1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include <linux/delay.h>
27 
28 #include "dce_i2c.h"
29 #include "dce_i2c_sw.h"
30 #include "include/gpio_service_interface.h"
31 #define SCL false
32 #define SDA true
33 
dce_i2c_sw_construct(struct dce_i2c_sw * dce_i2c_sw,struct dc_context * ctx)34 void dce_i2c_sw_construct(
35 	struct dce_i2c_sw *dce_i2c_sw,
36 	struct dc_context *ctx)
37 {
38 	dce_i2c_sw->ctx = ctx;
39 }
40 
read_bit_from_ddc(struct ddc * ddc,bool data_nor_clock)41 static inline bool read_bit_from_ddc(
42 	struct ddc *ddc,
43 	bool data_nor_clock)
44 {
45 	uint32_t value = 0;
46 
47 	if (data_nor_clock)
48 		dal_gpio_get_value(ddc->pin_data, &value);
49 	else
50 		dal_gpio_get_value(ddc->pin_clock, &value);
51 
52 	return (value != 0);
53 }
54 
write_bit_to_ddc(struct ddc * ddc,bool data_nor_clock,bool bit)55 static inline void write_bit_to_ddc(
56 	struct ddc *ddc,
57 	bool data_nor_clock,
58 	bool bit)
59 {
60 	uint32_t value = bit ? 1 : 0;
61 
62 	if (data_nor_clock)
63 		dal_gpio_set_value(ddc->pin_data, value);
64 	else
65 		dal_gpio_set_value(ddc->pin_clock, value);
66 }
67 
release_engine_dce_sw(struct resource_pool * pool,struct dce_i2c_sw * dce_i2c_sw)68 static void release_engine_dce_sw(
69 	struct resource_pool *pool,
70 	struct dce_i2c_sw *dce_i2c_sw)
71 {
72 	dal_ddc_close(dce_i2c_sw->ddc);
73 	dce_i2c_sw->ddc = NULL;
74 }
75 
wait_for_scl_high_sw(struct dc_context * ctx,struct ddc * ddc,uint16_t clock_delay_div_4)76 static bool wait_for_scl_high_sw(
77 	struct dc_context *ctx,
78 	struct ddc *ddc,
79 	uint16_t clock_delay_div_4)
80 {
81 	uint32_t scl_retry = 0;
82 	uint32_t scl_retry_max = I2C_SW_TIMEOUT_DELAY / clock_delay_div_4;
83 
84 	udelay(clock_delay_div_4);
85 
86 	do {
87 		if (read_bit_from_ddc(ddc, SCL))
88 			return true;
89 
90 		udelay(clock_delay_div_4);
91 
92 		++scl_retry;
93 	} while (scl_retry <= scl_retry_max);
94 
95 	return false;
96 }
write_byte_sw(struct dc_context * ctx,struct ddc * ddc_handle,uint16_t clock_delay_div_4,uint8_t byte)97 static bool write_byte_sw(
98 	struct dc_context *ctx,
99 	struct ddc *ddc_handle,
100 	uint16_t clock_delay_div_4,
101 	uint8_t byte)
102 {
103 	int32_t shift = 7;
104 	bool ack;
105 
106 	/* bits are transmitted serially, starting from MSB */
107 
108 	do {
109 		udelay(clock_delay_div_4);
110 
111 		write_bit_to_ddc(ddc_handle, SDA, (byte >> shift) & 1);
112 
113 		udelay(clock_delay_div_4);
114 
115 		write_bit_to_ddc(ddc_handle, SCL, true);
116 
117 		if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
118 			return false;
119 
120 		write_bit_to_ddc(ddc_handle, SCL, false);
121 
122 		--shift;
123 	} while (shift >= 0);
124 
125 	/* The display sends ACK by preventing the SDA from going high
126 	 * after the SCL pulse we use to send our last data bit.
127 	 * If the SDA goes high after that bit, it's a NACK
128 	 */
129 
130 	udelay(clock_delay_div_4);
131 
132 	write_bit_to_ddc(ddc_handle, SDA, true);
133 
134 	udelay(clock_delay_div_4);
135 
136 	write_bit_to_ddc(ddc_handle, SCL, true);
137 
138 	if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
139 		return false;
140 
141 	/* read ACK bit */
142 
143 	ack = !read_bit_from_ddc(ddc_handle, SDA);
144 
145 	udelay(clock_delay_div_4 << 1);
146 
147 	write_bit_to_ddc(ddc_handle, SCL, false);
148 
149 	udelay(clock_delay_div_4 << 1);
150 
151 	return ack;
152 }
153 
read_byte_sw(struct dc_context * ctx,struct ddc * ddc_handle,uint16_t clock_delay_div_4,uint8_t * byte,bool more)154 static bool read_byte_sw(
155 	struct dc_context *ctx,
156 	struct ddc *ddc_handle,
157 	uint16_t clock_delay_div_4,
158 	uint8_t *byte,
159 	bool more)
160 {
161 	int32_t shift = 7;
162 
163 	uint8_t data = 0;
164 
165 	/* The data bits are read from MSB to LSB;
166 	 * bit is read while SCL is high
167 	 */
168 
169 	do {
170 		write_bit_to_ddc(ddc_handle, SCL, true);
171 
172 		if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
173 			return false;
174 
175 		if (read_bit_from_ddc(ddc_handle, SDA))
176 			data |= (1 << shift);
177 
178 		write_bit_to_ddc(ddc_handle, SCL, false);
179 
180 		udelay(clock_delay_div_4 << 1);
181 
182 		--shift;
183 	} while (shift >= 0);
184 
185 	/* read only whole byte */
186 
187 	*byte = data;
188 
189 	udelay(clock_delay_div_4);
190 
191 	/* send the acknowledge bit:
192 	 * SDA low means ACK, SDA high means NACK
193 	 */
194 
195 	write_bit_to_ddc(ddc_handle, SDA, !more);
196 
197 	udelay(clock_delay_div_4);
198 
199 	write_bit_to_ddc(ddc_handle, SCL, true);
200 
201 	if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
202 		return false;
203 
204 	write_bit_to_ddc(ddc_handle, SCL, false);
205 
206 	udelay(clock_delay_div_4);
207 
208 	write_bit_to_ddc(ddc_handle, SDA, true);
209 
210 	udelay(clock_delay_div_4);
211 
212 	return true;
213 }
stop_sync_sw(struct dc_context * ctx,struct ddc * ddc_handle,uint16_t clock_delay_div_4)214 static bool stop_sync_sw(
215 	struct dc_context *ctx,
216 	struct ddc *ddc_handle,
217 	uint16_t clock_delay_div_4)
218 {
219 	uint32_t retry = 0;
220 
221 	/* The I2C communications stop signal is:
222 	 * the SDA going high from low, while the SCL is high.
223 	 */
224 
225 	write_bit_to_ddc(ddc_handle, SCL, false);
226 
227 	udelay(clock_delay_div_4);
228 
229 	write_bit_to_ddc(ddc_handle, SDA, false);
230 
231 	udelay(clock_delay_div_4);
232 
233 	write_bit_to_ddc(ddc_handle, SCL, true);
234 
235 	if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
236 		return false;
237 
238 	write_bit_to_ddc(ddc_handle, SDA, true);
239 
240 	do {
241 		udelay(clock_delay_div_4);
242 
243 		if (read_bit_from_ddc(ddc_handle, SDA))
244 			return true;
245 
246 		++retry;
247 	} while (retry <= 2);
248 
249 	return false;
250 }
i2c_write_sw(struct dc_context * ctx,struct ddc * ddc_handle,uint16_t clock_delay_div_4,uint8_t address,uint32_t length,const uint8_t * data)251 static bool i2c_write_sw(
252 	struct dc_context *ctx,
253 	struct ddc *ddc_handle,
254 	uint16_t clock_delay_div_4,
255 	uint8_t address,
256 	uint32_t length,
257 	const uint8_t *data)
258 {
259 	uint32_t i = 0;
260 
261 	if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, address))
262 		return false;
263 
264 	while (i < length) {
265 		if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, data[i]))
266 			return false;
267 		++i;
268 	}
269 
270 	return true;
271 }
272 
i2c_read_sw(struct dc_context * ctx,struct ddc * ddc_handle,uint16_t clock_delay_div_4,uint8_t address,uint32_t length,uint8_t * data)273 static bool i2c_read_sw(
274 	struct dc_context *ctx,
275 	struct ddc *ddc_handle,
276 	uint16_t clock_delay_div_4,
277 	uint8_t address,
278 	uint32_t length,
279 	uint8_t *data)
280 {
281 	uint32_t i = 0;
282 
283 	if (!write_byte_sw(ctx, ddc_handle, clock_delay_div_4, address))
284 		return false;
285 
286 	while (i < length) {
287 		if (!read_byte_sw(ctx, ddc_handle, clock_delay_div_4, data + i,
288 			i < length - 1))
289 			return false;
290 		++i;
291 	}
292 
293 	return true;
294 }
295 
296 
297 
start_sync_sw(struct dc_context * ctx,struct ddc * ddc_handle,uint16_t clock_delay_div_4)298 static bool start_sync_sw(
299 	struct dc_context *ctx,
300 	struct ddc *ddc_handle,
301 	uint16_t clock_delay_div_4)
302 {
303 	uint32_t retry = 0;
304 
305 	/* The I2C communications start signal is:
306 	 * the SDA going low from high, while the SCL is high.
307 	 */
308 
309 	write_bit_to_ddc(ddc_handle, SCL, true);
310 
311 	udelay(clock_delay_div_4);
312 
313 	do {
314 		write_bit_to_ddc(ddc_handle, SDA, true);
315 
316 		if (!read_bit_from_ddc(ddc_handle, SDA)) {
317 			++retry;
318 			continue;
319 		}
320 
321 		udelay(clock_delay_div_4);
322 
323 		write_bit_to_ddc(ddc_handle, SCL, true);
324 
325 		if (!wait_for_scl_high_sw(ctx, ddc_handle, clock_delay_div_4))
326 			break;
327 
328 		write_bit_to_ddc(ddc_handle, SDA, false);
329 
330 		udelay(clock_delay_div_4);
331 
332 		write_bit_to_ddc(ddc_handle, SCL, false);
333 
334 		udelay(clock_delay_div_4);
335 
336 		return true;
337 	} while (retry <= I2C_SW_RETRIES);
338 
339 	return false;
340 }
341 
dce_i2c_sw_engine_set_speed(struct dce_i2c_sw * engine,uint32_t speed)342 void dce_i2c_sw_engine_set_speed(
343 	struct dce_i2c_sw *engine,
344 	uint32_t speed)
345 {
346 	ASSERT(speed);
347 
348 	engine->speed = speed ? speed : DCE_I2C_DEFAULT_I2C_SW_SPEED;
349 
350 	engine->clock_delay = 1000 / engine->speed;
351 
352 	if (engine->clock_delay < 12)
353 		engine->clock_delay = 12;
354 }
355 
dce_i2c_sw_engine_acquire_engine(struct dce_i2c_sw * engine,struct ddc * ddc)356 bool dce_i2c_sw_engine_acquire_engine(
357 	struct dce_i2c_sw *engine,
358 	struct ddc *ddc)
359 {
360 	enum gpio_result result;
361 
362 	result = dal_ddc_open(ddc, GPIO_MODE_FAST_OUTPUT,
363 		GPIO_DDC_CONFIG_TYPE_MODE_I2C);
364 
365 	if (result != GPIO_RESULT_OK)
366 		return false;
367 
368 	engine->ddc = ddc;
369 
370 	return true;
371 }
dce_i2c_engine_acquire_sw(struct dce_i2c_sw * dce_i2c_sw,struct ddc * ddc_handle)372 bool dce_i2c_engine_acquire_sw(
373 	struct dce_i2c_sw *dce_i2c_sw,
374 	struct ddc *ddc_handle)
375 {
376 	uint32_t counter = 0;
377 	bool result;
378 
379 	do {
380 
381 		result = dce_i2c_sw_engine_acquire_engine(
382 				dce_i2c_sw, ddc_handle);
383 
384 		if (result)
385 			break;
386 
387 		/* i2c_engine is busy by VBios, lets wait and retry */
388 
389 		udelay(10);
390 
391 		++counter;
392 	} while (counter < 2);
393 
394 	return result;
395 }
396 
397 
398 
399 
dce_i2c_sw_engine_submit_channel_request(struct dce_i2c_sw * engine,struct i2c_request_transaction_data * req)400 void dce_i2c_sw_engine_submit_channel_request(
401 	struct dce_i2c_sw *engine,
402 	struct i2c_request_transaction_data *req)
403 {
404 	struct ddc *ddc = engine->ddc;
405 	uint16_t clock_delay_div_4 = engine->clock_delay >> 2;
406 
407 	/* send sync (start / repeated start) */
408 
409 	bool result = start_sync_sw(engine->ctx, ddc, clock_delay_div_4);
410 
411 	/* process payload */
412 
413 	if (result) {
414 		switch (req->action) {
415 		case DCE_I2C_TRANSACTION_ACTION_I2C_WRITE:
416 		case DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT:
417 			result = i2c_write_sw(engine->ctx, ddc, clock_delay_div_4,
418 				req->address, req->length, req->data);
419 		break;
420 		case DCE_I2C_TRANSACTION_ACTION_I2C_READ:
421 		case DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT:
422 			result = i2c_read_sw(engine->ctx, ddc, clock_delay_div_4,
423 				req->address, req->length, req->data);
424 		break;
425 		default:
426 			result = false;
427 		break;
428 		}
429 	}
430 
431 	/* send stop if not 'mot' or operation failed */
432 
433 	if (!result ||
434 		(req->action == DCE_I2C_TRANSACTION_ACTION_I2C_WRITE) ||
435 		(req->action == DCE_I2C_TRANSACTION_ACTION_I2C_READ))
436 		if (!stop_sync_sw(engine->ctx, ddc, clock_delay_div_4))
437 			result = false;
438 
439 	req->status = result ?
440 		I2C_CHANNEL_OPERATION_SUCCEEDED :
441 		I2C_CHANNEL_OPERATION_FAILED;
442 }
dce_i2c_sw_engine_submit_payload(struct dce_i2c_sw * engine,struct i2c_payload * payload,bool middle_of_transaction)443 bool dce_i2c_sw_engine_submit_payload(
444 	struct dce_i2c_sw *engine,
445 	struct i2c_payload *payload,
446 	bool middle_of_transaction)
447 {
448 	struct i2c_request_transaction_data request;
449 
450 	if (!payload->write)
451 		request.action = middle_of_transaction ?
452 			DCE_I2C_TRANSACTION_ACTION_I2C_READ_MOT :
453 			DCE_I2C_TRANSACTION_ACTION_I2C_READ;
454 	else
455 		request.action = middle_of_transaction ?
456 			DCE_I2C_TRANSACTION_ACTION_I2C_WRITE_MOT :
457 			DCE_I2C_TRANSACTION_ACTION_I2C_WRITE;
458 
459 	request.address = (uint8_t) ((payload->address << 1) | !payload->write);
460 	request.length = payload->length;
461 	request.data = payload->data;
462 
463 	dce_i2c_sw_engine_submit_channel_request(engine, &request);
464 
465 	if ((request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY) ||
466 		(request.status == I2C_CHANNEL_OPERATION_FAILED))
467 		return false;
468 
469 	return true;
470 }
dce_i2c_submit_command_sw(struct resource_pool * pool,struct ddc * ddc,struct i2c_command * cmd,struct dce_i2c_sw * dce_i2c_sw)471 bool dce_i2c_submit_command_sw(
472 	struct resource_pool *pool,
473 	struct ddc *ddc,
474 	struct i2c_command *cmd,
475 	struct dce_i2c_sw *dce_i2c_sw)
476 {
477 	uint8_t index_of_payload = 0;
478 	bool result;
479 
480 	dce_i2c_sw_engine_set_speed(dce_i2c_sw, cmd->speed);
481 
482 	result = true;
483 
484 	while (index_of_payload < cmd->number_of_payloads) {
485 		bool mot = (index_of_payload != cmd->number_of_payloads - 1);
486 
487 		struct i2c_payload *payload = cmd->payloads + index_of_payload;
488 
489 		if (!dce_i2c_sw_engine_submit_payload(
490 			dce_i2c_sw, payload, mot)) {
491 			result = false;
492 			break;
493 		}
494 
495 		++index_of_payload;
496 	}
497 
498 	release_engine_dce_sw(pool, dce_i2c_sw);
499 
500 	return result;
501 }
502