1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 #include <asm/msidef.h>
24
25 #include "../irq_remapping.h"
26
27 enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30 };
31
32 struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37 };
38
39 struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44 };
45
46 struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52 };
53
54 struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60 };
61
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69 /*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85
ir_pre_enabled(struct intel_iommu * iommu)86 static bool ir_pre_enabled(struct intel_iommu *iommu)
87 {
88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89 }
90
clear_ir_pre_enabled(struct intel_iommu * iommu)91 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92 {
93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94 }
95
init_ir_status(struct intel_iommu * iommu)96 static void init_ir_status(struct intel_iommu *iommu)
97 {
98 u32 gsts;
99
100 gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 if (gsts & DMA_GSTS_IRES)
102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103 }
104
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)105 static int alloc_irte(struct intel_iommu *iommu,
106 struct irq_2_iommu *irq_iommu, u16 count)
107 {
108 struct ir_table *table = iommu->ir_table;
109 unsigned int mask = 0;
110 unsigned long flags;
111 int index;
112
113 if (!count || !irq_iommu)
114 return -1;
115
116 if (count > 1) {
117 count = __roundup_pow_of_two(count);
118 mask = ilog2(count);
119 }
120
121 if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 pr_err("Requested mask %x exceeds the max invalidation handle"
123 " mask value %Lx\n", mask,
124 ecap_max_handle_mask(iommu->ecap));
125 return -1;
126 }
127
128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 index = bitmap_find_free_region(table->bitmap,
130 INTR_REMAP_TABLE_ENTRIES, mask);
131 if (index < 0) {
132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 } else {
134 irq_iommu->iommu = iommu;
135 irq_iommu->irte_index = index;
136 irq_iommu->sub_handle = 0;
137 irq_iommu->irte_mask = mask;
138 irq_iommu->mode = IRQ_REMAPPING;
139 }
140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141
142 return index;
143 }
144
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 {
147 struct qi_desc desc;
148
149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 | QI_IEC_SELECTIVE;
151 desc.qw1 = 0;
152 desc.qw2 = 0;
153 desc.qw3 = 0;
154
155 return qi_submit_sync(iommu, &desc, 1, 0);
156 }
157
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)158 static int modify_irte(struct irq_2_iommu *irq_iommu,
159 struct irte *irte_modified)
160 {
161 struct intel_iommu *iommu;
162 unsigned long flags;
163 struct irte *irte;
164 int rc, index;
165
166 if (!irq_iommu)
167 return -1;
168
169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170
171 iommu = irq_iommu->iommu;
172
173 index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 irte = &iommu->ir_table->base[index];
175
176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 bool ret;
179
180 ret = cmpxchg_double(&irte->low, &irte->high,
181 irte->low, irte->high,
182 irte_modified->low, irte_modified->high);
183 /*
184 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 * and it cannot be updated by the hardware or other processors
186 * behind us, so the return value of cmpxchg16 should be the
187 * same as the old value.
188 */
189 WARN_ON(!ret);
190 } else
191 #endif
192 {
193 set_64bit(&irte->low, irte_modified->low);
194 set_64bit(&irte->high, irte_modified->high);
195 }
196 __iommu_flush_cache(iommu, irte, sizeof(*irte));
197
198 rc = qi_flush_iec(iommu, index, 0);
199
200 /* Update iommu mode according to the IRTE mode */
201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203
204 return rc;
205 }
206
map_hpet_to_ir(u8 hpet_id)207 static struct irq_domain *map_hpet_to_ir(u8 hpet_id)
208 {
209 int i;
210
211 for (i = 0; i < MAX_HPET_TBS; i++) {
212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 return ir_hpet[i].iommu->ir_domain;
214 }
215 return NULL;
216 }
217
map_ioapic_to_iommu(int apic)218 static struct intel_iommu *map_ioapic_to_iommu(int apic)
219 {
220 int i;
221
222 for (i = 0; i < MAX_IO_APICS; i++) {
223 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
224 return ir_ioapic[i].iommu;
225 }
226 return NULL;
227 }
228
map_ioapic_to_ir(int apic)229 static struct irq_domain *map_ioapic_to_ir(int apic)
230 {
231 struct intel_iommu *iommu = map_ioapic_to_iommu(apic);
232
233 return iommu ? iommu->ir_domain : NULL;
234 }
235
map_dev_to_ir(struct pci_dev * dev)236 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
237 {
238 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
239
240 return drhd ? drhd->iommu->ir_msi_domain : NULL;
241 }
242
clear_entries(struct irq_2_iommu * irq_iommu)243 static int clear_entries(struct irq_2_iommu *irq_iommu)
244 {
245 struct irte *start, *entry, *end;
246 struct intel_iommu *iommu;
247 int index;
248
249 if (irq_iommu->sub_handle)
250 return 0;
251
252 iommu = irq_iommu->iommu;
253 index = irq_iommu->irte_index;
254
255 start = iommu->ir_table->base + index;
256 end = start + (1 << irq_iommu->irte_mask);
257
258 for (entry = start; entry < end; entry++) {
259 set_64bit(&entry->low, 0);
260 set_64bit(&entry->high, 0);
261 }
262 bitmap_release_region(iommu->ir_table->bitmap, index,
263 irq_iommu->irte_mask);
264
265 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
266 }
267
268 /*
269 * source validation type
270 */
271 #define SVT_NO_VERIFY 0x0 /* no verification is required */
272 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
273 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
274
275 /*
276 * source-id qualifier
277 */
278 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
279 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
280 * the third least significant bit
281 */
282 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
283 * the second and third least significant bits
284 */
285 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
286 * the least three significant bits
287 */
288
289 /*
290 * set SVT, SQ and SID fields of irte to verify
291 * source ids of interrupt requests
292 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)293 static void set_irte_sid(struct irte *irte, unsigned int svt,
294 unsigned int sq, unsigned int sid)
295 {
296 if (disable_sourceid_checking)
297 svt = SVT_NO_VERIFY;
298 irte->svt = svt;
299 irte->sq = sq;
300 irte->sid = sid;
301 }
302
303 /*
304 * Set an IRTE to match only the bus number. Interrupt requests that reference
305 * this IRTE must have a requester-id whose bus number is between or equal
306 * to the start_bus and end_bus arguments.
307 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)308 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
309 unsigned int end_bus)
310 {
311 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
312 (start_bus << 8) | end_bus);
313 }
314
set_ioapic_sid(struct irte * irte,int apic)315 static int set_ioapic_sid(struct irte *irte, int apic)
316 {
317 int i;
318 u16 sid = 0;
319
320 if (!irte)
321 return -1;
322
323 down_read(&dmar_global_lock);
324 for (i = 0; i < MAX_IO_APICS; i++) {
325 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
326 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
327 break;
328 }
329 }
330 up_read(&dmar_global_lock);
331
332 if (sid == 0) {
333 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
334 return -1;
335 }
336
337 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
338
339 return 0;
340 }
341
set_hpet_sid(struct irte * irte,u8 id)342 static int set_hpet_sid(struct irte *irte, u8 id)
343 {
344 int i;
345 u16 sid = 0;
346
347 if (!irte)
348 return -1;
349
350 down_read(&dmar_global_lock);
351 for (i = 0; i < MAX_HPET_TBS; i++) {
352 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
353 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
354 break;
355 }
356 }
357 up_read(&dmar_global_lock);
358
359 if (sid == 0) {
360 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
361 return -1;
362 }
363
364 /*
365 * Should really use SQ_ALL_16. Some platforms are broken.
366 * While we figure out the right quirks for these broken platforms, use
367 * SQ_13_IGNORE_3 for now.
368 */
369 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
370
371 return 0;
372 }
373
374 struct set_msi_sid_data {
375 struct pci_dev *pdev;
376 u16 alias;
377 int count;
378 int busmatch_count;
379 };
380
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)381 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
382 {
383 struct set_msi_sid_data *data = opaque;
384
385 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
386 data->busmatch_count++;
387
388 data->pdev = pdev;
389 data->alias = alias;
390 data->count++;
391
392 return 0;
393 }
394
set_msi_sid(struct irte * irte,struct pci_dev * dev)395 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
396 {
397 struct set_msi_sid_data data;
398
399 if (!irte || !dev)
400 return -1;
401
402 data.count = 0;
403 data.busmatch_count = 0;
404 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
405
406 /*
407 * DMA alias provides us with a PCI device and alias. The only case
408 * where the it will return an alias on a different bus than the
409 * device is the case of a PCIe-to-PCI bridge, where the alias is for
410 * the subordinate bus. In this case we can only verify the bus.
411 *
412 * If there are multiple aliases, all with the same bus number,
413 * then all we can do is verify the bus. This is typical in NTB
414 * hardware which use proxy IDs where the device will generate traffic
415 * from multiple devfn numbers on the same bus.
416 *
417 * If the alias device is on a different bus than our source device
418 * then we have a topology based alias, use it.
419 *
420 * Otherwise, the alias is for a device DMA quirk and we cannot
421 * assume that MSI uses the same requester ID. Therefore use the
422 * original device.
423 */
424 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
425 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
426 dev->bus->number);
427 else if (data.count >= 2 && data.busmatch_count == data.count)
428 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
429 else if (data.pdev->bus->number != dev->bus->number)
430 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
431 else
432 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
433 pci_dev_id(dev));
434
435 return 0;
436 }
437
iommu_load_old_irte(struct intel_iommu * iommu)438 static int iommu_load_old_irte(struct intel_iommu *iommu)
439 {
440 struct irte *old_ir_table;
441 phys_addr_t irt_phys;
442 unsigned int i;
443 size_t size;
444 u64 irta;
445
446 /* Check whether the old ir-table has the same size as ours */
447 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
448 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
449 != INTR_REMAP_TABLE_REG_SIZE)
450 return -EINVAL;
451
452 irt_phys = irta & VTD_PAGE_MASK;
453 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
454
455 /* Map the old IR table */
456 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
457 if (!old_ir_table)
458 return -ENOMEM;
459
460 /* Copy data over */
461 memcpy(iommu->ir_table->base, old_ir_table, size);
462
463 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
464
465 /*
466 * Now check the table for used entries and mark those as
467 * allocated in the bitmap
468 */
469 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
470 if (iommu->ir_table->base[i].present)
471 bitmap_set(iommu->ir_table->bitmap, i, 1);
472 }
473
474 memunmap(old_ir_table);
475
476 return 0;
477 }
478
479
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)480 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
481 {
482 unsigned long flags;
483 u64 addr;
484 u32 sts;
485
486 addr = virt_to_phys((void *)iommu->ir_table->base);
487
488 raw_spin_lock_irqsave(&iommu->register_lock, flags);
489
490 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
491 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
492
493 /* Set interrupt-remapping table pointer */
494 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
495
496 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
497 readl, (sts & DMA_GSTS_IRTPS), sts);
498 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
499
500 /*
501 * Global invalidation of interrupt entry cache to make sure the
502 * hardware uses the new irq remapping table.
503 */
504 qi_global_iec(iommu);
505 }
506
iommu_enable_irq_remapping(struct intel_iommu * iommu)507 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
508 {
509 unsigned long flags;
510 u32 sts;
511
512 raw_spin_lock_irqsave(&iommu->register_lock, flags);
513
514 /* Enable interrupt-remapping */
515 iommu->gcmd |= DMA_GCMD_IRE;
516 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
517 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
518 readl, (sts & DMA_GSTS_IRES), sts);
519
520 /* Block compatibility-format MSIs */
521 if (sts & DMA_GSTS_CFIS) {
522 iommu->gcmd &= ~DMA_GCMD_CFI;
523 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
524 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
525 readl, !(sts & DMA_GSTS_CFIS), sts);
526 }
527
528 /*
529 * With CFI clear in the Global Command register, we should be
530 * protected from dangerous (i.e. compatibility) interrupts
531 * regardless of x2apic status. Check just to be sure.
532 */
533 if (sts & DMA_GSTS_CFIS)
534 WARN(1, KERN_WARNING
535 "Compatibility-format IRQs enabled despite intr remapping;\n"
536 "you are vulnerable to IRQ injection.\n");
537
538 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
539 }
540
intel_setup_irq_remapping(struct intel_iommu * iommu)541 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
542 {
543 struct ir_table *ir_table;
544 struct fwnode_handle *fn;
545 unsigned long *bitmap;
546 struct page *pages;
547
548 if (iommu->ir_table)
549 return 0;
550
551 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
552 if (!ir_table)
553 return -ENOMEM;
554
555 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
556 INTR_REMAP_PAGE_ORDER);
557 if (!pages) {
558 pr_err("IR%d: failed to allocate pages of order %d\n",
559 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
560 goto out_free_table;
561 }
562
563 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
564 if (bitmap == NULL) {
565 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
566 goto out_free_pages;
567 }
568
569 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
570 if (!fn)
571 goto out_free_bitmap;
572
573 iommu->ir_domain =
574 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
575 0, INTR_REMAP_TABLE_ENTRIES,
576 fn, &intel_ir_domain_ops,
577 iommu);
578 if (!iommu->ir_domain) {
579 irq_domain_free_fwnode(fn);
580 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
581 goto out_free_bitmap;
582 }
583 iommu->ir_msi_domain =
584 arch_create_remap_msi_irq_domain(iommu->ir_domain,
585 "INTEL-IR-MSI",
586 iommu->seq_id);
587
588 ir_table->base = page_address(pages);
589 ir_table->bitmap = bitmap;
590 iommu->ir_table = ir_table;
591
592 /*
593 * If the queued invalidation is already initialized,
594 * shouldn't disable it.
595 */
596 if (!iommu->qi) {
597 /*
598 * Clear previous faults.
599 */
600 dmar_fault(-1, iommu);
601 dmar_disable_qi(iommu);
602
603 if (dmar_enable_qi(iommu)) {
604 pr_err("Failed to enable queued invalidation\n");
605 goto out_free_bitmap;
606 }
607 }
608
609 init_ir_status(iommu);
610
611 if (ir_pre_enabled(iommu)) {
612 if (!is_kdump_kernel()) {
613 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
614 iommu->name);
615 clear_ir_pre_enabled(iommu);
616 iommu_disable_irq_remapping(iommu);
617 } else if (iommu_load_old_irte(iommu))
618 pr_err("Failed to copy IR table for %s from previous kernel\n",
619 iommu->name);
620 else
621 pr_info("Copied IR table for %s from previous kernel\n",
622 iommu->name);
623 }
624
625 iommu_set_irq_remapping(iommu, eim_mode);
626
627 return 0;
628
629 out_free_bitmap:
630 bitmap_free(bitmap);
631 out_free_pages:
632 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
633 out_free_table:
634 kfree(ir_table);
635
636 iommu->ir_table = NULL;
637
638 return -ENOMEM;
639 }
640
intel_teardown_irq_remapping(struct intel_iommu * iommu)641 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
642 {
643 struct fwnode_handle *fn;
644
645 if (iommu && iommu->ir_table) {
646 if (iommu->ir_msi_domain) {
647 fn = iommu->ir_msi_domain->fwnode;
648
649 irq_domain_remove(iommu->ir_msi_domain);
650 irq_domain_free_fwnode(fn);
651 iommu->ir_msi_domain = NULL;
652 }
653 if (iommu->ir_domain) {
654 fn = iommu->ir_domain->fwnode;
655
656 irq_domain_remove(iommu->ir_domain);
657 irq_domain_free_fwnode(fn);
658 iommu->ir_domain = NULL;
659 }
660 free_pages((unsigned long)iommu->ir_table->base,
661 INTR_REMAP_PAGE_ORDER);
662 bitmap_free(iommu->ir_table->bitmap);
663 kfree(iommu->ir_table);
664 iommu->ir_table = NULL;
665 }
666 }
667
668 /*
669 * Disable Interrupt Remapping.
670 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)671 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
672 {
673 unsigned long flags;
674 u32 sts;
675
676 if (!ecap_ir_support(iommu->ecap))
677 return;
678
679 /*
680 * global invalidation of interrupt entry cache before disabling
681 * interrupt-remapping.
682 */
683 qi_global_iec(iommu);
684
685 raw_spin_lock_irqsave(&iommu->register_lock, flags);
686
687 sts = readl(iommu->reg + DMAR_GSTS_REG);
688 if (!(sts & DMA_GSTS_IRES))
689 goto end;
690
691 iommu->gcmd &= ~DMA_GCMD_IRE;
692 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
693
694 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
695 readl, !(sts & DMA_GSTS_IRES), sts);
696
697 end:
698 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
699 }
700
dmar_x2apic_optout(void)701 static int __init dmar_x2apic_optout(void)
702 {
703 struct acpi_table_dmar *dmar;
704 dmar = (struct acpi_table_dmar *)dmar_tbl;
705 if (!dmar || no_x2apic_optout)
706 return 0;
707 return dmar->flags & DMAR_X2APIC_OPT_OUT;
708 }
709
intel_cleanup_irq_remapping(void)710 static void __init intel_cleanup_irq_remapping(void)
711 {
712 struct dmar_drhd_unit *drhd;
713 struct intel_iommu *iommu;
714
715 for_each_iommu(iommu, drhd) {
716 if (ecap_ir_support(iommu->ecap)) {
717 iommu_disable_irq_remapping(iommu);
718 intel_teardown_irq_remapping(iommu);
719 }
720 }
721
722 if (x2apic_supported())
723 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
724 }
725
intel_prepare_irq_remapping(void)726 static int __init intel_prepare_irq_remapping(void)
727 {
728 struct dmar_drhd_unit *drhd;
729 struct intel_iommu *iommu;
730 int eim = 0;
731
732 if (irq_remap_broken) {
733 pr_warn("This system BIOS has enabled interrupt remapping\n"
734 "on a chipset that contains an erratum making that\n"
735 "feature unstable. To maintain system stability\n"
736 "interrupt remapping is being disabled. Please\n"
737 "contact your BIOS vendor for an update\n");
738 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
739 return -ENODEV;
740 }
741
742 if (dmar_table_init() < 0)
743 return -ENODEV;
744
745 if (!dmar_ir_support())
746 return -ENODEV;
747
748 if (parse_ioapics_under_ir()) {
749 pr_info("Not enabling interrupt remapping\n");
750 goto error;
751 }
752
753 /* First make sure all IOMMUs support IRQ remapping */
754 for_each_iommu(iommu, drhd)
755 if (!ecap_ir_support(iommu->ecap))
756 goto error;
757
758 /* Detect remapping mode: lapic or x2apic */
759 if (x2apic_supported()) {
760 eim = !dmar_x2apic_optout();
761 if (!eim) {
762 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
763 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
764 }
765 }
766
767 for_each_iommu(iommu, drhd) {
768 if (eim && !ecap_eim_support(iommu->ecap)) {
769 pr_info("%s does not support EIM\n", iommu->name);
770 eim = 0;
771 }
772 }
773
774 eim_mode = eim;
775 if (eim)
776 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
777
778 /* Do the initializations early */
779 for_each_iommu(iommu, drhd) {
780 if (intel_setup_irq_remapping(iommu)) {
781 pr_err("Failed to setup irq remapping for %s\n",
782 iommu->name);
783 goto error;
784 }
785 }
786
787 return 0;
788
789 error:
790 intel_cleanup_irq_remapping();
791 return -ENODEV;
792 }
793
794 /*
795 * Set Posted-Interrupts capability.
796 */
set_irq_posting_cap(void)797 static inline void set_irq_posting_cap(void)
798 {
799 struct dmar_drhd_unit *drhd;
800 struct intel_iommu *iommu;
801
802 if (!disable_irq_post) {
803 /*
804 * If IRTE is in posted format, the 'pda' field goes across the
805 * 64-bit boundary, we need use cmpxchg16b to atomically update
806 * it. We only expose posted-interrupt when X86_FEATURE_CX16
807 * is supported. Actually, hardware platforms supporting PI
808 * should have X86_FEATURE_CX16 support, this has been confirmed
809 * with Intel hardware guys.
810 */
811 if (boot_cpu_has(X86_FEATURE_CX16))
812 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
813
814 for_each_iommu(iommu, drhd)
815 if (!cap_pi_support(iommu->cap)) {
816 intel_irq_remap_ops.capability &=
817 ~(1 << IRQ_POSTING_CAP);
818 break;
819 }
820 }
821 }
822
intel_enable_irq_remapping(void)823 static int __init intel_enable_irq_remapping(void)
824 {
825 struct dmar_drhd_unit *drhd;
826 struct intel_iommu *iommu;
827 bool setup = false;
828
829 /*
830 * Setup Interrupt-remapping for all the DRHD's now.
831 */
832 for_each_iommu(iommu, drhd) {
833 if (!ir_pre_enabled(iommu))
834 iommu_enable_irq_remapping(iommu);
835 setup = true;
836 }
837
838 if (!setup)
839 goto error;
840
841 irq_remapping_enabled = 1;
842
843 set_irq_posting_cap();
844
845 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
846
847 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
848
849 error:
850 intel_cleanup_irq_remapping();
851 return -1;
852 }
853
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)854 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
855 struct intel_iommu *iommu,
856 struct acpi_dmar_hardware_unit *drhd)
857 {
858 struct acpi_dmar_pci_path *path;
859 u8 bus;
860 int count, free = -1;
861
862 bus = scope->bus;
863 path = (struct acpi_dmar_pci_path *)(scope + 1);
864 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
865 / sizeof(struct acpi_dmar_pci_path);
866
867 while (--count > 0) {
868 /*
869 * Access PCI directly due to the PCI
870 * subsystem isn't initialized yet.
871 */
872 bus = read_pci_config_byte(bus, path->device, path->function,
873 PCI_SECONDARY_BUS);
874 path++;
875 }
876
877 for (count = 0; count < MAX_HPET_TBS; count++) {
878 if (ir_hpet[count].iommu == iommu &&
879 ir_hpet[count].id == scope->enumeration_id)
880 return 0;
881 else if (ir_hpet[count].iommu == NULL && free == -1)
882 free = count;
883 }
884 if (free == -1) {
885 pr_warn("Exceeded Max HPET blocks\n");
886 return -ENOSPC;
887 }
888
889 ir_hpet[free].iommu = iommu;
890 ir_hpet[free].id = scope->enumeration_id;
891 ir_hpet[free].bus = bus;
892 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
893 pr_info("HPET id %d under DRHD base 0x%Lx\n",
894 scope->enumeration_id, drhd->address);
895
896 return 0;
897 }
898
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)899 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
900 struct intel_iommu *iommu,
901 struct acpi_dmar_hardware_unit *drhd)
902 {
903 struct acpi_dmar_pci_path *path;
904 u8 bus;
905 int count, free = -1;
906
907 bus = scope->bus;
908 path = (struct acpi_dmar_pci_path *)(scope + 1);
909 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
910 / sizeof(struct acpi_dmar_pci_path);
911
912 while (--count > 0) {
913 /*
914 * Access PCI directly due to the PCI
915 * subsystem isn't initialized yet.
916 */
917 bus = read_pci_config_byte(bus, path->device, path->function,
918 PCI_SECONDARY_BUS);
919 path++;
920 }
921
922 for (count = 0; count < MAX_IO_APICS; count++) {
923 if (ir_ioapic[count].iommu == iommu &&
924 ir_ioapic[count].id == scope->enumeration_id)
925 return 0;
926 else if (ir_ioapic[count].iommu == NULL && free == -1)
927 free = count;
928 }
929 if (free == -1) {
930 pr_warn("Exceeded Max IO APICS\n");
931 return -ENOSPC;
932 }
933
934 ir_ioapic[free].bus = bus;
935 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
936 ir_ioapic[free].iommu = iommu;
937 ir_ioapic[free].id = scope->enumeration_id;
938 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
939 scope->enumeration_id, drhd->address, iommu->seq_id);
940
941 return 0;
942 }
943
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)944 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
945 struct intel_iommu *iommu)
946 {
947 int ret = 0;
948 struct acpi_dmar_hardware_unit *drhd;
949 struct acpi_dmar_device_scope *scope;
950 void *start, *end;
951
952 drhd = (struct acpi_dmar_hardware_unit *)header;
953 start = (void *)(drhd + 1);
954 end = ((void *)drhd) + header->length;
955
956 while (start < end && ret == 0) {
957 scope = start;
958 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
959 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
960 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
961 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
962 start += scope->length;
963 }
964
965 return ret;
966 }
967
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)968 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
969 {
970 int i;
971
972 for (i = 0; i < MAX_HPET_TBS; i++)
973 if (ir_hpet[i].iommu == iommu)
974 ir_hpet[i].iommu = NULL;
975
976 for (i = 0; i < MAX_IO_APICS; i++)
977 if (ir_ioapic[i].iommu == iommu)
978 ir_ioapic[i].iommu = NULL;
979 }
980
981 /*
982 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
983 * hardware unit.
984 */
parse_ioapics_under_ir(void)985 static int __init parse_ioapics_under_ir(void)
986 {
987 struct dmar_drhd_unit *drhd;
988 struct intel_iommu *iommu;
989 bool ir_supported = false;
990 int ioapic_idx;
991
992 for_each_iommu(iommu, drhd) {
993 int ret;
994
995 if (!ecap_ir_support(iommu->ecap))
996 continue;
997
998 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
999 if (ret)
1000 return ret;
1001
1002 ir_supported = true;
1003 }
1004
1005 if (!ir_supported)
1006 return -ENODEV;
1007
1008 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1009 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1010 if (!map_ioapic_to_iommu(ioapic_id)) {
1011 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1012 "interrupt remapping will be disabled\n",
1013 ioapic_id);
1014 return -1;
1015 }
1016 }
1017
1018 return 0;
1019 }
1020
ir_dev_scope_init(void)1021 static int __init ir_dev_scope_init(void)
1022 {
1023 int ret;
1024
1025 if (!irq_remapping_enabled)
1026 return 0;
1027
1028 down_write(&dmar_global_lock);
1029 ret = dmar_dev_scope_init();
1030 up_write(&dmar_global_lock);
1031
1032 return ret;
1033 }
1034 rootfs_initcall(ir_dev_scope_init);
1035
disable_irq_remapping(void)1036 static void disable_irq_remapping(void)
1037 {
1038 struct dmar_drhd_unit *drhd;
1039 struct intel_iommu *iommu = NULL;
1040
1041 /*
1042 * Disable Interrupt-remapping for all the DRHD's now.
1043 */
1044 for_each_iommu(iommu, drhd) {
1045 if (!ecap_ir_support(iommu->ecap))
1046 continue;
1047
1048 iommu_disable_irq_remapping(iommu);
1049 }
1050
1051 /*
1052 * Clear Posted-Interrupts capability.
1053 */
1054 if (!disable_irq_post)
1055 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1056 }
1057
reenable_irq_remapping(int eim)1058 static int reenable_irq_remapping(int eim)
1059 {
1060 struct dmar_drhd_unit *drhd;
1061 bool setup = false;
1062 struct intel_iommu *iommu = NULL;
1063
1064 for_each_iommu(iommu, drhd)
1065 if (iommu->qi)
1066 dmar_reenable_qi(iommu);
1067
1068 /*
1069 * Setup Interrupt-remapping for all the DRHD's now.
1070 */
1071 for_each_iommu(iommu, drhd) {
1072 if (!ecap_ir_support(iommu->ecap))
1073 continue;
1074
1075 /* Set up interrupt remapping for iommu.*/
1076 iommu_set_irq_remapping(iommu, eim);
1077 iommu_enable_irq_remapping(iommu);
1078 setup = true;
1079 }
1080
1081 if (!setup)
1082 goto error;
1083
1084 set_irq_posting_cap();
1085
1086 return 0;
1087
1088 error:
1089 /*
1090 * handle error condition gracefully here!
1091 */
1092 return -1;
1093 }
1094
1095 /*
1096 * Store the MSI remapping domain pointer in the device if enabled.
1097 *
1098 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1099 * remapping is disabled. Only update the pointer if the device is not
1100 * already handled by a non default PCI/MSI interrupt domain. This protects
1101 * e.g. VMD devices.
1102 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1103 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1104 {
1105 if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev))
1106 return;
1107
1108 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1109 }
1110
prepare_irte(struct irte * irte,int vector,unsigned int dest)1111 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1112 {
1113 memset(irte, 0, sizeof(*irte));
1114
1115 irte->present = 1;
1116 irte->dst_mode = apic->irq_dest_mode;
1117 /*
1118 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1119 * actual level or edge trigger will be setup in the IO-APIC
1120 * RTE. This will help simplify level triggered irq migration.
1121 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1122 * irq migration in the presence of interrupt-remapping.
1123 */
1124 irte->trigger_mode = 0;
1125 irte->dlvry_mode = apic->irq_delivery_mode;
1126 irte->vector = vector;
1127 irte->dest_id = IRTE_DEST(dest);
1128 irte->redir_hint = 1;
1129 }
1130
intel_get_irq_domain(struct irq_alloc_info * info)1131 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1132 {
1133 if (!info)
1134 return NULL;
1135
1136 switch (info->type) {
1137 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT:
1138 return map_ioapic_to_ir(info->devid);
1139 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT:
1140 return map_hpet_to_ir(info->devid);
1141 default:
1142 WARN_ON_ONCE(1);
1143 return NULL;
1144 }
1145 }
1146
1147 struct irq_remap_ops intel_irq_remap_ops = {
1148 .prepare = intel_prepare_irq_remapping,
1149 .enable = intel_enable_irq_remapping,
1150 .disable = disable_irq_remapping,
1151 .reenable = reenable_irq_remapping,
1152 .enable_faulting = enable_drhd_fault_handling,
1153 .get_irq_domain = intel_get_irq_domain,
1154 };
1155
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force)1156 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1157 {
1158 struct intel_ir_data *ir_data = irqd->chip_data;
1159 struct irte *irte = &ir_data->irte_entry;
1160 struct irq_cfg *cfg = irqd_cfg(irqd);
1161
1162 /*
1163 * Atomically updates the IRTE with the new destination, vector
1164 * and flushes the interrupt entry cache.
1165 */
1166 irte->vector = cfg->vector;
1167 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1168
1169 /* Update the hardware only if the interrupt is in remapped mode. */
1170 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1171 modify_irte(&ir_data->irq_2_iommu, irte);
1172 }
1173
1174 /*
1175 * Migrate the IO-APIC irq in the presence of intr-remapping.
1176 *
1177 * For both level and edge triggered, irq migration is a simple atomic
1178 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1179 *
1180 * For level triggered, we eliminate the io-apic RTE modification (with the
1181 * updated vector information), by using a virtual vector (io-apic pin number).
1182 * Real vector that is used for interrupting cpu will be coming from
1183 * the interrupt-remapping table entry.
1184 *
1185 * As the migration is a simple atomic update of IRTE, the same mechanism
1186 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1187 */
1188 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1189 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1190 bool force)
1191 {
1192 struct irq_data *parent = data->parent_data;
1193 struct irq_cfg *cfg = irqd_cfg(data);
1194 int ret;
1195
1196 ret = parent->chip->irq_set_affinity(parent, mask, force);
1197 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1198 return ret;
1199
1200 intel_ir_reconfigure_irte(data, false);
1201 /*
1202 * After this point, all the interrupts will start arriving
1203 * at the new destination. So, time to cleanup the previous
1204 * vector allocation.
1205 */
1206 send_cleanup_vector(cfg);
1207
1208 return IRQ_SET_MASK_OK_DONE;
1209 }
1210
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1211 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1212 struct msi_msg *msg)
1213 {
1214 struct intel_ir_data *ir_data = irq_data->chip_data;
1215
1216 *msg = ir_data->msi_entry;
1217 }
1218
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1219 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1220 {
1221 struct intel_ir_data *ir_data = data->chip_data;
1222 struct vcpu_data *vcpu_pi_info = info;
1223
1224 /* stop posting interrupts, back to remapping mode */
1225 if (!vcpu_pi_info) {
1226 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1227 } else {
1228 struct irte irte_pi;
1229
1230 /*
1231 * We are not caching the posted interrupt entry. We
1232 * copy the data from the remapped entry and modify
1233 * the fields which are relevant for posted mode. The
1234 * cached remapped entry is used for switching back to
1235 * remapped mode.
1236 */
1237 memset(&irte_pi, 0, sizeof(irte_pi));
1238 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1239
1240 /* Update the posted mode fields */
1241 irte_pi.p_pst = 1;
1242 irte_pi.p_urgent = 0;
1243 irte_pi.p_vector = vcpu_pi_info->vector;
1244 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1245 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1246 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1247 ~(-1UL << PDA_HIGH_BIT);
1248
1249 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1250 }
1251
1252 return 0;
1253 }
1254
1255 static struct irq_chip intel_ir_chip = {
1256 .name = "INTEL-IR",
1257 .irq_ack = apic_ack_irq,
1258 .irq_set_affinity = intel_ir_set_affinity,
1259 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1260 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1261 };
1262
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1263 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1264 struct irq_cfg *irq_cfg,
1265 struct irq_alloc_info *info,
1266 int index, int sub_handle)
1267 {
1268 struct IR_IO_APIC_route_entry *entry;
1269 struct irte *irte = &data->irte_entry;
1270 struct msi_msg *msg = &data->msi_entry;
1271
1272 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1273 switch (info->type) {
1274 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1275 /* Set source-id of interrupt request */
1276 set_ioapic_sid(irte, info->devid);
1277 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1278 info->devid, irte->present, irte->fpd,
1279 irte->dst_mode, irte->redir_hint,
1280 irte->trigger_mode, irte->dlvry_mode,
1281 irte->avail, irte->vector, irte->dest_id,
1282 irte->sid, irte->sq, irte->svt);
1283
1284 entry = (struct IR_IO_APIC_route_entry *)info->ioapic.entry;
1285 info->ioapic.entry = NULL;
1286 memset(entry, 0, sizeof(*entry));
1287 entry->index2 = (index >> 15) & 0x1;
1288 entry->zero = 0;
1289 entry->format = 1;
1290 entry->index = (index & 0x7fff);
1291 /*
1292 * IO-APIC RTE will be configured with virtual vector.
1293 * irq handler will do the explicit EOI to the io-apic.
1294 */
1295 entry->vector = info->ioapic.pin;
1296 entry->mask = 0; /* enable IRQ */
1297 entry->trigger = info->ioapic.trigger;
1298 entry->polarity = info->ioapic.polarity;
1299 if (info->ioapic.trigger)
1300 entry->mask = 1; /* Mask level triggered irqs. */
1301 break;
1302
1303 case X86_IRQ_ALLOC_TYPE_HPET:
1304 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1305 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1306 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1307 set_hpet_sid(irte, info->devid);
1308 else
1309 set_msi_sid(irte, msi_desc_to_pci_dev(info->desc));
1310
1311 msg->address_hi = MSI_ADDR_BASE_HI;
1312 msg->data = sub_handle;
1313 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1314 MSI_ADDR_IR_SHV |
1315 MSI_ADDR_IR_INDEX1(index) |
1316 MSI_ADDR_IR_INDEX2(index);
1317 break;
1318
1319 default:
1320 BUG_ON(1);
1321 break;
1322 }
1323 }
1324
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1325 static void intel_free_irq_resources(struct irq_domain *domain,
1326 unsigned int virq, unsigned int nr_irqs)
1327 {
1328 struct irq_data *irq_data;
1329 struct intel_ir_data *data;
1330 struct irq_2_iommu *irq_iommu;
1331 unsigned long flags;
1332 int i;
1333 for (i = 0; i < nr_irqs; i++) {
1334 irq_data = irq_domain_get_irq_data(domain, virq + i);
1335 if (irq_data && irq_data->chip_data) {
1336 data = irq_data->chip_data;
1337 irq_iommu = &data->irq_2_iommu;
1338 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1339 clear_entries(irq_iommu);
1340 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1341 irq_domain_reset_irq_data(irq_data);
1342 kfree(data);
1343 }
1344 }
1345 }
1346
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1347 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1348 unsigned int virq, unsigned int nr_irqs,
1349 void *arg)
1350 {
1351 struct intel_iommu *iommu = domain->host_data;
1352 struct irq_alloc_info *info = arg;
1353 struct intel_ir_data *data, *ird;
1354 struct irq_data *irq_data;
1355 struct irq_cfg *irq_cfg;
1356 int i, ret, index;
1357
1358 if (!info || !iommu)
1359 return -EINVAL;
1360 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI &&
1361 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX)
1362 return -EINVAL;
1363
1364 /*
1365 * With IRQ remapping enabled, don't need contiguous CPU vectors
1366 * to support multiple MSI interrupts.
1367 */
1368 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI)
1369 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1370
1371 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1372 if (ret < 0)
1373 return ret;
1374
1375 ret = -ENOMEM;
1376 data = kzalloc(sizeof(*data), GFP_KERNEL);
1377 if (!data)
1378 goto out_free_parent;
1379
1380 down_read(&dmar_global_lock);
1381 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1382 up_read(&dmar_global_lock);
1383 if (index < 0) {
1384 pr_warn("Failed to allocate IRTE\n");
1385 kfree(data);
1386 goto out_free_parent;
1387 }
1388
1389 for (i = 0; i < nr_irqs; i++) {
1390 irq_data = irq_domain_get_irq_data(domain, virq + i);
1391 irq_cfg = irqd_cfg(irq_data);
1392 if (!irq_data || !irq_cfg) {
1393 ret = -EINVAL;
1394 goto out_free_data;
1395 }
1396
1397 if (i > 0) {
1398 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1399 if (!ird)
1400 goto out_free_data;
1401 /* Initialize the common data */
1402 ird->irq_2_iommu = data->irq_2_iommu;
1403 ird->irq_2_iommu.sub_handle = i;
1404 } else {
1405 ird = data;
1406 }
1407
1408 irq_data->hwirq = (index << 16) + i;
1409 irq_data->chip_data = ird;
1410 irq_data->chip = &intel_ir_chip;
1411 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1412 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1413 }
1414 return 0;
1415
1416 out_free_data:
1417 intel_free_irq_resources(domain, virq, i);
1418 out_free_parent:
1419 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1420 return ret;
1421 }
1422
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1423 static void intel_irq_remapping_free(struct irq_domain *domain,
1424 unsigned int virq, unsigned int nr_irqs)
1425 {
1426 intel_free_irq_resources(domain, virq, nr_irqs);
1427 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1428 }
1429
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1430 static int intel_irq_remapping_activate(struct irq_domain *domain,
1431 struct irq_data *irq_data, bool reserve)
1432 {
1433 intel_ir_reconfigure_irte(irq_data, true);
1434 return 0;
1435 }
1436
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1437 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1438 struct irq_data *irq_data)
1439 {
1440 struct intel_ir_data *data = irq_data->chip_data;
1441 struct irte entry;
1442
1443 memset(&entry, 0, sizeof(entry));
1444 modify_irte(&data->irq_2_iommu, &entry);
1445 }
1446
1447 static const struct irq_domain_ops intel_ir_domain_ops = {
1448 .alloc = intel_irq_remapping_alloc,
1449 .free = intel_irq_remapping_free,
1450 .activate = intel_irq_remapping_activate,
1451 .deactivate = intel_irq_remapping_deactivate,
1452 };
1453
1454 /*
1455 * Support of Interrupt Remapping Unit Hotplug
1456 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1457 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1458 {
1459 int ret;
1460 int eim = x2apic_enabled();
1461
1462 if (eim && !ecap_eim_support(iommu->ecap)) {
1463 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1464 iommu->reg_phys, iommu->ecap);
1465 return -ENODEV;
1466 }
1467
1468 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1469 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1470 iommu->reg_phys);
1471 return -ENODEV;
1472 }
1473
1474 /* TODO: check all IOAPICs are covered by IOMMU */
1475
1476 /* Setup Interrupt-remapping now. */
1477 ret = intel_setup_irq_remapping(iommu);
1478 if (ret) {
1479 pr_err("Failed to setup irq remapping for %s\n",
1480 iommu->name);
1481 intel_teardown_irq_remapping(iommu);
1482 ir_remove_ioapic_hpet_scope(iommu);
1483 } else {
1484 iommu_enable_irq_remapping(iommu);
1485 }
1486
1487 return ret;
1488 }
1489
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1490 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1491 {
1492 int ret = 0;
1493 struct intel_iommu *iommu = dmaru->iommu;
1494
1495 if (!irq_remapping_enabled)
1496 return 0;
1497 if (iommu == NULL)
1498 return -EINVAL;
1499 if (!ecap_ir_support(iommu->ecap))
1500 return 0;
1501 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1502 !cap_pi_support(iommu->cap))
1503 return -EBUSY;
1504
1505 if (insert) {
1506 if (!iommu->ir_table)
1507 ret = dmar_ir_add(dmaru, iommu);
1508 } else {
1509 if (iommu->ir_table) {
1510 if (!bitmap_empty(iommu->ir_table->bitmap,
1511 INTR_REMAP_TABLE_ENTRIES)) {
1512 ret = -EBUSY;
1513 } else {
1514 iommu_disable_irq_remapping(iommu);
1515 intel_teardown_irq_remapping(iommu);
1516 ir_remove_ioapic_hpet_scope(iommu);
1517 }
1518 }
1519 }
1520
1521 return ret;
1522 }
1523