigger_event(struct work_struct *work)
817 {
818 	struct multipath *m =
819 		container_of(work, struct multipath, trigger_event);
820 
821 	dm_table_event(m->ti->table);
822 }
823 
824 /*-----------------------------------------------------------------
825  * Constructor/argument parsing:
826  * <#multipath feature args> [<arg>]*
827  * <#hw_handler args> [hw_handler [<arg>]*]
828  * <#priority groups>
829  * <initial priority group>
830  *     [<selector> <#selector args> [<arg>]*
831  *      <#paths> <#per-path selector args>
832  *         [<path> [<arg>]* ]+ ]+
833  *---------------------------------------------------------------*/
parse_path_selector(struct dm_arg_set * as,struct priority_group * pg,struct dm_target * ti)834 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
835 			       struct dm_target *ti)
836 {
837 	int r;
838 	struct path_selector_type *pst;
839 	unsigned ps_argc;
840 
841 	static const struct dm_arg _args[] = {
842 		{0, 1024, "invalid number of path selector args"},
843 	};
844 
845 	pst = dm_get_path_selector(dm_shift_arg(as));
846 	if (!pst) {
847 		ti->error = "unknown path selector type";
848 		return -EINVAL;
849 	}
850 
851 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
852 	if (r) {
853 		dm_put_path_selector(pst);
854 		return -EINVAL;
855 	}
856 
857 	r = pst->create(&pg->ps, ps_argc, as->argv);
858 	if (r) {
859 		dm_put_path_selector(pst);
860 		ti->error = "path selector constructor failed";
861 		return r;
862 	}
863 
864 	pg->ps.type = pst;
865 	dm_consume_args(as, ps_argc);
866 
867 	return 0;
868 }
869 
setup_scsi_dh(struct block_device * bdev,struct multipath * m,const char ** attached_handler_name,char ** error)870 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
871 			 const char **attached_handler_name, char **error)
872 {
873 	struct request_queue *q = bdev_get_queue(bdev);
874 	int r;
875 
876 	if (mpath_double_check_test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, m)) {
877 retain:
878 		if (*attached_handler_name) {
879 			/*
880 			 * Clear any hw_handler_params associated with a
881 			 * handler that isn't already attached.
882 			 */
883 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
884 				kfree(m->hw_handler_params);
885 				m->hw_handler_params = NULL;
886 			}
887 
888 			/*
889 			 * Reset hw_handler_name to match the attached handler
890 			 *
891 			 * NB. This modifies the table line to show the actual
892 			 * handler instead of the original table passed in.
893 			 */
894 			kfree(m->hw_handler_name);
895 			m->hw_handler_name = *attached_handler_name;
896 			*attached_handler_name = NULL;
897 		}
898 	}
899 
900 	if (m->hw_handler_name) {
901 		r = scsi_dh_attach(q, m->hw_handler_name);
902 		if (r == -EBUSY) {
903 			char b[BDEVNAME_SIZE];
904 
905 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
906 			       bdevname(bdev, b));
907 			goto retain;
908 		}
909 		if (r < 0) {
910 			*error = "error attaching hardware handler";
911 			return r;
912 		}
913 
914 		if (m->hw_handler_params) {
915 			r = scsi_dh_set_params(q, m->hw_handler_params);
916 			if (r < 0) {
917 				*error = "unable to set hardware handler parameters";
918 				return r;
919 			}
920 		}
921 	}
922 
923 	return 0;
924 }
925 
parse_path(struct dm_arg_set * as,struct path_selector * ps,struct dm_target * ti)926 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
927 				 struct dm_target *ti)
928 {
929 	int r;
930 	struct pgpath *p;
931 	struct multipath *m = ti->private;
932 	struct request_queue *q;
933 	const char *attached_handler_name = NULL;
934 
935 	/* we need at least a path arg */
936 	if (as->argc < 1) {
937 		ti->error = "no device given";
938 		return ERR_PTR(-EINVAL);
939 	}
940 
941 	p = alloc_pgpath();
942 	if (!p)
943 		return ERR_PTR(-ENOMEM);
944 
945 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
946 			  &p->path.dev);
947 	if (r) {
948 		ti->error = "error getting device";
949 		goto bad;
950 	}
951 
952 	q = bdev_get_queue(p->path.dev->bdev);
953 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
954 	if (attached_handler_name || m->hw_handler_name) {
955 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
956 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
957 		kfree(attached_handler_name);
958 		if (r) {
959 			dm_put_device(ti, p->path.dev);
960 			goto bad;
961 		}
962 	}
963 
964 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
965 	if (r) {
966 		dm_put_device(ti, p->path.dev);
967 		goto bad;
968 	}
969 
970 	return p;
971  bad:
972 	free_pgpath(p);
973 	return ERR_PTR(r);
974 }
975 
parse_priority_group(struct dm_arg_set * as,struct multipath * m)976 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
977 						   struct multipath *m)
978 {
979 	static const struct dm_arg _args[] = {
980 		{1, 1024, "invalid number of paths"},
981 		{0, 1024, "invalid number of selector args"}
982 	};
983 
984 	int r;
985 	unsigned i, nr_selector_args, nr_args;
986 	struct priority_group *pg;
987 	struct dm_target *ti = m->ti;
988 
989 	if (as->argc < 2) {
990 		as->argc = 0;
991 		ti->error = "not enough priority group arguments";
992 		return ERR_PTR(-EINVAL);
993 	}
994 
995 	pg = alloc_priority_group();
996 	if (!pg) {
997 		ti->error = "couldn't allocate priority group";
998 		return ERR_PTR(-ENOMEM);
999 	}
1000 	pg->m = m;
1001 
1002 	r = parse_path_selector(as, pg, ti);
1003 	if (r)
1004 		goto bad;
1005 
1006 	/*
1007 	 * read the paths
1008 	 */
1009 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
1010 	if (r)
1011 		goto bad;
1012 
1013 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
1014 	if (r)
1015 		goto bad;
1016 
1017 	nr_args = 1 + nr_selector_args;
1018 	for (i = 0; i < pg->nr_pgpaths; i++) {
1019 		struct pgpath *pgpath;
1020 		struct dm_arg_set path_args;
1021 
1022 		if (as->argc < nr_args) {
1023 			ti->error = "not enough path parameters";
1024 			r = -EINVAL;
1025 			goto bad;
1026 		}
1027 
1028 		path_args.argc = nr_args;
1029 		path_args.argv = as->argv;
1030 
1031 		pgpath = parse_path(&path_args, &pg->ps, ti);
1032 		if (IS_ERR(pgpath)) {
1033 			r = PTR_ERR(pgpath);
1034 			goto bad;
1035 		}
1036 
1037 		pgpath->pg = pg;
1038 		list_add_tail(&pgpath->list, &pg->pgpaths);
1039 		dm_consume_args(as, nr_args);
1040 	}
1041 
1042 	return pg;
1043 
1044  bad:
1045 	free_priority_group(pg, ti);
1046 	return ERR_PTR(r);
1047 }
1048 
parse_hw_handler(struct dm_arg_set * as,struct multipath * m)1049 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
1050 {
1051 	unsigned hw_argc;
1052 	int ret;
1053 	struct dm_target *ti = m->ti;
1054 
1055 	static const struct dm_arg _args[] = {
1056 		{0, 1024, "invalid number of hardware handler args"},
1057 	};
1058 
1059 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1060 		return -EINVAL;
1061 
1062 	if (!hw_argc)
1063 		return 0;
1064 
1065 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1066 		dm_consume_args(as, hw_argc);
1067 		DMERR("bio-based multipath doesn't allow hardware handler args");
1068 		return 0;
1069 	}
1070 
1071 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1072 	if (!m->hw_handler_name)
1073 		return -EINVAL;
1074 
1075 	if (hw_argc > 1) {
1076 		char *p;
1077 		int i, j, len = 4;
1078 
1079 		for (i = 0; i <= hw_argc - 2; i++)
1080 			len += strlen(as->argv[i]) + 1;
1081 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1082 		if (!p) {
1083 			ti->error = "memory allocation failed";
1084 			ret = -ENOMEM;
1085 			goto fail;
1086 		}
1087 		j = sprintf(p, "%d", hw_argc - 1);
1088 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1089 			j = sprintf(p, "%s", as->argv[i]);
1090 	}
1091 	dm_consume_args(as, hw_argc - 1);
1092 
1093 	return 0;
1094 fail:
1095 	kfree(m->hw_handler_name);
1096 	m->hw_handler_name = NULL;
1097 	return ret;
1098 }
1099 
parse_features(struct dm_arg_set * as,struct multipath * m)1100 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1101 {
1102 	int r;
1103 	unsigned argc;
1104 	struct dm_target *ti = m->ti;
1105 	const char *arg_name;
1106 
1107 	static const struct dm_arg _args[] = {
1108 		{0, 8, "invalid number of feature args"},
1109 		{1, 50, "pg_init_retries must be between 1 and 50"},
1110 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1111 	};
1112 
1113 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1114 	if (r)
1115 		return -EINVAL;
1116 
1117 	if (!argc)
1118 		return 0;
1119 
1120 	do {
1121 		arg_name = dm_shift_arg(as);
1122 		argc--;
1123 
1124 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1125 			r = queue_if_no_path(m, true, false, __func__);
1126 			continue;
1127 		}
1128 
1129 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1130 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1131 			continue;
1132 		}
1133 
1134 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1135 		    (argc >= 1)) {
1136 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1137 			argc--;
1138 			continue;
1139 		}
1140 
1141 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1142 		    (argc >= 1)) {
1143 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1144 			argc--;
1145 			continue;
1146 		}
1147 
1148 		if (!strcasecmp(arg_name, "queue_mode") &&
1149 		    (argc >= 1)) {
1150 			const char *queue_mode_name = dm_shift_arg(as);
1151 
1152 			if (!strcasecmp(queue_mode_name, "bio"))
1153 				m->queue_mode = DM_TYPE_BIO_BASED;
1154 			else if (!strcasecmp(queue_mode_name, "rq") ||
1155 				 !strcasecmp(queue_mode_name, "mq"))
1156 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1157 			else {
1158 				ti->error = "Unknown 'queue_mode' requested";
1159 				r = -EINVAL;
1160 			}
1161 			argc--;
1162 			continue;
1163 		}
1164 
1165 		ti->error = "Unrecognised multipath feature request";
1166 		r = -EINVAL;
1167 	} while (argc && !r);
1168 
1169 	return r;
1170 }
1171 
multipath_ctr(struct dm_target * ti,unsigned argc,char ** argv)1172 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1173 {
1174 	/* target arguments */
1175 	static const struct dm_arg _args[] = {
1176 		{0, 1024, "invalid number of priority groups"},
1177 		{0, 1024, "invalid initial priority group number"},
1178 	};
1179 
1180 	int r;
1181 	struct multipath *m;
1182 	struct dm_arg_set as;
1183 	unsigned pg_count = 0;
1184 	unsigned next_pg_num;
1185 	unsigned long flags;
1186 
1187 	as.argc = argc;
1188 	as.argv = argv;
1189 
1190 	m = alloc_multipath(ti);
1191 	if (!m) {
1192 		ti->error = "can't allocate multipath";
1193 		return -EINVAL;
1194 	}
1195 
1196 	r = parse_features(&as, m);
1197 	if (r)
1198 		goto bad;
1199 
1200 	r = alloc_multipath_stage2(ti, m);
1201 	if (r)
1202 		goto bad;
1203 
1204 	r = parse_hw_handler(&as, m);
1205 	if (r)
1206 		goto bad;
1207 
1208 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1209 	if (r)
1210 		goto bad;
1211 
1212 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1213 	if (r)
1214 		goto bad;
1215 
1216 	if ((!m->nr_priority_groups && next_pg_num) ||
1217 	    (m->nr_priority_groups && !next_pg_num)) {
1218 		ti->error = "invalid initial priority group";
1219 		r = -EINVAL;
1220 		goto bad;
1221 	}
1222 
1223 	/* parse the priority groups */
1224 	while (as.argc) {
1225 		struct priority_group *pg;
1226 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1227 
1228 		pg = parse_priority_group(&as, m);
1229 		if (IS_ERR(pg)) {
1230 			r = PTR_ERR(pg);
1231 			goto bad;
1232 		}
1233 
1234 		nr_valid_paths += pg->nr_pgpaths;
1235 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1236 
1237 		list_add_tail(&pg->list, &m->priority_groups);
1238 		pg_count++;
1239 		pg->pg_num = pg_count;
1240 		if (!--next_pg_num)
1241 			m->next_pg = pg;
1242 	}
1243 
1244 	if (pg_count != m->nr_priority_groups) {
1245 		ti->error = "priority group count mismatch";
1246 		r = -EINVAL;
1247 		goto bad;
1248 	}
1249 
1250 	spin_lock_irqsave(&m->lock, flags);
1251 	enable_nopath_timeout(m);
1252 	spin_unlock_irqrestore(&m->lock, flags);
1253 
1254 	ti->num_flush_bios = 1;
1255 	ti->num_discard_bios = 1;
1256 	ti->num_write_same_bios = 1;
1257 	ti->num_write_zeroes_bios = 1;
1258 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1259 		ti->per_io_data_size = multipath_per_bio_data_size();
1260 	else
1261 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1262 
1263 	return 0;
1264 
1265  bad:
1266 	free_multipath(m);
1267 	return r;
1268 }
1269 
multipath_wait_for_pg_init_completion(struct multipath * m)1270 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1271 {
1272 	DEFINE_WAIT(wait);
1273 
1274 	while (1) {
1275 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1276 
1277 		if (!atomic_read(&m->pg_init_in_progress))
1278 			break;
1279 
1280 		io_schedule();
1281 	}
1282 	finish_wait(&m->pg_init_wait, &wait);
1283 }
1284 
flush_multipath_work(struct multipath * m)1285 static void flush_multipath_work(struct multipath *m)
1286 {
1287 	if (m->hw_handler_name) {
1288 		unsigned long flags;
1289 
1290 		if (!atomic_read(&m->pg_init_in_progress))
1291 			goto skip;
1292 
1293 		spin_lock_irqsave(&m->lock, flags);
1294 		if (atomic_read(&m->pg_init_in_progress) &&
1295 		    !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) {
1296 			spin_unlock_irqrestore(&m->lock, flags);
1297 
1298 			flush_workqueue(kmpath_handlerd);
1299 			multipath_wait_for_pg_init_completion(m);
1300 
1301 			spin_lock_irqsave(&m->lock, flags);
1302 			clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1303 		}
1304 		spin_unlock_irqrestore(&m->lock, flags);
1305 	}
1306 skip:
1307 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1308 		flush_work(&m->process_queued_bios);
1309 	flush_work(&m->trigger_event);
1310 }
1311 
multipath_dtr(struct dm_target * ti)1312 static void multipath_dtr(struct dm_target *ti)
1313 {
1314 	struct multipath *m = ti->private;
1315 
1316 	disable_nopath_timeout(m);
1317 	flush_multipath_work(m);
1318 	free_multipath(m);
1319 }
1320 
1321 /*
1322  * Take a path out of use.
1323  */
fail_path(struct pgpath * pgpath)1324 static int fail_path(struct pgpath *pgpath)
1325 {
1326 	unsigned long flags;
1327 	struct multipath *m = pgpath->pg->m;
1328 
1329 	spin_lock_irqsave(&m->lock, flags);
1330 
1331 	if (!pgpath->is_active)
1332 		goto out;
1333 
1334 	DMWARN("%s: Failing path %s.",
1335 	       dm_table_device_name(m->ti->table),
1336 	       pgpath->path.dev->name);
1337 
1338 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1339 	pgpath->is_active = false;
1340 	pgpath->fail_count++;
1341 
1342 	atomic_dec(&m->nr_valid_paths);
1343 
1344 	if (pgpath == m->current_pgpath)
1345 		m->current_pgpath = NULL;
1346 
1347 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1348 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1349 
1350 	schedule_work(&m->trigger_event);
1351 
1352 	enable_nopath_timeout(m);
1353 
1354 out:
1355 	spin_unlock_irqrestore(&m->lock, flags);
1356 
1357 	return 0;
1358 }
1359 
1360 /*
1361  * Reinstate a previously-failed path
1362  */
reinstate_path(struct pgpath * pgpath)1363 static int reinstate_path(struct pgpath *pgpath)
1364 {
1365 	int r = 0, run_queue = 0;
1366 	unsigned long flags;
1367 	struct multipath *m = pgpath->pg->m;
1368 	unsigned nr_valid_paths;
1369 
1370 	spin_lock_irqsave(&m->lock, flags);
1371 
1372 	if (pgpath->is_active)
1373 		goto out;
1374 
1375 	DMWARN("%s: Reinstating path %s.",
1376 	       dm_table_device_name(m->ti->table),
1377 	       pgpath->path.dev->name);
1378 
1379 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1380 	if (r)
1381 		goto out;
1382 
1383 	pgpath->is_active = true;
1384 
1385 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1386 	if (nr_valid_paths == 1) {
1387 		m->current_pgpath = NULL;
1388 		run_queue = 1;
1389 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1390 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1391 			atomic_inc(&m->pg_init_in_progress);
1392 	}
1393 
1394 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1395 		       pgpath->path.dev->name, nr_valid_paths);
1396 
1397 	schedule_work(&m->trigger_event);
1398 
1399 out:
1400 	spin_unlock_irqrestore(&m->lock, flags);
1401 	if (run_queue) {
1402 		dm_table_run_md_queue_async(m->ti->table);
1403 		process_queued_io_list(m);
1404 	}
1405 
1406 	if (pgpath->is_active)
1407 		disable_nopath_timeout(m);
1408 
1409 	return r;
1410 }
1411 
1412 /*
1413  * Fail or reinstate all paths that match the provided struct dm_dev.
1414  */
action_dev(struct multipath * m,struct dm_dev * dev,action_fn action)1415 static int action_dev(struct multipath *m, struct dm_dev *dev,
1416 		      action_fn action)
1417 {
1418 	int r = -EINVAL;
1419 	struct pgpath *pgpath;
1420 	struct priority_group *pg;
1421 
1422 	list_for_each_entry(pg, &m->priority_groups, list) {
1423 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1424 			if (pgpath->path.dev == dev)
1425 				r = action(pgpath);
1426 		}
1427 	}
1428 
1429 	return r;
1430 }
1431 
1432 /*
1433  * Temporarily try to avoid having to use the specified PG
1434  */
bypass_pg(struct multipath * m,struct priority_group * pg,bool bypassed)1435 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1436 		      bool bypassed)
1437 {
1438 	unsigned long flags;
1439 
1440 	spin_lock_irqsave(&m->lock, flags);
1441 
1442 	pg->bypassed = bypassed;
1443 	m->current_pgpath = NULL;
1444 	m->current_pg = NULL;
1445 
1446 	spin_unlock_irqrestore(&m->lock, flags);
1447 
1448 	schedule_work(&m->trigger_event);
1449 }
1450 
1451 /*
1452  * Switch to using the specified PG from the next I/O that gets mapped
1453  */
switch_pg_num(struct multipath * m,const char * pgstr)1454 static int switch_pg_num(struct multipath *m, const char *pgstr)
1455 {
1456 	struct priority_group *pg;
1457 	unsigned pgnum;
1458 	unsigned long flags;
1459 	char dummy;
1460 
1461 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1462 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1463 		DMWARN("invalid PG number supplied to switch_pg_num");
1464 		return -EINVAL;
1465 	}
1466 
1467 	spin_lock_irqsave(&m->lock, flags);
1468 	list_for_each_entry(pg, &m->priority_groups, list) {
1469 		pg->bypassed = false;
1470 		if (--pgnum)
1471 			continue;
1472 
1473 		m->current_pgpath = NULL;
1474 		m->current_pg = NULL;
1475 		m->next_pg = pg;
1476 	}
1477 	spin_unlock_irqrestore(&m->lock, flags);
1478 
1479 	schedule_work(&m->trigger_event);
1480 	return 0;
1481 }
1482 
1483 /*
1484  * Set/clear bypassed status of a PG.
1485  * PGs are numbered upwards from 1 in the order they were declared.
1486  */
bypass_pg_num(struct multipath * m,const char * pgstr,bool bypassed)1487 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1488 {
1489 	struct priority_group *pg;
1490 	unsigned pgnum;
1491 	char dummy;
1492 
1493 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1494 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1495 		DMWARN("invalid PG number supplied to bypass_pg");
1496 		return -EINVAL;
1497 	}
1498 
1499 	list_for_each_entry(pg, &m->priority_groups, list) {
1500 		if (!--pgnum)
1501 			break;
1502 	}
1503 
1504 	bypass_pg(m, pg, bypassed);
1505 	return 0;
1506 }
1507 
1508 /*
1509  * Should we retry pg_init immediately?
1510  */
pg_init_limit_reached(struct multipath * m,struct pgpath * pgpath)1511 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1512 {
1513 	unsigned long flags;
1514 	bool limit_reached = false;
1515 
1516 	spin_lock_irqsave(&m->lock, flags);
1517 
1518 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1519 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1520 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1521 	else
1522 		limit_reached = true;
1523 
1524 	spin_unlock_irqrestore(&m->lock, flags);
1525 
1526 	return limit_reached;
1527 }
1528 
pg_init_done(void * data,int errors)1529 static void pg_init_done(void *data, int errors)
1530 {
1531 	struct pgpath *pgpath = data;
1532 	struct priority_group *pg = pgpath->pg;
1533 	struct multipath *m = pg->m;
1534 	unsigned long flags;
1535 	bool delay_retry = false;
1536 
1537 	/* device or driver problems */
1538 	switch (errors) {
1539 	case SCSI_DH_OK:
1540 		break;
1541 	case SCSI_DH_NOSYS:
1542 		if (!m->hw_handler_name) {
1543 			errors = 0;
1544 			break;
1545 		}
1546 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1547 		      "Error %d.", m->hw_handler_name, errors);
1548 		/*
1549 		 * Fail path for now, so we do not ping pong
1550 		 */
1551 		fail_path(pgpath);
1552 		break;
1553 	case SCSI_DH_DEV_TEMP_BUSY:
1554 		/*
1555 		 * Probably doing something like FW upgrade on the
1556 		 * controller so try the other pg.
1557 		 */
1558 		bypass_pg(m, pg, true);
1559 		break;
1560 	case SCSI_DH_RETRY:
1561 		/* Wait before retrying. */
1562 		delay_retry = true;
1563 		fallthrough;
1564 	case SCSI_DH_IMM_RETRY:
1565 	case SCSI_DH_RES_TEMP_UNAVAIL:
1566 		if (pg_init_limit_reached(m, pgpath))
1567 			fail_path(pgpath);
1568 		errors = 0;
1569 		break;
1570 	case SCSI_DH_DEV_OFFLINED:
1571 	default:
1572 		/*
1573 		 * We probably do not want to fail the path for a device
1574 		 * error, but this is what the old dm did. In future
1575 		 * patches we can do more advanced handling.
1576 		 */
1577 		fail_path(pgpath);
1578 	}
1579 
1580 	spin_lock_irqsave(&m->lock, flags);
1581 	if (errors) {
1582 		if (pgpath == m->current_pgpath) {
1583 			DMERR("Could not failover device. Error %d.", errors);
1584 			m->current_pgpath = NULL;
1585 			m->current_pg = NULL;
1586 		}
1587 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1588 		pg->bypassed = false;
1589 
1590 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1591 		/* Activations of other paths are still on going */
1592 		goto out;
1593 
1594 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1595 		if (delay_retry)
1596 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1597 		else
1598 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1599 
1600 		if (__pg_init_all_paths(m))
1601 			goto out;
1602 	}
1603 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1604 
1605 	process_queued_io_list(m);
1606 
1607 	/*
1608 	 * Wake up any thread waiting to suspend.
1609 	 */
1610 	wake_up(&m->pg_init_wait);
1611 
1612 out:
1613 	spin_unlock_irqrestore(&m->lock, flags);
1614 }
1615 
activate_or_offline_path(struct pgpath * pgpath)1616 static void activate_or_offline_path(struct pgpath *pgpath)
1617 {
1618 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1619 
1620 	if (pgpath->is_active && !blk_queue_dying(q))
1621 		scsi_dh_activate(q, pg_init_done, pgpath);
1622 	else
1623 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1624 }
1625 
activate_path_work(struct work_struct * work)1626 static void activate_path_work(struct work_struct *work)
1627 {
1628 	struct pgpath *pgpath =
1629 		container_of(work, struct pgpath, activate_path.work);
1630 
1631 	activate_or_offline_path(pgpath);
1632 }
1633 
multipath_end_io(struct dm_target * ti,struct request * clone,blk_status_t error,union map_info * map_context)1634 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1635 			    blk_status_t error, union map_info *map_context)
1636 {
1637 	struct dm_mpath_io *mpio = get_mpio(map_context);
1638 	struct pgpath *pgpath = mpio->pgpath;
1639 	int r = DM_ENDIO_DONE;
1640 
1641 	/*
1642 	 * We don't queue any clone request inside the multipath target
1643 	 * during end I/O handling, since those clone requests don't have
1644 	 * bio clones.  If we queue them inside the multipath target,
1645 	 * we need to make bio clones, that requires memory allocation.
1646 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1647 	 *  don't have bio clones.)
1648 	 * Instead of queueing the clone request here, we queue the original
1649 	 * request into dm core, which will remake a clone request and
1650 	 * clone bios for it and resubmit it later.
1651 	 */
1652 	if (error && blk_path_error(error)) {
1653 		struct multipath *m = ti->private;
1654 
1655 		if (error == BLK_STS_RESOURCE)
1656 			r = DM_ENDIO_DELAY_REQUEUE;
1657 		else
1658 			r = DM_ENDIO_REQUEUE;
1659 
1660 		if (pgpath)
1661 			fail_path(pgpath);
1662 
1663 		if (!atomic_read(&m->nr_valid_paths) &&
1664 		    !must_push_back_rq(m)) {
1665 			if (error == BLK_STS_IOERR)
1666 				dm_report_EIO(m);
1667 			/* complete with the original error */
1668 			r = DM_ENDIO_DONE;
1669 		}
1670 	}
1671 
1672 	if (pgpath) {
1673 		struct path_selector *ps = &pgpath->pg->ps;
1674 
1675 		if (ps->type->end_io)
1676 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1677 					 clone->io_start_time_ns);
1678 	}
1679 
1680 	return r;
1681 }
1682 
multipath_end_io_bio(struct dm_target * ti,struct bio * clone,blk_status_t * error)1683 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1684 				blk_status_t *error)
1685 {
1686 	struct multipath *m = ti->private;
1687 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1688 	struct pgpath *pgpath = mpio->pgpath;
1689 	unsigned long flags;
1690 	int r = DM_ENDIO_DONE;
1691 
1692 	if (!*error || !blk_path_error(*error))
1693 		goto done;
1694 
1695 	if (pgpath)
1696 		fail_path(pgpath);
1697 
1698 	if (!atomic_read(&m->nr_valid_paths)) {
1699 		spin_lock_irqsave(&m->lock, flags);
1700 		if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1701 			if (__must_push_back(m)) {
1702 				r = DM_ENDIO_REQUEUE;
1703 			} else {
1704 				dm_report_EIO(m);
1705 				*error = BLK_STS_IOERR;
1706 			}
1707 			spin_unlock_irqrestore(&m->lock, flags);
1708 			goto done;
1709 		}
1710 		spin_unlock_irqrestore(&m->lock, flags);
1711 	}
1712 
1713 	multipath_queue_bio(m, clone);
1714 	r = DM_ENDIO_INCOMPLETE;
1715 done:
1716 	if (pgpath) {
1717 		struct path_selector *ps = &pgpath->pg->ps;
1718 
1719 		if (ps->type->end_io)
1720 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1721 					 dm_start_time_ns_from_clone(clone));
1722 	}
1723 
1724 	return r;
1725 }
1726 
1727 /*
1728  * Suspend with flush can't complete until all the I/O is processed
1729  * so if the last path fails we must error any remaining I/O.
1730  * - Note that if the freeze_bdev fails while suspending, the
1731  *   queue_if_no_path state is lost - userspace should reset it.
1732  * Otherwise, during noflush suspend, queue_if_no_path will not change.
1733  */
multipath_presuspend(struct dm_target * ti)1734 static void multipath_presuspend(struct dm_target *ti)
1735 {
1736 	struct multipath *m = ti->private;
1737 
1738 	/* FIXME: bio-based shouldn't need to always disable queue_if_no_path */
1739 	if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti))
1740 		queue_if_no_path(m, false, true, __func__);
1741 }
1742 
multipath_postsuspend(struct dm_target * ti)1743 static void multipath_postsuspend(struct dm_target *ti)
1744 {
1745 	struct multipath *m = ti->private;
1746 
1747 	mutex_lock(&m->work_mutex);
1748 	flush_multipath_work(m);
1749 	mutex_unlock(&m->work_mutex);
1750 }
1751 
1752 /*
1753  * Restore the queue_if_no_path setting.
1754  */
multipath_resume(struct dm_target * ti)1755 static void multipath_resume(struct dm_target *ti)
1756 {
1757 	struct multipath *m = ti->private;
1758 	unsigned long flags;
1759 
1760 	spin_lock_irqsave(&m->lock, flags);
1761 	if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) {
1762 		set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1763 		clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
1764 	}
1765 
1766 	DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d",
1767 		dm_table_device_name(m->ti->table), __func__,
1768 		test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
1769 		test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1770 
1771 	spin_unlock_irqrestore(&m->lock, flags);
1772 }
1773 
1774 /*
1775  * Info output has the following format:
1776  * num_multipath_feature_args [multipath_feature_args]*
1777  * num_handler_status_args [handler_status_args]*
1778  * num_groups init_group_number
1779  *            [A|D|E num_ps_status_args [ps_status_args]*
1780  *             num_paths num_selector_args
1781  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1782  *
1783  * Table output has the following format (identical to the constructor string):
1784  * num_feature_args [features_args]*
1785  * num_handler_args hw_handler [hw_handler_args]*
1786  * num_groups init_group_number
1787  *     [priority selector-name num_ps_args [ps_args]*
1788  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1789  */
multipath_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)1790 static void multipath_status(struct dm_target *ti, status_type_t type,
1791 			     unsigned status_flags, char *result, unsigned maxlen)
1792 {
1793 	int sz = 0;
1794 	unsigned long flags;
1795 	struct multipath *m = ti->private;
1796 	struct priority_group *pg;
1797 	struct pgpath *p;
1798 	unsigned pg_num;
1799 	char state;
1800 
1801 	spin_lock_irqsave(&m->lock, flags);
1802 
1803 	/* Features */
1804 	if (type == STATUSTYPE_INFO)
1805 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1806 		       atomic_read(&m->pg_init_count));
1807 	else {
1808 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1809 			      (m->pg_init_retries > 0) * 2 +
1810 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1811 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1812 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1813 
1814 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1815 			DMEMIT("queue_if_no_path ");
1816 		if (m->pg_init_retries)
1817 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1818 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1819 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1820 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1821 			DMEMIT("retain_attached_hw_handler ");
1822 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1823 			switch(m->queue_mode) {
1824 			case DM_TYPE_BIO_BASED:
1825 				DMEMIT("queue_mode bio ");
1826 				break;
1827 			default:
1828 				WARN_ON_ONCE(true);
1829 				break;
1830 			}
1831 		}
1832 	}
1833 
1834 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1835 		DMEMIT("0 ");
1836 	else
1837 		DMEMIT("1 %s ", m->hw_handler_name);
1838 
1839 	DMEMIT("%u ", m->nr_priority_groups);
1840 
1841 	if (m->next_pg)
1842 		pg_num = m->next_pg->pg_num;
1843 	else if (m->current_pg)
1844 		pg_num = m->current_pg->pg_num;
1845 	else
1846 		pg_num = (m->nr_priority_groups ? 1 : 0);
1847 
1848 	DMEMIT("%u ", pg_num);
1849 
1850 	switch (type) {
1851 	case STATUSTYPE_INFO:
1852 		list_for_each_entry(pg, &m->priority_groups, list) {
1853 			if (pg->bypassed)
1854 				state = 'D';	/* Disabled */
1855 			else if (pg == m->current_pg)
1856 				state = 'A';	/* Currently Active */
1857 			else
1858 				state = 'E';	/* Enabled */
1859 
1860 			DMEMIT("%c ", state);
1861 
1862 			if (pg->ps.type->status)
1863 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1864 							  result + sz,
1865 							  maxlen - sz);
1866 			else
1867 				DMEMIT("0 ");
1868 
1869 			DMEMIT("%u %u ", pg->nr_pgpaths,
1870 			       pg->ps.type->info_args);
1871 
1872 			list_for_each_entry(p, &pg->pgpaths, list) {
1873 				DMEMIT("%s %s %u ", p->path.dev->name,
1874 				       p->is_active ? "A" : "F",
1875 				       p->fail_count);
1876 				if (pg->ps.type->status)
1877 					sz += pg->ps.type->status(&pg->ps,
1878 					      &p->path, type, result + sz,
1879 					      maxlen - sz);
1880 			}
1881 		}
1882 		break;
1883 
1884 	case STATUSTYPE_TABLE:
1885 		list_for_each_entry(pg, &m->priority_groups, list) {
1886 			DMEMIT("%s ", pg->ps.type->name);
1887 
1888 			if (pg->ps.type->status)
1889 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1890 							  result + sz,
1891 							  maxlen - sz);
1892 			else
1893 				DMEMIT("0 ");
1894 
1895 			DMEMIT("%u %u ", pg->nr_pgpaths,
1896 			       pg->ps.type->table_args);
1897 
1898 			list_for_each_entry(p, &pg->pgpaths, list) {
1899 				DMEMIT("%s ", p->path.dev->name);
1900 				if (pg->ps.type->status)
1901 					sz += pg->ps.type->status(&pg->ps,
1902 					      &p->path, type, result + sz,
1903 					      maxlen - sz);
1904 			}
1905 		}
1906 		break;
1907 	}
1908 
1909 	spin_unlock_irqrestore(&m->lock, flags);
1910 }
1911 
multipath_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)1912 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1913 			     char *result, unsigned maxlen)
1914 {
1915 	int r = -EINVAL;
1916 	struct dm_dev *dev;
1917 	struct multipath *m = ti->private;
1918 	action_fn action;
1919 	unsigned long flags;
1920 
1921 	mutex_lock(&m->work_mutex);
1922 
1923 	if (dm_suspended(ti)) {
1924 		r = -EBUSY;
1925 		goto out;
1926 	}
1927 
1928 	if (argc == 1) {
1929 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1930 			r = queue_if_no_path(m, true, false, __func__);
1931 			spin_lock_irqsave(&m->lock, flags);
1932 			enable_nopath_timeout(m);
1933 			spin_unlock_irqrestore(&m->lock, flags);
1934 			goto out;
1935 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1936 			r = queue_if_no_path(m, false, false, __func__);
1937 			disable_nopath_timeout(m);
1938 			goto out;
1939 		}
1940 	}
1941 
1942 	if (argc != 2) {
1943 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1944 		goto out;
1945 	}
1946 
1947 	if (!strcasecmp(argv[0], "disable_group")) {
1948 		r = bypass_pg_num(m, argv[1], true);
1949 		goto out;
1950 	} else if (!strcasecmp(argv[0], "enable_group")) {
1951 		r = bypass_pg_num(m, argv[1], false);
1952 		goto out;
1953 	} else if (!strcasecmp(argv[0], "switch_group")) {
1954 		r = switch_pg_num(m, argv[1]);
1955 		goto out;
1956 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1957 		action = reinstate_path;
1958 	else if (!strcasecmp(argv[0], "fail_path"))
1959 		action = fail_path;
1960 	else {
1961 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1962 		goto out;
1963 	}
1964 
1965 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1966 	if (r) {
1967 		DMWARN("message: error getting device %s",
1968 		       argv[1]);
1969 		goto out;
1970 	}
1971 
1972 	r = action_dev(m, dev, action);
1973 
1974 	dm_put_device(ti, dev);
1975 
1976 out:
1977 	mutex_unlock(&m->work_mutex);
1978 	return r;
1979 }
1980 
multipath_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)1981 static int multipath_prepare_ioctl(struct dm_target *ti,
1982 				   struct block_device **bdev)
1983 {
1984 	struct multipath *m = ti->private;
1985 	struct pgpath *pgpath;
1986 	unsigned long flags;
1987 	int r;
1988 
1989 	pgpath = READ_ONCE(m->current_pgpath);
1990 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
1991 		pgpath = choose_pgpath(m, 0);
1992 
1993 	if (pgpath) {
1994 		if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) {
1995 			*bdev = pgpath->path.dev->bdev;
1996 			r = 0;
1997 		} else {
1998 			/* pg_init has not started or completed */
1999 			r = -ENOTCONN;
2000 		}
2001 	} else {
2002 		/* No path is available */
2003 		r = -EIO;
2004 		spin_lock_irqsave(&m->lock, flags);
2005 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2006 			r = -ENOTCONN;
2007 		spin_unlock_irqrestore(&m->lock, flags);
2008 	}
2009 
2010 	if (r == -ENOTCONN) {
2011 		if (!READ_ONCE(m->current_pg)) {
2012 			/* Path status changed, redo selection */
2013 			(void) choose_pgpath(m, 0);
2014 		}
2015 		spin_lock_irqsave(&m->lock, flags);
2016 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
2017 			(void) __pg_init_all_paths(m);
2018 		spin_unlock_irqrestore(&m->lock, flags);
2019 		dm_table_run_md_queue_async(m->ti->table);
2020 		process_queued_io_list(m);
2021 	}
2022 
2023 	/*
2024 	 * Only pass ioctls through if the device sizes match exactly.
2025 	 */
2026 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
2027 		return 1;
2028 	return r;
2029 }
2030 
multipath_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2031 static int multipath_iterate_devices(struct dm_target *ti,
2032 				     iterate_devices_callout_fn fn, void *data)
2033 {
2034 	struct multipath *m = ti->private;
2035 	struct priority_group *pg;
2036 	struct pgpath *p;
2037 	int ret = 0;
2038 
2039 	list_for_each_entry(pg, &m->priority_groups, list) {
2040 		list_for_each_entry(p, &pg->pgpaths, list) {
2041 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
2042 			if (ret)
2043 				goto out;
2044 		}
2045 	}
2046 
2047 out:
2048 	return ret;
2049 }
2050 
pgpath_busy(struct pgpath * pgpath)2051 static int pgpath_busy(struct pgpath *pgpath)
2052 {
2053 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
2054 
2055 	return blk_lld_busy(q);
2056 }
2057 
2058 /*
2059  * We return "busy", only when we can map I/Os but underlying devices
2060  * are busy (so even if we map I/Os now, the I/Os will wait on
2061  * the underlying queue).
2062  * In other words, if we want to kill I/Os or queue them inside us
2063  * due to map unavailability, we don't return "busy".  Otherwise,
2064  * dm core won't give us the I/Os and we can't do what we want.
2065  */
multipath_busy(struct dm_target * ti)2066 static int multipath_busy(struct dm_target *ti)
2067 {
2068 	bool busy = false, has_active = false;
2069 	struct multipath *m = ti->private;
2070 	struct priority_group *pg, *next_pg;
2071 	struct pgpath *pgpath;
2072 
2073 	/* pg_init in progress */
2074 	if (atomic_read(&m->pg_init_in_progress))
2075 		return true;
2076 
2077 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2078 	if (!atomic_read(&m->nr_valid_paths)) {
2079 		unsigned long flags;
2080 		spin_lock_irqsave(&m->lock, flags);
2081 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
2082 			spin_unlock_irqrestore(&m->lock, flags);
2083 			return (m->queue_mode != DM_TYPE_REQUEST_BASED);
2084 		}
2085 		spin_unlock_irqrestore(&m->lock, flags);
2086 	}
2087 
2088 	/* Guess which priority_group will be used at next mapping time */
2089 	pg = READ_ONCE(m->current_pg);
2090 	next_pg = READ_ONCE(m->next_pg);
2091 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2092 		pg = next_pg;
2093 
2094 	if (!pg) {
2095 		/*
2096 		 * We don't know which pg will be used at next mapping time.
2097 		 * We don't call choose_pgpath() here to avoid to trigger
2098 		 * pg_init just by busy checking.
2099 		 * So we don't know whether underlying devices we will be using
2100 		 * at next mapping time are busy or not. Just try mapping.
2101 		 */
2102 		return busy;
2103 	}
2104 
2105 	/*
2106 	 * If there is one non-busy active path at least, the path selector
2107 	 * will be able to select it. So we consider such a pg as not busy.
2108 	 */
2109 	busy = true;
2110 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2111 		if (pgpath->is_active) {
2112 			has_active = true;
2113 			if (!pgpath_busy(pgpath)) {
2114 				busy = false;
2115 				break;
2116 			}
2117 		}
2118 	}
2119 
2120 	if (!has_active) {
2121 		/*
2122 		 * No active path in this pg, so this pg won't be used and
2123 		 * the current_pg will be changed at next mapping time.
2124 		 * We need to try mapping to determine it.
2125 		 */
2126 		busy = false;
2127 	}
2128 
2129 	return busy;
2130 }
2131 
2132 /*-----------------------------------------------------------------
2133  * Module setup
2134  *---------------------------------------------------------------*/
2135 static struct target_type multipath_target = {
2136 	.name = "multipath",
2137 	.version = {1, 14, 0},
2138 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2139 		    DM_TARGET_PASSES_INTEGRITY,
2140 	.module = THIS_MODULE,
2141 	.ctr = multipath_ctr,
2142 	.dtr = multipath_dtr,
2143 	.clone_and_map_rq = multipath_clone_and_map,
2144 	.release_clone_rq = multipath_release_clone,
2145 	.rq_end_io = multipath_end_io,
2146 	.map = multipath_map_bio,
2147 	.end_io = multipath_end_io_bio,
2148 	.presuspend = multipath_presuspend,
2149 	.postsuspend = multipath_postsuspend,
2150 	.resume = multipath_resume,
2151 	.status = multipath_status,
2152 	.message = multipath_message,
2153 	.prepare_ioctl = multipath_prepare_ioctl,
2154 	.iterate_devices = multipath_iterate_devices,
2155 	.busy = multipath_busy,
2156 };
2157 
dm_multipath_init(void)2158 static int __init dm_multipath_init(void)
2159 {
2160 	int r;
2161 
2162 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2163 	if (!kmultipathd) {
2164 		DMERR("failed to create workqueue kmpathd");
2165 		r = -ENOMEM;
2166 		goto bad_alloc_kmultipathd;
2167 	}
2168 
2169 	/*
2170 	 * A separate workqueue is used to handle the device handlers
2171 	 * to avoid overloading existing workqueue. Overloading the
2172 	 * old workqueue would also create a bottleneck in the
2173 	 * path of the storage hardware device activation.
2174 	 */
2175 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2176 						  WQ_MEM_RECLAIM);
2177 	if (!kmpath_handlerd) {
2178 		DMERR("failed to create workqueue kmpath_handlerd");
2179 		r = -ENOMEM;
2180 		goto bad_alloc_kmpath_handlerd;
2181 	}
2182 
2183 	r = dm_register_target(&multipath_target);
2184 	if (r < 0) {
2185 		DMERR("request-based register failed %d", r);
2186 		r = -EINVAL;
2187 		goto bad_register_target;
2188 	}
2189 
2190 	return 0;
2191 
2192 bad_register_target:
2193 	destroy_workqueue(kmpath_handlerd);
2194 bad_alloc_kmpath_handlerd:
2195 	destroy_workqueue(kmultipathd);
2196 bad_alloc_kmultipathd:
2197 	return r;
2198 }
2199 
dm_multipath_exit(void)2200 static void __exit dm_multipath_exit(void)
2201 {
2202 	destroy_workqueue(kmpath_handlerd);
2203 	destroy_workqueue(kmultipathd);
2204 
2205 	dm_unregister_target(&multipath_target);
2206 }
2207 
2208 module_init(dm_multipath_init);
2209 module_exit(dm_multipath_exit);
2210 
2211 module_param_named(queue_if_no_path_timeout_secs,
2212 		   queue_if_no_path_timeout_secs, ulong, S_IRUGO | S_IWUSR);
2213 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
2214 
2215 MODULE_DESCRIPTION(DM_NAME " multipath target");
2216 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2217 MODULE_LICENSE("GPL");
2218