1 /*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include <nvif/push006c.h>
25
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/cl006b.h>
29 #include <nvif/cl506f.h>
30 #include <nvif/cl906f.h>
31 #include <nvif/cla06f.h>
32 #include <nvif/clc36f.h>
33 #include <nvif/ioctl.h>
34
35 #include "nouveau_drv.h"
36 #include "nouveau_dma.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_chan.h"
39 #include "nouveau_fence.h"
40 #include "nouveau_abi16.h"
41 #include "nouveau_vmm.h"
42 #include "nouveau_svm.h"
43
44 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
45 int nouveau_vram_pushbuf;
46 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
47
48 static int
nouveau_channel_killed(struct nvif_notify * ntfy)49 nouveau_channel_killed(struct nvif_notify *ntfy)
50 {
51 struct nouveau_channel *chan = container_of(ntfy, typeof(*chan), kill);
52 struct nouveau_cli *cli = (void *)chan->user.client;
53 NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
54 atomic_set(&chan->killed, 1);
55 if (chan->fence)
56 nouveau_fence_context_kill(chan->fence, -ENODEV);
57 return NVIF_NOTIFY_DROP;
58 }
59
60 int
nouveau_channel_idle(struct nouveau_channel * chan)61 nouveau_channel_idle(struct nouveau_channel *chan)
62 {
63 if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
64 struct nouveau_cli *cli = (void *)chan->user.client;
65 struct nouveau_fence *fence = NULL;
66 int ret;
67
68 ret = nouveau_fence_new(chan, false, &fence);
69 if (!ret) {
70 ret = nouveau_fence_wait(fence, false, false);
71 nouveau_fence_unref(&fence);
72 }
73
74 if (ret) {
75 NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
76 chan->chid, nvxx_client(&cli->base)->name);
77 return ret;
78 }
79 }
80 return 0;
81 }
82
83 void
nouveau_channel_del(struct nouveau_channel ** pchan)84 nouveau_channel_del(struct nouveau_channel **pchan)
85 {
86 struct nouveau_channel *chan = *pchan;
87 if (chan) {
88 struct nouveau_cli *cli = (void *)chan->user.client;
89 bool super;
90
91 if (cli) {
92 super = cli->base.super;
93 cli->base.super = true;
94 }
95
96 if (chan->fence)
97 nouveau_fence(chan->drm)->context_del(chan);
98
99 if (cli)
100 nouveau_svmm_part(chan->vmm->svmm, chan->inst);
101
102 nvif_object_dtor(&chan->nvsw);
103 nvif_object_dtor(&chan->gart);
104 nvif_object_dtor(&chan->vram);
105 nvif_notify_dtor(&chan->kill);
106 nvif_object_dtor(&chan->user);
107 nvif_object_dtor(&chan->push.ctxdma);
108 nouveau_vma_del(&chan->push.vma);
109 nouveau_bo_unmap(chan->push.buffer);
110 if (chan->push.buffer && chan->push.buffer->pin_refcnt)
111 nouveau_bo_unpin(chan->push.buffer);
112 nouveau_bo_ref(NULL, &chan->push.buffer);
113 kfree(chan);
114
115 if (cli)
116 cli->base.super = super;
117 }
118 *pchan = NULL;
119 }
120
121 static void
nouveau_channel_kick(struct nvif_push * push)122 nouveau_channel_kick(struct nvif_push *push)
123 {
124 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
125 chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
126 FIRE_RING(chan);
127 chan->chan._push.bgn = chan->chan._push.cur;
128 }
129
130 static int
nouveau_channel_wait(struct nvif_push * push,u32 size)131 nouveau_channel_wait(struct nvif_push *push, u32 size)
132 {
133 struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
134 int ret;
135 chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
136 ret = RING_SPACE(chan, size);
137 if (ret == 0) {
138 chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
139 chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
140 chan->chan._push.cur = chan->chan._push.bgn;
141 chan->chan._push.end = chan->chan._push.bgn + size;
142 }
143 return ret;
144 }
145
146 static int
nouveau_channel_prep(struct nouveau_drm * drm,struct nvif_device * device,u32 size,struct nouveau_channel ** pchan)147 nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
148 u32 size, struct nouveau_channel **pchan)
149 {
150 struct nouveau_cli *cli = (void *)device->object.client;
151 struct nv_dma_v0 args = {};
152 struct nouveau_channel *chan;
153 u32 target;
154 int ret;
155
156 chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
157 if (!chan)
158 return -ENOMEM;
159
160 chan->device = device;
161 chan->drm = drm;
162 chan->vmm = cli->svm.cli ? &cli->svm : &cli->vmm;
163 atomic_set(&chan->killed, 0);
164
165 /* allocate memory for dma push buffer */
166 target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
167 if (nouveau_vram_pushbuf)
168 target = NOUVEAU_GEM_DOMAIN_VRAM;
169
170 ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
171 &chan->push.buffer);
172 if (ret == 0) {
173 ret = nouveau_bo_pin(chan->push.buffer, target, false);
174 if (ret == 0)
175 ret = nouveau_bo_map(chan->push.buffer);
176 }
177
178 if (ret) {
179 nouveau_channel_del(pchan);
180 return ret;
181 }
182
183 chan->chan._push.mem.object.parent = cli->base.object.parent;
184 chan->chan._push.mem.object.client = &cli->base;
185 chan->chan._push.mem.object.name = "chanPush";
186 chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
187 chan->chan._push.wait = nouveau_channel_wait;
188 chan->chan._push.kick = nouveau_channel_kick;
189 chan->chan.push = &chan->chan._push;
190
191 /* create dma object covering the *entire* memory space that the
192 * pushbuf lives in, this is because the GEM code requires that
193 * we be able to call out to other (indirect) push buffers
194 */
195 chan->push.addr = chan->push.buffer->offset;
196
197 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
198 ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
199 &chan->push.vma);
200 if (ret) {
201 nouveau_channel_del(pchan);
202 return ret;
203 }
204
205 chan->push.addr = chan->push.vma->addr;
206
207 if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
208 return 0;
209
210 args.target = NV_DMA_V0_TARGET_VM;
211 args.access = NV_DMA_V0_ACCESS_VM;
212 args.start = 0;
213 args.limit = chan->vmm->vmm.limit - 1;
214 } else
215 if (chan->push.buffer->bo.mem.mem_type == TTM_PL_VRAM) {
216 if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
217 /* nv04 vram pushbuf hack, retarget to its location in
218 * the framebuffer bar rather than direct vram access..
219 * nfi why this exists, it came from the -nv ddx.
220 */
221 args.target = NV_DMA_V0_TARGET_PCI;
222 args.access = NV_DMA_V0_ACCESS_RDWR;
223 args.start = nvxx_device(device)->func->
224 resource_addr(nvxx_device(device), 1);
225 args.limit = args.start + device->info.ram_user - 1;
226 } else {
227 args.target = NV_DMA_V0_TARGET_VRAM;
228 args.access = NV_DMA_V0_ACCESS_RDWR;
229 args.start = 0;
230 args.limit = device->info.ram_user - 1;
231 }
232 } else {
233 if (chan->drm->agp.bridge) {
234 args.target = NV_DMA_V0_TARGET_AGP;
235 args.access = NV_DMA_V0_ACCESS_RDWR;
236 args.start = chan->drm->agp.base;
237 args.limit = chan->drm->agp.base +
238 chan->drm->agp.size - 1;
239 } else {
240 args.target = NV_DMA_V0_TARGET_VM;
241 args.access = NV_DMA_V0_ACCESS_RDWR;
242 args.start = 0;
243 args.limit = chan->vmm->vmm.limit - 1;
244 }
245 }
246
247 ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
248 NV_DMA_FROM_MEMORY, &args, sizeof(args),
249 &chan->push.ctxdma);
250 if (ret) {
251 nouveau_channel_del(pchan);
252 return ret;
253 }
254
255 return 0;
256 }
257
258 static int
nouveau_channel_ind(struct nouveau_drm * drm,struct nvif_device * device,u64 runlist,bool priv,struct nouveau_channel ** pchan)259 nouveau_channel_ind(struct nouveau_drm *drm, struct nvif_device *device,
260 u64 runlist, bool priv, struct nouveau_channel **pchan)
261 {
262 static const u16 oclasses[] = { TURING_CHANNEL_GPFIFO_A,
263 VOLTA_CHANNEL_GPFIFO_A,
264 PASCAL_CHANNEL_GPFIFO_A,
265 MAXWELL_CHANNEL_GPFIFO_A,
266 KEPLER_CHANNEL_GPFIFO_B,
267 KEPLER_CHANNEL_GPFIFO_A,
268 FERMI_CHANNEL_GPFIFO,
269 G82_CHANNEL_GPFIFO,
270 NV50_CHANNEL_GPFIFO,
271 0 };
272 const u16 *oclass = oclasses;
273 union {
274 struct nv50_channel_gpfifo_v0 nv50;
275 struct fermi_channel_gpfifo_v0 fermi;
276 struct kepler_channel_gpfifo_a_v0 kepler;
277 struct volta_channel_gpfifo_a_v0 volta;
278 } args;
279 struct nouveau_channel *chan;
280 u32 size;
281 int ret;
282
283 /* allocate dma push buffer */
284 ret = nouveau_channel_prep(drm, device, 0x12000, &chan);
285 *pchan = chan;
286 if (ret)
287 return ret;
288
289 /* create channel object */
290 do {
291 if (oclass[0] >= VOLTA_CHANNEL_GPFIFO_A) {
292 args.volta.version = 0;
293 args.volta.ilength = 0x02000;
294 args.volta.ioffset = 0x10000 + chan->push.addr;
295 args.volta.runlist = runlist;
296 args.volta.vmm = nvif_handle(&chan->vmm->vmm.object);
297 args.volta.priv = priv;
298 size = sizeof(args.volta);
299 } else
300 if (oclass[0] >= KEPLER_CHANNEL_GPFIFO_A) {
301 args.kepler.version = 0;
302 args.kepler.ilength = 0x02000;
303 args.kepler.ioffset = 0x10000 + chan->push.addr;
304 args.kepler.runlist = runlist;
305 args.kepler.vmm = nvif_handle(&chan->vmm->vmm.object);
306 args.kepler.priv = priv;
307 size = sizeof(args.kepler);
308 } else
309 if (oclass[0] >= FERMI_CHANNEL_GPFIFO) {
310 args.fermi.version = 0;
311 args.fermi.ilength = 0x02000;
312 args.fermi.ioffset = 0x10000 + chan->push.addr;
313 args.fermi.vmm = nvif_handle(&chan->vmm->vmm.object);
314 size = sizeof(args.fermi);
315 } else {
316 args.nv50.version = 0;
317 args.nv50.ilength = 0x02000;
318 args.nv50.ioffset = 0x10000 + chan->push.addr;
319 args.nv50.pushbuf = nvif_handle(&chan->push.ctxdma);
320 args.nv50.vmm = nvif_handle(&chan->vmm->vmm.object);
321 size = sizeof(args.nv50);
322 }
323
324 ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0,
325 *oclass++, &args, size, &chan->user);
326 if (ret == 0) {
327 if (chan->user.oclass >= VOLTA_CHANNEL_GPFIFO_A) {
328 chan->chid = args.volta.chid;
329 chan->inst = args.volta.inst;
330 chan->token = args.volta.token;
331 } else
332 if (chan->user.oclass >= KEPLER_CHANNEL_GPFIFO_A) {
333 chan->chid = args.kepler.chid;
334 chan->inst = args.kepler.inst;
335 } else
336 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
337 chan->chid = args.fermi.chid;
338 } else {
339 chan->chid = args.nv50.chid;
340 }
341 return ret;
342 }
343 } while (*oclass);
344
345 nouveau_channel_del(pchan);
346 return ret;
347 }
348
349 static int
nouveau_channel_dma(struct nouveau_drm * drm,struct nvif_device * device,struct nouveau_channel ** pchan)350 nouveau_channel_dma(struct nouveau_drm *drm, struct nvif_device *device,
351 struct nouveau_channel **pchan)
352 {
353 static const u16 oclasses[] = { NV40_CHANNEL_DMA,
354 NV17_CHANNEL_DMA,
355 NV10_CHANNEL_DMA,
356 NV03_CHANNEL_DMA,
357 0 };
358 const u16 *oclass = oclasses;
359 struct nv03_channel_dma_v0 args;
360 struct nouveau_channel *chan;
361 int ret;
362
363 /* allocate dma push buffer */
364 ret = nouveau_channel_prep(drm, device, 0x10000, &chan);
365 *pchan = chan;
366 if (ret)
367 return ret;
368
369 /* create channel object */
370 args.version = 0;
371 args.pushbuf = nvif_handle(&chan->push.ctxdma);
372 args.offset = chan->push.addr;
373
374 do {
375 ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0,
376 *oclass++, &args, sizeof(args),
377 &chan->user);
378 if (ret == 0) {
379 chan->chid = args.chid;
380 return ret;
381 }
382 } while (ret && *oclass);
383
384 nouveau_channel_del(pchan);
385 return ret;
386 }
387
388 static int
nouveau_channel_init(struct nouveau_channel * chan,u32 vram,u32 gart)389 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
390 {
391 struct nvif_device *device = chan->device;
392 struct nouveau_drm *drm = chan->drm;
393 struct nv_dma_v0 args = {};
394 int ret, i;
395
396 nvif_object_map(&chan->user, NULL, 0);
397
398 if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
399 ret = nvif_notify_ctor(&chan->user, "abi16ChanKilled",
400 nouveau_channel_killed,
401 true, NV906F_V0_NTFY_KILLED,
402 NULL, 0, 0, &chan->kill);
403 if (ret == 0)
404 ret = nvif_notify_get(&chan->kill);
405 if (ret) {
406 NV_ERROR(drm, "Failed to request channel kill "
407 "notification: %d\n", ret);
408 return ret;
409 }
410 }
411
412 /* allocate dma objects to cover all allowed vram, and gart */
413 if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
414 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
415 args.target = NV_DMA_V0_TARGET_VM;
416 args.access = NV_DMA_V0_ACCESS_VM;
417 args.start = 0;
418 args.limit = chan->vmm->vmm.limit - 1;
419 } else {
420 args.target = NV_DMA_V0_TARGET_VRAM;
421 args.access = NV_DMA_V0_ACCESS_RDWR;
422 args.start = 0;
423 args.limit = device->info.ram_user - 1;
424 }
425
426 ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
427 NV_DMA_IN_MEMORY, &args, sizeof(args),
428 &chan->vram);
429 if (ret)
430 return ret;
431
432 if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
433 args.target = NV_DMA_V0_TARGET_VM;
434 args.access = NV_DMA_V0_ACCESS_VM;
435 args.start = 0;
436 args.limit = chan->vmm->vmm.limit - 1;
437 } else
438 if (chan->drm->agp.bridge) {
439 args.target = NV_DMA_V0_TARGET_AGP;
440 args.access = NV_DMA_V0_ACCESS_RDWR;
441 args.start = chan->drm->agp.base;
442 args.limit = chan->drm->agp.base +
443 chan->drm->agp.size - 1;
444 } else {
445 args.target = NV_DMA_V0_TARGET_VM;
446 args.access = NV_DMA_V0_ACCESS_RDWR;
447 args.start = 0;
448 args.limit = chan->vmm->vmm.limit - 1;
449 }
450
451 ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
452 NV_DMA_IN_MEMORY, &args, sizeof(args),
453 &chan->gart);
454 if (ret)
455 return ret;
456 }
457
458 /* initialise dma tracking parameters */
459 switch (chan->user.oclass & 0x00ff) {
460 case 0x006b:
461 case 0x006e:
462 chan->user_put = 0x40;
463 chan->user_get = 0x44;
464 chan->dma.max = (0x10000 / 4) - 2;
465 break;
466 default:
467 chan->user_put = 0x40;
468 chan->user_get = 0x44;
469 chan->user_get_hi = 0x60;
470 chan->dma.ib_base = 0x10000 / 4;
471 chan->dma.ib_max = (0x02000 / 8) - 1;
472 chan->dma.ib_put = 0;
473 chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
474 chan->dma.max = chan->dma.ib_base;
475 break;
476 }
477
478 chan->dma.put = 0;
479 chan->dma.cur = chan->dma.put;
480 chan->dma.free = chan->dma.max - chan->dma.cur;
481
482 ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
483 if (ret)
484 return ret;
485
486 for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
487 PUSH_DATA(chan->chan.push, 0x00000000);
488
489 /* allocate software object class (used for fences on <= nv05) */
490 if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
491 ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
492 NVIF_CLASS_SW_NV04,
493 NULL, 0, &chan->nvsw);
494 if (ret)
495 return ret;
496
497 ret = PUSH_WAIT(chan->chan.push, 2);
498 if (ret)
499 return ret;
500
501 PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
502 PUSH_KICK(chan->chan.push);
503 }
504
505 /* initialise synchronisation */
506 return nouveau_fence(chan->drm)->context_new(chan);
507 }
508
509 int
nouveau_channel_new(struct nouveau_drm * drm,struct nvif_device * device,u32 arg0,u32 arg1,bool priv,struct nouveau_channel ** pchan)510 nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
511 u32 arg0, u32 arg1, bool priv,
512 struct nouveau_channel **pchan)
513 {
514 struct nouveau_cli *cli = (void *)device->object.client;
515 bool super;
516 int ret;
517
518 /* hack until fencenv50 is fixed, and agp access relaxed */
519 super = cli->base.super;
520 cli->base.super = true;
521
522 ret = nouveau_channel_ind(drm, device, arg0, priv, pchan);
523 if (ret) {
524 NV_PRINTK(dbg, cli, "ib channel create, %d\n", ret);
525 ret = nouveau_channel_dma(drm, device, pchan);
526 if (ret) {
527 NV_PRINTK(dbg, cli, "dma channel create, %d\n", ret);
528 goto done;
529 }
530 }
531
532 ret = nouveau_channel_init(*pchan, arg0, arg1);
533 if (ret) {
534 NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
535 nouveau_channel_del(pchan);
536 }
537
538 ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
539 if (ret)
540 nouveau_channel_del(pchan);
541
542 done:
543 cli->base.super = super;
544 return ret;
545 }
546
547 int
nouveau_channels_init(struct nouveau_drm * drm)548 nouveau_channels_init(struct nouveau_drm *drm)
549 {
550 struct {
551 struct nv_device_info_v1 m;
552 struct {
553 struct nv_device_info_v1_data channels;
554 } v;
555 } args = {
556 .m.version = 1,
557 .m.count = sizeof(args.v) / sizeof(args.v.channels),
558 .v.channels.mthd = NV_DEVICE_FIFO_CHANNELS,
559 };
560 struct nvif_object *device = &drm->client.device.object;
561 int ret;
562
563 ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
564 if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
565 return -ENODEV;
566
567 drm->chan.nr = args.v.channels.data;
568 drm->chan.context_base = dma_fence_context_alloc(drm->chan.nr);
569 return 0;
570 }
571