1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999-2003		Andre Hedrick <andre@linux-ide.org>
4  * Portions Copyright (C) 2001	        Sun Microsystems, Inc.
5  * Portions Copyright (C) 2003		Red Hat Inc
6  * Portions Copyright (C) 2007		Bartlomiej Zolnierkiewicz
7  * Portions Copyright (C) 2005-2009	MontaVista Software, Inc.
8  *
9  * Thanks to HighPoint Technologies for their assistance, and hardware.
10  * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
11  * donation of an ABit BP6 mainboard, processor, and memory acellerated
12  * development and support.
13  *
14  *
15  * HighPoint has its own drivers (open source except for the RAID part)
16  * available from http://www.highpoint-tech.com/USA_new/service_support.htm
17  * This may be useful to anyone wanting to work on this driver, however  do not
18  * trust  them too much since the code tends to become less and less meaningful
19  * as the time passes... :-/
20  *
21  * Note that final HPT370 support was done by force extraction of GPL.
22  *
23  * - add function for getting/setting power status of drive
24  * - the HPT370's state machine can get confused. reset it before each dma
25  *   xfer to prevent that from happening.
26  * - reset state engine whenever we get an error.
27  * - check for busmaster state at end of dma.
28  * - use new highpoint timings.
29  * - detect bus speed using highpoint register.
30  * - use pll if we don't have a clock table. added a 66MHz table that's
31  *   just 2x the 33MHz table.
32  * - removed turnaround. NOTE: we never want to switch between pll and
33  *   pci clocks as the chip can glitch in those cases. the highpoint
34  *   approved workaround slows everything down too much to be useful. in
35  *   addition, we would have to serialize access to each chip.
36  * 	Adrian Sun <a.sun@sun.com>
37  *
38  * add drive timings for 66MHz PCI bus,
39  * fix ATA Cable signal detection, fix incorrect /proc info
40  * add /proc display for per-drive PIO/DMA/UDMA mode and
41  * per-channel ATA-33/66 Cable detect.
42  * 	Duncan Laurie <void@sun.com>
43  *
44  * fixup /proc output for multiple controllers
45  *	Tim Hockin <thockin@sun.com>
46  *
47  * On hpt366:
48  * Reset the hpt366 on error, reset on dma
49  * Fix disabling Fast Interrupt hpt366.
50  * 	Mike Waychison <crlf@sun.com>
51  *
52  * Added support for 372N clocking and clock switching. The 372N needs
53  * different clocks on read/write. This requires overloading rw_disk and
54  * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
55  * keeping me sane.
56  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
57  *
58  * - fix the clock turnaround code: it was writing to the wrong ports when
59  *   called for the secondary channel, caching the current clock mode per-
60  *   channel caused the cached register value to get out of sync with the
61  *   actual one, the channels weren't serialized, the turnaround shouldn't
62  *   be done on 66 MHz PCI bus
63  * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
64  *   does not allow for this speed anyway
65  * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
66  *   their primary channel is kind of virtual, it isn't tied to any pins)
67  * - fix/remove bad/unused timing tables and use one set of tables for the whole
68  *   HPT37x chip family; save space by introducing the separate transfer mode
69  *   table in which the mode lookup is done
70  * - use f_CNT value saved by  the HighPoint BIOS as reading it directly gives
71  *   the wrong PCI frequency since DPLL has already been calibrated by BIOS;
72  *   read it only from the function 0 of HPT374 chips
73  * - fix the hotswap code:  it caused RESET- to glitch when tristating the bus,
74  *   and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
75  * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
76  *   they tamper with its fields
77  * - pass  to the init_setup handlers a copy of the ide_pci_device_t structure
78  *   since they may tamper with its fields
79  * - prefix the driver startup messages with the real chip name
80  * - claim the extra 240 bytes of I/O space for all chips
81  * - optimize the UltraDMA filtering and the drive list lookup code
82  * - use pci_get_slot() to get to the function 1 of HPT36x/374
83  * - cache offset of the channel's misc. control registers (MCRs) being used
84  *   throughout the driver
85  * - only touch the relevant MCR when detecting the cable type on HPT374's
86  *   function 1
87  * - rename all the register related variables consistently
88  * - move all the interrupt twiddling code from the speedproc handlers into
89  *   init_hwif_hpt366(), also grouping all the DMA related code together there
90  * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
91  *   separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
92  *   when setting an UltraDMA mode
93  * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
94  *   the best possible one
95  * - clean up DMA timeout handling for HPT370
96  * - switch to using the enumeration type to differ between the numerous chip
97  *   variants, matching PCI device/revision ID with the chip type early, at the
98  *   init_setup stage
99  * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
100  *   stop duplicating it for each channel by storing the pointer in the pci_dev
101  *   structure: first, at the init_setup stage, point it to a static "template"
102  *   with only the chip type and its specific base DPLL frequency, the highest
103  *   UltraDMA mode, and the chip settings table pointer filled,  then, at the
104  *   init_chipset stage, allocate per-chip instance  and fill it with the rest
105  *   of the necessary information
106  * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
107  *   switch  to calculating  PCI clock frequency based on the chip's base DPLL
108  *   frequency
109  * - switch to using the  DPLL clock and enable UltraATA/133 mode by default on
110  *   anything  newer than HPT370/A (except HPT374 that is not capable of this
111  *   mode according to the manual)
112  * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
113  *   also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
114  *   unify HPT36x/37x timing setup code and the speedproc handlers by joining
115  *   the register setting lists into the table indexed by the clock selected
116  * - set the correct hwif->ultra_mask for each individual chip
117  * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
118  * - stop resetting HPT370's state machine before each DMA transfer as that has
119  *   caused more harm than good
120  *	Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
121  */
122 
123 #include <linux/types.h>
124 #include <linux/module.h>
125 #include <linux/kernel.h>
126 #include <linux/delay.h>
127 #include <linux/blkdev.h>
128 #include <linux/interrupt.h>
129 #include <linux/pci.h>
130 #include <linux/init.h>
131 #include <linux/ide.h>
132 #include <linux/slab.h>
133 
134 #include <linux/uaccess.h>
135 #include <asm/io.h>
136 
137 #define DRV_NAME "hpt366"
138 
139 /* various tuning parameters */
140 #undef	HPT_RESET_STATE_ENGINE
141 #undef	HPT_DELAY_INTERRUPT
142 
143 static const char *bad_ata100_5[] = {
144 	"IBM-DTLA-307075",
145 	"IBM-DTLA-307060",
146 	"IBM-DTLA-307045",
147 	"IBM-DTLA-307030",
148 	"IBM-DTLA-307020",
149 	"IBM-DTLA-307015",
150 	"IBM-DTLA-305040",
151 	"IBM-DTLA-305030",
152 	"IBM-DTLA-305020",
153 	"IC35L010AVER07-0",
154 	"IC35L020AVER07-0",
155 	"IC35L030AVER07-0",
156 	"IC35L040AVER07-0",
157 	"IC35L060AVER07-0",
158 	"WDC AC310200R",
159 	NULL
160 };
161 
162 static const char *bad_ata66_4[] = {
163 	"IBM-DTLA-307075",
164 	"IBM-DTLA-307060",
165 	"IBM-DTLA-307045",
166 	"IBM-DTLA-307030",
167 	"IBM-DTLA-307020",
168 	"IBM-DTLA-307015",
169 	"IBM-DTLA-305040",
170 	"IBM-DTLA-305030",
171 	"IBM-DTLA-305020",
172 	"IC35L010AVER07-0",
173 	"IC35L020AVER07-0",
174 	"IC35L030AVER07-0",
175 	"IC35L040AVER07-0",
176 	"IC35L060AVER07-0",
177 	"WDC AC310200R",
178 	"MAXTOR STM3320620A",
179 	NULL
180 };
181 
182 static const char *bad_ata66_3[] = {
183 	"WDC AC310200R",
184 	NULL
185 };
186 
187 static const char *bad_ata33[] = {
188 	"Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
189 	"Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
190 	"Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
191 	"Maxtor 90510D4",
192 	"Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
193 	"Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
194 	"Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
195 	NULL
196 };
197 
198 static u8 xfer_speeds[] = {
199 	XFER_UDMA_6,
200 	XFER_UDMA_5,
201 	XFER_UDMA_4,
202 	XFER_UDMA_3,
203 	XFER_UDMA_2,
204 	XFER_UDMA_1,
205 	XFER_UDMA_0,
206 
207 	XFER_MW_DMA_2,
208 	XFER_MW_DMA_1,
209 	XFER_MW_DMA_0,
210 
211 	XFER_PIO_4,
212 	XFER_PIO_3,
213 	XFER_PIO_2,
214 	XFER_PIO_1,
215 	XFER_PIO_0
216 };
217 
218 /* Key for bus clock timings
219  * 36x   37x
220  * bits  bits
221  * 0:3	 0:3	data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
222  *		cycles = value + 1
223  * 4:7	 4:8	data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
224  *		cycles = value + 1
225  * 8:11  9:12	cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
226  *		register access.
227  * 12:15 13:17	cmd_low_time. Active time of DIOW_/DIOR_ during task file
228  *		register access.
229  * 16:18 18:20	udma_cycle_time. Clock cycles for UDMA xfer.
230  * -	 21	CLK frequency: 0=ATA clock, 1=dual ATA clock.
231  * 19:21 22:24	pre_high_time. Time to initialize the 1st cycle for PIO and
232  *		MW DMA xfer.
233  * 22:24 25:27	cmd_pre_high_time. Time to initialize the 1st PIO cycle for
234  *		task file register access.
235  * 28	 28	UDMA enable.
236  * 29	 29	DMA  enable.
237  * 30	 30	PIO MST enable. If set, the chip is in bus master mode during
238  *		PIO xfer.
239  * 31	 31	FIFO enable.
240  */
241 
242 static u32 forty_base_hpt36x[] = {
243 	/* XFER_UDMA_6 */	0x900fd943,
244 	/* XFER_UDMA_5 */	0x900fd943,
245 	/* XFER_UDMA_4 */	0x900fd943,
246 	/* XFER_UDMA_3 */	0x900ad943,
247 	/* XFER_UDMA_2 */	0x900bd943,
248 	/* XFER_UDMA_1 */	0x9008d943,
249 	/* XFER_UDMA_0 */	0x9008d943,
250 
251 	/* XFER_MW_DMA_2 */	0xa008d943,
252 	/* XFER_MW_DMA_1 */	0xa010d955,
253 	/* XFER_MW_DMA_0 */	0xa010d9fc,
254 
255 	/* XFER_PIO_4 */	0xc008d963,
256 	/* XFER_PIO_3 */	0xc010d974,
257 	/* XFER_PIO_2 */	0xc010d997,
258 	/* XFER_PIO_1 */	0xc010d9c7,
259 	/* XFER_PIO_0 */	0xc018d9d9
260 };
261 
262 static u32 thirty_three_base_hpt36x[] = {
263 	/* XFER_UDMA_6 */	0x90c9a731,
264 	/* XFER_UDMA_5 */	0x90c9a731,
265 	/* XFER_UDMA_4 */	0x90c9a731,
266 	/* XFER_UDMA_3 */	0x90cfa731,
267 	/* XFER_UDMA_2 */	0x90caa731,
268 	/* XFER_UDMA_1 */	0x90cba731,
269 	/* XFER_UDMA_0 */	0x90c8a731,
270 
271 	/* XFER_MW_DMA_2 */	0xa0c8a731,
272 	/* XFER_MW_DMA_1 */	0xa0c8a732,	/* 0xa0c8a733 */
273 	/* XFER_MW_DMA_0 */	0xa0c8a797,
274 
275 	/* XFER_PIO_4 */	0xc0c8a731,
276 	/* XFER_PIO_3 */	0xc0c8a742,
277 	/* XFER_PIO_2 */	0xc0d0a753,
278 	/* XFER_PIO_1 */	0xc0d0a7a3,	/* 0xc0d0a793 */
279 	/* XFER_PIO_0 */	0xc0d0a7aa	/* 0xc0d0a7a7 */
280 };
281 
282 static u32 twenty_five_base_hpt36x[] = {
283 	/* XFER_UDMA_6 */	0x90c98521,
284 	/* XFER_UDMA_5 */	0x90c98521,
285 	/* XFER_UDMA_4 */	0x90c98521,
286 	/* XFER_UDMA_3 */	0x90cf8521,
287 	/* XFER_UDMA_2 */	0x90cf8521,
288 	/* XFER_UDMA_1 */	0x90cb8521,
289 	/* XFER_UDMA_0 */	0x90cb8521,
290 
291 	/* XFER_MW_DMA_2 */	0xa0ca8521,
292 	/* XFER_MW_DMA_1 */	0xa0ca8532,
293 	/* XFER_MW_DMA_0 */	0xa0ca8575,
294 
295 	/* XFER_PIO_4 */	0xc0ca8521,
296 	/* XFER_PIO_3 */	0xc0ca8532,
297 	/* XFER_PIO_2 */	0xc0ca8542,
298 	/* XFER_PIO_1 */	0xc0d08572,
299 	/* XFER_PIO_0 */	0xc0d08585
300 };
301 
302 /*
303  * The following are the new timing tables with PIO mode data/taskfile transfer
304  * overclocking fixed...
305  */
306 
307 /* This table is taken from the HPT370 data manual rev. 1.02 */
308 static u32 thirty_three_base_hpt37x[] = {
309 	/* XFER_UDMA_6 */	0x16455031,	/* 0x16655031 ?? */
310 	/* XFER_UDMA_5 */	0x16455031,
311 	/* XFER_UDMA_4 */	0x16455031,
312 	/* XFER_UDMA_3 */	0x166d5031,
313 	/* XFER_UDMA_2 */	0x16495031,
314 	/* XFER_UDMA_1 */	0x164d5033,
315 	/* XFER_UDMA_0 */	0x16515097,
316 
317 	/* XFER_MW_DMA_2 */	0x26515031,
318 	/* XFER_MW_DMA_1 */	0x26515033,
319 	/* XFER_MW_DMA_0 */	0x26515097,
320 
321 	/* XFER_PIO_4 */	0x06515021,
322 	/* XFER_PIO_3 */	0x06515022,
323 	/* XFER_PIO_2 */	0x06515033,
324 	/* XFER_PIO_1 */	0x06915065,
325 	/* XFER_PIO_0 */	0x06d1508a
326 };
327 
328 static u32 fifty_base_hpt37x[] = {
329 	/* XFER_UDMA_6 */	0x1a861842,
330 	/* XFER_UDMA_5 */	0x1a861842,
331 	/* XFER_UDMA_4 */	0x1aae1842,
332 	/* XFER_UDMA_3 */	0x1a8e1842,
333 	/* XFER_UDMA_2 */	0x1a0e1842,
334 	/* XFER_UDMA_1 */	0x1a161854,
335 	/* XFER_UDMA_0 */	0x1a1a18ea,
336 
337 	/* XFER_MW_DMA_2 */	0x2a821842,
338 	/* XFER_MW_DMA_1 */	0x2a821854,
339 	/* XFER_MW_DMA_0 */	0x2a8218ea,
340 
341 	/* XFER_PIO_4 */	0x0a821842,
342 	/* XFER_PIO_3 */	0x0a821843,
343 	/* XFER_PIO_2 */	0x0a821855,
344 	/* XFER_PIO_1 */	0x0ac218a8,
345 	/* XFER_PIO_0 */	0x0b02190c
346 };
347 
348 static u32 sixty_six_base_hpt37x[] = {
349 	/* XFER_UDMA_6 */	0x1c86fe62,
350 	/* XFER_UDMA_5 */	0x1caefe62,	/* 0x1c8afe62 */
351 	/* XFER_UDMA_4 */	0x1c8afe62,
352 	/* XFER_UDMA_3 */	0x1c8efe62,
353 	/* XFER_UDMA_2 */	0x1c92fe62,
354 	/* XFER_UDMA_1 */	0x1c9afe62,
355 	/* XFER_UDMA_0 */	0x1c82fe62,
356 
357 	/* XFER_MW_DMA_2 */	0x2c82fe62,
358 	/* XFER_MW_DMA_1 */	0x2c82fe66,
359 	/* XFER_MW_DMA_0 */	0x2c82ff2e,
360 
361 	/* XFER_PIO_4 */	0x0c82fe62,
362 	/* XFER_PIO_3 */	0x0c82fe84,
363 	/* XFER_PIO_2 */	0x0c82fea6,
364 	/* XFER_PIO_1 */	0x0d02ff26,
365 	/* XFER_PIO_0 */	0x0d42ff7f
366 };
367 
368 #define HPT371_ALLOW_ATA133_6		1
369 #define HPT302_ALLOW_ATA133_6		1
370 #define HPT372_ALLOW_ATA133_6		1
371 #define HPT370_ALLOW_ATA100_5		0
372 #define HPT366_ALLOW_ATA66_4		1
373 #define HPT366_ALLOW_ATA66_3		1
374 
375 /* Supported ATA clock frequencies */
376 enum ata_clock {
377 	ATA_CLOCK_25MHZ,
378 	ATA_CLOCK_33MHZ,
379 	ATA_CLOCK_40MHZ,
380 	ATA_CLOCK_50MHZ,
381 	ATA_CLOCK_66MHZ,
382 	NUM_ATA_CLOCKS
383 };
384 
385 struct hpt_timings {
386 	u32 pio_mask;
387 	u32 dma_mask;
388 	u32 ultra_mask;
389 	u32 *clock_table[NUM_ATA_CLOCKS];
390 };
391 
392 /*
393  *	Hold all the HighPoint chip information in one place.
394  */
395 
396 struct hpt_info {
397 	char *chip_name;	/* Chip name */
398 	u8 chip_type;		/* Chip type */
399 	u8 udma_mask;		/* Allowed UltraDMA modes mask. */
400 	u8 dpll_clk;		/* DPLL clock in MHz */
401 	u8 pci_clk;		/* PCI  clock in MHz */
402 	struct hpt_timings *timings; /* Chipset timing data */
403 	u8 clock;		/* ATA clock selected */
404 };
405 
406 /* Supported HighPoint chips */
407 enum {
408 	HPT36x,
409 	HPT370,
410 	HPT370A,
411 	HPT374,
412 	HPT372,
413 	HPT372A,
414 	HPT302,
415 	HPT371,
416 	HPT372N,
417 	HPT302N,
418 	HPT371N
419 };
420 
421 static struct hpt_timings hpt36x_timings = {
422 	.pio_mask	= 0xc1f8ffff,
423 	.dma_mask	= 0x303800ff,
424 	.ultra_mask	= 0x30070000,
425 	.clock_table	= {
426 		[ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
427 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
428 		[ATA_CLOCK_40MHZ] = forty_base_hpt36x,
429 		[ATA_CLOCK_50MHZ] = NULL,
430 		[ATA_CLOCK_66MHZ] = NULL
431 	}
432 };
433 
434 static struct hpt_timings hpt37x_timings = {
435 	.pio_mask	= 0xcfc3ffff,
436 	.dma_mask	= 0x31c001ff,
437 	.ultra_mask	= 0x303c0000,
438 	.clock_table	= {
439 		[ATA_CLOCK_25MHZ] = NULL,
440 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
441 		[ATA_CLOCK_40MHZ] = NULL,
442 		[ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
443 		[ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
444 	}
445 };
446 
447 static const struct hpt_info hpt36x = {
448 	.chip_name	= "HPT36x",
449 	.chip_type	= HPT36x,
450 	.udma_mask	= HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
451 	.dpll_clk	= 0,	/* no DPLL */
452 	.timings	= &hpt36x_timings
453 };
454 
455 static const struct hpt_info hpt370 = {
456 	.chip_name	= "HPT370",
457 	.chip_type	= HPT370,
458 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
459 	.dpll_clk	= 48,
460 	.timings	= &hpt37x_timings
461 };
462 
463 static const struct hpt_info hpt370a = {
464 	.chip_name	= "HPT370A",
465 	.chip_type	= HPT370A,
466 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
467 	.dpll_clk	= 48,
468 	.timings	= &hpt37x_timings
469 };
470 
471 static const struct hpt_info hpt374 = {
472 	.chip_name	= "HPT374",
473 	.chip_type	= HPT374,
474 	.udma_mask	= ATA_UDMA5,
475 	.dpll_clk	= 48,
476 	.timings	= &hpt37x_timings
477 };
478 
479 static const struct hpt_info hpt372 = {
480 	.chip_name	= "HPT372",
481 	.chip_type	= HPT372,
482 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
483 	.dpll_clk	= 55,
484 	.timings	= &hpt37x_timings
485 };
486 
487 static const struct hpt_info hpt372a = {
488 	.chip_name	= "HPT372A",
489 	.chip_type	= HPT372A,
490 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
491 	.dpll_clk	= 66,
492 	.timings	= &hpt37x_timings
493 };
494 
495 static const struct hpt_info hpt302 = {
496 	.chip_name	= "HPT302",
497 	.chip_type	= HPT302,
498 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
499 	.dpll_clk	= 66,
500 	.timings	= &hpt37x_timings
501 };
502 
503 static const struct hpt_info hpt371 = {
504 	.chip_name	= "HPT371",
505 	.chip_type	= HPT371,
506 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
507 	.dpll_clk	= 66,
508 	.timings	= &hpt37x_timings
509 };
510 
511 static const struct hpt_info hpt372n = {
512 	.chip_name	= "HPT372N",
513 	.chip_type	= HPT372N,
514 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
515 	.dpll_clk	= 77,
516 	.timings	= &hpt37x_timings
517 };
518 
519 static const struct hpt_info hpt302n = {
520 	.chip_name	= "HPT302N",
521 	.chip_type	= HPT302N,
522 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
523 	.dpll_clk	= 77,
524 	.timings	= &hpt37x_timings
525 };
526 
527 static const struct hpt_info hpt371n = {
528 	.chip_name	= "HPT371N",
529 	.chip_type	= HPT371N,
530 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
531 	.dpll_clk	= 77,
532 	.timings	= &hpt37x_timings
533 };
534 
check_in_drive_list(ide_drive_t * drive,const char ** list)535 static bool check_in_drive_list(ide_drive_t *drive, const char **list)
536 {
537 	return match_string(list, -1, (char *)&drive->id[ATA_ID_PROD]) >= 0;
538 }
539 
hpt3xx_get_info(struct device * dev)540 static struct hpt_info *hpt3xx_get_info(struct device *dev)
541 {
542 	struct ide_host *host	= dev_get_drvdata(dev);
543 	struct hpt_info *info	= (struct hpt_info *)host->host_priv;
544 
545 	return dev == host->dev[1] ? info + 1 : info;
546 }
547 
548 /*
549  * The Marvell bridge chips used on the HighPoint SATA cards do not seem
550  * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
551  */
552 
hpt3xx_udma_filter(ide_drive_t * drive)553 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
554 {
555 	ide_hwif_t *hwif	= drive->hwif;
556 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
557 	u8 mask 		= hwif->ultra_mask;
558 
559 	switch (info->chip_type) {
560 	case HPT36x:
561 		if (!HPT366_ALLOW_ATA66_4 ||
562 		    check_in_drive_list(drive, bad_ata66_4))
563 			mask = ATA_UDMA3;
564 
565 		if (!HPT366_ALLOW_ATA66_3 ||
566 		    check_in_drive_list(drive, bad_ata66_3))
567 			mask = ATA_UDMA2;
568 		break;
569 	case HPT370:
570 		if (!HPT370_ALLOW_ATA100_5 ||
571 		    check_in_drive_list(drive, bad_ata100_5))
572 			mask = ATA_UDMA4;
573 		break;
574 	case HPT370A:
575 		if (!HPT370_ALLOW_ATA100_5 ||
576 		    check_in_drive_list(drive, bad_ata100_5))
577 			return ATA_UDMA4;
578 		fallthrough;
579 	case HPT372 :
580 	case HPT372A:
581 	case HPT372N:
582 	case HPT374 :
583 		if (ata_id_is_sata(drive->id))
584 			mask &= ~0x0e;
585 		fallthrough;
586 	default:
587 		return mask;
588 	}
589 
590 	return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
591 }
592 
hpt3xx_mdma_filter(ide_drive_t * drive)593 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
594 {
595 	ide_hwif_t *hwif	= drive->hwif;
596 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
597 
598 	switch (info->chip_type) {
599 	case HPT372 :
600 	case HPT372A:
601 	case HPT372N:
602 	case HPT374 :
603 		if (ata_id_is_sata(drive->id))
604 			return 0x00;
605 		fallthrough;
606 	default:
607 		return 0x07;
608 	}
609 }
610 
get_speed_setting(u8 speed,struct hpt_info * info)611 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
612 {
613 	int i;
614 
615 	/*
616 	 * Lookup the transfer mode table to get the index into
617 	 * the timing table.
618 	 *
619 	 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
620 	 */
621 	for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
622 		if (xfer_speeds[i] == speed)
623 			break;
624 
625 	return info->timings->clock_table[info->clock][i];
626 }
627 
hpt3xx_set_mode(ide_hwif_t * hwif,ide_drive_t * drive)628 static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
629 {
630 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
631 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
632 	struct hpt_timings *t	= info->timings;
633 	u8  itr_addr		= 0x40 + (drive->dn * 4);
634 	u32 old_itr		= 0;
635 	const u8 speed		= drive->dma_mode;
636 	u32 new_itr		= get_speed_setting(speed, info);
637 	u32 itr_mask		= speed < XFER_MW_DMA_0 ? t->pio_mask :
638 				 (speed < XFER_UDMA_0   ? t->dma_mask :
639 							  t->ultra_mask);
640 
641 	pci_read_config_dword(dev, itr_addr, &old_itr);
642 	new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
643 	/*
644 	 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
645 	 * to avoid problems handling I/O errors later
646 	 */
647 	new_itr &= ~0xc0000000;
648 
649 	pci_write_config_dword(dev, itr_addr, new_itr);
650 }
651 
hpt3xx_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)652 static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
653 {
654 	drive->dma_mode = drive->pio_mode;
655 	hpt3xx_set_mode(hwif, drive);
656 }
657 
hpt3xx_maskproc(ide_drive_t * drive,int mask)658 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
659 {
660 	ide_hwif_t *hwif	= drive->hwif;
661 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
662 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
663 
664 	if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
665 		return;
666 
667 	if (info->chip_type >= HPT370) {
668 		u8 scr1 = 0;
669 
670 		pci_read_config_byte(dev, 0x5a, &scr1);
671 		if (((scr1 & 0x10) >> 4) != mask) {
672 			if (mask)
673 				scr1 |=  0x10;
674 			else
675 				scr1 &= ~0x10;
676 			pci_write_config_byte(dev, 0x5a, scr1);
677 		}
678 	} else if (mask)
679 		disable_irq(hwif->irq);
680 	else
681 		enable_irq(hwif->irq);
682 }
683 
684 /*
685  * This is specific to the HPT366 UDMA chipset
686  * by HighPoint|Triones Technologies, Inc.
687  */
hpt366_dma_lost_irq(ide_drive_t * drive)688 static void hpt366_dma_lost_irq(ide_drive_t *drive)
689 {
690 	struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
691 	u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
692 
693 	pci_read_config_byte(dev, 0x50, &mcr1);
694 	pci_read_config_byte(dev, 0x52, &mcr3);
695 	pci_read_config_byte(dev, 0x5a, &scr1);
696 	printk("%s: (%s)  mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
697 		drive->name, __func__, mcr1, mcr3, scr1);
698 	if (scr1 & 0x10)
699 		pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
700 	ide_dma_lost_irq(drive);
701 }
702 
hpt370_clear_engine(ide_drive_t * drive)703 static void hpt370_clear_engine(ide_drive_t *drive)
704 {
705 	ide_hwif_t *hwif = drive->hwif;
706 	struct pci_dev *dev = to_pci_dev(hwif->dev);
707 
708 	pci_write_config_byte(dev, hwif->select_data, 0x37);
709 	udelay(10);
710 }
711 
hpt370_irq_timeout(ide_drive_t * drive)712 static void hpt370_irq_timeout(ide_drive_t *drive)
713 {
714 	ide_hwif_t *hwif	= drive->hwif;
715 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
716 	u16 bfifo		= 0;
717 	u8  dma_cmd;
718 
719 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
720 	printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
721 
722 	/* get DMA command mode */
723 	dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
724 	/* stop DMA */
725 	outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
726 	hpt370_clear_engine(drive);
727 }
728 
hpt370_dma_start(ide_drive_t * drive)729 static void hpt370_dma_start(ide_drive_t *drive)
730 {
731 #ifdef HPT_RESET_STATE_ENGINE
732 	hpt370_clear_engine(drive);
733 #endif
734 	ide_dma_start(drive);
735 }
736 
hpt370_dma_end(ide_drive_t * drive)737 static int hpt370_dma_end(ide_drive_t *drive)
738 {
739 	ide_hwif_t *hwif	= drive->hwif;
740 	u8  dma_stat		= inb(hwif->dma_base + ATA_DMA_STATUS);
741 
742 	if (dma_stat & ATA_DMA_ACTIVE) {
743 		/* wait a little */
744 		udelay(20);
745 		dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
746 		if (dma_stat & ATA_DMA_ACTIVE)
747 			hpt370_irq_timeout(drive);
748 	}
749 	return ide_dma_end(drive);
750 }
751 
752 /* returns 1 if DMA IRQ issued, 0 otherwise */
hpt374_dma_test_irq(ide_drive_t * drive)753 static int hpt374_dma_test_irq(ide_drive_t *drive)
754 {
755 	ide_hwif_t *hwif	= drive->hwif;
756 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
757 	u16 bfifo		= 0;
758 	u8  dma_stat;
759 
760 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
761 	if (bfifo & 0x1FF) {
762 //		printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
763 		return 0;
764 	}
765 
766 	dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
767 	/* return 1 if INTR asserted */
768 	if (dma_stat & ATA_DMA_INTR)
769 		return 1;
770 
771 	return 0;
772 }
773 
hpt374_dma_end(ide_drive_t * drive)774 static int hpt374_dma_end(ide_drive_t *drive)
775 {
776 	ide_hwif_t *hwif	= drive->hwif;
777 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
778 	u8 mcr	= 0, mcr_addr	= hwif->select_data;
779 	u8 bwsr = 0, mask	= hwif->channel ? 0x02 : 0x01;
780 
781 	pci_read_config_byte(dev, 0x6a, &bwsr);
782 	pci_read_config_byte(dev, mcr_addr, &mcr);
783 	if (bwsr & mask)
784 		pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
785 	return ide_dma_end(drive);
786 }
787 
788 /**
789  *	hpt3xxn_set_clock	-	perform clock switching dance
790  *	@hwif: hwif to switch
791  *	@mode: clocking mode (0x21 for write, 0x23 otherwise)
792  *
793  *	Switch the DPLL clock on the HPT3xxN devices. This is a	right mess.
794  */
795 
hpt3xxn_set_clock(ide_hwif_t * hwif,u8 mode)796 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
797 {
798 	unsigned long base = hwif->extra_base;
799 	u8 scr2 = inb(base + 0x6b);
800 
801 	if ((scr2 & 0x7f) == mode)
802 		return;
803 
804 	/* Tristate the bus */
805 	outb(0x80, base + 0x63);
806 	outb(0x80, base + 0x67);
807 
808 	/* Switch clock and reset channels */
809 	outb(mode, base + 0x6b);
810 	outb(0xc0, base + 0x69);
811 
812 	/*
813 	 * Reset the state machines.
814 	 * NOTE: avoid accidentally enabling the disabled channels.
815 	 */
816 	outb(inb(base + 0x60) | 0x32, base + 0x60);
817 	outb(inb(base + 0x64) | 0x32, base + 0x64);
818 
819 	/* Complete reset */
820 	outb(0x00, base + 0x69);
821 
822 	/* Reconnect channels to bus */
823 	outb(0x00, base + 0x63);
824 	outb(0x00, base + 0x67);
825 }
826 
827 /**
828  *	hpt3xxn_rw_disk		-	prepare for I/O
829  *	@drive: drive for command
830  *	@rq: block request structure
831  *
832  *	This is called when a disk I/O is issued to HPT3xxN.
833  *	We need it because of the clock switching.
834  */
835 
hpt3xxn_rw_disk(ide_drive_t * drive,struct request * rq)836 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
837 {
838 	hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
839 }
840 
841 /**
842  *	hpt37x_calibrate_dpll	-	calibrate the DPLL
843  *	@dev: PCI device
844  *
845  *	Perform a calibration cycle on the DPLL.
846  *	Returns 1 if this succeeds
847  */
hpt37x_calibrate_dpll(struct pci_dev * dev,u16 f_low,u16 f_high)848 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
849 {
850 	u32 dpll = (f_high << 16) | f_low | 0x100;
851 	u8  scr2;
852 	int i;
853 
854 	pci_write_config_dword(dev, 0x5c, dpll);
855 
856 	/* Wait for oscillator ready */
857 	for(i = 0; i < 0x5000; ++i) {
858 		udelay(50);
859 		pci_read_config_byte(dev, 0x5b, &scr2);
860 		if (scr2 & 0x80)
861 			break;
862 	}
863 	/* See if it stays ready (we'll just bail out if it's not yet) */
864 	for(i = 0; i < 0x1000; ++i) {
865 		pci_read_config_byte(dev, 0x5b, &scr2);
866 		/* DPLL destabilized? */
867 		if(!(scr2 & 0x80))
868 			return 0;
869 	}
870 	/* Turn off tuning, we have the DPLL set */
871 	pci_read_config_dword (dev, 0x5c, &dpll);
872 	pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
873 	return 1;
874 }
875 
hpt3xx_disable_fast_irq(struct pci_dev * dev,u8 mcr_addr)876 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
877 {
878 	struct ide_host *host	= pci_get_drvdata(dev);
879 	struct hpt_info *info	= host->host_priv + (&dev->dev == host->dev[1]);
880 	u8  chip_type		= info->chip_type;
881 	u8  new_mcr, old_mcr	= 0;
882 
883 	/*
884 	 * Disable the "fast interrupt" prediction.  Don't hold off
885 	 * on interrupts. (== 0x01 despite what the docs say)
886 	 */
887 	pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
888 
889 	if (chip_type >= HPT374)
890 		new_mcr = old_mcr & ~0x07;
891 	else if (chip_type >= HPT370) {
892 		new_mcr = old_mcr;
893 		new_mcr &= ~0x02;
894 #ifdef HPT_DELAY_INTERRUPT
895 		new_mcr &= ~0x01;
896 #else
897 		new_mcr |=  0x01;
898 #endif
899 	} else					/* HPT366 and HPT368  */
900 		new_mcr = old_mcr & ~0x80;
901 
902 	if (new_mcr != old_mcr)
903 		pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
904 }
905 
init_chipset_hpt366(struct pci_dev * dev)906 static int init_chipset_hpt366(struct pci_dev *dev)
907 {
908 	unsigned long io_base	= pci_resource_start(dev, 4);
909 	struct hpt_info *info	= hpt3xx_get_info(&dev->dev);
910 	const char *name	= DRV_NAME;
911 	u8 pci_clk,  dpll_clk	= 0;	/* PCI and DPLL clock in MHz */
912 	u8 chip_type;
913 	enum ata_clock	clock;
914 
915 	chip_type = info->chip_type;
916 
917 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
918 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
919 	pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
920 	pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
921 
922 	/*
923 	 * First, try to estimate the PCI clock frequency...
924 	 */
925 	if (chip_type >= HPT370) {
926 		u8  scr1  = 0;
927 		u16 f_cnt = 0;
928 		u32 temp  = 0;
929 
930 		/* Interrupt force enable. */
931 		pci_read_config_byte(dev, 0x5a, &scr1);
932 		if (scr1 & 0x10)
933 			pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
934 
935 		/*
936 		 * HighPoint does this for HPT372A.
937 		 * NOTE: This register is only writeable via I/O space.
938 		 */
939 		if (chip_type == HPT372A)
940 			outb(0x0e, io_base + 0x9c);
941 
942 		/*
943 		 * Default to PCI clock. Make sure MA15/16 are set to output
944 		 * to prevent drives having problems with 40-pin cables.
945 		 */
946 		pci_write_config_byte(dev, 0x5b, 0x23);
947 
948 		/*
949 		 * We'll have to read f_CNT value in order to determine
950 		 * the PCI clock frequency according to the following ratio:
951 		 *
952 		 * f_CNT = Fpci * 192 / Fdpll
953 		 *
954 		 * First try reading the register in which the HighPoint BIOS
955 		 * saves f_CNT value before  reprogramming the DPLL from its
956 		 * default setting (which differs for the various chips).
957 		 *
958 		 * NOTE: This register is only accessible via I/O space;
959 		 * HPT374 BIOS only saves it for the function 0, so we have to
960 		 * always read it from there -- no need to check the result of
961 		 * pci_get_slot() for the function 0 as the whole device has
962 		 * been already "pinned" (via function 1) in init_setup_hpt374()
963 		 */
964 		if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
965 			struct pci_dev	*dev1 = pci_get_slot(dev->bus,
966 							     dev->devfn - 1);
967 			unsigned long io_base = pci_resource_start(dev1, 4);
968 
969 			temp =	inl(io_base + 0x90);
970 			pci_dev_put(dev1);
971 		} else
972 			temp =	inl(io_base + 0x90);
973 
974 		/*
975 		 * In case the signature check fails, we'll have to
976 		 * resort to reading the f_CNT register itself in hopes
977 		 * that nobody has touched the DPLL yet...
978 		 */
979 		if ((temp & 0xFFFFF000) != 0xABCDE000) {
980 			int i;
981 
982 			printk(KERN_WARNING "%s %s: no clock data saved by "
983 				"BIOS\n", name, pci_name(dev));
984 
985 			/* Calculate the average value of f_CNT. */
986 			for (temp = i = 0; i < 128; i++) {
987 				pci_read_config_word(dev, 0x78, &f_cnt);
988 				temp += f_cnt & 0x1ff;
989 				mdelay(1);
990 			}
991 			f_cnt = temp / 128;
992 		} else
993 			f_cnt = temp & 0x1ff;
994 
995 		dpll_clk = info->dpll_clk;
996 		pci_clk  = (f_cnt * dpll_clk) / 192;
997 
998 		/* Clamp PCI clock to bands. */
999 		if (pci_clk < 40)
1000 			pci_clk = 33;
1001 		else if(pci_clk < 45)
1002 			pci_clk = 40;
1003 		else if(pci_clk < 55)
1004 			pci_clk = 50;
1005 		else
1006 			pci_clk = 66;
1007 
1008 		printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1009 			"assuming %d MHz PCI\n", name, pci_name(dev),
1010 			dpll_clk, f_cnt, pci_clk);
1011 	} else {
1012 		u32 itr1 = 0;
1013 
1014 		pci_read_config_dword(dev, 0x40, &itr1);
1015 
1016 		/* Detect PCI clock by looking at cmd_high_time. */
1017 		switch ((itr1 >> 8) & 0x0f) {
1018 			case 0x09:
1019 				pci_clk = 40;
1020 				break;
1021 			case 0x05:
1022 				pci_clk = 25;
1023 				break;
1024 			case 0x07:
1025 			default:
1026 				pci_clk = 33;
1027 				break;
1028 		}
1029 	}
1030 
1031 	/* Let's assume we'll use PCI clock for the ATA clock... */
1032 	switch (pci_clk) {
1033 		case 25:
1034 			clock = ATA_CLOCK_25MHZ;
1035 			break;
1036 		case 33:
1037 		default:
1038 			clock = ATA_CLOCK_33MHZ;
1039 			break;
1040 		case 40:
1041 			clock = ATA_CLOCK_40MHZ;
1042 			break;
1043 		case 50:
1044 			clock = ATA_CLOCK_50MHZ;
1045 			break;
1046 		case 66:
1047 			clock = ATA_CLOCK_66MHZ;
1048 			break;
1049 	}
1050 
1051 	/*
1052 	 * Only try the DPLL if we don't have a table for the PCI clock that
1053 	 * we are running at for HPT370/A, always use it  for anything newer...
1054 	 *
1055 	 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1056 	 * We also  don't like using  the DPLL because this causes glitches
1057 	 * on PRST-/SRST- when the state engine gets reset...
1058 	 */
1059 	if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1060 		u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1061 		int adjust;
1062 
1063 		 /*
1064 		  * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1065 		  * supported/enabled, use 50 MHz DPLL clock otherwise...
1066 		  */
1067 		if (info->udma_mask == ATA_UDMA6) {
1068 			dpll_clk = 66;
1069 			clock = ATA_CLOCK_66MHZ;
1070 		} else if (dpll_clk) {	/* HPT36x chips don't have DPLL */
1071 			dpll_clk = 50;
1072 			clock = ATA_CLOCK_50MHZ;
1073 		}
1074 
1075 		if (info->timings->clock_table[clock] == NULL) {
1076 			printk(KERN_ERR "%s %s: unknown bus timing!\n",
1077 				name, pci_name(dev));
1078 			return -EIO;
1079 		}
1080 
1081 		/* Select the DPLL clock. */
1082 		pci_write_config_byte(dev, 0x5b, 0x21);
1083 
1084 		/*
1085 		 * Adjust the DPLL based upon PCI clock, enable it,
1086 		 * and wait for stabilization...
1087 		 */
1088 		f_low = (pci_clk * 48) / dpll_clk;
1089 
1090 		for (adjust = 0; adjust < 8; adjust++) {
1091 			if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1092 				break;
1093 
1094 			/*
1095 			 * See if it'll settle at a fractionally different clock
1096 			 */
1097 			if (adjust & 1)
1098 				f_low -= adjust >> 1;
1099 			else
1100 				f_low += adjust >> 1;
1101 		}
1102 		if (adjust == 8) {
1103 			printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1104 				name, pci_name(dev));
1105 			return -EIO;
1106 		}
1107 
1108 		printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1109 			name, pci_name(dev), dpll_clk);
1110 	} else {
1111 		/* Mark the fact that we're not using the DPLL. */
1112 		dpll_clk = 0;
1113 
1114 		printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1115 			name, pci_name(dev), pci_clk);
1116 	}
1117 
1118 	/* Store the clock frequencies. */
1119 	info->dpll_clk	= dpll_clk;
1120 	info->pci_clk	= pci_clk;
1121 	info->clock	= clock;
1122 
1123 	if (chip_type >= HPT370) {
1124 		u8  mcr1, mcr4;
1125 
1126 		/*
1127 		 * Reset the state engines.
1128 		 * NOTE: Avoid accidentally enabling the disabled channels.
1129 		 */
1130 		pci_read_config_byte (dev, 0x50, &mcr1);
1131 		pci_read_config_byte (dev, 0x54, &mcr4);
1132 		pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1133 		pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1134 		udelay(100);
1135 	}
1136 
1137 	/*
1138 	 * On  HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1139 	 * the MISC. register to stretch the UltraDMA Tss timing.
1140 	 * NOTE: This register is only writeable via I/O space.
1141 	 */
1142 	if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1143 		outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1144 
1145 	hpt3xx_disable_fast_irq(dev, 0x50);
1146 	hpt3xx_disable_fast_irq(dev, 0x54);
1147 
1148 	return 0;
1149 }
1150 
hpt3xx_cable_detect(ide_hwif_t * hwif)1151 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1152 {
1153 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
1154 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1155 	u8 chip_type		= info->chip_type;
1156 	u8 scr1 = 0, ata66	= hwif->channel ? 0x01 : 0x02;
1157 
1158 	/*
1159 	 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1160 	 * address lines to access an external EEPROM.  To read valid
1161 	 * cable detect state the pins must be enabled as inputs.
1162 	 */
1163 	if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1164 		/*
1165 		 * HPT374 PCI function 1
1166 		 * - set bit 15 of reg 0x52 to enable TCBLID as input
1167 		 * - set bit 15 of reg 0x56 to enable FCBLID as input
1168 		 */
1169 		u8  mcr_addr = hwif->select_data + 2;
1170 		u16 mcr;
1171 
1172 		pci_read_config_word(dev, mcr_addr, &mcr);
1173 		pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1174 		/* Debounce, then read cable ID register */
1175 		udelay(10);
1176 		pci_read_config_byte(dev, 0x5a, &scr1);
1177 		pci_write_config_word(dev, mcr_addr, mcr);
1178 	} else if (chip_type >= HPT370) {
1179 		/*
1180 		 * HPT370/372 and 374 pcifn 0
1181 		 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1182 		 */
1183 		u8 scr2 = 0;
1184 
1185 		pci_read_config_byte(dev, 0x5b, &scr2);
1186 		pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1187 		/* Debounce, then read cable ID register */
1188 		udelay(10);
1189 		pci_read_config_byte(dev, 0x5a, &scr1);
1190 		pci_write_config_byte(dev, 0x5b, scr2);
1191 	} else
1192 		pci_read_config_byte(dev, 0x5a, &scr1);
1193 
1194 	return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1195 }
1196 
init_hwif_hpt366(ide_hwif_t * hwif)1197 static void init_hwif_hpt366(ide_hwif_t *hwif)
1198 {
1199 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1200 	u8  chip_type		= info->chip_type;
1201 
1202 	/* Cache the channel's MISC. control registers' offset */
1203 	hwif->select_data	= hwif->channel ? 0x54 : 0x50;
1204 
1205 	/*
1206 	 * HPT3xxN chips have some complications:
1207 	 *
1208 	 * - on 33 MHz PCI we must clock switch
1209 	 * - on 66 MHz PCI we must NOT use the PCI clock
1210 	 */
1211 	if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1212 		/*
1213 		 * Clock is shared between the channels,
1214 		 * so we'll have to serialize them... :-(
1215 		 */
1216 		hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1217 		hwif->rw_disk = &hpt3xxn_rw_disk;
1218 	}
1219 }
1220 
init_dma_hpt366(ide_hwif_t * hwif,const struct ide_port_info * d)1221 static int init_dma_hpt366(ide_hwif_t *hwif,
1222 				     const struct ide_port_info *d)
1223 {
1224 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1225 	unsigned long flags, base = ide_pci_dma_base(hwif, d);
1226 	u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1227 
1228 	if (base == 0)
1229 		return -1;
1230 
1231 	hwif->dma_base = base;
1232 
1233 	if (ide_pci_check_simplex(hwif, d) < 0)
1234 		return -1;
1235 
1236 	if (ide_pci_set_master(dev, d->name) < 0)
1237 		return -1;
1238 
1239 	dma_old = inb(base + 2);
1240 
1241 	local_irq_save(flags);
1242 
1243 	dma_new = dma_old;
1244 	pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1245 	pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47,  &slavedma);
1246 
1247 	if (masterdma & 0x30)	dma_new |= 0x20;
1248 	if ( slavedma & 0x30)	dma_new |= 0x40;
1249 	if (dma_new != dma_old)
1250 		outb(dma_new, base + 2);
1251 
1252 	local_irq_restore(flags);
1253 
1254 	printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
1255 			 hwif->name, base, base + 7);
1256 
1257 	hwif->extra_base = base + (hwif->channel ? 8 : 16);
1258 
1259 	if (ide_allocate_dma_engine(hwif))
1260 		return -1;
1261 
1262 	return 0;
1263 }
1264 
hpt374_init(struct pci_dev * dev,struct pci_dev * dev2)1265 static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1266 {
1267 	if (dev2->irq != dev->irq) {
1268 		/* FIXME: we need a core pci_set_interrupt() */
1269 		dev2->irq = dev->irq;
1270 		printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1271 			"fixed\n", pci_name(dev2));
1272 	}
1273 }
1274 
hpt371_init(struct pci_dev * dev)1275 static void hpt371_init(struct pci_dev *dev)
1276 {
1277 	u8 mcr1 = 0;
1278 
1279 	/*
1280 	 * HPT371 chips physically have only one channel, the secondary one,
1281 	 * but the primary channel registers do exist!  Go figure...
1282 	 * So,  we manually disable the non-existing channel here
1283 	 * (if the BIOS hasn't done this already).
1284 	 */
1285 	pci_read_config_byte(dev, 0x50, &mcr1);
1286 	if (mcr1 & 0x04)
1287 		pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1288 }
1289 
hpt36x_init(struct pci_dev * dev,struct pci_dev * dev2)1290 static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1291 {
1292 	u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1293 
1294 	/*
1295 	 * Now we'll have to force both channels enabled if
1296 	 * at least one of them has been enabled by BIOS...
1297 	 */
1298 	pci_read_config_byte(dev, 0x50, &mcr1);
1299 	if (mcr1 & 0x30)
1300 		pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1301 
1302 	pci_read_config_byte(dev,  PCI_INTERRUPT_PIN, &pin1);
1303 	pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1304 
1305 	if (pin1 != pin2 && dev->irq == dev2->irq) {
1306 		printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1307 			"pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1308 		return 1;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 #define IDE_HFLAGS_HPT3XX \
1315 	(IDE_HFLAG_NO_ATAPI_DMA | \
1316 	 IDE_HFLAG_OFF_BOARD)
1317 
1318 static const struct ide_port_ops hpt3xx_port_ops = {
1319 	.set_pio_mode		= hpt3xx_set_pio_mode,
1320 	.set_dma_mode		= hpt3xx_set_mode,
1321 	.maskproc		= hpt3xx_maskproc,
1322 	.mdma_filter		= hpt3xx_mdma_filter,
1323 	.udma_filter		= hpt3xx_udma_filter,
1324 	.cable_detect		= hpt3xx_cable_detect,
1325 };
1326 
1327 static const struct ide_dma_ops hpt37x_dma_ops = {
1328 	.dma_host_set		= ide_dma_host_set,
1329 	.dma_setup		= ide_dma_setup,
1330 	.dma_start		= ide_dma_start,
1331 	.dma_end		= hpt374_dma_end,
1332 	.dma_test_irq		= hpt374_dma_test_irq,
1333 	.dma_lost_irq		= ide_dma_lost_irq,
1334 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1335 	.dma_sff_read_status	= ide_dma_sff_read_status,
1336 };
1337 
1338 static const struct ide_dma_ops hpt370_dma_ops = {
1339 	.dma_host_set		= ide_dma_host_set,
1340 	.dma_setup		= ide_dma_setup,
1341 	.dma_start		= hpt370_dma_start,
1342 	.dma_end		= hpt370_dma_end,
1343 	.dma_test_irq		= ide_dma_test_irq,
1344 	.dma_lost_irq		= ide_dma_lost_irq,
1345 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1346 	.dma_clear		= hpt370_irq_timeout,
1347 	.dma_sff_read_status	= ide_dma_sff_read_status,
1348 };
1349 
1350 static const struct ide_dma_ops hpt36x_dma_ops = {
1351 	.dma_host_set		= ide_dma_host_set,
1352 	.dma_setup		= ide_dma_setup,
1353 	.dma_start		= ide_dma_start,
1354 	.dma_end		= ide_dma_end,
1355 	.dma_test_irq		= ide_dma_test_irq,
1356 	.dma_lost_irq		= hpt366_dma_lost_irq,
1357 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1358 	.dma_sff_read_status	= ide_dma_sff_read_status,
1359 };
1360 
1361 static const struct ide_port_info hpt366_chipsets[] = {
1362 	{	/* 0: HPT36x */
1363 		.name		= DRV_NAME,
1364 		.init_chipset	= init_chipset_hpt366,
1365 		.init_hwif	= init_hwif_hpt366,
1366 		.init_dma	= init_dma_hpt366,
1367 		/*
1368 		 * HPT36x chips have one channel per function and have
1369 		 * both channel enable bits located differently and visible
1370 		 * to both functions -- really stupid design decision... :-(
1371 		 * Bit 4 is for the primary channel, bit 5 for the secondary.
1372 		 */
1373 		.enablebits	= {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1374 		.port_ops	= &hpt3xx_port_ops,
1375 		.dma_ops	= &hpt36x_dma_ops,
1376 		.host_flags	= IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1377 		.pio_mask	= ATA_PIO4,
1378 		.mwdma_mask	= ATA_MWDMA2,
1379 	},
1380 	{	/* 1: HPT3xx */
1381 		.name		= DRV_NAME,
1382 		.init_chipset	= init_chipset_hpt366,
1383 		.init_hwif	= init_hwif_hpt366,
1384 		.init_dma	= init_dma_hpt366,
1385 		.enablebits	= {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1386 		.port_ops	= &hpt3xx_port_ops,
1387 		.dma_ops	= &hpt37x_dma_ops,
1388 		.host_flags	= IDE_HFLAGS_HPT3XX,
1389 		.pio_mask	= ATA_PIO4,
1390 		.mwdma_mask	= ATA_MWDMA2,
1391 	}
1392 };
1393 
1394 /**
1395  *	hpt366_init_one	-	called when an HPT366 is found
1396  *	@dev: the hpt366 device
1397  *	@id: the matching pci id
1398  *
1399  *	Called when the PCI registration layer (or the IDE initialization)
1400  *	finds a device matching our IDE device tables.
1401  */
hpt366_init_one(struct pci_dev * dev,const struct pci_device_id * id)1402 static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1403 {
1404 	const struct hpt_info *info = NULL;
1405 	struct hpt_info *dyn_info;
1406 	struct pci_dev *dev2 = NULL;
1407 	struct ide_port_info d;
1408 	u8 idx = id->driver_data;
1409 	u8 rev = dev->revision;
1410 	int ret;
1411 
1412 	if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1413 		return -ENODEV;
1414 
1415 	switch (idx) {
1416 	case 0:
1417 		if (rev < 3)
1418 			info = &hpt36x;
1419 		else {
1420 			switch (min_t(u8, rev, 6)) {
1421 			case 3: info = &hpt370;  break;
1422 			case 4: info = &hpt370a; break;
1423 			case 5: info = &hpt372;  break;
1424 			case 6: info = &hpt372n; break;
1425 			}
1426 			idx++;
1427 		}
1428 		break;
1429 	case 1:
1430 		info = (rev > 1) ? &hpt372n : &hpt372a;
1431 		break;
1432 	case 2:
1433 		info = (rev > 1) ? &hpt302n : &hpt302;
1434 		break;
1435 	case 3:
1436 		hpt371_init(dev);
1437 		info = (rev > 1) ? &hpt371n : &hpt371;
1438 		break;
1439 	case 4:
1440 		info = &hpt374;
1441 		break;
1442 	case 5:
1443 		info = &hpt372n;
1444 		break;
1445 	}
1446 
1447 	printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1448 
1449 	d = hpt366_chipsets[min_t(u8, idx, 1)];
1450 
1451 	d.udma_mask = info->udma_mask;
1452 
1453 	/* fixup ->dma_ops for HPT370/HPT370A */
1454 	if (info == &hpt370 || info == &hpt370a)
1455 		d.dma_ops = &hpt370_dma_ops;
1456 
1457 	if (info == &hpt36x || info == &hpt374)
1458 		dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1459 
1460 	dyn_info = kcalloc(dev2 ? 2 : 1, sizeof(*dyn_info), GFP_KERNEL);
1461 	if (dyn_info == NULL) {
1462 		printk(KERN_ERR "%s %s: out of memory!\n",
1463 			d.name, pci_name(dev));
1464 		pci_dev_put(dev2);
1465 		return -ENOMEM;
1466 	}
1467 
1468 	/*
1469 	 * Copy everything from a static "template" structure
1470 	 * to just allocated per-chip hpt_info structure.
1471 	 */
1472 	memcpy(dyn_info, info, sizeof(*dyn_info));
1473 
1474 	if (dev2) {
1475 		memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1476 
1477 		if (info == &hpt374)
1478 			hpt374_init(dev, dev2);
1479 		else {
1480 			if (hpt36x_init(dev, dev2))
1481 				d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1482 		}
1483 
1484 		ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1485 		if (ret < 0) {
1486 			pci_dev_put(dev2);
1487 			kfree(dyn_info);
1488 		}
1489 		return ret;
1490 	}
1491 
1492 	ret = ide_pci_init_one(dev, &d, dyn_info);
1493 	if (ret < 0)
1494 		kfree(dyn_info);
1495 
1496 	return ret;
1497 }
1498 
hpt366_remove(struct pci_dev * dev)1499 static void hpt366_remove(struct pci_dev *dev)
1500 {
1501 	struct ide_host *host = pci_get_drvdata(dev);
1502 	struct ide_info *info = host->host_priv;
1503 	struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1504 
1505 	ide_pci_remove(dev);
1506 	pci_dev_put(dev2);
1507 	kfree(info);
1508 }
1509 
1510 static const struct pci_device_id hpt366_pci_tbl[] = {
1511 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366),  0 },
1512 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372),  1 },
1513 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302),  2 },
1514 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371),  3 },
1515 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374),  4 },
1516 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1517 	{ 0, },
1518 };
1519 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1520 
1521 static struct pci_driver hpt366_pci_driver = {
1522 	.name		= "HPT366_IDE",
1523 	.id_table	= hpt366_pci_tbl,
1524 	.probe		= hpt366_init_one,
1525 	.remove		= hpt366_remove,
1526 	.suspend	= ide_pci_suspend,
1527 	.resume		= ide_pci_resume,
1528 };
1529 
hpt366_ide_init(void)1530 static int __init hpt366_ide_init(void)
1531 {
1532 	return ide_pci_register_driver(&hpt366_pci_driver);
1533 }
1534 
hpt366_ide_exit(void)1535 static void __exit hpt366_ide_exit(void)
1536 {
1537 	pci_unregister_driver(&hpt366_pci_driver);
1538 }
1539 
1540 module_init(hpt366_ide_init);
1541 module_exit(hpt366_ide_exit);
1542 
1543 MODULE_AUTHOR("Andre Hedrick");
1544 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1545 MODULE_LICENSE("GPL");
1546