1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
53 
54 
55 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS		128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
60 
61 /* Superblock */
62 
get_bucket_size(struct cache_sb * sb,struct cache_sb_disk * s)63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64 {
65 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66 
67 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68 	     bch_has_feature_large_bucket(sb))
69 		bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
70 
71 	return bucket_size;
72 }
73 
read_super_common(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk * s)74 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
75 				     struct cache_sb_disk *s)
76 {
77 	const char *err;
78 	unsigned int i;
79 
80 	sb->first_bucket= le16_to_cpu(s->first_bucket);
81 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
82 	sb->bucket_size	= get_bucket_size(sb, s);
83 
84 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
85 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
86 
87 	err = "Too many journal buckets";
88 	if (sb->keys > SB_JOURNAL_BUCKETS)
89 		goto err;
90 
91 	err = "Too many buckets";
92 	if (sb->nbuckets > LONG_MAX)
93 		goto err;
94 
95 	err = "Not enough buckets";
96 	if (sb->nbuckets < 1 << 7)
97 		goto err;
98 
99 	err = "Bad block size (not power of 2)";
100 	if (!is_power_of_2(sb->block_size))
101 		goto err;
102 
103 	err = "Bad block size (larger than page size)";
104 	if (sb->block_size > PAGE_SECTORS)
105 		goto err;
106 
107 	err = "Bad bucket size (not power of 2)";
108 	if (!is_power_of_2(sb->bucket_size))
109 		goto err;
110 
111 	err = "Bad bucket size (smaller than page size)";
112 	if (sb->bucket_size < PAGE_SECTORS)
113 		goto err;
114 
115 	err = "Invalid superblock: device too small";
116 	if (get_capacity(bdev->bd_disk) <
117 	    sb->bucket_size * sb->nbuckets)
118 		goto err;
119 
120 	err = "Bad UUID";
121 	if (bch_is_zero(sb->set_uuid, 16))
122 		goto err;
123 
124 	err = "Bad cache device number in set";
125 	if (!sb->nr_in_set ||
126 	    sb->nr_in_set <= sb->nr_this_dev ||
127 	    sb->nr_in_set > MAX_CACHES_PER_SET)
128 		goto err;
129 
130 	err = "Journal buckets not sequential";
131 	for (i = 0; i < sb->keys; i++)
132 		if (sb->d[i] != sb->first_bucket + i)
133 			goto err;
134 
135 	err = "Too many journal buckets";
136 	if (sb->first_bucket + sb->keys > sb->nbuckets)
137 		goto err;
138 
139 	err = "Invalid superblock: first bucket comes before end of super";
140 	if (sb->first_bucket * sb->bucket_size < 16)
141 		goto err;
142 
143 	err = NULL;
144 err:
145 	return err;
146 }
147 
148 
read_super(struct cache_sb * sb,struct block_device * bdev,struct cache_sb_disk ** res)149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150 			      struct cache_sb_disk **res)
151 {
152 	const char *err;
153 	struct cache_sb_disk *s;
154 	struct page *page;
155 	unsigned int i;
156 
157 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159 	if (IS_ERR(page))
160 		return "IO error";
161 	s = page_address(page) + offset_in_page(SB_OFFSET);
162 
163 	sb->offset		= le64_to_cpu(s->offset);
164 	sb->version		= le64_to_cpu(s->version);
165 
166 	memcpy(sb->magic,	s->magic, 16);
167 	memcpy(sb->uuid,	s->uuid, 16);
168 	memcpy(sb->set_uuid,	s->set_uuid, 16);
169 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
170 
171 	sb->flags		= le64_to_cpu(s->flags);
172 	sb->seq			= le64_to_cpu(s->seq);
173 	sb->last_mount		= le32_to_cpu(s->last_mount);
174 	sb->keys		= le16_to_cpu(s->keys);
175 
176 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177 		sb->d[i] = le64_to_cpu(s->d[i]);
178 
179 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180 		 sb->version, sb->flags, sb->seq, sb->keys);
181 
182 	err = "Not a bcache superblock (bad offset)";
183 	if (sb->offset != SB_SECTOR)
184 		goto err;
185 
186 	err = "Not a bcache superblock (bad magic)";
187 	if (memcmp(sb->magic, bcache_magic, 16))
188 		goto err;
189 
190 	err = "Bad checksum";
191 	if (s->csum != csum_set(s))
192 		goto err;
193 
194 	err = "Bad UUID";
195 	if (bch_is_zero(sb->uuid, 16))
196 		goto err;
197 
198 	sb->block_size	= le16_to_cpu(s->block_size);
199 
200 	err = "Superblock block size smaller than device block size";
201 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202 		goto err;
203 
204 	switch (sb->version) {
205 	case BCACHE_SB_VERSION_BDEV:
206 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
207 		break;
208 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210 		sb->data_offset	= le64_to_cpu(s->data_offset);
211 
212 		err = "Bad data offset";
213 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214 			goto err;
215 
216 		break;
217 	case BCACHE_SB_VERSION_CDEV:
218 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219 		err = read_super_common(sb, bdev, s);
220 		if (err)
221 			goto err;
222 		break;
223 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
224 		/*
225 		 * Feature bits are needed in read_super_common(),
226 		 * convert them firstly.
227 		 */
228 		sb->feature_compat = le64_to_cpu(s->feature_compat);
229 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231 		err = read_super_common(sb, bdev, s);
232 		if (err)
233 			goto err;
234 		break;
235 	default:
236 		err = "Unsupported superblock version";
237 		goto err;
238 	}
239 
240 	sb->last_mount = (u32)ktime_get_real_seconds();
241 	*res = s;
242 	return NULL;
243 err:
244 	put_page(page);
245 	return err;
246 }
247 
write_bdev_super_endio(struct bio * bio)248 static void write_bdev_super_endio(struct bio *bio)
249 {
250 	struct cached_dev *dc = bio->bi_private;
251 
252 	if (bio->bi_status)
253 		bch_count_backing_io_errors(dc, bio);
254 
255 	closure_put(&dc->sb_write);
256 }
257 
__write_super(struct cache_sb * sb,struct cache_sb_disk * out,struct bio * bio)258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259 		struct bio *bio)
260 {
261 	unsigned int i;
262 
263 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264 	bio->bi_iter.bi_sector	= SB_SECTOR;
265 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
266 			offset_in_page(out));
267 
268 	out->offset		= cpu_to_le64(sb->offset);
269 
270 	memcpy(out->uuid,	sb->uuid, 16);
271 	memcpy(out->set_uuid,	sb->set_uuid, 16);
272 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
273 
274 	out->flags		= cpu_to_le64(sb->flags);
275 	out->seq		= cpu_to_le64(sb->seq);
276 
277 	out->last_mount		= cpu_to_le32(sb->last_mount);
278 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
279 	out->keys		= cpu_to_le16(sb->keys);
280 
281 	for (i = 0; i < sb->keys; i++)
282 		out->d[i] = cpu_to_le64(sb->d[i]);
283 
284 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
286 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
287 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
288 	}
289 
290 	out->version		= cpu_to_le64(sb->version);
291 	out->csum = csum_set(out);
292 
293 	pr_debug("ver %llu, flags %llu, seq %llu\n",
294 		 sb->version, sb->flags, sb->seq);
295 
296 	submit_bio(bio);
297 }
298 
bch_write_bdev_super_unlock(struct closure * cl)299 static void bch_write_bdev_super_unlock(struct closure *cl)
300 {
301 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
302 
303 	up(&dc->sb_write_mutex);
304 }
305 
bch_write_bdev_super(struct cached_dev * dc,struct closure * parent)306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
307 {
308 	struct closure *cl = &dc->sb_write;
309 	struct bio *bio = &dc->sb_bio;
310 
311 	down(&dc->sb_write_mutex);
312 	closure_init(cl, parent);
313 
314 	bio_init(bio, dc->sb_bv, 1);
315 	bio_set_dev(bio, dc->bdev);
316 	bio->bi_end_io	= write_bdev_super_endio;
317 	bio->bi_private = dc;
318 
319 	closure_get(cl);
320 	/* I/O request sent to backing device */
321 	__write_super(&dc->sb, dc->sb_disk, bio);
322 
323 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
324 }
325 
write_super_endio(struct bio * bio)326 static void write_super_endio(struct bio *bio)
327 {
328 	struct cache *ca = bio->bi_private;
329 
330 	/* is_read = 0 */
331 	bch_count_io_errors(ca, bio->bi_status, 0,
332 			    "writing superblock");
333 	closure_put(&ca->set->sb_write);
334 }
335 
bcache_write_super_unlock(struct closure * cl)336 static void bcache_write_super_unlock(struct closure *cl)
337 {
338 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
339 
340 	up(&c->sb_write_mutex);
341 }
342 
bcache_write_super(struct cache_set * c)343 void bcache_write_super(struct cache_set *c)
344 {
345 	struct closure *cl = &c->sb_write;
346 	struct cache *ca = c->cache;
347 	struct bio *bio = &ca->sb_bio;
348 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
349 
350 	down(&c->sb_write_mutex);
351 	closure_init(cl, &c->cl);
352 
353 	ca->sb.seq++;
354 
355 	if (ca->sb.version < version)
356 		ca->sb.version = version;
357 
358 	bio_init(bio, ca->sb_bv, 1);
359 	bio_set_dev(bio, ca->bdev);
360 	bio->bi_end_io	= write_super_endio;
361 	bio->bi_private = ca;
362 
363 	closure_get(cl);
364 	__write_super(&ca->sb, ca->sb_disk, bio);
365 
366 	closure_return_with_destructor(cl, bcache_write_super_unlock);
367 }
368 
369 /* UUID io */
370 
uuid_endio(struct bio * bio)371 static void uuid_endio(struct bio *bio)
372 {
373 	struct closure *cl = bio->bi_private;
374 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
375 
376 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
377 	bch_bbio_free(bio, c);
378 	closure_put(cl);
379 }
380 
uuid_io_unlock(struct closure * cl)381 static void uuid_io_unlock(struct closure *cl)
382 {
383 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
384 
385 	up(&c->uuid_write_mutex);
386 }
387 
uuid_io(struct cache_set * c,int op,unsigned long op_flags,struct bkey * k,struct closure * parent)388 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
389 		    struct bkey *k, struct closure *parent)
390 {
391 	struct closure *cl = &c->uuid_write;
392 	struct uuid_entry *u;
393 	unsigned int i;
394 	char buf[80];
395 
396 	BUG_ON(!parent);
397 	down(&c->uuid_write_mutex);
398 	closure_init(cl, parent);
399 
400 	for (i = 0; i < KEY_PTRS(k); i++) {
401 		struct bio *bio = bch_bbio_alloc(c);
402 
403 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
404 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
405 
406 		bio->bi_end_io	= uuid_endio;
407 		bio->bi_private = cl;
408 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
409 		bch_bio_map(bio, c->uuids);
410 
411 		bch_submit_bbio(bio, c, k, i);
412 
413 		if (op != REQ_OP_WRITE)
414 			break;
415 	}
416 
417 	bch_extent_to_text(buf, sizeof(buf), k);
418 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
419 
420 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
421 		if (!bch_is_zero(u->uuid, 16))
422 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
423 				 u - c->uuids, u->uuid, u->label,
424 				 u->first_reg, u->last_reg, u->invalidated);
425 
426 	closure_return_with_destructor(cl, uuid_io_unlock);
427 }
428 
uuid_read(struct cache_set * c,struct jset * j,struct closure * cl)429 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
430 {
431 	struct bkey *k = &j->uuid_bucket;
432 
433 	if (__bch_btree_ptr_invalid(c, k))
434 		return "bad uuid pointer";
435 
436 	bkey_copy(&c->uuid_bucket, k);
437 	uuid_io(c, REQ_OP_READ, 0, k, cl);
438 
439 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
440 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
441 		struct uuid_entry	*u1 = (void *) c->uuids;
442 		int i;
443 
444 		closure_sync(cl);
445 
446 		/*
447 		 * Since the new uuid entry is bigger than the old, we have to
448 		 * convert starting at the highest memory address and work down
449 		 * in order to do it in place
450 		 */
451 
452 		for (i = c->nr_uuids - 1;
453 		     i >= 0;
454 		     --i) {
455 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
456 			memcpy(u1[i].label,	u0[i].label, 32);
457 
458 			u1[i].first_reg		= u0[i].first_reg;
459 			u1[i].last_reg		= u0[i].last_reg;
460 			u1[i].invalidated	= u0[i].invalidated;
461 
462 			u1[i].flags	= 0;
463 			u1[i].sectors	= 0;
464 		}
465 	}
466 
467 	return NULL;
468 }
469 
__uuid_write(struct cache_set * c)470 static int __uuid_write(struct cache_set *c)
471 {
472 	BKEY_PADDED(key) k;
473 	struct closure cl;
474 	struct cache *ca = c->cache;
475 	unsigned int size;
476 
477 	closure_init_stack(&cl);
478 	lockdep_assert_held(&bch_register_lock);
479 
480 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
481 		return 1;
482 
483 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
484 	SET_KEY_SIZE(&k.key, size);
485 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
486 	closure_sync(&cl);
487 
488 	/* Only one bucket used for uuid write */
489 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
490 
491 	bkey_copy(&c->uuid_bucket, &k.key);
492 	bkey_put(c, &k.key);
493 	return 0;
494 }
495 
bch_uuid_write(struct cache_set * c)496 int bch_uuid_write(struct cache_set *c)
497 {
498 	int ret = __uuid_write(c);
499 
500 	if (!ret)
501 		bch_journal_meta(c, NULL);
502 
503 	return ret;
504 }
505 
uuid_find(struct cache_set * c,const char * uuid)506 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
507 {
508 	struct uuid_entry *u;
509 
510 	for (u = c->uuids;
511 	     u < c->uuids + c->nr_uuids; u++)
512 		if (!memcmp(u->uuid, uuid, 16))
513 			return u;
514 
515 	return NULL;
516 }
517 
uuid_find_empty(struct cache_set * c)518 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
519 {
520 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
521 
522 	return uuid_find(c, zero_uuid);
523 }
524 
525 /*
526  * Bucket priorities/gens:
527  *
528  * For each bucket, we store on disk its
529  *   8 bit gen
530  *  16 bit priority
531  *
532  * See alloc.c for an explanation of the gen. The priority is used to implement
533  * lru (and in the future other) cache replacement policies; for most purposes
534  * it's just an opaque integer.
535  *
536  * The gens and the priorities don't have a whole lot to do with each other, and
537  * it's actually the gens that must be written out at specific times - it's no
538  * big deal if the priorities don't get written, if we lose them we just reuse
539  * buckets in suboptimal order.
540  *
541  * On disk they're stored in a packed array, and in as many buckets are required
542  * to fit them all. The buckets we use to store them form a list; the journal
543  * header points to the first bucket, the first bucket points to the second
544  * bucket, et cetera.
545  *
546  * This code is used by the allocation code; periodically (whenever it runs out
547  * of buckets to allocate from) the allocation code will invalidate some
548  * buckets, but it can't use those buckets until their new gens are safely on
549  * disk.
550  */
551 
prio_endio(struct bio * bio)552 static void prio_endio(struct bio *bio)
553 {
554 	struct cache *ca = bio->bi_private;
555 
556 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
557 	bch_bbio_free(bio, ca->set);
558 	closure_put(&ca->prio);
559 }
560 
prio_io(struct cache * ca,uint64_t bucket,int op,unsigned long op_flags)561 static void prio_io(struct cache *ca, uint64_t bucket, int op,
562 		    unsigned long op_flags)
563 {
564 	struct closure *cl = &ca->prio;
565 	struct bio *bio = bch_bbio_alloc(ca->set);
566 
567 	closure_init_stack(cl);
568 
569 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
570 	bio_set_dev(bio, ca->bdev);
571 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
572 
573 	bio->bi_end_io	= prio_endio;
574 	bio->bi_private = ca;
575 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
576 	bch_bio_map(bio, ca->disk_buckets);
577 
578 	closure_bio_submit(ca->set, bio, &ca->prio);
579 	closure_sync(cl);
580 }
581 
bch_prio_write(struct cache * ca,bool wait)582 int bch_prio_write(struct cache *ca, bool wait)
583 {
584 	int i;
585 	struct bucket *b;
586 	struct closure cl;
587 
588 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
589 		 fifo_used(&ca->free[RESERVE_PRIO]),
590 		 fifo_used(&ca->free[RESERVE_NONE]),
591 		 fifo_used(&ca->free_inc));
592 
593 	/*
594 	 * Pre-check if there are enough free buckets. In the non-blocking
595 	 * scenario it's better to fail early rather than starting to allocate
596 	 * buckets and do a cleanup later in case of failure.
597 	 */
598 	if (!wait) {
599 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
600 			       fifo_used(&ca->free[RESERVE_NONE]);
601 		if (prio_buckets(ca) > avail)
602 			return -ENOMEM;
603 	}
604 
605 	closure_init_stack(&cl);
606 
607 	lockdep_assert_held(&ca->set->bucket_lock);
608 
609 	ca->disk_buckets->seq++;
610 
611 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
612 			&ca->meta_sectors_written);
613 
614 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
615 		long bucket;
616 		struct prio_set *p = ca->disk_buckets;
617 		struct bucket_disk *d = p->data;
618 		struct bucket_disk *end = d + prios_per_bucket(ca);
619 
620 		for (b = ca->buckets + i * prios_per_bucket(ca);
621 		     b < ca->buckets + ca->sb.nbuckets && d < end;
622 		     b++, d++) {
623 			d->prio = cpu_to_le16(b->prio);
624 			d->gen = b->gen;
625 		}
626 
627 		p->next_bucket	= ca->prio_buckets[i + 1];
628 		p->magic	= pset_magic(&ca->sb);
629 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
630 
631 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
632 		BUG_ON(bucket == -1);
633 
634 		mutex_unlock(&ca->set->bucket_lock);
635 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
636 		mutex_lock(&ca->set->bucket_lock);
637 
638 		ca->prio_buckets[i] = bucket;
639 		atomic_dec_bug(&ca->buckets[bucket].pin);
640 	}
641 
642 	mutex_unlock(&ca->set->bucket_lock);
643 
644 	bch_journal_meta(ca->set, &cl);
645 	closure_sync(&cl);
646 
647 	mutex_lock(&ca->set->bucket_lock);
648 
649 	/*
650 	 * Don't want the old priorities to get garbage collected until after we
651 	 * finish writing the new ones, and they're journalled
652 	 */
653 	for (i = 0; i < prio_buckets(ca); i++) {
654 		if (ca->prio_last_buckets[i])
655 			__bch_bucket_free(ca,
656 				&ca->buckets[ca->prio_last_buckets[i]]);
657 
658 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
659 	}
660 	return 0;
661 }
662 
prio_read(struct cache * ca,uint64_t bucket)663 static int prio_read(struct cache *ca, uint64_t bucket)
664 {
665 	struct prio_set *p = ca->disk_buckets;
666 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
667 	struct bucket *b;
668 	unsigned int bucket_nr = 0;
669 	int ret = -EIO;
670 
671 	for (b = ca->buckets;
672 	     b < ca->buckets + ca->sb.nbuckets;
673 	     b++, d++) {
674 		if (d == end) {
675 			ca->prio_buckets[bucket_nr] = bucket;
676 			ca->prio_last_buckets[bucket_nr] = bucket;
677 			bucket_nr++;
678 
679 			prio_io(ca, bucket, REQ_OP_READ, 0);
680 
681 			if (p->csum !=
682 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
683 				pr_warn("bad csum reading priorities\n");
684 				goto out;
685 			}
686 
687 			if (p->magic != pset_magic(&ca->sb)) {
688 				pr_warn("bad magic reading priorities\n");
689 				goto out;
690 			}
691 
692 			bucket = p->next_bucket;
693 			d = p->data;
694 		}
695 
696 		b->prio = le16_to_cpu(d->prio);
697 		b->gen = b->last_gc = d->gen;
698 	}
699 
700 	ret = 0;
701 out:
702 	return ret;
703 }
704 
705 /* Bcache device */
706 
open_dev(struct block_device * b,fmode_t mode)707 static int open_dev(struct block_device *b, fmode_t mode)
708 {
709 	struct bcache_device *d = b->bd_disk->private_data;
710 
711 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
712 		return -ENXIO;
713 
714 	closure_get(&d->cl);
715 	return 0;
716 }
717 
release_dev(struct gendisk * b,fmode_t mode)718 static void release_dev(struct gendisk *b, fmode_t mode)
719 {
720 	struct bcache_device *d = b->private_data;
721 
722 	closure_put(&d->cl);
723 }
724 
ioctl_dev(struct block_device * b,fmode_t mode,unsigned int cmd,unsigned long arg)725 static int ioctl_dev(struct block_device *b, fmode_t mode,
726 		     unsigned int cmd, unsigned long arg)
727 {
728 	struct bcache_device *d = b->bd_disk->private_data;
729 
730 	return d->ioctl(d, mode, cmd, arg);
731 }
732 
733 static const struct block_device_operations bcache_cached_ops = {
734 	.submit_bio	= cached_dev_submit_bio,
735 	.open		= open_dev,
736 	.release	= release_dev,
737 	.ioctl		= ioctl_dev,
738 	.owner		= THIS_MODULE,
739 };
740 
741 static const struct block_device_operations bcache_flash_ops = {
742 	.submit_bio	= flash_dev_submit_bio,
743 	.open		= open_dev,
744 	.release	= release_dev,
745 	.ioctl		= ioctl_dev,
746 	.owner		= THIS_MODULE,
747 };
748 
bcache_device_stop(struct bcache_device * d)749 void bcache_device_stop(struct bcache_device *d)
750 {
751 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
752 		/*
753 		 * closure_fn set to
754 		 * - cached device: cached_dev_flush()
755 		 * - flash dev: flash_dev_flush()
756 		 */
757 		closure_queue(&d->cl);
758 }
759 
bcache_device_unlink(struct bcache_device * d)760 static void bcache_device_unlink(struct bcache_device *d)
761 {
762 	lockdep_assert_held(&bch_register_lock);
763 
764 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
765 		struct cache *ca = d->c->cache;
766 
767 		sysfs_remove_link(&d->c->kobj, d->name);
768 		sysfs_remove_link(&d->kobj, "cache");
769 
770 		bd_unlink_disk_holder(ca->bdev, d->disk);
771 	}
772 }
773 
bcache_device_link(struct bcache_device * d,struct cache_set * c,const char * name)774 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
775 			       const char *name)
776 {
777 	struct cache *ca = c->cache;
778 	int ret;
779 
780 	bd_link_disk_holder(ca->bdev, d->disk);
781 
782 	snprintf(d->name, BCACHEDEVNAME_SIZE,
783 		 "%s%u", name, d->id);
784 
785 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
786 	if (ret < 0)
787 		pr_err("Couldn't create device -> cache set symlink\n");
788 
789 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
790 	if (ret < 0)
791 		pr_err("Couldn't create cache set -> device symlink\n");
792 
793 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
794 }
795 
bcache_device_detach(struct bcache_device * d)796 static void bcache_device_detach(struct bcache_device *d)
797 {
798 	lockdep_assert_held(&bch_register_lock);
799 
800 	atomic_dec(&d->c->attached_dev_nr);
801 
802 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
803 		struct uuid_entry *u = d->c->uuids + d->id;
804 
805 		SET_UUID_FLASH_ONLY(u, 0);
806 		memcpy(u->uuid, invalid_uuid, 16);
807 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
808 		bch_uuid_write(d->c);
809 	}
810 
811 	bcache_device_unlink(d);
812 
813 	d->c->devices[d->id] = NULL;
814 	closure_put(&d->c->caching);
815 	d->c = NULL;
816 }
817 
bcache_device_attach(struct bcache_device * d,struct cache_set * c,unsigned int id)818 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
819 				 unsigned int id)
820 {
821 	d->id = id;
822 	d->c = c;
823 	c->devices[id] = d;
824 
825 	if (id >= c->devices_max_used)
826 		c->devices_max_used = id + 1;
827 
828 	closure_get(&c->caching);
829 }
830 
first_minor_to_idx(int first_minor)831 static inline int first_minor_to_idx(int first_minor)
832 {
833 	return (first_minor/BCACHE_MINORS);
834 }
835 
idx_to_first_minor(int idx)836 static inline int idx_to_first_minor(int idx)
837 {
838 	return (idx * BCACHE_MINORS);
839 }
840 
bcache_device_free(struct bcache_device * d)841 static void bcache_device_free(struct bcache_device *d)
842 {
843 	struct gendisk *disk = d->disk;
844 
845 	lockdep_assert_held(&bch_register_lock);
846 
847 	if (disk)
848 		pr_info("%s stopped\n", disk->disk_name);
849 	else
850 		pr_err("bcache device (NULL gendisk) stopped\n");
851 
852 	if (d->c)
853 		bcache_device_detach(d);
854 
855 	if (disk) {
856 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
857 
858 		if (disk_added)
859 			del_gendisk(disk);
860 
861 		if (disk->queue)
862 			blk_cleanup_queue(disk->queue);
863 
864 		ida_simple_remove(&bcache_device_idx,
865 				  first_minor_to_idx(disk->first_minor));
866 		if (disk_added)
867 			put_disk(disk);
868 	}
869 
870 	bioset_exit(&d->bio_split);
871 	kvfree(d->full_dirty_stripes);
872 	kvfree(d->stripe_sectors_dirty);
873 
874 	closure_debug_destroy(&d->cl);
875 }
876 
bcache_device_init(struct bcache_device * d,unsigned int block_size,sector_t sectors,struct block_device * cached_bdev,const struct block_device_operations * ops)877 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
878 		sector_t sectors, struct block_device *cached_bdev,
879 		const struct block_device_operations *ops)
880 {
881 	struct request_queue *q;
882 	const size_t max_stripes = min_t(size_t, INT_MAX,
883 					 SIZE_MAX / sizeof(atomic_t));
884 	uint64_t n;
885 	int idx;
886 
887 	if (!d->stripe_size)
888 		d->stripe_size = 1 << 31;
889 
890 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
891 	if (!n || n > max_stripes) {
892 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
893 			n);
894 		return -ENOMEM;
895 	}
896 	d->nr_stripes = n;
897 
898 	n = d->nr_stripes * sizeof(atomic_t);
899 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
900 	if (!d->stripe_sectors_dirty)
901 		return -ENOMEM;
902 
903 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
904 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
905 	if (!d->full_dirty_stripes)
906 		return -ENOMEM;
907 
908 	idx = ida_simple_get(&bcache_device_idx, 0,
909 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
910 	if (idx < 0)
911 		return idx;
912 
913 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
914 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
915 		goto err;
916 
917 	d->disk = alloc_disk(BCACHE_MINORS);
918 	if (!d->disk)
919 		goto err;
920 
921 	set_capacity(d->disk, sectors);
922 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
923 
924 	d->disk->major		= bcache_major;
925 	d->disk->first_minor	= idx_to_first_minor(idx);
926 	d->disk->fops		= ops;
927 	d->disk->private_data	= d;
928 
929 	q = blk_alloc_queue(NUMA_NO_NODE);
930 	if (!q)
931 		return -ENOMEM;
932 
933 	d->disk->queue			= q;
934 	q->limits.max_hw_sectors	= UINT_MAX;
935 	q->limits.max_sectors		= UINT_MAX;
936 	q->limits.max_segment_size	= UINT_MAX;
937 	q->limits.max_segments		= BIO_MAX_PAGES;
938 	blk_queue_max_discard_sectors(q, UINT_MAX);
939 	q->limits.discard_granularity	= 512;
940 	q->limits.io_min		= block_size;
941 	q->limits.logical_block_size	= block_size;
942 	q->limits.physical_block_size	= block_size;
943 
944 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
945 		/*
946 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
947 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
948 		 */
949 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
950 			d->disk->disk_name, q->limits.logical_block_size,
951 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
952 
953 		/* This also adjusts physical block size/min io size if needed */
954 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
955 	}
956 
957 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
958 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
959 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
960 
961 	blk_queue_write_cache(q, true, true);
962 
963 	return 0;
964 
965 err:
966 	ida_simple_remove(&bcache_device_idx, idx);
967 	return -ENOMEM;
968 
969 }
970 
971 /* Cached device */
972 
calc_cached_dev_sectors(struct cache_set * c)973 static void calc_cached_dev_sectors(struct cache_set *c)
974 {
975 	uint64_t sectors = 0;
976 	struct cached_dev *dc;
977 
978 	list_for_each_entry(dc, &c->cached_devs, list)
979 		sectors += bdev_sectors(dc->bdev);
980 
981 	c->cached_dev_sectors = sectors;
982 }
983 
984 #define BACKING_DEV_OFFLINE_TIMEOUT 5
cached_dev_status_update(void * arg)985 static int cached_dev_status_update(void *arg)
986 {
987 	struct cached_dev *dc = arg;
988 	struct request_queue *q;
989 
990 	/*
991 	 * If this delayed worker is stopping outside, directly quit here.
992 	 * dc->io_disable might be set via sysfs interface, so check it
993 	 * here too.
994 	 */
995 	while (!kthread_should_stop() && !dc->io_disable) {
996 		q = bdev_get_queue(dc->bdev);
997 		if (blk_queue_dying(q))
998 			dc->offline_seconds++;
999 		else
1000 			dc->offline_seconds = 0;
1001 
1002 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1003 			pr_err("%s: device offline for %d seconds\n",
1004 			       dc->backing_dev_name,
1005 			       BACKING_DEV_OFFLINE_TIMEOUT);
1006 			pr_err("%s: disable I/O request due to backing device offline\n",
1007 			       dc->disk.name);
1008 			dc->io_disable = true;
1009 			/* let others know earlier that io_disable is true */
1010 			smp_mb();
1011 			bcache_device_stop(&dc->disk);
1012 			break;
1013 		}
1014 		schedule_timeout_interruptible(HZ);
1015 	}
1016 
1017 	wait_for_kthread_stop();
1018 	return 0;
1019 }
1020 
1021 
bch_cached_dev_run(struct cached_dev * dc)1022 int bch_cached_dev_run(struct cached_dev *dc)
1023 {
1024 	struct bcache_device *d = &dc->disk;
1025 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1026 	char *env[] = {
1027 		"DRIVER=bcache",
1028 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1029 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1030 		NULL,
1031 	};
1032 
1033 	if (dc->io_disable) {
1034 		pr_err("I/O disabled on cached dev %s\n",
1035 		       dc->backing_dev_name);
1036 		kfree(env[1]);
1037 		kfree(env[2]);
1038 		kfree(buf);
1039 		return -EIO;
1040 	}
1041 
1042 	if (atomic_xchg(&dc->running, 1)) {
1043 		kfree(env[1]);
1044 		kfree(env[2]);
1045 		kfree(buf);
1046 		pr_info("cached dev %s is running already\n",
1047 		       dc->backing_dev_name);
1048 		return -EBUSY;
1049 	}
1050 
1051 	if (!d->c &&
1052 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1053 		struct closure cl;
1054 
1055 		closure_init_stack(&cl);
1056 
1057 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1058 		bch_write_bdev_super(dc, &cl);
1059 		closure_sync(&cl);
1060 	}
1061 
1062 	add_disk(d->disk);
1063 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1064 	/*
1065 	 * won't show up in the uevent file, use udevadm monitor -e instead
1066 	 * only class / kset properties are persistent
1067 	 */
1068 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1069 	kfree(env[1]);
1070 	kfree(env[2]);
1071 	kfree(buf);
1072 
1073 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1074 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1075 			      &d->kobj, "bcache")) {
1076 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1077 		return -ENOMEM;
1078 	}
1079 
1080 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1081 					       dc, "bcache_status_update");
1082 	if (IS_ERR(dc->status_update_thread)) {
1083 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 /*
1090  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1091  * work dc->writeback_rate_update is running. Wait until the routine
1092  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1093  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1094  * seconds, give up waiting here and continue to cancel it too.
1095  */
cancel_writeback_rate_update_dwork(struct cached_dev * dc)1096 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1097 {
1098 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1099 
1100 	do {
1101 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1102 			      &dc->disk.flags))
1103 			break;
1104 		time_out--;
1105 		schedule_timeout_interruptible(1);
1106 	} while (time_out > 0);
1107 
1108 	if (time_out == 0)
1109 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1110 
1111 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1112 }
1113 
cached_dev_detach_finish(struct work_struct * w)1114 static void cached_dev_detach_finish(struct work_struct *w)
1115 {
1116 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1117 	struct closure cl;
1118 
1119 	closure_init_stack(&cl);
1120 
1121 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1122 	BUG_ON(refcount_read(&dc->count));
1123 
1124 
1125 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1126 		cancel_writeback_rate_update_dwork(dc);
1127 
1128 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1129 		kthread_stop(dc->writeback_thread);
1130 		dc->writeback_thread = NULL;
1131 	}
1132 
1133 	memset(&dc->sb.set_uuid, 0, 16);
1134 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1135 
1136 	bch_write_bdev_super(dc, &cl);
1137 	closure_sync(&cl);
1138 
1139 	mutex_lock(&bch_register_lock);
1140 
1141 	calc_cached_dev_sectors(dc->disk.c);
1142 	bcache_device_detach(&dc->disk);
1143 	list_move(&dc->list, &uncached_devices);
1144 
1145 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1146 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1147 
1148 	mutex_unlock(&bch_register_lock);
1149 
1150 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1151 
1152 	/* Drop ref we took in cached_dev_detach() */
1153 	closure_put(&dc->disk.cl);
1154 }
1155 
bch_cached_dev_detach(struct cached_dev * dc)1156 void bch_cached_dev_detach(struct cached_dev *dc)
1157 {
1158 	lockdep_assert_held(&bch_register_lock);
1159 
1160 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1161 		return;
1162 
1163 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1164 		return;
1165 
1166 	/*
1167 	 * Block the device from being closed and freed until we're finished
1168 	 * detaching
1169 	 */
1170 	closure_get(&dc->disk.cl);
1171 
1172 	bch_writeback_queue(dc);
1173 
1174 	cached_dev_put(dc);
1175 }
1176 
bch_cached_dev_attach(struct cached_dev * dc,struct cache_set * c,uint8_t * set_uuid)1177 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1178 			  uint8_t *set_uuid)
1179 {
1180 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1181 	struct uuid_entry *u;
1182 	struct cached_dev *exist_dc, *t;
1183 	int ret = 0;
1184 
1185 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1186 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1187 		return -ENOENT;
1188 
1189 	if (dc->disk.c) {
1190 		pr_err("Can't attach %s: already attached\n",
1191 		       dc->backing_dev_name);
1192 		return -EINVAL;
1193 	}
1194 
1195 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1196 		pr_err("Can't attach %s: shutting down\n",
1197 		       dc->backing_dev_name);
1198 		return -EINVAL;
1199 	}
1200 
1201 	if (dc->sb.block_size < c->cache->sb.block_size) {
1202 		/* Will die */
1203 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1204 		       dc->backing_dev_name);
1205 		return -EINVAL;
1206 	}
1207 
1208 	/* Check whether already attached */
1209 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1210 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1211 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1212 				dc->backing_dev_name);
1213 
1214 			return -EINVAL;
1215 		}
1216 	}
1217 
1218 	u = uuid_find(c, dc->sb.uuid);
1219 
1220 	if (u &&
1221 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1222 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1223 		memcpy(u->uuid, invalid_uuid, 16);
1224 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1225 		u = NULL;
1226 	}
1227 
1228 	if (!u) {
1229 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1230 			pr_err("Couldn't find uuid for %s in set\n",
1231 			       dc->backing_dev_name);
1232 			return -ENOENT;
1233 		}
1234 
1235 		u = uuid_find_empty(c);
1236 		if (!u) {
1237 			pr_err("Not caching %s, no room for UUID\n",
1238 			       dc->backing_dev_name);
1239 			return -EINVAL;
1240 		}
1241 	}
1242 
1243 	/*
1244 	 * Deadlocks since we're called via sysfs...
1245 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1246 	 */
1247 
1248 	if (bch_is_zero(u->uuid, 16)) {
1249 		struct closure cl;
1250 
1251 		closure_init_stack(&cl);
1252 
1253 		memcpy(u->uuid, dc->sb.uuid, 16);
1254 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1255 		u->first_reg = u->last_reg = rtime;
1256 		bch_uuid_write(c);
1257 
1258 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1259 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1260 
1261 		bch_write_bdev_super(dc, &cl);
1262 		closure_sync(&cl);
1263 	} else {
1264 		u->last_reg = rtime;
1265 		bch_uuid_write(c);
1266 	}
1267 
1268 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1269 	list_move(&dc->list, &c->cached_devs);
1270 	calc_cached_dev_sectors(c);
1271 
1272 	/*
1273 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1274 	 * cached_dev_get()
1275 	 */
1276 	smp_wmb();
1277 	refcount_set(&dc->count, 1);
1278 
1279 	/* Block writeback thread, but spawn it */
1280 	down_write(&dc->writeback_lock);
1281 	if (bch_cached_dev_writeback_start(dc)) {
1282 		up_write(&dc->writeback_lock);
1283 		pr_err("Couldn't start writeback facilities for %s\n",
1284 		       dc->disk.disk->disk_name);
1285 		return -ENOMEM;
1286 	}
1287 
1288 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1289 		atomic_set(&dc->has_dirty, 1);
1290 		bch_writeback_queue(dc);
1291 	}
1292 
1293 	bch_sectors_dirty_init(&dc->disk);
1294 
1295 	ret = bch_cached_dev_run(dc);
1296 	if (ret && (ret != -EBUSY)) {
1297 		up_write(&dc->writeback_lock);
1298 		/*
1299 		 * bch_register_lock is held, bcache_device_stop() is not
1300 		 * able to be directly called. The kthread and kworker
1301 		 * created previously in bch_cached_dev_writeback_start()
1302 		 * have to be stopped manually here.
1303 		 */
1304 		kthread_stop(dc->writeback_thread);
1305 		cancel_writeback_rate_update_dwork(dc);
1306 		pr_err("Couldn't run cached device %s\n",
1307 		       dc->backing_dev_name);
1308 		return ret;
1309 	}
1310 
1311 	bcache_device_link(&dc->disk, c, "bdev");
1312 	atomic_inc(&c->attached_dev_nr);
1313 
1314 	/* Allow the writeback thread to proceed */
1315 	up_write(&dc->writeback_lock);
1316 
1317 	pr_info("Caching %s as %s on set %pU\n",
1318 		dc->backing_dev_name,
1319 		dc->disk.disk->disk_name,
1320 		dc->disk.c->set_uuid);
1321 	return 0;
1322 }
1323 
1324 /* when dc->disk.kobj released */
bch_cached_dev_release(struct kobject * kobj)1325 void bch_cached_dev_release(struct kobject *kobj)
1326 {
1327 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1328 					     disk.kobj);
1329 	kfree(dc);
1330 	module_put(THIS_MODULE);
1331 }
1332 
cached_dev_free(struct closure * cl)1333 static void cached_dev_free(struct closure *cl)
1334 {
1335 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1336 
1337 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1338 		cancel_writeback_rate_update_dwork(dc);
1339 
1340 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1341 		kthread_stop(dc->writeback_thread);
1342 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1343 		kthread_stop(dc->status_update_thread);
1344 
1345 	mutex_lock(&bch_register_lock);
1346 
1347 	if (atomic_read(&dc->running))
1348 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1349 	bcache_device_free(&dc->disk);
1350 	list_del(&dc->list);
1351 
1352 	mutex_unlock(&bch_register_lock);
1353 
1354 	if (dc->sb_disk)
1355 		put_page(virt_to_page(dc->sb_disk));
1356 
1357 	if (!IS_ERR_OR_NULL(dc->bdev))
1358 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1359 
1360 	wake_up(&unregister_wait);
1361 
1362 	kobject_put(&dc->disk.kobj);
1363 }
1364 
cached_dev_flush(struct closure * cl)1365 static void cached_dev_flush(struct closure *cl)
1366 {
1367 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1368 	struct bcache_device *d = &dc->disk;
1369 
1370 	mutex_lock(&bch_register_lock);
1371 	bcache_device_unlink(d);
1372 	mutex_unlock(&bch_register_lock);
1373 
1374 	bch_cache_accounting_destroy(&dc->accounting);
1375 	kobject_del(&d->kobj);
1376 
1377 	continue_at(cl, cached_dev_free, system_wq);
1378 }
1379 
cached_dev_init(struct cached_dev * dc,unsigned int block_size)1380 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1381 {
1382 	int ret;
1383 	struct io *io;
1384 	struct request_queue *q = bdev_get_queue(dc->bdev);
1385 
1386 	__module_get(THIS_MODULE);
1387 	INIT_LIST_HEAD(&dc->list);
1388 	closure_init(&dc->disk.cl, NULL);
1389 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1390 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1391 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1392 	sema_init(&dc->sb_write_mutex, 1);
1393 	INIT_LIST_HEAD(&dc->io_lru);
1394 	spin_lock_init(&dc->io_lock);
1395 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1396 
1397 	dc->sequential_cutoff		= 4 << 20;
1398 
1399 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1400 		list_add(&io->lru, &dc->io_lru);
1401 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1402 	}
1403 
1404 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1405 
1406 	if (dc->disk.stripe_size)
1407 		dc->partial_stripes_expensive =
1408 			q->limits.raid_partial_stripes_expensive;
1409 
1410 	ret = bcache_device_init(&dc->disk, block_size,
1411 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1412 			 dc->bdev, &bcache_cached_ops);
1413 	if (ret)
1414 		return ret;
1415 
1416 	blk_queue_io_opt(dc->disk.disk->queue,
1417 		max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1418 
1419 	atomic_set(&dc->io_errors, 0);
1420 	dc->io_disable = false;
1421 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1422 	/* default to auto */
1423 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1424 
1425 	bch_cached_dev_request_init(dc);
1426 	bch_cached_dev_writeback_init(dc);
1427 	return 0;
1428 }
1429 
1430 /* Cached device - bcache superblock */
1431 
register_bdev(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cached_dev * dc)1432 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1433 				 struct block_device *bdev,
1434 				 struct cached_dev *dc)
1435 {
1436 	const char *err = "cannot allocate memory";
1437 	struct cache_set *c;
1438 	int ret = -ENOMEM;
1439 
1440 	bdevname(bdev, dc->backing_dev_name);
1441 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1442 	dc->bdev = bdev;
1443 	dc->bdev->bd_holder = dc;
1444 	dc->sb_disk = sb_disk;
1445 
1446 	if (cached_dev_init(dc, sb->block_size << 9))
1447 		goto err;
1448 
1449 	err = "error creating kobject";
1450 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1451 			"bcache"))
1452 		goto err;
1453 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1454 		goto err;
1455 
1456 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1457 
1458 	list_add(&dc->list, &uncached_devices);
1459 	/* attach to a matched cache set if it exists */
1460 	list_for_each_entry(c, &bch_cache_sets, list)
1461 		bch_cached_dev_attach(dc, c, NULL);
1462 
1463 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1464 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1465 		err = "failed to run cached device";
1466 		ret = bch_cached_dev_run(dc);
1467 		if (ret)
1468 			goto err;
1469 	}
1470 
1471 	return 0;
1472 err:
1473 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1474 	bcache_device_stop(&dc->disk);
1475 	return ret;
1476 }
1477 
1478 /* Flash only volumes */
1479 
1480 /* When d->kobj released */
bch_flash_dev_release(struct kobject * kobj)1481 void bch_flash_dev_release(struct kobject *kobj)
1482 {
1483 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1484 					       kobj);
1485 	kfree(d);
1486 }
1487 
flash_dev_free(struct closure * cl)1488 static void flash_dev_free(struct closure *cl)
1489 {
1490 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1491 
1492 	mutex_lock(&bch_register_lock);
1493 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1494 			&d->c->flash_dev_dirty_sectors);
1495 	bcache_device_free(d);
1496 	mutex_unlock(&bch_register_lock);
1497 	kobject_put(&d->kobj);
1498 }
1499 
flash_dev_flush(struct closure * cl)1500 static void flash_dev_flush(struct closure *cl)
1501 {
1502 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1503 
1504 	mutex_lock(&bch_register_lock);
1505 	bcache_device_unlink(d);
1506 	mutex_unlock(&bch_register_lock);
1507 	kobject_del(&d->kobj);
1508 	continue_at(cl, flash_dev_free, system_wq);
1509 }
1510 
flash_dev_run(struct cache_set * c,struct uuid_entry * u)1511 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1512 {
1513 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1514 					  GFP_KERNEL);
1515 	if (!d)
1516 		return -ENOMEM;
1517 
1518 	closure_init(&d->cl, NULL);
1519 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1520 
1521 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1522 
1523 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1524 			NULL, &bcache_flash_ops))
1525 		goto err;
1526 
1527 	bcache_device_attach(d, c, u - c->uuids);
1528 	bch_sectors_dirty_init(d);
1529 	bch_flash_dev_request_init(d);
1530 	add_disk(d->disk);
1531 
1532 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1533 		goto err;
1534 
1535 	bcache_device_link(d, c, "volume");
1536 
1537 	return 0;
1538 err:
1539 	kobject_put(&d->kobj);
1540 	return -ENOMEM;
1541 }
1542 
flash_devs_run(struct cache_set * c)1543 static int flash_devs_run(struct cache_set *c)
1544 {
1545 	int ret = 0;
1546 	struct uuid_entry *u;
1547 
1548 	for (u = c->uuids;
1549 	     u < c->uuids + c->nr_uuids && !ret;
1550 	     u++)
1551 		if (UUID_FLASH_ONLY(u))
1552 			ret = flash_dev_run(c, u);
1553 
1554 	return ret;
1555 }
1556 
bch_flash_dev_create(struct cache_set * c,uint64_t size)1557 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1558 {
1559 	struct uuid_entry *u;
1560 
1561 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1562 		return -EINTR;
1563 
1564 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1565 		return -EPERM;
1566 
1567 	u = uuid_find_empty(c);
1568 	if (!u) {
1569 		pr_err("Can't create volume, no room for UUID\n");
1570 		return -EINVAL;
1571 	}
1572 
1573 	get_random_bytes(u->uuid, 16);
1574 	memset(u->label, 0, 32);
1575 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1576 
1577 	SET_UUID_FLASH_ONLY(u, 1);
1578 	u->sectors = size >> 9;
1579 
1580 	bch_uuid_write(c);
1581 
1582 	return flash_dev_run(c, u);
1583 }
1584 
bch_cached_dev_error(struct cached_dev * dc)1585 bool bch_cached_dev_error(struct cached_dev *dc)
1586 {
1587 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1588 		return false;
1589 
1590 	dc->io_disable = true;
1591 	/* make others know io_disable is true earlier */
1592 	smp_mb();
1593 
1594 	pr_err("stop %s: too many IO errors on backing device %s\n",
1595 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1596 
1597 	bcache_device_stop(&dc->disk);
1598 	return true;
1599 }
1600 
1601 /* Cache set */
1602 
1603 __printf(2, 3)
bch_cache_set_error(struct cache_set * c,const char * fmt,...)1604 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1605 {
1606 	struct va_format vaf;
1607 	va_list args;
1608 
1609 	if (c->on_error != ON_ERROR_PANIC &&
1610 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1611 		return false;
1612 
1613 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1614 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1615 
1616 	/*
1617 	 * XXX: we can be called from atomic context
1618 	 * acquire_console_sem();
1619 	 */
1620 
1621 	va_start(args, fmt);
1622 
1623 	vaf.fmt = fmt;
1624 	vaf.va = &args;
1625 
1626 	pr_err("error on %pU: %pV, disabling caching\n",
1627 	       c->set_uuid, &vaf);
1628 
1629 	va_end(args);
1630 
1631 	if (c->on_error == ON_ERROR_PANIC)
1632 		panic("panic forced after error\n");
1633 
1634 	bch_cache_set_unregister(c);
1635 	return true;
1636 }
1637 
1638 /* When c->kobj released */
bch_cache_set_release(struct kobject * kobj)1639 void bch_cache_set_release(struct kobject *kobj)
1640 {
1641 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1642 
1643 	kfree(c);
1644 	module_put(THIS_MODULE);
1645 }
1646 
cache_set_free(struct closure * cl)1647 static void cache_set_free(struct closure *cl)
1648 {
1649 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1650 	struct cache *ca;
1651 
1652 	debugfs_remove(c->debug);
1653 
1654 	bch_open_buckets_free(c);
1655 	bch_btree_cache_free(c);
1656 	bch_journal_free(c);
1657 
1658 	mutex_lock(&bch_register_lock);
1659 	bch_bset_sort_state_free(&c->sort);
1660 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1661 
1662 	ca = c->cache;
1663 	if (ca) {
1664 		ca->set = NULL;
1665 		c->cache = NULL;
1666 		kobject_put(&ca->kobj);
1667 	}
1668 
1669 
1670 	if (c->moving_gc_wq)
1671 		destroy_workqueue(c->moving_gc_wq);
1672 	bioset_exit(&c->bio_split);
1673 	mempool_exit(&c->fill_iter);
1674 	mempool_exit(&c->bio_meta);
1675 	mempool_exit(&c->search);
1676 	kfree(c->devices);
1677 
1678 	list_del(&c->list);
1679 	mutex_unlock(&bch_register_lock);
1680 
1681 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1682 	wake_up(&unregister_wait);
1683 
1684 	closure_debug_destroy(&c->cl);
1685 	kobject_put(&c->kobj);
1686 }
1687 
cache_set_flush(struct closure * cl)1688 static void cache_set_flush(struct closure *cl)
1689 {
1690 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1691 	struct cache *ca = c->cache;
1692 	struct btree *b;
1693 
1694 	bch_cache_accounting_destroy(&c->accounting);
1695 
1696 	kobject_put(&c->internal);
1697 	kobject_del(&c->kobj);
1698 
1699 	if (!IS_ERR_OR_NULL(c->gc_thread))
1700 		kthread_stop(c->gc_thread);
1701 
1702 	if (!IS_ERR_OR_NULL(c->root))
1703 		list_add(&c->root->list, &c->btree_cache);
1704 
1705 	/*
1706 	 * Avoid flushing cached nodes if cache set is retiring
1707 	 * due to too many I/O errors detected.
1708 	 */
1709 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1710 		list_for_each_entry(b, &c->btree_cache, list) {
1711 			mutex_lock(&b->write_lock);
1712 			if (btree_node_dirty(b))
1713 				__bch_btree_node_write(b, NULL);
1714 			mutex_unlock(&b->write_lock);
1715 		}
1716 
1717 	if (ca->alloc_thread)
1718 		kthread_stop(ca->alloc_thread);
1719 
1720 	if (c->journal.cur) {
1721 		cancel_delayed_work_sync(&c->journal.work);
1722 		/* flush last journal entry if needed */
1723 		c->journal.work.work.func(&c->journal.work.work);
1724 	}
1725 
1726 	closure_return(cl);
1727 }
1728 
1729 /*
1730  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1731  * cache set is unregistering due to too many I/O errors. In this condition,
1732  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1733  * value and whether the broken cache has dirty data:
1734  *
1735  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1736  *  BCH_CACHED_STOP_AUTO               0               NO
1737  *  BCH_CACHED_STOP_AUTO               1               YES
1738  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1739  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1740  *
1741  * The expected behavior is, if stop_when_cache_set_failed is configured to
1742  * "auto" via sysfs interface, the bcache device will not be stopped if the
1743  * backing device is clean on the broken cache device.
1744  */
conditional_stop_bcache_device(struct cache_set * c,struct bcache_device * d,struct cached_dev * dc)1745 static void conditional_stop_bcache_device(struct cache_set *c,
1746 					   struct bcache_device *d,
1747 					   struct cached_dev *dc)
1748 {
1749 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1750 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1751 			d->disk->disk_name, c->set_uuid);
1752 		bcache_device_stop(d);
1753 	} else if (atomic_read(&dc->has_dirty)) {
1754 		/*
1755 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1756 		 * and dc->has_dirty == 1
1757 		 */
1758 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1759 			d->disk->disk_name);
1760 		/*
1761 		 * There might be a small time gap that cache set is
1762 		 * released but bcache device is not. Inside this time
1763 		 * gap, regular I/O requests will directly go into
1764 		 * backing device as no cache set attached to. This
1765 		 * behavior may also introduce potential inconsistence
1766 		 * data in writeback mode while cache is dirty.
1767 		 * Therefore before calling bcache_device_stop() due
1768 		 * to a broken cache device, dc->io_disable should be
1769 		 * explicitly set to true.
1770 		 */
1771 		dc->io_disable = true;
1772 		/* make others know io_disable is true earlier */
1773 		smp_mb();
1774 		bcache_device_stop(d);
1775 	} else {
1776 		/*
1777 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1778 		 * and dc->has_dirty == 0
1779 		 */
1780 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1781 			d->disk->disk_name);
1782 	}
1783 }
1784 
__cache_set_unregister(struct closure * cl)1785 static void __cache_set_unregister(struct closure *cl)
1786 {
1787 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1788 	struct cached_dev *dc;
1789 	struct bcache_device *d;
1790 	size_t i;
1791 
1792 	mutex_lock(&bch_register_lock);
1793 
1794 	for (i = 0; i < c->devices_max_used; i++) {
1795 		d = c->devices[i];
1796 		if (!d)
1797 			continue;
1798 
1799 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1800 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1801 			dc = container_of(d, struct cached_dev, disk);
1802 			bch_cached_dev_detach(dc);
1803 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1804 				conditional_stop_bcache_device(c, d, dc);
1805 		} else {
1806 			bcache_device_stop(d);
1807 		}
1808 	}
1809 
1810 	mutex_unlock(&bch_register_lock);
1811 
1812 	continue_at(cl, cache_set_flush, system_wq);
1813 }
1814 
bch_cache_set_stop(struct cache_set * c)1815 void bch_cache_set_stop(struct cache_set *c)
1816 {
1817 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1818 		/* closure_fn set to __cache_set_unregister() */
1819 		closure_queue(&c->caching);
1820 }
1821 
bch_cache_set_unregister(struct cache_set * c)1822 void bch_cache_set_unregister(struct cache_set *c)
1823 {
1824 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1825 	bch_cache_set_stop(c);
1826 }
1827 
1828 #define alloc_meta_bucket_pages(gfp, sb)		\
1829 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1830 
bch_cache_set_alloc(struct cache_sb * sb)1831 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1832 {
1833 	int iter_size;
1834 	struct cache *ca = container_of(sb, struct cache, sb);
1835 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1836 
1837 	if (!c)
1838 		return NULL;
1839 
1840 	__module_get(THIS_MODULE);
1841 	closure_init(&c->cl, NULL);
1842 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1843 
1844 	closure_init(&c->caching, &c->cl);
1845 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1846 
1847 	/* Maybe create continue_at_noreturn() and use it here? */
1848 	closure_set_stopped(&c->cl);
1849 	closure_put(&c->cl);
1850 
1851 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1852 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1853 
1854 	bch_cache_accounting_init(&c->accounting, &c->cl);
1855 
1856 	memcpy(c->set_uuid, sb->set_uuid, 16);
1857 
1858 	c->cache		= ca;
1859 	c->cache->set		= c;
1860 	c->bucket_bits		= ilog2(sb->bucket_size);
1861 	c->block_bits		= ilog2(sb->block_size);
1862 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1863 	c->devices_max_used	= 0;
1864 	atomic_set(&c->attached_dev_nr, 0);
1865 	c->btree_pages		= meta_bucket_pages(sb);
1866 	if (c->btree_pages > BTREE_MAX_PAGES)
1867 		c->btree_pages = max_t(int, c->btree_pages / 4,
1868 				       BTREE_MAX_PAGES);
1869 
1870 	sema_init(&c->sb_write_mutex, 1);
1871 	mutex_init(&c->bucket_lock);
1872 	init_waitqueue_head(&c->btree_cache_wait);
1873 	spin_lock_init(&c->btree_cannibalize_lock);
1874 	init_waitqueue_head(&c->bucket_wait);
1875 	init_waitqueue_head(&c->gc_wait);
1876 	sema_init(&c->uuid_write_mutex, 1);
1877 
1878 	spin_lock_init(&c->btree_gc_time.lock);
1879 	spin_lock_init(&c->btree_split_time.lock);
1880 	spin_lock_init(&c->btree_read_time.lock);
1881 
1882 	bch_moving_init_cache_set(c);
1883 
1884 	INIT_LIST_HEAD(&c->list);
1885 	INIT_LIST_HEAD(&c->cached_devs);
1886 	INIT_LIST_HEAD(&c->btree_cache);
1887 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1888 	INIT_LIST_HEAD(&c->btree_cache_freed);
1889 	INIT_LIST_HEAD(&c->data_buckets);
1890 
1891 	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1892 		sizeof(struct btree_iter_set);
1893 
1894 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1895 	if (!c->devices)
1896 		goto err;
1897 
1898 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1899 		goto err;
1900 
1901 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1902 			sizeof(struct bbio) +
1903 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1904 		goto err;
1905 
1906 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1907 		goto err;
1908 
1909 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1910 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1911 		goto err;
1912 
1913 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1914 	if (!c->uuids)
1915 		goto err;
1916 
1917 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1918 	if (!c->moving_gc_wq)
1919 		goto err;
1920 
1921 	if (bch_journal_alloc(c))
1922 		goto err;
1923 
1924 	if (bch_btree_cache_alloc(c))
1925 		goto err;
1926 
1927 	if (bch_open_buckets_alloc(c))
1928 		goto err;
1929 
1930 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1931 		goto err;
1932 
1933 	c->congested_read_threshold_us	= 2000;
1934 	c->congested_write_threshold_us	= 20000;
1935 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1936 	c->idle_max_writeback_rate_enabled = 1;
1937 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1938 
1939 	return c;
1940 err:
1941 	bch_cache_set_unregister(c);
1942 	return NULL;
1943 }
1944 
run_cache_set(struct cache_set * c)1945 static int run_cache_set(struct cache_set *c)
1946 {
1947 	const char *err = "cannot allocate memory";
1948 	struct cached_dev *dc, *t;
1949 	struct cache *ca = c->cache;
1950 	struct closure cl;
1951 	LIST_HEAD(journal);
1952 	struct journal_replay *l;
1953 
1954 	closure_init_stack(&cl);
1955 
1956 	c->nbuckets = ca->sb.nbuckets;
1957 	set_gc_sectors(c);
1958 
1959 	if (CACHE_SYNC(&c->cache->sb)) {
1960 		struct bkey *k;
1961 		struct jset *j;
1962 
1963 		err = "cannot allocate memory for journal";
1964 		if (bch_journal_read(c, &journal))
1965 			goto err;
1966 
1967 		pr_debug("btree_journal_read() done\n");
1968 
1969 		err = "no journal entries found";
1970 		if (list_empty(&journal))
1971 			goto err;
1972 
1973 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1974 
1975 		err = "IO error reading priorities";
1976 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1977 			goto err;
1978 
1979 		/*
1980 		 * If prio_read() fails it'll call cache_set_error and we'll
1981 		 * tear everything down right away, but if we perhaps checked
1982 		 * sooner we could avoid journal replay.
1983 		 */
1984 
1985 		k = &j->btree_root;
1986 
1987 		err = "bad btree root";
1988 		if (__bch_btree_ptr_invalid(c, k))
1989 			goto err;
1990 
1991 		err = "error reading btree root";
1992 		c->root = bch_btree_node_get(c, NULL, k,
1993 					     j->btree_level,
1994 					     true, NULL);
1995 		if (IS_ERR_OR_NULL(c->root))
1996 			goto err;
1997 
1998 		list_del_init(&c->root->list);
1999 		rw_unlock(true, c->root);
2000 
2001 		err = uuid_read(c, j, &cl);
2002 		if (err)
2003 			goto err;
2004 
2005 		err = "error in recovery";
2006 		if (bch_btree_check(c))
2007 			goto err;
2008 
2009 		bch_journal_mark(c, &journal);
2010 		bch_initial_gc_finish(c);
2011 		pr_debug("btree_check() done\n");
2012 
2013 		/*
2014 		 * bcache_journal_next() can't happen sooner, or
2015 		 * btree_gc_finish() will give spurious errors about last_gc >
2016 		 * gc_gen - this is a hack but oh well.
2017 		 */
2018 		bch_journal_next(&c->journal);
2019 
2020 		err = "error starting allocator thread";
2021 		if (bch_cache_allocator_start(ca))
2022 			goto err;
2023 
2024 		/*
2025 		 * First place it's safe to allocate: btree_check() and
2026 		 * btree_gc_finish() have to run before we have buckets to
2027 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2028 		 * entry to be written so bcache_journal_next() has to be called
2029 		 * first.
2030 		 *
2031 		 * If the uuids were in the old format we have to rewrite them
2032 		 * before the next journal entry is written:
2033 		 */
2034 		if (j->version < BCACHE_JSET_VERSION_UUID)
2035 			__uuid_write(c);
2036 
2037 		err = "bcache: replay journal failed";
2038 		if (bch_journal_replay(c, &journal))
2039 			goto err;
2040 	} else {
2041 		unsigned int j;
2042 
2043 		pr_notice("invalidating existing data\n");
2044 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2045 					2, SB_JOURNAL_BUCKETS);
2046 
2047 		for (j = 0; j < ca->sb.keys; j++)
2048 			ca->sb.d[j] = ca->sb.first_bucket + j;
2049 
2050 		bch_initial_gc_finish(c);
2051 
2052 		err = "error starting allocator thread";
2053 		if (bch_cache_allocator_start(ca))
2054 			goto err;
2055 
2056 		mutex_lock(&c->bucket_lock);
2057 		bch_prio_write(ca, true);
2058 		mutex_unlock(&c->bucket_lock);
2059 
2060 		err = "cannot allocate new UUID bucket";
2061 		if (__uuid_write(c))
2062 			goto err;
2063 
2064 		err = "cannot allocate new btree root";
2065 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2066 		if (IS_ERR_OR_NULL(c->root))
2067 			goto err;
2068 
2069 		mutex_lock(&c->root->write_lock);
2070 		bkey_copy_key(&c->root->key, &MAX_KEY);
2071 		bch_btree_node_write(c->root, &cl);
2072 		mutex_unlock(&c->root->write_lock);
2073 
2074 		bch_btree_set_root(c->root);
2075 		rw_unlock(true, c->root);
2076 
2077 		/*
2078 		 * We don't want to write the first journal entry until
2079 		 * everything is set up - fortunately journal entries won't be
2080 		 * written until the SET_CACHE_SYNC() here:
2081 		 */
2082 		SET_CACHE_SYNC(&c->cache->sb, true);
2083 
2084 		bch_journal_next(&c->journal);
2085 		bch_journal_meta(c, &cl);
2086 	}
2087 
2088 	err = "error starting gc thread";
2089 	if (bch_gc_thread_start(c))
2090 		goto err;
2091 
2092 	closure_sync(&cl);
2093 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2094 	bcache_write_super(c);
2095 
2096 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2097 		bch_cached_dev_attach(dc, c, NULL);
2098 
2099 	flash_devs_run(c);
2100 
2101 	set_bit(CACHE_SET_RUNNING, &c->flags);
2102 	return 0;
2103 err:
2104 	while (!list_empty(&journal)) {
2105 		l = list_first_entry(&journal, struct journal_replay, list);
2106 		list_del(&l->list);
2107 		kfree(l);
2108 	}
2109 
2110 	closure_sync(&cl);
2111 
2112 	bch_cache_set_error(c, "%s", err);
2113 
2114 	return -EIO;
2115 }
2116 
register_cache_set(struct cache * ca)2117 static const char *register_cache_set(struct cache *ca)
2118 {
2119 	char buf[12];
2120 	const char *err = "cannot allocate memory";
2121 	struct cache_set *c;
2122 
2123 	list_for_each_entry(c, &bch_cache_sets, list)
2124 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2125 			if (c->cache)
2126 				return "duplicate cache set member";
2127 
2128 			goto found;
2129 		}
2130 
2131 	c = bch_cache_set_alloc(&ca->sb);
2132 	if (!c)
2133 		return err;
2134 
2135 	err = "error creating kobject";
2136 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2137 	    kobject_add(&c->internal, &c->kobj, "internal"))
2138 		goto err;
2139 
2140 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2141 		goto err;
2142 
2143 	bch_debug_init_cache_set(c);
2144 
2145 	list_add(&c->list, &bch_cache_sets);
2146 found:
2147 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2148 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2149 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2150 		goto err;
2151 
2152 	kobject_get(&ca->kobj);
2153 	ca->set = c;
2154 	ca->set->cache = ca;
2155 
2156 	err = "failed to run cache set";
2157 	if (run_cache_set(c) < 0)
2158 		goto err;
2159 
2160 	return NULL;
2161 err:
2162 	bch_cache_set_unregister(c);
2163 	return err;
2164 }
2165 
2166 /* Cache device */
2167 
2168 /* When ca->kobj released */
bch_cache_release(struct kobject * kobj)2169 void bch_cache_release(struct kobject *kobj)
2170 {
2171 	struct cache *ca = container_of(kobj, struct cache, kobj);
2172 	unsigned int i;
2173 
2174 	if (ca->set) {
2175 		BUG_ON(ca->set->cache != ca);
2176 		ca->set->cache = NULL;
2177 	}
2178 
2179 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2180 	kfree(ca->prio_buckets);
2181 	vfree(ca->buckets);
2182 
2183 	free_heap(&ca->heap);
2184 	free_fifo(&ca->free_inc);
2185 
2186 	for (i = 0; i < RESERVE_NR; i++)
2187 		free_fifo(&ca->free[i]);
2188 
2189 	if (ca->sb_disk)
2190 		put_page(virt_to_page(ca->sb_disk));
2191 
2192 	if (!IS_ERR_OR_NULL(ca->bdev))
2193 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2194 
2195 	kfree(ca);
2196 	module_put(THIS_MODULE);
2197 }
2198 
cache_alloc(struct cache * ca)2199 static int cache_alloc(struct cache *ca)
2200 {
2201 	size_t free;
2202 	size_t btree_buckets;
2203 	struct bucket *b;
2204 	int ret = -ENOMEM;
2205 	const char *err = NULL;
2206 
2207 	__module_get(THIS_MODULE);
2208 	kobject_init(&ca->kobj, &bch_cache_ktype);
2209 
2210 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2211 
2212 	/*
2213 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2214 	 * and in bch_journal_replay(), tree node may split,
2215 	 * so bucket of RESERVE_BTREE type is needed,
2216 	 * the worst situation is all journal buckets are valid journal,
2217 	 * and all the keys need to replay,
2218 	 * so the number of  RESERVE_BTREE type buckets should be as much
2219 	 * as journal buckets
2220 	 */
2221 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2222 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2223 	if (!free) {
2224 		ret = -EPERM;
2225 		err = "ca->sb.nbuckets is too small";
2226 		goto err_free;
2227 	}
2228 
2229 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2230 						GFP_KERNEL)) {
2231 		err = "ca->free[RESERVE_BTREE] alloc failed";
2232 		goto err_btree_alloc;
2233 	}
2234 
2235 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2236 							GFP_KERNEL)) {
2237 		err = "ca->free[RESERVE_PRIO] alloc failed";
2238 		goto err_prio_alloc;
2239 	}
2240 
2241 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2242 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2243 		goto err_movinggc_alloc;
2244 	}
2245 
2246 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2247 		err = "ca->free[RESERVE_NONE] alloc failed";
2248 		goto err_none_alloc;
2249 	}
2250 
2251 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2252 		err = "ca->free_inc alloc failed";
2253 		goto err_free_inc_alloc;
2254 	}
2255 
2256 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2257 		err = "ca->heap alloc failed";
2258 		goto err_heap_alloc;
2259 	}
2260 
2261 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2262 			      ca->sb.nbuckets));
2263 	if (!ca->buckets) {
2264 		err = "ca->buckets alloc failed";
2265 		goto err_buckets_alloc;
2266 	}
2267 
2268 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2269 				   prio_buckets(ca), 2),
2270 				   GFP_KERNEL);
2271 	if (!ca->prio_buckets) {
2272 		err = "ca->prio_buckets alloc failed";
2273 		goto err_prio_buckets_alloc;
2274 	}
2275 
2276 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2277 	if (!ca->disk_buckets) {
2278 		err = "ca->disk_buckets alloc failed";
2279 		goto err_disk_buckets_alloc;
2280 	}
2281 
2282 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2283 
2284 	for_each_bucket(b, ca)
2285 		atomic_set(&b->pin, 0);
2286 	return 0;
2287 
2288 err_disk_buckets_alloc:
2289 	kfree(ca->prio_buckets);
2290 err_prio_buckets_alloc:
2291 	vfree(ca->buckets);
2292 err_buckets_alloc:
2293 	free_heap(&ca->heap);
2294 err_heap_alloc:
2295 	free_fifo(&ca->free_inc);
2296 err_free_inc_alloc:
2297 	free_fifo(&ca->free[RESERVE_NONE]);
2298 err_none_alloc:
2299 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2300 err_movinggc_alloc:
2301 	free_fifo(&ca->free[RESERVE_PRIO]);
2302 err_prio_alloc:
2303 	free_fifo(&ca->free[RESERVE_BTREE]);
2304 err_btree_alloc:
2305 err_free:
2306 	module_put(THIS_MODULE);
2307 	if (err)
2308 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2309 	return ret;
2310 }
2311 
register_cache(struct cache_sb * sb,struct cache_sb_disk * sb_disk,struct block_device * bdev,struct cache * ca)2312 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2313 				struct block_device *bdev, struct cache *ca)
2314 {
2315 	const char *err = NULL; /* must be set for any error case */
2316 	int ret = 0;
2317 
2318 	bdevname(bdev, ca->cache_dev_name);
2319 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2320 	ca->bdev = bdev;
2321 	ca->bdev->bd_holder = ca;
2322 	ca->sb_disk = sb_disk;
2323 
2324 	if (blk_queue_discard(bdev_get_queue(bdev)))
2325 		ca->discard = CACHE_DISCARD(&ca->sb);
2326 
2327 	ret = cache_alloc(ca);
2328 	if (ret != 0) {
2329 		/*
2330 		 * If we failed here, it means ca->kobj is not initialized yet,
2331 		 * kobject_put() won't be called and there is no chance to
2332 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2333 		 * explicitly call blkdev_put() here.
2334 		 */
2335 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2336 		if (ret == -ENOMEM)
2337 			err = "cache_alloc(): -ENOMEM";
2338 		else if (ret == -EPERM)
2339 			err = "cache_alloc(): cache device is too small";
2340 		else
2341 			err = "cache_alloc(): unknown error";
2342 		goto err;
2343 	}
2344 
2345 	if (kobject_add(&ca->kobj,
2346 			&part_to_dev(bdev->bd_part)->kobj,
2347 			"bcache")) {
2348 		err = "error calling kobject_add";
2349 		ret = -ENOMEM;
2350 		goto out;
2351 	}
2352 
2353 	mutex_lock(&bch_register_lock);
2354 	err = register_cache_set(ca);
2355 	mutex_unlock(&bch_register_lock);
2356 
2357 	if (err) {
2358 		ret = -ENODEV;
2359 		goto out;
2360 	}
2361 
2362 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2363 
2364 out:
2365 	kobject_put(&ca->kobj);
2366 
2367 err:
2368 	if (err)
2369 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2370 
2371 	return ret;
2372 }
2373 
2374 /* Global interfaces/init */
2375 
2376 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2377 			       const char *buffer, size_t size);
2378 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2379 					 struct kobj_attribute *attr,
2380 					 const char *buffer, size_t size);
2381 
2382 kobj_attribute_write(register,		register_bcache);
2383 kobj_attribute_write(register_quiet,	register_bcache);
2384 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2385 
bch_is_open_backing(struct block_device * bdev)2386 static bool bch_is_open_backing(struct block_device *bdev)
2387 {
2388 	struct cache_set *c, *tc;
2389 	struct cached_dev *dc, *t;
2390 
2391 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2392 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2393 			if (dc->bdev == bdev)
2394 				return true;
2395 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2396 		if (dc->bdev == bdev)
2397 			return true;
2398 	return false;
2399 }
2400 
bch_is_open_cache(struct block_device * bdev)2401 static bool bch_is_open_cache(struct block_device *bdev)
2402 {
2403 	struct cache_set *c, *tc;
2404 
2405 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2406 		struct cache *ca = c->cache;
2407 
2408 		if (ca->bdev == bdev)
2409 			return true;
2410 	}
2411 
2412 	return false;
2413 }
2414 
bch_is_open(struct block_device * bdev)2415 static bool bch_is_open(struct block_device *bdev)
2416 {
2417 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2418 }
2419 
2420 struct async_reg_args {
2421 	struct delayed_work reg_work;
2422 	char *path;
2423 	struct cache_sb *sb;
2424 	struct cache_sb_disk *sb_disk;
2425 	struct block_device *bdev;
2426 };
2427 
register_bdev_worker(struct work_struct * work)2428 static void register_bdev_worker(struct work_struct *work)
2429 {
2430 	int fail = false;
2431 	struct async_reg_args *args =
2432 		container_of(work, struct async_reg_args, reg_work.work);
2433 	struct cached_dev *dc;
2434 
2435 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2436 	if (!dc) {
2437 		fail = true;
2438 		put_page(virt_to_page(args->sb_disk));
2439 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2440 		goto out;
2441 	}
2442 
2443 	mutex_lock(&bch_register_lock);
2444 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2445 		fail = true;
2446 	mutex_unlock(&bch_register_lock);
2447 
2448 out:
2449 	if (fail)
2450 		pr_info("error %s: fail to register backing device\n",
2451 			args->path);
2452 	kfree(args->sb);
2453 	kfree(args->path);
2454 	kfree(args);
2455 	module_put(THIS_MODULE);
2456 }
2457 
register_cache_worker(struct work_struct * work)2458 static void register_cache_worker(struct work_struct *work)
2459 {
2460 	int fail = false;
2461 	struct async_reg_args *args =
2462 		container_of(work, struct async_reg_args, reg_work.work);
2463 	struct cache *ca;
2464 
2465 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2466 	if (!ca) {
2467 		fail = true;
2468 		put_page(virt_to_page(args->sb_disk));
2469 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2470 		goto out;
2471 	}
2472 
2473 	/* blkdev_put() will be called in bch_cache_release() */
2474 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2475 		fail = true;
2476 
2477 out:
2478 	if (fail)
2479 		pr_info("error %s: fail to register cache device\n",
2480 			args->path);
2481 	kfree(args->sb);
2482 	kfree(args->path);
2483 	kfree(args);
2484 	module_put(THIS_MODULE);
2485 }
2486 
register_device_aync(struct async_reg_args * args)2487 static void register_device_aync(struct async_reg_args *args)
2488 {
2489 	if (SB_IS_BDEV(args->sb))
2490 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2491 	else
2492 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2493 
2494 	/* 10 jiffies is enough for a delay */
2495 	queue_delayed_work(system_wq, &args->reg_work, 10);
2496 }
2497 
register_bcache(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2498 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2499 			       const char *buffer, size_t size)
2500 {
2501 	const char *err;
2502 	char *path = NULL;
2503 	struct cache_sb *sb;
2504 	struct cache_sb_disk *sb_disk;
2505 	struct block_device *bdev;
2506 	ssize_t ret;
2507 	bool async_registration = false;
2508 
2509 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2510 	async_registration = true;
2511 #endif
2512 
2513 	ret = -EBUSY;
2514 	err = "failed to reference bcache module";
2515 	if (!try_module_get(THIS_MODULE))
2516 		goto out;
2517 
2518 	/* For latest state of bcache_is_reboot */
2519 	smp_mb();
2520 	err = "bcache is in reboot";
2521 	if (bcache_is_reboot)
2522 		goto out_module_put;
2523 
2524 	ret = -ENOMEM;
2525 	err = "cannot allocate memory";
2526 	path = kstrndup(buffer, size, GFP_KERNEL);
2527 	if (!path)
2528 		goto out_module_put;
2529 
2530 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2531 	if (!sb)
2532 		goto out_free_path;
2533 
2534 	ret = -EINVAL;
2535 	err = "failed to open device";
2536 	bdev = blkdev_get_by_path(strim(path),
2537 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2538 				  sb);
2539 	if (IS_ERR(bdev)) {
2540 		if (bdev == ERR_PTR(-EBUSY)) {
2541 			bdev = lookup_bdev(strim(path));
2542 			mutex_lock(&bch_register_lock);
2543 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2544 				err = "device already registered";
2545 			else
2546 				err = "device busy";
2547 			mutex_unlock(&bch_register_lock);
2548 			if (!IS_ERR(bdev))
2549 				bdput(bdev);
2550 			if (attr == &ksysfs_register_quiet)
2551 				goto done;
2552 		}
2553 		goto out_free_sb;
2554 	}
2555 
2556 	err = "failed to set blocksize";
2557 	if (set_blocksize(bdev, 4096))
2558 		goto out_blkdev_put;
2559 
2560 	err = read_super(sb, bdev, &sb_disk);
2561 	if (err)
2562 		goto out_blkdev_put;
2563 
2564 	err = "failed to register device";
2565 
2566 	if (async_registration) {
2567 		/* register in asynchronous way */
2568 		struct async_reg_args *args =
2569 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2570 
2571 		if (!args) {
2572 			ret = -ENOMEM;
2573 			err = "cannot allocate memory";
2574 			goto out_put_sb_page;
2575 		}
2576 
2577 		args->path	= path;
2578 		args->sb	= sb;
2579 		args->sb_disk	= sb_disk;
2580 		args->bdev	= bdev;
2581 		register_device_aync(args);
2582 		/* No wait and returns to user space */
2583 		goto async_done;
2584 	}
2585 
2586 	if (SB_IS_BDEV(sb)) {
2587 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2588 
2589 		if (!dc)
2590 			goto out_put_sb_page;
2591 
2592 		mutex_lock(&bch_register_lock);
2593 		ret = register_bdev(sb, sb_disk, bdev, dc);
2594 		mutex_unlock(&bch_register_lock);
2595 		/* blkdev_put() will be called in cached_dev_free() */
2596 		if (ret < 0)
2597 			goto out_free_sb;
2598 	} else {
2599 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2600 
2601 		if (!ca)
2602 			goto out_put_sb_page;
2603 
2604 		/* blkdev_put() will be called in bch_cache_release() */
2605 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2606 			goto out_free_sb;
2607 	}
2608 
2609 done:
2610 	kfree(sb);
2611 	kfree(path);
2612 	module_put(THIS_MODULE);
2613 async_done:
2614 	return size;
2615 
2616 out_put_sb_page:
2617 	put_page(virt_to_page(sb_disk));
2618 out_blkdev_put:
2619 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2620 out_free_sb:
2621 	kfree(sb);
2622 out_free_path:
2623 	kfree(path);
2624 	path = NULL;
2625 out_module_put:
2626 	module_put(THIS_MODULE);
2627 out:
2628 	pr_info("error %s: %s\n", path?path:"", err);
2629 	return ret;
2630 }
2631 
2632 
2633 struct pdev {
2634 	struct list_head list;
2635 	struct cached_dev *dc;
2636 };
2637 
bch_pending_bdevs_cleanup(struct kobject * k,struct kobj_attribute * attr,const char * buffer,size_t size)2638 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2639 					 struct kobj_attribute *attr,
2640 					 const char *buffer,
2641 					 size_t size)
2642 {
2643 	LIST_HEAD(pending_devs);
2644 	ssize_t ret = size;
2645 	struct cached_dev *dc, *tdc;
2646 	struct pdev *pdev, *tpdev;
2647 	struct cache_set *c, *tc;
2648 
2649 	mutex_lock(&bch_register_lock);
2650 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2651 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2652 		if (!pdev)
2653 			break;
2654 		pdev->dc = dc;
2655 		list_add(&pdev->list, &pending_devs);
2656 	}
2657 
2658 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2659 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2660 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2661 			char *set_uuid = c->set_uuid;
2662 
2663 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2664 				list_del(&pdev->list);
2665 				kfree(pdev);
2666 				break;
2667 			}
2668 		}
2669 	}
2670 	mutex_unlock(&bch_register_lock);
2671 
2672 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2673 		pr_info("delete pdev %p\n", pdev);
2674 		list_del(&pdev->list);
2675 		bcache_device_stop(&pdev->dc->disk);
2676 		kfree(pdev);
2677 	}
2678 
2679 	return ret;
2680 }
2681 
bcache_reboot(struct notifier_block * n,unsigned long code,void * x)2682 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2683 {
2684 	if (bcache_is_reboot)
2685 		return NOTIFY_DONE;
2686 
2687 	if (code == SYS_DOWN ||
2688 	    code == SYS_HALT ||
2689 	    code == SYS_POWER_OFF) {
2690 		DEFINE_WAIT(wait);
2691 		unsigned long start = jiffies;
2692 		bool stopped = false;
2693 
2694 		struct cache_set *c, *tc;
2695 		struct cached_dev *dc, *tdc;
2696 
2697 		mutex_lock(&bch_register_lock);
2698 
2699 		if (bcache_is_reboot)
2700 			goto out;
2701 
2702 		/* New registration is rejected since now */
2703 		bcache_is_reboot = true;
2704 		/*
2705 		 * Make registering caller (if there is) on other CPU
2706 		 * core know bcache_is_reboot set to true earlier
2707 		 */
2708 		smp_mb();
2709 
2710 		if (list_empty(&bch_cache_sets) &&
2711 		    list_empty(&uncached_devices))
2712 			goto out;
2713 
2714 		mutex_unlock(&bch_register_lock);
2715 
2716 		pr_info("Stopping all devices:\n");
2717 
2718 		/*
2719 		 * The reason bch_register_lock is not held to call
2720 		 * bch_cache_set_stop() and bcache_device_stop() is to
2721 		 * avoid potential deadlock during reboot, because cache
2722 		 * set or bcache device stopping process will acqurie
2723 		 * bch_register_lock too.
2724 		 *
2725 		 * We are safe here because bcache_is_reboot sets to
2726 		 * true already, register_bcache() will reject new
2727 		 * registration now. bcache_is_reboot also makes sure
2728 		 * bcache_reboot() won't be re-entered on by other thread,
2729 		 * so there is no race in following list iteration by
2730 		 * list_for_each_entry_safe().
2731 		 */
2732 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2733 			bch_cache_set_stop(c);
2734 
2735 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2736 			bcache_device_stop(&dc->disk);
2737 
2738 
2739 		/*
2740 		 * Give an early chance for other kthreads and
2741 		 * kworkers to stop themselves
2742 		 */
2743 		schedule();
2744 
2745 		/* What's a condition variable? */
2746 		while (1) {
2747 			long timeout = start + 10 * HZ - jiffies;
2748 
2749 			mutex_lock(&bch_register_lock);
2750 			stopped = list_empty(&bch_cache_sets) &&
2751 				list_empty(&uncached_devices);
2752 
2753 			if (timeout < 0 || stopped)
2754 				break;
2755 
2756 			prepare_to_wait(&unregister_wait, &wait,
2757 					TASK_UNINTERRUPTIBLE);
2758 
2759 			mutex_unlock(&bch_register_lock);
2760 			schedule_timeout(timeout);
2761 		}
2762 
2763 		finish_wait(&unregister_wait, &wait);
2764 
2765 		if (stopped)
2766 			pr_info("All devices stopped\n");
2767 		else
2768 			pr_notice("Timeout waiting for devices to be closed\n");
2769 out:
2770 		mutex_unlock(&bch_register_lock);
2771 	}
2772 
2773 	return NOTIFY_DONE;
2774 }
2775 
2776 static struct notifier_block reboot = {
2777 	.notifier_call	= bcache_reboot,
2778 	.priority	= INT_MAX, /* before any real devices */
2779 };
2780 
bcache_exit(void)2781 static void bcache_exit(void)
2782 {
2783 	bch_debug_exit();
2784 	bch_request_exit();
2785 	if (bcache_kobj)
2786 		kobject_put(bcache_kobj);
2787 	if (bcache_wq)
2788 		destroy_workqueue(bcache_wq);
2789 	if (bch_journal_wq)
2790 		destroy_workqueue(bch_journal_wq);
2791 
2792 	if (bcache_major)
2793 		unregister_blkdev(bcache_major, "bcache");
2794 	unregister_reboot_notifier(&reboot);
2795 	mutex_destroy(&bch_register_lock);
2796 }
2797 
2798 /* Check and fixup module parameters */
check_module_parameters(void)2799 static void check_module_parameters(void)
2800 {
2801 	if (bch_cutoff_writeback_sync == 0)
2802 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2803 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2804 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2805 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2806 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2807 	}
2808 
2809 	if (bch_cutoff_writeback == 0)
2810 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2811 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2812 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2813 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2814 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2815 	}
2816 
2817 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2818 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2819 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2820 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2821 	}
2822 }
2823 
bcache_init(void)2824 static int __init bcache_init(void)
2825 {
2826 	static const struct attribute *files[] = {
2827 		&ksysfs_register.attr,
2828 		&ksysfs_register_quiet.attr,
2829 		&ksysfs_pendings_cleanup.attr,
2830 		NULL
2831 	};
2832 
2833 	check_module_parameters();
2834 
2835 	mutex_init(&bch_register_lock);
2836 	init_waitqueue_head(&unregister_wait);
2837 	register_reboot_notifier(&reboot);
2838 
2839 	bcache_major = register_blkdev(0, "bcache");
2840 	if (bcache_major < 0) {
2841 		unregister_reboot_notifier(&reboot);
2842 		mutex_destroy(&bch_register_lock);
2843 		return bcache_major;
2844 	}
2845 
2846 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2847 	if (!bcache_wq)
2848 		goto err;
2849 
2850 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2851 	if (!bch_journal_wq)
2852 		goto err;
2853 
2854 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2855 	if (!bcache_kobj)
2856 		goto err;
2857 
2858 	if (bch_request_init() ||
2859 	    sysfs_create_files(bcache_kobj, files))
2860 		goto err;
2861 
2862 	bch_debug_init();
2863 	closure_debug_init();
2864 
2865 	bcache_is_reboot = false;
2866 
2867 	return 0;
2868 err:
2869 	bcache_exit();
2870 	return -ENOMEM;
2871 }
2872 
2873 /*
2874  * Module hooks
2875  */
2876 module_exit(bcache_exit);
2877 module_init(bcache_init);
2878 
2879 module_param(bch_cutoff_writeback, uint, 0);
2880 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2881 
2882 module_param(bch_cutoff_writeback_sync, uint, 0);
2883 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2884 
2885 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2886 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2887 MODULE_LICENSE("GPL");
2888