1 /*
2  * Copyright 2011 (c) Oracle Corp.
3 
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25 
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35 
36 #define pr_fmt(fmt) "[TTM] " fmt
37 
38 #include <linux/dma-mapping.h>
39 #include <linux/list.h>
40 #include <linux/seq_file.h> /* for seq_printf */
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/highmem.h>
44 #include <linux/mm_types.h>
45 #include <linux/module.h>
46 #include <linux/mm.h>
47 #include <linux/atomic.h>
48 #include <linux/device.h>
49 #include <linux/kthread.h>
50 #include <drm/ttm/ttm_bo_driver.h>
51 #include <drm/ttm/ttm_page_alloc.h>
52 #include <drm/ttm/ttm_set_memory.h>
53 
54 #define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(struct page *))
55 #define SMALL_ALLOCATION		4
56 #define FREE_ALL_PAGES			(~0U)
57 #define VADDR_FLAG_HUGE_POOL		1UL
58 #define VADDR_FLAG_UPDATED_COUNT	2UL
59 
60 enum pool_type {
61 	IS_UNDEFINED	= 0,
62 	IS_WC		= 1 << 1,
63 	IS_UC		= 1 << 2,
64 	IS_CACHED	= 1 << 3,
65 	IS_DMA32	= 1 << 4,
66 	IS_HUGE		= 1 << 5
67 };
68 
69 /*
70  * The pool structure. There are up to nine pools:
71  *  - generic (not restricted to DMA32):
72  *      - write combined, uncached, cached.
73  *  - dma32 (up to 2^32 - so up 4GB):
74  *      - write combined, uncached, cached.
75  *  - huge (not restricted to DMA32):
76  *      - write combined, uncached, cached.
77  * for each 'struct device'. The 'cached' is for pages that are actively used.
78  * The other ones can be shrunk by the shrinker API if neccessary.
79  * @pools: The 'struct device->dma_pools' link.
80  * @type: Type of the pool
81  * @lock: Protects the free_list from concurrnet access. Must be
82  * used with irqsave/irqrestore variants because pool allocator maybe called
83  * from delayed work.
84  * @free_list: Pool of pages that are free to be used. No order requirements.
85  * @dev: The device that is associated with these pools.
86  * @size: Size used during DMA allocation.
87  * @npages_free: Count of available pages for re-use.
88  * @npages_in_use: Count of pages that are in use.
89  * @nfrees: Stats when pool is shrinking.
90  * @nrefills: Stats when the pool is grown.
91  * @gfp_flags: Flags to pass for alloc_page.
92  * @name: Name of the pool.
93  * @dev_name: Name derieved from dev - similar to how dev_info works.
94  *   Used during shutdown as the dev_info during release is unavailable.
95  */
96 struct dma_pool {
97 	struct list_head pools; /* The 'struct device->dma_pools link */
98 	enum pool_type type;
99 	spinlock_t lock;
100 	struct list_head free_list;
101 	struct device *dev;
102 	unsigned size;
103 	unsigned npages_free;
104 	unsigned npages_in_use;
105 	unsigned long nfrees; /* Stats when shrunk. */
106 	unsigned long nrefills; /* Stats when grown. */
107 	gfp_t gfp_flags;
108 	char name[13]; /* "cached dma32" */
109 	char dev_name[64]; /* Constructed from dev */
110 };
111 
112 /*
113  * The accounting page keeping track of the allocated page along with
114  * the DMA address.
115  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
116  * @vaddr: The virtual address of the page and a flag if the page belongs to a
117  * huge pool
118  * @dma: The bus address of the page. If the page is not allocated
119  *   via the DMA API, it will be -1.
120  */
121 struct dma_page {
122 	struct list_head page_list;
123 	unsigned long vaddr;
124 	struct page *p;
125 	dma_addr_t dma;
126 };
127 
128 /*
129  * Limits for the pool. They are handled without locks because only place where
130  * they may change is in sysfs store. They won't have immediate effect anyway
131  * so forcing serialization to access them is pointless.
132  */
133 
134 struct ttm_pool_opts {
135 	unsigned	alloc_size;
136 	unsigned	max_size;
137 	unsigned	small;
138 };
139 
140 /*
141  * Contains the list of all of the 'struct device' and their corresponding
142  * DMA pools. Guarded by _mutex->lock.
143  * @pools: The link to 'struct ttm_pool_manager->pools'
144  * @dev: The 'struct device' associated with the 'pool'
145  * @pool: The 'struct dma_pool' associated with the 'dev'
146  */
147 struct device_pools {
148 	struct list_head pools;
149 	struct device *dev;
150 	struct dma_pool *pool;
151 };
152 
153 /*
154  * struct ttm_pool_manager - Holds memory pools for fast allocation
155  *
156  * @lock: Lock used when adding/removing from pools
157  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
158  * @options: Limits for the pool.
159  * @npools: Total amount of pools in existence.
160  * @shrinker: The structure used by [un|]register_shrinker
161  */
162 struct ttm_pool_manager {
163 	struct mutex		lock;
164 	struct list_head	pools;
165 	struct ttm_pool_opts	options;
166 	unsigned		npools;
167 	struct shrinker		mm_shrink;
168 	struct kobject		kobj;
169 };
170 
171 static struct ttm_pool_manager *_manager;
172 
173 static struct attribute ttm_page_pool_max = {
174 	.name = "pool_max_size",
175 	.mode = S_IRUGO | S_IWUSR
176 };
177 static struct attribute ttm_page_pool_small = {
178 	.name = "pool_small_allocation",
179 	.mode = S_IRUGO | S_IWUSR
180 };
181 static struct attribute ttm_page_pool_alloc_size = {
182 	.name = "pool_allocation_size",
183 	.mode = S_IRUGO | S_IWUSR
184 };
185 
186 static struct attribute *ttm_pool_attrs[] = {
187 	&ttm_page_pool_max,
188 	&ttm_page_pool_small,
189 	&ttm_page_pool_alloc_size,
190 	NULL
191 };
192 
ttm_pool_kobj_release(struct kobject * kobj)193 static void ttm_pool_kobj_release(struct kobject *kobj)
194 {
195 	struct ttm_pool_manager *m =
196 		container_of(kobj, struct ttm_pool_manager, kobj);
197 	kfree(m);
198 }
199 
ttm_pool_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)200 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
201 			      const char *buffer, size_t size)
202 {
203 	struct ttm_pool_manager *m =
204 		container_of(kobj, struct ttm_pool_manager, kobj);
205 	int chars;
206 	unsigned val;
207 
208 	chars = sscanf(buffer, "%u", &val);
209 	if (chars == 0)
210 		return size;
211 
212 	/* Convert kb to number of pages */
213 	val = val / (PAGE_SIZE >> 10);
214 
215 	if (attr == &ttm_page_pool_max) {
216 		m->options.max_size = val;
217 	} else if (attr == &ttm_page_pool_small) {
218 		m->options.small = val;
219 	} else if (attr == &ttm_page_pool_alloc_size) {
220 		if (val > NUM_PAGES_TO_ALLOC*8) {
221 			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
222 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
223 			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
224 			return size;
225 		} else if (val > NUM_PAGES_TO_ALLOC) {
226 			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
227 				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
228 		}
229 		m->options.alloc_size = val;
230 	}
231 
232 	return size;
233 }
234 
ttm_pool_show(struct kobject * kobj,struct attribute * attr,char * buffer)235 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
236 			     char *buffer)
237 {
238 	struct ttm_pool_manager *m =
239 		container_of(kobj, struct ttm_pool_manager, kobj);
240 	unsigned val = 0;
241 
242 	if (attr == &ttm_page_pool_max)
243 		val = m->options.max_size;
244 	else if (attr == &ttm_page_pool_small)
245 		val = m->options.small;
246 	else if (attr == &ttm_page_pool_alloc_size)
247 		val = m->options.alloc_size;
248 
249 	val = val * (PAGE_SIZE >> 10);
250 
251 	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
252 }
253 
254 static const struct sysfs_ops ttm_pool_sysfs_ops = {
255 	.show = &ttm_pool_show,
256 	.store = &ttm_pool_store,
257 };
258 
259 static struct kobj_type ttm_pool_kobj_type = {
260 	.release = &ttm_pool_kobj_release,
261 	.sysfs_ops = &ttm_pool_sysfs_ops,
262 	.default_attrs = ttm_pool_attrs,
263 };
264 
ttm_set_pages_caching(struct dma_pool * pool,struct page ** pages,unsigned cpages)265 static int ttm_set_pages_caching(struct dma_pool *pool,
266 				 struct page **pages, unsigned cpages)
267 {
268 	int r = 0;
269 	/* Set page caching */
270 	if (pool->type & IS_UC) {
271 		r = ttm_set_pages_array_uc(pages, cpages);
272 		if (r)
273 			pr_err("%s: Failed to set %d pages to uc!\n",
274 			       pool->dev_name, cpages);
275 	}
276 	if (pool->type & IS_WC) {
277 		r = ttm_set_pages_array_wc(pages, cpages);
278 		if (r)
279 			pr_err("%s: Failed to set %d pages to wc!\n",
280 			       pool->dev_name, cpages);
281 	}
282 	return r;
283 }
284 
__ttm_dma_free_page(struct dma_pool * pool,struct dma_page * d_page)285 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
286 {
287 	unsigned long attrs = 0;
288 	dma_addr_t dma = d_page->dma;
289 	d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
290 	if (pool->type & IS_HUGE)
291 		attrs = DMA_ATTR_NO_WARN;
292 
293 	dma_free_attrs(pool->dev, pool->size, (void *)d_page->vaddr, dma, attrs);
294 
295 	kfree(d_page);
296 	d_page = NULL;
297 }
__ttm_dma_alloc_page(struct dma_pool * pool)298 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
299 {
300 	struct dma_page *d_page;
301 	unsigned long attrs = 0;
302 	void *vaddr;
303 
304 	d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
305 	if (!d_page)
306 		return NULL;
307 
308 	if (pool->type & IS_HUGE)
309 		attrs = DMA_ATTR_NO_WARN;
310 
311 	vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
312 				pool->gfp_flags, attrs);
313 	if (vaddr) {
314 		if (is_vmalloc_addr(vaddr))
315 			d_page->p = vmalloc_to_page(vaddr);
316 		else
317 			d_page->p = virt_to_page(vaddr);
318 		d_page->vaddr = (unsigned long)vaddr;
319 		if (pool->type & IS_HUGE)
320 			d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
321 	} else {
322 		kfree(d_page);
323 		d_page = NULL;
324 	}
325 	return d_page;
326 }
ttm_to_type(int flags,enum ttm_caching_state cstate)327 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
328 {
329 	enum pool_type type = IS_UNDEFINED;
330 
331 	if (flags & TTM_PAGE_FLAG_DMA32)
332 		type |= IS_DMA32;
333 	if (cstate == tt_cached)
334 		type |= IS_CACHED;
335 	else if (cstate == tt_uncached)
336 		type |= IS_UC;
337 	else
338 		type |= IS_WC;
339 
340 	return type;
341 }
342 
ttm_pool_update_free_locked(struct dma_pool * pool,unsigned freed_pages)343 static void ttm_pool_update_free_locked(struct dma_pool *pool,
344 					unsigned freed_pages)
345 {
346 	pool->npages_free -= freed_pages;
347 	pool->nfrees += freed_pages;
348 
349 }
350 
351 /* set memory back to wb and free the pages. */
ttm_dma_page_put(struct dma_pool * pool,struct dma_page * d_page)352 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
353 {
354 	struct page *page = d_page->p;
355 	unsigned num_pages;
356 
357 	/* Don't set WB on WB page pool. */
358 	if (!(pool->type & IS_CACHED)) {
359 		num_pages = pool->size / PAGE_SIZE;
360 		if (ttm_set_pages_wb(page, num_pages))
361 			pr_err("%s: Failed to set %d pages to wb!\n",
362 			       pool->dev_name, num_pages);
363 	}
364 
365 	list_del(&d_page->page_list);
366 	__ttm_dma_free_page(pool, d_page);
367 }
368 
ttm_dma_pages_put(struct dma_pool * pool,struct list_head * d_pages,struct page * pages[],unsigned npages)369 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
370 			      struct page *pages[], unsigned npages)
371 {
372 	struct dma_page *d_page, *tmp;
373 
374 	if (pool->type & IS_HUGE) {
375 		list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
376 			ttm_dma_page_put(pool, d_page);
377 
378 		return;
379 	}
380 
381 	/* Don't set WB on WB page pool. */
382 	if (npages && !(pool->type & IS_CACHED) &&
383 	    ttm_set_pages_array_wb(pages, npages))
384 		pr_err("%s: Failed to set %d pages to wb!\n",
385 		       pool->dev_name, npages);
386 
387 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
388 		list_del(&d_page->page_list);
389 		__ttm_dma_free_page(pool, d_page);
390 	}
391 }
392 
393 /*
394  * Free pages from pool.
395  *
396  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
397  * number of pages in one go.
398  *
399  * @pool: to free the pages from
400  * @nr_free: If set to true will free all pages in pool
401  * @use_static: Safe to use static buffer
402  **/
ttm_dma_page_pool_free(struct dma_pool * pool,unsigned nr_free,bool use_static)403 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
404 				       bool use_static)
405 {
406 	static struct page *static_buf[NUM_PAGES_TO_ALLOC];
407 	unsigned long irq_flags;
408 	struct dma_page *dma_p, *tmp;
409 	struct page **pages_to_free;
410 	struct list_head d_pages;
411 	unsigned freed_pages = 0,
412 		 npages_to_free = nr_free;
413 
414 	if (NUM_PAGES_TO_ALLOC < nr_free)
415 		npages_to_free = NUM_PAGES_TO_ALLOC;
416 
417 	if (use_static)
418 		pages_to_free = static_buf;
419 	else
420 		pages_to_free = kmalloc_array(npages_to_free,
421 					      sizeof(struct page *),
422 					      GFP_KERNEL);
423 
424 	if (!pages_to_free) {
425 		pr_debug("%s: Failed to allocate memory for pool free operation\n",
426 		       pool->dev_name);
427 		return 0;
428 	}
429 	INIT_LIST_HEAD(&d_pages);
430 restart:
431 	spin_lock_irqsave(&pool->lock, irq_flags);
432 
433 	/* We picking the oldest ones off the list */
434 	list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
435 					 page_list) {
436 		if (freed_pages >= npages_to_free)
437 			break;
438 
439 		/* Move the dma_page from one list to another. */
440 		list_move(&dma_p->page_list, &d_pages);
441 
442 		pages_to_free[freed_pages++] = dma_p->p;
443 		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
444 		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
445 
446 			ttm_pool_update_free_locked(pool, freed_pages);
447 			/**
448 			 * Because changing page caching is costly
449 			 * we unlock the pool to prevent stalling.
450 			 */
451 			spin_unlock_irqrestore(&pool->lock, irq_flags);
452 
453 			ttm_dma_pages_put(pool, &d_pages, pages_to_free,
454 					  freed_pages);
455 
456 			INIT_LIST_HEAD(&d_pages);
457 
458 			if (likely(nr_free != FREE_ALL_PAGES))
459 				nr_free -= freed_pages;
460 
461 			if (NUM_PAGES_TO_ALLOC >= nr_free)
462 				npages_to_free = nr_free;
463 			else
464 				npages_to_free = NUM_PAGES_TO_ALLOC;
465 
466 			freed_pages = 0;
467 
468 			/* free all so restart the processing */
469 			if (nr_free)
470 				goto restart;
471 
472 			/* Not allowed to fall through or break because
473 			 * following context is inside spinlock while we are
474 			 * outside here.
475 			 */
476 			goto out;
477 
478 		}
479 	}
480 
481 	/* remove range of pages from the pool */
482 	if (freed_pages) {
483 		ttm_pool_update_free_locked(pool, freed_pages);
484 		nr_free -= freed_pages;
485 	}
486 
487 	spin_unlock_irqrestore(&pool->lock, irq_flags);
488 
489 	if (freed_pages)
490 		ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
491 out:
492 	if (pages_to_free != static_buf)
493 		kfree(pages_to_free);
494 	return nr_free;
495 }
496 
ttm_dma_free_pool(struct device * dev,enum pool_type type)497 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
498 {
499 	struct device_pools *p;
500 	struct dma_pool *pool;
501 
502 	if (!dev)
503 		return;
504 
505 	mutex_lock(&_manager->lock);
506 	list_for_each_entry_reverse(p, &_manager->pools, pools) {
507 		if (p->dev != dev)
508 			continue;
509 		pool = p->pool;
510 		if (pool->type != type)
511 			continue;
512 
513 		list_del(&p->pools);
514 		kfree(p);
515 		_manager->npools--;
516 		break;
517 	}
518 	list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
519 		if (pool->type != type)
520 			continue;
521 		/* Takes a spinlock.. */
522 		/* OK to use static buffer since global mutex is held. */
523 		ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
524 		WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
525 		/* This code path is called after _all_ references to the
526 		 * struct device has been dropped - so nobody should be
527 		 * touching it. In case somebody is trying to _add_ we are
528 		 * guarded by the mutex. */
529 		list_del(&pool->pools);
530 		kfree(pool);
531 		break;
532 	}
533 	mutex_unlock(&_manager->lock);
534 }
535 
536 /*
537  * On free-ing of the 'struct device' this deconstructor is run.
538  * Albeit the pool might have already been freed earlier.
539  */
ttm_dma_pool_release(struct device * dev,void * res)540 static void ttm_dma_pool_release(struct device *dev, void *res)
541 {
542 	struct dma_pool *pool = *(struct dma_pool **)res;
543 
544 	if (pool)
545 		ttm_dma_free_pool(dev, pool->type);
546 }
547 
ttm_dma_pool_match(struct device * dev,void * res,void * match_data)548 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
549 {
550 	return *(struct dma_pool **)res == match_data;
551 }
552 
ttm_dma_pool_init(struct device * dev,gfp_t flags,enum pool_type type)553 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
554 					  enum pool_type type)
555 {
556 	const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
557 	enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
558 	struct device_pools *sec_pool = NULL;
559 	struct dma_pool *pool = NULL, **ptr;
560 	unsigned i;
561 	int ret = -ENODEV;
562 	char *p;
563 
564 	if (!dev)
565 		return NULL;
566 
567 	ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
568 	if (!ptr)
569 		return NULL;
570 
571 	ret = -ENOMEM;
572 
573 	pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
574 			    dev_to_node(dev));
575 	if (!pool)
576 		goto err_mem;
577 
578 	sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
579 				dev_to_node(dev));
580 	if (!sec_pool)
581 		goto err_mem;
582 
583 	INIT_LIST_HEAD(&sec_pool->pools);
584 	sec_pool->dev = dev;
585 	sec_pool->pool =  pool;
586 
587 	INIT_LIST_HEAD(&pool->free_list);
588 	INIT_LIST_HEAD(&pool->pools);
589 	spin_lock_init(&pool->lock);
590 	pool->dev = dev;
591 	pool->npages_free = pool->npages_in_use = 0;
592 	pool->nfrees = 0;
593 	pool->gfp_flags = flags;
594 	if (type & IS_HUGE)
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 		pool->size = HPAGE_PMD_SIZE;
597 #else
598 		BUG();
599 #endif
600 	else
601 		pool->size = PAGE_SIZE;
602 	pool->type = type;
603 	pool->nrefills = 0;
604 	p = pool->name;
605 	for (i = 0; i < ARRAY_SIZE(t); i++) {
606 		if (type & t[i]) {
607 			p += scnprintf(p, sizeof(pool->name) - (p - pool->name),
608 				      "%s", n[i]);
609 		}
610 	}
611 	*p = 0;
612 	/* We copy the name for pr_ calls b/c when dma_pool_destroy is called
613 	 * - the kobj->name has already been deallocated.*/
614 	snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
615 		 dev_driver_string(dev), dev_name(dev));
616 	mutex_lock(&_manager->lock);
617 	/* You can get the dma_pool from either the global: */
618 	list_add(&sec_pool->pools, &_manager->pools);
619 	_manager->npools++;
620 	/* or from 'struct device': */
621 	list_add(&pool->pools, &dev->dma_pools);
622 	mutex_unlock(&_manager->lock);
623 
624 	*ptr = pool;
625 	devres_add(dev, ptr);
626 
627 	return pool;
628 err_mem:
629 	devres_free(ptr);
630 	kfree(sec_pool);
631 	kfree(pool);
632 	return ERR_PTR(ret);
633 }
634 
ttm_dma_find_pool(struct device * dev,enum pool_type type)635 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
636 					  enum pool_type type)
637 {
638 	struct dma_pool *pool, *tmp;
639 
640 	if (type == IS_UNDEFINED)
641 		return NULL;
642 
643 	/* NB: We iterate on the 'struct dev' which has no spinlock, but
644 	 * it does have a kref which we have taken. The kref is taken during
645 	 * graphic driver loading - in the drm_pci_init it calls either
646 	 * pci_dev_get or pci_register_driver which both end up taking a kref
647 	 * on 'struct device'.
648 	 *
649 	 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
650 	 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
651 	 * thing is at that point of time there are no pages associated with the
652 	 * driver so this function will not be called.
653 	 */
654 	list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
655 		if (pool->type == type)
656 			return pool;
657 	return NULL;
658 }
659 
660 /*
661  * Free pages the pages that failed to change the caching state. If there
662  * are pages that have changed their caching state already put them to the
663  * pool.
664  */
ttm_dma_handle_caching_state_failure(struct dma_pool * pool,struct list_head * d_pages,struct page ** failed_pages,unsigned cpages)665 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
666 						 struct list_head *d_pages,
667 						 struct page **failed_pages,
668 						 unsigned cpages)
669 {
670 	struct dma_page *d_page, *tmp;
671 	struct page *p;
672 	unsigned i = 0;
673 
674 	p = failed_pages[0];
675 	if (!p)
676 		return;
677 	/* Find the failed page. */
678 	list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
679 		if (d_page->p != p)
680 			continue;
681 		/* .. and then progress over the full list. */
682 		list_del(&d_page->page_list);
683 		__ttm_dma_free_page(pool, d_page);
684 		if (++i < cpages)
685 			p = failed_pages[i];
686 		else
687 			break;
688 	}
689 
690 }
691 
692 /*
693  * Allocate 'count' pages, and put 'need' number of them on the
694  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
695  * The full list of pages should also be on 'd_pages'.
696  * We return zero for success, and negative numbers as errors.
697  */
ttm_dma_pool_alloc_new_pages(struct dma_pool * pool,struct list_head * d_pages,unsigned count)698 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
699 					struct list_head *d_pages,
700 					unsigned count)
701 {
702 	struct page **caching_array;
703 	struct dma_page *dma_p;
704 	struct page *p;
705 	int r = 0;
706 	unsigned i, j, npages, cpages;
707 	unsigned max_cpages = min(count,
708 			(unsigned)(PAGE_SIZE/sizeof(struct page *)));
709 
710 	/* allocate array for page caching change */
711 	caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
712 				      GFP_KERNEL);
713 
714 	if (!caching_array) {
715 		pr_debug("%s: Unable to allocate table for new pages\n",
716 		       pool->dev_name);
717 		return -ENOMEM;
718 	}
719 
720 	if (count > 1)
721 		pr_debug("%s: (%s:%d) Getting %d pages\n",
722 			 pool->dev_name, pool->name, current->pid, count);
723 
724 	for (i = 0, cpages = 0; i < count; ++i) {
725 		dma_p = __ttm_dma_alloc_page(pool);
726 		if (!dma_p) {
727 			pr_debug("%s: Unable to get page %u\n",
728 				 pool->dev_name, i);
729 
730 			/* store already allocated pages in the pool after
731 			 * setting the caching state */
732 			if (cpages) {
733 				r = ttm_set_pages_caching(pool, caching_array,
734 							  cpages);
735 				if (r)
736 					ttm_dma_handle_caching_state_failure(
737 						pool, d_pages, caching_array,
738 						cpages);
739 			}
740 			r = -ENOMEM;
741 			goto out;
742 		}
743 		p = dma_p->p;
744 		list_add(&dma_p->page_list, d_pages);
745 
746 #ifdef CONFIG_HIGHMEM
747 		/* gfp flags of highmem page should never be dma32 so we
748 		 * we should be fine in such case
749 		 */
750 		if (PageHighMem(p))
751 			continue;
752 #endif
753 
754 		npages = pool->size / PAGE_SIZE;
755 		for (j = 0; j < npages; ++j) {
756 			caching_array[cpages++] = p + j;
757 			if (cpages == max_cpages) {
758 				/* Note: Cannot hold the spinlock */
759 				r = ttm_set_pages_caching(pool, caching_array,
760 							  cpages);
761 				if (r) {
762 					ttm_dma_handle_caching_state_failure(
763 					     pool, d_pages, caching_array,
764 					     cpages);
765 					goto out;
766 				}
767 				cpages = 0;
768 			}
769 		}
770 	}
771 
772 	if (cpages) {
773 		r = ttm_set_pages_caching(pool, caching_array, cpages);
774 		if (r)
775 			ttm_dma_handle_caching_state_failure(pool, d_pages,
776 					caching_array, cpages);
777 	}
778 out:
779 	kfree(caching_array);
780 	return r;
781 }
782 
783 /*
784  * @return count of pages still required to fulfill the request.
785  */
ttm_dma_page_pool_fill_locked(struct dma_pool * pool,unsigned long * irq_flags)786 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
787 					 unsigned long *irq_flags)
788 {
789 	unsigned count = _manager->options.small;
790 	int r = pool->npages_free;
791 
792 	if (count > pool->npages_free) {
793 		struct list_head d_pages;
794 
795 		INIT_LIST_HEAD(&d_pages);
796 
797 		spin_unlock_irqrestore(&pool->lock, *irq_flags);
798 
799 		/* Returns how many more are neccessary to fulfill the
800 		 * request. */
801 		r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
802 
803 		spin_lock_irqsave(&pool->lock, *irq_flags);
804 		if (!r) {
805 			/* Add the fresh to the end.. */
806 			list_splice(&d_pages, &pool->free_list);
807 			++pool->nrefills;
808 			pool->npages_free += count;
809 			r = count;
810 		} else {
811 			struct dma_page *d_page;
812 			unsigned cpages = 0;
813 
814 			pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
815 				 pool->dev_name, pool->name, r);
816 
817 			list_for_each_entry(d_page, &d_pages, page_list) {
818 				cpages++;
819 			}
820 			list_splice_tail(&d_pages, &pool->free_list);
821 			pool->npages_free += cpages;
822 			r = cpages;
823 		}
824 	}
825 	return r;
826 }
827 
828 /*
829  * The populate list is actually a stack (not that is matters as TTM
830  * allocates one page at a time.
831  * return dma_page pointer if success, otherwise NULL.
832  */
ttm_dma_pool_get_pages(struct dma_pool * pool,struct ttm_dma_tt * ttm_dma,unsigned index)833 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
834 				  struct ttm_dma_tt *ttm_dma,
835 				  unsigned index)
836 {
837 	struct dma_page *d_page = NULL;
838 	struct ttm_tt *ttm = &ttm_dma->ttm;
839 	unsigned long irq_flags;
840 	int count;
841 
842 	spin_lock_irqsave(&pool->lock, irq_flags);
843 	count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
844 	if (count) {
845 		d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
846 		ttm->pages[index] = d_page->p;
847 		ttm_dma->dma_address[index] = d_page->dma;
848 		list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
849 		pool->npages_in_use += 1;
850 		pool->npages_free -= 1;
851 	}
852 	spin_unlock_irqrestore(&pool->lock, irq_flags);
853 	return d_page;
854 }
855 
ttm_dma_pool_gfp_flags(struct ttm_dma_tt * ttm_dma,bool huge)856 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
857 {
858 	struct ttm_tt *ttm = &ttm_dma->ttm;
859 	gfp_t gfp_flags;
860 
861 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
862 		gfp_flags = GFP_USER | GFP_DMA32;
863 	else
864 		gfp_flags = GFP_HIGHUSER;
865 	if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
866 		gfp_flags |= __GFP_ZERO;
867 
868 	if (huge) {
869 		gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
870 			__GFP_KSWAPD_RECLAIM;
871 		gfp_flags &= ~__GFP_MOVABLE;
872 		gfp_flags &= ~__GFP_COMP;
873 	}
874 
875 	if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
876 		gfp_flags |= __GFP_RETRY_MAYFAIL;
877 
878 	return gfp_flags;
879 }
880 
881 /*
882  * On success pages list will hold count number of correctly
883  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
884  */
ttm_dma_populate(struct ttm_dma_tt * ttm_dma,struct device * dev,struct ttm_operation_ctx * ctx)885 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
886 			struct ttm_operation_ctx *ctx)
887 {
888 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
889 	struct ttm_tt *ttm = &ttm_dma->ttm;
890 	unsigned long num_pages = ttm->num_pages;
891 	struct dma_pool *pool;
892 	struct dma_page *d_page;
893 	enum pool_type type;
894 	unsigned i;
895 	int ret;
896 
897 	if (ttm_tt_is_populated(ttm))
898 		return 0;
899 
900 	if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
901 		return -ENOMEM;
902 
903 	INIT_LIST_HEAD(&ttm_dma->pages_list);
904 	i = 0;
905 
906 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
907 
908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
909 	if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
910 		goto skip_huge;
911 
912 	pool = ttm_dma_find_pool(dev, type | IS_HUGE);
913 	if (!pool) {
914 		gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
915 
916 		pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
917 		if (IS_ERR_OR_NULL(pool))
918 			goto skip_huge;
919 	}
920 
921 	while (num_pages >= HPAGE_PMD_NR) {
922 		unsigned j;
923 
924 		d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
925 		if (!d_page)
926 			break;
927 
928 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
929 						pool->size, ctx);
930 		if (unlikely(ret != 0)) {
931 			ttm_dma_unpopulate(ttm_dma, dev);
932 			return -ENOMEM;
933 		}
934 
935 		d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
936 		for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
937 			ttm->pages[j] = ttm->pages[j - 1] + 1;
938 			ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
939 				PAGE_SIZE;
940 		}
941 
942 		i += HPAGE_PMD_NR;
943 		num_pages -= HPAGE_PMD_NR;
944 	}
945 
946 skip_huge:
947 #endif
948 
949 	pool = ttm_dma_find_pool(dev, type);
950 	if (!pool) {
951 		gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
952 
953 		pool = ttm_dma_pool_init(dev, gfp_flags, type);
954 		if (IS_ERR_OR_NULL(pool))
955 			return -ENOMEM;
956 	}
957 
958 	while (num_pages) {
959 		d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
960 		if (!d_page) {
961 			ttm_dma_unpopulate(ttm_dma, dev);
962 			return -ENOMEM;
963 		}
964 
965 		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
966 						pool->size, ctx);
967 		if (unlikely(ret != 0)) {
968 			ttm_dma_unpopulate(ttm_dma, dev);
969 			return -ENOMEM;
970 		}
971 
972 		d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
973 		++i;
974 		--num_pages;
975 	}
976 
977 	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
978 		ret = ttm_tt_swapin(ttm);
979 		if (unlikely(ret != 0)) {
980 			ttm_dma_unpopulate(ttm_dma, dev);
981 			return ret;
982 		}
983 	}
984 
985 	ttm_tt_set_populated(ttm);
986 	return 0;
987 }
988 EXPORT_SYMBOL_GPL(ttm_dma_populate);
989 
990 /* Put all pages in pages list to correct pool to wait for reuse */
ttm_dma_unpopulate(struct ttm_dma_tt * ttm_dma,struct device * dev)991 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
992 {
993 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
994 	struct ttm_tt *ttm = &ttm_dma->ttm;
995 	struct dma_pool *pool;
996 	struct dma_page *d_page, *next;
997 	enum pool_type type;
998 	bool is_cached = false;
999 	unsigned count, i, npages = 0;
1000 	unsigned long irq_flags;
1001 
1002 	type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1003 
1004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1005 	pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1006 	if (pool) {
1007 		count = 0;
1008 		list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1009 					 page_list) {
1010 			if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1011 				continue;
1012 
1013 			count++;
1014 			if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1015 				ttm_mem_global_free_page(mem_glob, d_page->p,
1016 							 pool->size);
1017 				d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1018 			}
1019 			ttm_dma_page_put(pool, d_page);
1020 		}
1021 
1022 		spin_lock_irqsave(&pool->lock, irq_flags);
1023 		pool->npages_in_use -= count;
1024 		pool->nfrees += count;
1025 		spin_unlock_irqrestore(&pool->lock, irq_flags);
1026 	}
1027 #endif
1028 
1029 	pool = ttm_dma_find_pool(dev, type);
1030 	if (!pool)
1031 		return;
1032 
1033 	is_cached = (ttm_dma_find_pool(pool->dev,
1034 		     ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1035 
1036 	/* make sure pages array match list and count number of pages */
1037 	count = 0;
1038 	list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1039 				 page_list) {
1040 		ttm->pages[count] = d_page->p;
1041 		count++;
1042 
1043 		if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1044 			ttm_mem_global_free_page(mem_glob, d_page->p,
1045 						 pool->size);
1046 			d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1047 		}
1048 
1049 		if (is_cached)
1050 			ttm_dma_page_put(pool, d_page);
1051 	}
1052 
1053 	spin_lock_irqsave(&pool->lock, irq_flags);
1054 	pool->npages_in_use -= count;
1055 	if (is_cached) {
1056 		pool->nfrees += count;
1057 	} else {
1058 		pool->npages_free += count;
1059 		list_splice(&ttm_dma->pages_list, &pool->free_list);
1060 		/*
1061 		 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1062 		 * to free in order to minimize calls to set_memory_wb().
1063 		 */
1064 		if (pool->npages_free >= (_manager->options.max_size +
1065 					  NUM_PAGES_TO_ALLOC))
1066 			npages = pool->npages_free - _manager->options.max_size;
1067 	}
1068 	spin_unlock_irqrestore(&pool->lock, irq_flags);
1069 
1070 	INIT_LIST_HEAD(&ttm_dma->pages_list);
1071 	for (i = 0; i < ttm->num_pages; i++) {
1072 		ttm->pages[i] = NULL;
1073 		ttm_dma->dma_address[i] = 0;
1074 	}
1075 
1076 	/* shrink pool if necessary (only on !is_cached pools)*/
1077 	if (npages)
1078 		ttm_dma_page_pool_free(pool, npages, false);
1079 	ttm_tt_set_unpopulated(ttm);
1080 }
1081 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1082 
1083 /**
1084  * Callback for mm to request pool to reduce number of page held.
1085  *
1086  * XXX: (dchinner) Deadlock warning!
1087  *
1088  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1089  * shrinkers
1090  */
1091 static unsigned long
ttm_dma_pool_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1092 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1093 {
1094 	static unsigned start_pool;
1095 	unsigned idx = 0;
1096 	unsigned pool_offset;
1097 	unsigned shrink_pages = sc->nr_to_scan;
1098 	struct device_pools *p;
1099 	unsigned long freed = 0;
1100 
1101 	if (list_empty(&_manager->pools))
1102 		return SHRINK_STOP;
1103 
1104 	if (!mutex_trylock(&_manager->lock))
1105 		return SHRINK_STOP;
1106 	if (!_manager->npools)
1107 		goto out;
1108 	pool_offset = ++start_pool % _manager->npools;
1109 	list_for_each_entry(p, &_manager->pools, pools) {
1110 		unsigned nr_free;
1111 
1112 		if (!p->dev)
1113 			continue;
1114 		if (shrink_pages == 0)
1115 			break;
1116 		/* Do it in round-robin fashion. */
1117 		if (++idx < pool_offset)
1118 			continue;
1119 		nr_free = shrink_pages;
1120 		/* OK to use static buffer since global mutex is held. */
1121 		shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1122 		freed += nr_free - shrink_pages;
1123 
1124 		pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1125 			 p->pool->dev_name, p->pool->name, current->pid,
1126 			 nr_free, shrink_pages);
1127 	}
1128 out:
1129 	mutex_unlock(&_manager->lock);
1130 	return freed;
1131 }
1132 
1133 static unsigned long
ttm_dma_pool_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1134 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1135 {
1136 	struct device_pools *p;
1137 	unsigned long count = 0;
1138 
1139 	if (!mutex_trylock(&_manager->lock))
1140 		return 0;
1141 	list_for_each_entry(p, &_manager->pools, pools)
1142 		count += p->pool->npages_free;
1143 	mutex_unlock(&_manager->lock);
1144 	return count;
1145 }
1146 
ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager * manager)1147 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1148 {
1149 	manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1150 	manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1151 	manager->mm_shrink.seeks = 1;
1152 	return register_shrinker(&manager->mm_shrink);
1153 }
1154 
ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager * manager)1155 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1156 {
1157 	unregister_shrinker(&manager->mm_shrink);
1158 }
1159 
ttm_dma_page_alloc_init(struct ttm_mem_global * glob,unsigned max_pages)1160 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1161 {
1162 	int ret;
1163 
1164 	WARN_ON(_manager);
1165 
1166 	pr_info("Initializing DMA pool allocator\n");
1167 
1168 	_manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1169 	if (!_manager)
1170 		return -ENOMEM;
1171 
1172 	mutex_init(&_manager->lock);
1173 	INIT_LIST_HEAD(&_manager->pools);
1174 
1175 	_manager->options.max_size = max_pages;
1176 	_manager->options.small = SMALL_ALLOCATION;
1177 	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1178 
1179 	/* This takes care of auto-freeing the _manager */
1180 	ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1181 				   &glob->kobj, "dma_pool");
1182 	if (unlikely(ret != 0))
1183 		goto error;
1184 
1185 	ret = ttm_dma_pool_mm_shrink_init(_manager);
1186 	if (unlikely(ret != 0))
1187 		goto error;
1188 	return 0;
1189 
1190 error:
1191 	kobject_put(&_manager->kobj);
1192 	_manager = NULL;
1193 	return ret;
1194 }
1195 
ttm_dma_page_alloc_fini(void)1196 void ttm_dma_page_alloc_fini(void)
1197 {
1198 	struct device_pools *p, *t;
1199 
1200 	pr_info("Finalizing DMA pool allocator\n");
1201 	ttm_dma_pool_mm_shrink_fini(_manager);
1202 
1203 	list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1204 		dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1205 			current->pid);
1206 		WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1207 			ttm_dma_pool_match, p->pool));
1208 		ttm_dma_free_pool(p->dev, p->pool->type);
1209 	}
1210 	kobject_put(&_manager->kobj);
1211 	_manager = NULL;
1212 }
1213 
ttm_dma_page_alloc_debugfs(struct seq_file * m,void * data)1214 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1215 {
1216 	struct device_pools *p;
1217 	struct dma_pool *pool = NULL;
1218 
1219 	if (!_manager) {
1220 		seq_printf(m, "No pool allocator running.\n");
1221 		return 0;
1222 	}
1223 	seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1224 	mutex_lock(&_manager->lock);
1225 	list_for_each_entry(p, &_manager->pools, pools) {
1226 		struct device *dev = p->dev;
1227 		if (!dev)
1228 			continue;
1229 		pool = p->pool;
1230 		seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1231 				pool->name, pool->nrefills,
1232 				pool->nfrees, pool->npages_in_use,
1233 				pool->npages_free,
1234 				pool->dev_name);
1235 	}
1236 	mutex_unlock(&_manager->lock);
1237 	return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1240