1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bluetooth Software UART Qualcomm protocol
4 *
5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6 * protocol extension to H4.
7 *
8 * Copyright (C) 2007 Texas Instruments, Inc.
9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10 *
11 * Acknowledgements:
12 * This file is based on hci_ll.c, which was...
13 * Written by Ohad Ben-Cohen <ohad@bencohen.org>
14 * which was in turn based on hci_h4.c, which was written
15 * by Maxim Krasnyansky and Marcel Holtmann.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38
39 #include "hci_uart.h"
40 #include "btqca.h"
41
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND 0xFE
44 #define HCI_IBS_WAKE_IND 0xFD
45 #define HCI_IBS_WAKE_ACK 0xFC
46 #define HCI_MAX_IBS_SIZE 10
47
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS 100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
51 #define CMD_TRANS_TIMEOUT_MS 100
52 #define MEMDUMP_TIMEOUT_MS 8000
53
54 /* susclk rate */
55 #define SUSCLK_RATE_32KHZ 32768
56
57 /* Controller debug log header */
58 #define QCA_DEBUG_HANDLE 0x2EDC
59
60 /* max retry count when init fails */
61 #define MAX_INIT_RETRIES 3
62
63 /* Controller dump header */
64 #define QCA_SSR_DUMP_HANDLE 0x0108
65 #define QCA_DUMP_PACKET_SIZE 255
66 #define QCA_LAST_SEQUENCE_NUM 0xFFFF
67 #define QCA_CRASHBYTE_PACKET_LEN 1096
68 #define QCA_MEMDUMP_BYTE 0xFB
69
70 enum qca_flags {
71 QCA_IBS_ENABLED,
72 QCA_DROP_VENDOR_EVENT,
73 QCA_SUSPENDING,
74 QCA_MEMDUMP_COLLECTION,
75 QCA_HW_ERROR_EVENT,
76 QCA_SSR_TRIGGERED
77 };
78
79 enum qca_capabilities {
80 QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81 };
82
83 /* HCI_IBS transmit side sleep protocol states */
84 enum tx_ibs_states {
85 HCI_IBS_TX_ASLEEP,
86 HCI_IBS_TX_WAKING,
87 HCI_IBS_TX_AWAKE,
88 };
89
90 /* HCI_IBS receive side sleep protocol states */
91 enum rx_states {
92 HCI_IBS_RX_ASLEEP,
93 HCI_IBS_RX_AWAKE,
94 };
95
96 /* HCI_IBS transmit and receive side clock state vote */
97 enum hci_ibs_clock_state_vote {
98 HCI_IBS_VOTE_STATS_UPDATE,
99 HCI_IBS_TX_VOTE_CLOCK_ON,
100 HCI_IBS_TX_VOTE_CLOCK_OFF,
101 HCI_IBS_RX_VOTE_CLOCK_ON,
102 HCI_IBS_RX_VOTE_CLOCK_OFF,
103 };
104
105 /* Controller memory dump states */
106 enum qca_memdump_states {
107 QCA_MEMDUMP_IDLE,
108 QCA_MEMDUMP_COLLECTING,
109 QCA_MEMDUMP_COLLECTED,
110 QCA_MEMDUMP_TIMEOUT,
111 };
112
113 struct qca_memdump_data {
114 char *memdump_buf_head;
115 char *memdump_buf_tail;
116 u32 current_seq_no;
117 u32 received_dump;
118 u32 ram_dump_size;
119 };
120
121 struct qca_memdump_event_hdr {
122 __u8 evt;
123 __u8 plen;
124 __u16 opcode;
125 __u16 seq_no;
126 __u8 reserved;
127 } __packed;
128
129
130 struct qca_dump_size {
131 u32 dump_size;
132 } __packed;
133
134 struct qca_data {
135 struct hci_uart *hu;
136 struct sk_buff *rx_skb;
137 struct sk_buff_head txq;
138 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
139 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */
140 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
141 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
142 u8 rx_ibs_state; /* HCI_IBS receive side power state */
143 bool tx_vote; /* Clock must be on for TX */
144 bool rx_vote; /* Clock must be on for RX */
145 struct timer_list tx_idle_timer;
146 u32 tx_idle_delay;
147 struct timer_list wake_retrans_timer;
148 u32 wake_retrans;
149 struct workqueue_struct *workqueue;
150 struct work_struct ws_awake_rx;
151 struct work_struct ws_awake_device;
152 struct work_struct ws_rx_vote_off;
153 struct work_struct ws_tx_vote_off;
154 struct work_struct ctrl_memdump_evt;
155 struct delayed_work ctrl_memdump_timeout;
156 struct qca_memdump_data *qca_memdump;
157 unsigned long flags;
158 struct completion drop_ev_comp;
159 wait_queue_head_t suspend_wait_q;
160 enum qca_memdump_states memdump_state;
161 struct mutex hci_memdump_lock;
162
163 /* For debugging purpose */
164 u64 ibs_sent_wacks;
165 u64 ibs_sent_slps;
166 u64 ibs_sent_wakes;
167 u64 ibs_recv_wacks;
168 u64 ibs_recv_slps;
169 u64 ibs_recv_wakes;
170 u64 vote_last_jif;
171 u32 vote_on_ms;
172 u32 vote_off_ms;
173 u64 tx_votes_on;
174 u64 rx_votes_on;
175 u64 tx_votes_off;
176 u64 rx_votes_off;
177 u64 votes_on;
178 u64 votes_off;
179 };
180
181 enum qca_speed_type {
182 QCA_INIT_SPEED = 1,
183 QCA_OPER_SPEED
184 };
185
186 /*
187 * Voltage regulator information required for configuring the
188 * QCA Bluetooth chipset
189 */
190 struct qca_vreg {
191 const char *name;
192 unsigned int load_uA;
193 };
194
195 struct qca_device_data {
196 enum qca_btsoc_type soc_type;
197 struct qca_vreg *vregs;
198 size_t num_vregs;
199 uint32_t capabilities;
200 };
201
202 /*
203 * Platform data for the QCA Bluetooth power driver.
204 */
205 struct qca_power {
206 struct device *dev;
207 struct regulator_bulk_data *vreg_bulk;
208 int num_vregs;
209 bool vregs_on;
210 };
211
212 struct qca_serdev {
213 struct hci_uart serdev_hu;
214 struct gpio_desc *bt_en;
215 struct clk *susclk;
216 enum qca_btsoc_type btsoc_type;
217 struct qca_power *bt_power;
218 u32 init_speed;
219 u32 oper_speed;
220 const char *firmware_name;
221 };
222
223 static int qca_regulator_enable(struct qca_serdev *qcadev);
224 static void qca_regulator_disable(struct qca_serdev *qcadev);
225 static void qca_power_shutdown(struct hci_uart *hu);
226 static int qca_power_off(struct hci_dev *hdev);
227 static void qca_controller_memdump(struct work_struct *work);
228
qca_soc_type(struct hci_uart * hu)229 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
230 {
231 enum qca_btsoc_type soc_type;
232
233 if (hu->serdev) {
234 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
235
236 soc_type = qsd->btsoc_type;
237 } else {
238 soc_type = QCA_ROME;
239 }
240
241 return soc_type;
242 }
243
qca_get_firmware_name(struct hci_uart * hu)244 static const char *qca_get_firmware_name(struct hci_uart *hu)
245 {
246 if (hu->serdev) {
247 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
248
249 return qsd->firmware_name;
250 } else {
251 return NULL;
252 }
253 }
254
__serial_clock_on(struct tty_struct * tty)255 static void __serial_clock_on(struct tty_struct *tty)
256 {
257 /* TODO: Some chipset requires to enable UART clock on client
258 * side to save power consumption or manual work is required.
259 * Please put your code to control UART clock here if needed
260 */
261 }
262
__serial_clock_off(struct tty_struct * tty)263 static void __serial_clock_off(struct tty_struct *tty)
264 {
265 /* TODO: Some chipset requires to disable UART clock on client
266 * side to save power consumption or manual work is required.
267 * Please put your code to control UART clock off here if needed
268 */
269 }
270
271 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)272 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
273 {
274 struct qca_data *qca = hu->priv;
275 unsigned int diff;
276
277 bool old_vote = (qca->tx_vote | qca->rx_vote);
278 bool new_vote;
279
280 switch (vote) {
281 case HCI_IBS_VOTE_STATS_UPDATE:
282 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
283
284 if (old_vote)
285 qca->vote_off_ms += diff;
286 else
287 qca->vote_on_ms += diff;
288 return;
289
290 case HCI_IBS_TX_VOTE_CLOCK_ON:
291 qca->tx_vote = true;
292 qca->tx_votes_on++;
293 break;
294
295 case HCI_IBS_RX_VOTE_CLOCK_ON:
296 qca->rx_vote = true;
297 qca->rx_votes_on++;
298 break;
299
300 case HCI_IBS_TX_VOTE_CLOCK_OFF:
301 qca->tx_vote = false;
302 qca->tx_votes_off++;
303 break;
304
305 case HCI_IBS_RX_VOTE_CLOCK_OFF:
306 qca->rx_vote = false;
307 qca->rx_votes_off++;
308 break;
309
310 default:
311 BT_ERR("Voting irregularity");
312 return;
313 }
314
315 new_vote = qca->rx_vote | qca->tx_vote;
316
317 if (new_vote != old_vote) {
318 if (new_vote)
319 __serial_clock_on(hu->tty);
320 else
321 __serial_clock_off(hu->tty);
322
323 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
324 vote ? "true" : "false");
325
326 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
327
328 if (new_vote) {
329 qca->votes_on++;
330 qca->vote_off_ms += diff;
331 } else {
332 qca->votes_off++;
333 qca->vote_on_ms += diff;
334 }
335 qca->vote_last_jif = jiffies;
336 }
337 }
338
339 /* Builds and sends an HCI_IBS command packet.
340 * These are very simple packets with only 1 cmd byte.
341 */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)342 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
343 {
344 int err = 0;
345 struct sk_buff *skb = NULL;
346 struct qca_data *qca = hu->priv;
347
348 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
349
350 skb = bt_skb_alloc(1, GFP_ATOMIC);
351 if (!skb) {
352 BT_ERR("Failed to allocate memory for HCI_IBS packet");
353 return -ENOMEM;
354 }
355
356 /* Assign HCI_IBS type */
357 skb_put_u8(skb, cmd);
358
359 skb_queue_tail(&qca->txq, skb);
360
361 return err;
362 }
363
qca_wq_awake_device(struct work_struct * work)364 static void qca_wq_awake_device(struct work_struct *work)
365 {
366 struct qca_data *qca = container_of(work, struct qca_data,
367 ws_awake_device);
368 struct hci_uart *hu = qca->hu;
369 unsigned long retrans_delay;
370 unsigned long flags;
371
372 BT_DBG("hu %p wq awake device", hu);
373
374 /* Vote for serial clock */
375 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
376
377 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
378
379 /* Send wake indication to device */
380 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
381 BT_ERR("Failed to send WAKE to device");
382
383 qca->ibs_sent_wakes++;
384
385 /* Start retransmit timer */
386 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
387 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
388
389 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
390
391 /* Actually send the packets */
392 hci_uart_tx_wakeup(hu);
393 }
394
qca_wq_awake_rx(struct work_struct * work)395 static void qca_wq_awake_rx(struct work_struct *work)
396 {
397 struct qca_data *qca = container_of(work, struct qca_data,
398 ws_awake_rx);
399 struct hci_uart *hu = qca->hu;
400 unsigned long flags;
401
402 BT_DBG("hu %p wq awake rx", hu);
403
404 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
405
406 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
407 qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
408
409 /* Always acknowledge device wake up,
410 * sending IBS message doesn't count as TX ON.
411 */
412 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
413 BT_ERR("Failed to acknowledge device wake up");
414
415 qca->ibs_sent_wacks++;
416
417 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
418
419 /* Actually send the packets */
420 hci_uart_tx_wakeup(hu);
421 }
422
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)423 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
424 {
425 struct qca_data *qca = container_of(work, struct qca_data,
426 ws_rx_vote_off);
427 struct hci_uart *hu = qca->hu;
428
429 BT_DBG("hu %p rx clock vote off", hu);
430
431 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
432 }
433
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)434 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
435 {
436 struct qca_data *qca = container_of(work, struct qca_data,
437 ws_tx_vote_off);
438 struct hci_uart *hu = qca->hu;
439
440 BT_DBG("hu %p tx clock vote off", hu);
441
442 /* Run HCI tx handling unlocked */
443 hci_uart_tx_wakeup(hu);
444
445 /* Now that message queued to tty driver, vote for tty clocks off.
446 * It is up to the tty driver to pend the clocks off until tx done.
447 */
448 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
449 }
450
hci_ibs_tx_idle_timeout(struct timer_list * t)451 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
452 {
453 struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
454 struct hci_uart *hu = qca->hu;
455 unsigned long flags;
456
457 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
458
459 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
460 flags, SINGLE_DEPTH_NESTING);
461
462 switch (qca->tx_ibs_state) {
463 case HCI_IBS_TX_AWAKE:
464 /* TX_IDLE, go to SLEEP */
465 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
466 BT_ERR("Failed to send SLEEP to device");
467 break;
468 }
469 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
470 qca->ibs_sent_slps++;
471 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
472 break;
473
474 case HCI_IBS_TX_ASLEEP:
475 case HCI_IBS_TX_WAKING:
476 default:
477 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
478 break;
479 }
480
481 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
482 }
483
hci_ibs_wake_retrans_timeout(struct timer_list * t)484 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
485 {
486 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
487 struct hci_uart *hu = qca->hu;
488 unsigned long flags, retrans_delay;
489 bool retransmit = false;
490
491 BT_DBG("hu %p wake retransmit timeout in %d state",
492 hu, qca->tx_ibs_state);
493
494 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
495 flags, SINGLE_DEPTH_NESTING);
496
497 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
498 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
499 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
500 return;
501 }
502
503 switch (qca->tx_ibs_state) {
504 case HCI_IBS_TX_WAKING:
505 /* No WAKE_ACK, retransmit WAKE */
506 retransmit = true;
507 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
508 BT_ERR("Failed to acknowledge device wake up");
509 break;
510 }
511 qca->ibs_sent_wakes++;
512 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
513 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
514 break;
515
516 case HCI_IBS_TX_ASLEEP:
517 case HCI_IBS_TX_AWAKE:
518 default:
519 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
520 break;
521 }
522
523 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524
525 if (retransmit)
526 hci_uart_tx_wakeup(hu);
527 }
528
529
qca_controller_memdump_timeout(struct work_struct * work)530 static void qca_controller_memdump_timeout(struct work_struct *work)
531 {
532 struct qca_data *qca = container_of(work, struct qca_data,
533 ctrl_memdump_timeout.work);
534 struct hci_uart *hu = qca->hu;
535
536 mutex_lock(&qca->hci_memdump_lock);
537 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
538 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
539 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
540 /* Inject hw error event to reset the device
541 * and driver.
542 */
543 hci_reset_dev(hu->hdev);
544 }
545 }
546
547 mutex_unlock(&qca->hci_memdump_lock);
548 }
549
550
551 /* Initialize protocol */
qca_open(struct hci_uart * hu)552 static int qca_open(struct hci_uart *hu)
553 {
554 struct qca_serdev *qcadev;
555 struct qca_data *qca;
556
557 BT_DBG("hu %p qca_open", hu);
558
559 if (!hci_uart_has_flow_control(hu))
560 return -EOPNOTSUPP;
561
562 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
563 if (!qca)
564 return -ENOMEM;
565
566 skb_queue_head_init(&qca->txq);
567 skb_queue_head_init(&qca->tx_wait_q);
568 skb_queue_head_init(&qca->rx_memdump_q);
569 spin_lock_init(&qca->hci_ibs_lock);
570 mutex_init(&qca->hci_memdump_lock);
571 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
572 if (!qca->workqueue) {
573 BT_ERR("QCA Workqueue not initialized properly");
574 kfree(qca);
575 return -ENOMEM;
576 }
577
578 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
579 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
580 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
581 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
582 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
583 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
584 qca_controller_memdump_timeout);
585 init_waitqueue_head(&qca->suspend_wait_q);
586
587 qca->hu = hu;
588 init_completion(&qca->drop_ev_comp);
589
590 /* Assume we start with both sides asleep -- extra wakes OK */
591 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
592 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
593
594 qca->vote_last_jif = jiffies;
595
596 hu->priv = qca;
597
598 if (hu->serdev) {
599 qcadev = serdev_device_get_drvdata(hu->serdev);
600
601 if (qca_is_wcn399x(qcadev->btsoc_type))
602 hu->init_speed = qcadev->init_speed;
603
604 if (qcadev->oper_speed)
605 hu->oper_speed = qcadev->oper_speed;
606 }
607
608 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
609 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
610
611 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
612 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
613
614 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
615 qca->tx_idle_delay, qca->wake_retrans);
616
617 return 0;
618 }
619
qca_debugfs_init(struct hci_dev * hdev)620 static void qca_debugfs_init(struct hci_dev *hdev)
621 {
622 struct hci_uart *hu = hci_get_drvdata(hdev);
623 struct qca_data *qca = hu->priv;
624 struct dentry *ibs_dir;
625 umode_t mode;
626
627 if (!hdev->debugfs)
628 return;
629
630 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
631
632 /* read only */
633 mode = S_IRUGO;
634 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
635 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
636 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
637 &qca->ibs_sent_slps);
638 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
639 &qca->ibs_sent_wakes);
640 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
641 &qca->ibs_sent_wacks);
642 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
643 &qca->ibs_recv_slps);
644 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
645 &qca->ibs_recv_wakes);
646 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
647 &qca->ibs_recv_wacks);
648 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
649 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
650 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
651 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
652 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
653 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
654 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
655 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
656 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
657 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
658
659 /* read/write */
660 mode = S_IRUGO | S_IWUSR;
661 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
662 debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
663 &qca->tx_idle_delay);
664 }
665
666 /* Flush protocol data */
qca_flush(struct hci_uart * hu)667 static int qca_flush(struct hci_uart *hu)
668 {
669 struct qca_data *qca = hu->priv;
670
671 BT_DBG("hu %p qca flush", hu);
672
673 skb_queue_purge(&qca->tx_wait_q);
674 skb_queue_purge(&qca->txq);
675
676 return 0;
677 }
678
679 /* Close protocol */
qca_close(struct hci_uart * hu)680 static int qca_close(struct hci_uart *hu)
681 {
682 struct qca_data *qca = hu->priv;
683
684 BT_DBG("hu %p qca close", hu);
685
686 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
687
688 skb_queue_purge(&qca->tx_wait_q);
689 skb_queue_purge(&qca->txq);
690 skb_queue_purge(&qca->rx_memdump_q);
691 del_timer(&qca->tx_idle_timer);
692 del_timer(&qca->wake_retrans_timer);
693 destroy_workqueue(qca->workqueue);
694 qca->hu = NULL;
695
696 kfree_skb(qca->rx_skb);
697
698 hu->priv = NULL;
699
700 kfree(qca);
701
702 return 0;
703 }
704
705 /* Called upon a wake-up-indication from the device.
706 */
device_want_to_wakeup(struct hci_uart * hu)707 static void device_want_to_wakeup(struct hci_uart *hu)
708 {
709 unsigned long flags;
710 struct qca_data *qca = hu->priv;
711
712 BT_DBG("hu %p want to wake up", hu);
713
714 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
715
716 qca->ibs_recv_wakes++;
717
718 /* Don't wake the rx up when suspending. */
719 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
720 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
721 return;
722 }
723
724 switch (qca->rx_ibs_state) {
725 case HCI_IBS_RX_ASLEEP:
726 /* Make sure clock is on - we may have turned clock off since
727 * receiving the wake up indicator awake rx clock.
728 */
729 queue_work(qca->workqueue, &qca->ws_awake_rx);
730 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
731 return;
732
733 case HCI_IBS_RX_AWAKE:
734 /* Always acknowledge device wake up,
735 * sending IBS message doesn't count as TX ON.
736 */
737 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
738 BT_ERR("Failed to acknowledge device wake up");
739 break;
740 }
741 qca->ibs_sent_wacks++;
742 break;
743
744 default:
745 /* Any other state is illegal */
746 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
747 qca->rx_ibs_state);
748 break;
749 }
750
751 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
752
753 /* Actually send the packets */
754 hci_uart_tx_wakeup(hu);
755 }
756
757 /* Called upon a sleep-indication from the device.
758 */
device_want_to_sleep(struct hci_uart * hu)759 static void device_want_to_sleep(struct hci_uart *hu)
760 {
761 unsigned long flags;
762 struct qca_data *qca = hu->priv;
763
764 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
765
766 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
767
768 qca->ibs_recv_slps++;
769
770 switch (qca->rx_ibs_state) {
771 case HCI_IBS_RX_AWAKE:
772 /* Update state */
773 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
774 /* Vote off rx clock under workqueue */
775 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
776 break;
777
778 case HCI_IBS_RX_ASLEEP:
779 break;
780
781 default:
782 /* Any other state is illegal */
783 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
784 qca->rx_ibs_state);
785 break;
786 }
787
788 wake_up_interruptible(&qca->suspend_wait_q);
789
790 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
791 }
792
793 /* Called upon wake-up-acknowledgement from the device
794 */
device_woke_up(struct hci_uart * hu)795 static void device_woke_up(struct hci_uart *hu)
796 {
797 unsigned long flags, idle_delay;
798 struct qca_data *qca = hu->priv;
799 struct sk_buff *skb = NULL;
800
801 BT_DBG("hu %p woke up", hu);
802
803 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
804
805 qca->ibs_recv_wacks++;
806
807 /* Don't react to the wake-up-acknowledgment when suspending. */
808 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
809 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
810 return;
811 }
812
813 switch (qca->tx_ibs_state) {
814 case HCI_IBS_TX_AWAKE:
815 /* Expect one if we send 2 WAKEs */
816 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
817 qca->tx_ibs_state);
818 break;
819
820 case HCI_IBS_TX_WAKING:
821 /* Send pending packets */
822 while ((skb = skb_dequeue(&qca->tx_wait_q)))
823 skb_queue_tail(&qca->txq, skb);
824
825 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
826 del_timer(&qca->wake_retrans_timer);
827 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
828 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
829 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
830 break;
831
832 case HCI_IBS_TX_ASLEEP:
833 default:
834 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
835 qca->tx_ibs_state);
836 break;
837 }
838
839 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
840
841 /* Actually send the packets */
842 hci_uart_tx_wakeup(hu);
843 }
844
845 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
846 * two simultaneous tasklets.
847 */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)848 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
849 {
850 unsigned long flags = 0, idle_delay;
851 struct qca_data *qca = hu->priv;
852
853 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
854 qca->tx_ibs_state);
855
856 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
857 /* As SSR is in progress, ignore the packets */
858 bt_dev_dbg(hu->hdev, "SSR is in progress");
859 kfree_skb(skb);
860 return 0;
861 }
862
863 /* Prepend skb with frame type */
864 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
865
866 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
867
868 /* Don't go to sleep in middle of patch download or
869 * Out-Of-Band(GPIOs control) sleep is selected.
870 * Don't wake the device up when suspending.
871 */
872 if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
873 test_bit(QCA_SUSPENDING, &qca->flags)) {
874 skb_queue_tail(&qca->txq, skb);
875 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
876 return 0;
877 }
878
879 /* Act according to current state */
880 switch (qca->tx_ibs_state) {
881 case HCI_IBS_TX_AWAKE:
882 BT_DBG("Device awake, sending normally");
883 skb_queue_tail(&qca->txq, skb);
884 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
885 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
886 break;
887
888 case HCI_IBS_TX_ASLEEP:
889 BT_DBG("Device asleep, waking up and queueing packet");
890 /* Save packet for later */
891 skb_queue_tail(&qca->tx_wait_q, skb);
892
893 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
894 /* Schedule a work queue to wake up device */
895 queue_work(qca->workqueue, &qca->ws_awake_device);
896 break;
897
898 case HCI_IBS_TX_WAKING:
899 BT_DBG("Device waking up, queueing packet");
900 /* Transient state; just keep packet for later */
901 skb_queue_tail(&qca->tx_wait_q, skb);
902 break;
903
904 default:
905 BT_ERR("Illegal tx state: %d (losing packet)",
906 qca->tx_ibs_state);
907 kfree_skb(skb);
908 break;
909 }
910
911 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
912
913 return 0;
914 }
915
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)916 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
917 {
918 struct hci_uart *hu = hci_get_drvdata(hdev);
919
920 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
921
922 device_want_to_sleep(hu);
923
924 kfree_skb(skb);
925 return 0;
926 }
927
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)928 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
929 {
930 struct hci_uart *hu = hci_get_drvdata(hdev);
931
932 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
933
934 device_want_to_wakeup(hu);
935
936 kfree_skb(skb);
937 return 0;
938 }
939
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)940 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
941 {
942 struct hci_uart *hu = hci_get_drvdata(hdev);
943
944 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
945
946 device_woke_up(hu);
947
948 kfree_skb(skb);
949 return 0;
950 }
951
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)952 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
953 {
954 /* We receive debug logs from chip as an ACL packets.
955 * Instead of sending the data to ACL to decode the
956 * received data, we are pushing them to the above layers
957 * as a diagnostic packet.
958 */
959 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
960 return hci_recv_diag(hdev, skb);
961
962 return hci_recv_frame(hdev, skb);
963 }
964
qca_controller_memdump(struct work_struct * work)965 static void qca_controller_memdump(struct work_struct *work)
966 {
967 struct qca_data *qca = container_of(work, struct qca_data,
968 ctrl_memdump_evt);
969 struct hci_uart *hu = qca->hu;
970 struct sk_buff *skb;
971 struct qca_memdump_event_hdr *cmd_hdr;
972 struct qca_memdump_data *qca_memdump = qca->qca_memdump;
973 struct qca_dump_size *dump;
974 char *memdump_buf;
975 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
976 u16 seq_no;
977 u32 dump_size;
978 u32 rx_size;
979 enum qca_btsoc_type soc_type = qca_soc_type(hu);
980
981 while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
982
983 mutex_lock(&qca->hci_memdump_lock);
984 /* Skip processing the received packets if timeout detected
985 * or memdump collection completed.
986 */
987 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
988 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
989 mutex_unlock(&qca->hci_memdump_lock);
990 return;
991 }
992
993 if (!qca_memdump) {
994 qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
995 GFP_ATOMIC);
996 if (!qca_memdump) {
997 mutex_unlock(&qca->hci_memdump_lock);
998 return;
999 }
1000
1001 qca->qca_memdump = qca_memdump;
1002 }
1003
1004 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1005 cmd_hdr = (void *) skb->data;
1006 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1007 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1008
1009 if (!seq_no) {
1010
1011 /* This is the first frame of memdump packet from
1012 * the controller, Disable IBS to recevie dump
1013 * with out any interruption, ideally time required for
1014 * the controller to send the dump is 8 seconds. let us
1015 * start timer to handle this asynchronous activity.
1016 */
1017 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1018 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1019 dump = (void *) skb->data;
1020 dump_size = __le32_to_cpu(dump->dump_size);
1021 if (!(dump_size)) {
1022 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1023 kfree_skb(skb);
1024 mutex_unlock(&qca->hci_memdump_lock);
1025 return;
1026 }
1027
1028 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1029 dump_size);
1030 queue_delayed_work(qca->workqueue,
1031 &qca->ctrl_memdump_timeout,
1032 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1033 );
1034
1035 skb_pull(skb, sizeof(dump_size));
1036 memdump_buf = vmalloc(dump_size);
1037 qca_memdump->ram_dump_size = dump_size;
1038 qca_memdump->memdump_buf_head = memdump_buf;
1039 qca_memdump->memdump_buf_tail = memdump_buf;
1040 }
1041
1042 memdump_buf = qca_memdump->memdump_buf_tail;
1043
1044 /* If sequence no 0 is missed then there is no point in
1045 * accepting the other sequences.
1046 */
1047 if (!memdump_buf) {
1048 bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1049 kfree(qca_memdump);
1050 kfree_skb(skb);
1051 qca->qca_memdump = NULL;
1052 mutex_unlock(&qca->hci_memdump_lock);
1053 return;
1054 }
1055
1056 /* There could be chance of missing some packets from
1057 * the controller. In such cases let us store the dummy
1058 * packets in the buffer.
1059 */
1060 /* For QCA6390, controller does not lost packets but
1061 * sequence number field of packat sometimes has error
1062 * bits, so skip this checking for missing packet.
1063 */
1064 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1065 (soc_type != QCA_QCA6390) &&
1066 seq_no != QCA_LAST_SEQUENCE_NUM) {
1067 bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1068 qca_memdump->current_seq_no);
1069 rx_size = qca_memdump->received_dump;
1070 rx_size += QCA_DUMP_PACKET_SIZE;
1071 if (rx_size > qca_memdump->ram_dump_size) {
1072 bt_dev_err(hu->hdev,
1073 "QCA memdump received %d, no space for missed packet",
1074 qca_memdump->received_dump);
1075 break;
1076 }
1077 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1078 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1079 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1080 qca_memdump->current_seq_no++;
1081 }
1082
1083 rx_size = qca_memdump->received_dump + skb->len;
1084 if (rx_size <= qca_memdump->ram_dump_size) {
1085 if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1086 (seq_no != qca_memdump->current_seq_no))
1087 bt_dev_err(hu->hdev,
1088 "QCA memdump unexpected packet %d",
1089 seq_no);
1090 bt_dev_dbg(hu->hdev,
1091 "QCA memdump packet %d with length %d",
1092 seq_no, skb->len);
1093 memcpy(memdump_buf, (unsigned char *)skb->data,
1094 skb->len);
1095 memdump_buf = memdump_buf + skb->len;
1096 qca_memdump->memdump_buf_tail = memdump_buf;
1097 qca_memdump->current_seq_no = seq_no + 1;
1098 qca_memdump->received_dump += skb->len;
1099 } else {
1100 bt_dev_err(hu->hdev,
1101 "QCA memdump received %d, no space for packet %d",
1102 qca_memdump->received_dump, seq_no);
1103 }
1104 qca->qca_memdump = qca_memdump;
1105 kfree_skb(skb);
1106 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1107 bt_dev_info(hu->hdev,
1108 "QCA memdump Done, received %d, total %d",
1109 qca_memdump->received_dump,
1110 qca_memdump->ram_dump_size);
1111 memdump_buf = qca_memdump->memdump_buf_head;
1112 dev_coredumpv(&hu->serdev->dev, memdump_buf,
1113 qca_memdump->received_dump, GFP_KERNEL);
1114 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1115 kfree(qca->qca_memdump);
1116 qca->qca_memdump = NULL;
1117 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1118 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1119 }
1120
1121 mutex_unlock(&qca->hci_memdump_lock);
1122 }
1123
1124 }
1125
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1126 static int qca_controller_memdump_event(struct hci_dev *hdev,
1127 struct sk_buff *skb)
1128 {
1129 struct hci_uart *hu = hci_get_drvdata(hdev);
1130 struct qca_data *qca = hu->priv;
1131
1132 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1133 skb_queue_tail(&qca->rx_memdump_q, skb);
1134 queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1135
1136 return 0;
1137 }
1138
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1139 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1140 {
1141 struct hci_uart *hu = hci_get_drvdata(hdev);
1142 struct qca_data *qca = hu->priv;
1143
1144 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1145 struct hci_event_hdr *hdr = (void *)skb->data;
1146
1147 /* For the WCN3990 the vendor command for a baudrate change
1148 * isn't sent as synchronous HCI command, because the
1149 * controller sends the corresponding vendor event with the
1150 * new baudrate. The event is received and properly decoded
1151 * after changing the baudrate of the host port. It needs to
1152 * be dropped, otherwise it can be misinterpreted as
1153 * response to a later firmware download command (also a
1154 * vendor command).
1155 */
1156
1157 if (hdr->evt == HCI_EV_VENDOR)
1158 complete(&qca->drop_ev_comp);
1159
1160 kfree_skb(skb);
1161
1162 return 0;
1163 }
1164 /* We receive chip memory dump as an event packet, With a dedicated
1165 * handler followed by a hardware error event. When this event is
1166 * received we store dump into a file before closing hci. This
1167 * dump will help in triaging the issues.
1168 */
1169 if ((skb->data[0] == HCI_VENDOR_PKT) &&
1170 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1171 return qca_controller_memdump_event(hdev, skb);
1172
1173 return hci_recv_frame(hdev, skb);
1174 }
1175
1176 #define QCA_IBS_SLEEP_IND_EVENT \
1177 .type = HCI_IBS_SLEEP_IND, \
1178 .hlen = 0, \
1179 .loff = 0, \
1180 .lsize = 0, \
1181 .maxlen = HCI_MAX_IBS_SIZE
1182
1183 #define QCA_IBS_WAKE_IND_EVENT \
1184 .type = HCI_IBS_WAKE_IND, \
1185 .hlen = 0, \
1186 .loff = 0, \
1187 .lsize = 0, \
1188 .maxlen = HCI_MAX_IBS_SIZE
1189
1190 #define QCA_IBS_WAKE_ACK_EVENT \
1191 .type = HCI_IBS_WAKE_ACK, \
1192 .hlen = 0, \
1193 .loff = 0, \
1194 .lsize = 0, \
1195 .maxlen = HCI_MAX_IBS_SIZE
1196
1197 static const struct h4_recv_pkt qca_recv_pkts[] = {
1198 { H4_RECV_ACL, .recv = qca_recv_acl_data },
1199 { H4_RECV_SCO, .recv = hci_recv_frame },
1200 { H4_RECV_EVENT, .recv = qca_recv_event },
1201 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
1202 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
1203 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1204 };
1205
qca_recv(struct hci_uart * hu,const void * data,int count)1206 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1207 {
1208 struct qca_data *qca = hu->priv;
1209
1210 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1211 return -EUNATCH;
1212
1213 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1214 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1215 if (IS_ERR(qca->rx_skb)) {
1216 int err = PTR_ERR(qca->rx_skb);
1217 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1218 qca->rx_skb = NULL;
1219 return err;
1220 }
1221
1222 return count;
1223 }
1224
qca_dequeue(struct hci_uart * hu)1225 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1226 {
1227 struct qca_data *qca = hu->priv;
1228
1229 return skb_dequeue(&qca->txq);
1230 }
1231
qca_get_baudrate_value(int speed)1232 static uint8_t qca_get_baudrate_value(int speed)
1233 {
1234 switch (speed) {
1235 case 9600:
1236 return QCA_BAUDRATE_9600;
1237 case 19200:
1238 return QCA_BAUDRATE_19200;
1239 case 38400:
1240 return QCA_BAUDRATE_38400;
1241 case 57600:
1242 return QCA_BAUDRATE_57600;
1243 case 115200:
1244 return QCA_BAUDRATE_115200;
1245 case 230400:
1246 return QCA_BAUDRATE_230400;
1247 case 460800:
1248 return QCA_BAUDRATE_460800;
1249 case 500000:
1250 return QCA_BAUDRATE_500000;
1251 case 921600:
1252 return QCA_BAUDRATE_921600;
1253 case 1000000:
1254 return QCA_BAUDRATE_1000000;
1255 case 2000000:
1256 return QCA_BAUDRATE_2000000;
1257 case 3000000:
1258 return QCA_BAUDRATE_3000000;
1259 case 3200000:
1260 return QCA_BAUDRATE_3200000;
1261 case 3500000:
1262 return QCA_BAUDRATE_3500000;
1263 default:
1264 return QCA_BAUDRATE_115200;
1265 }
1266 }
1267
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1268 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1269 {
1270 struct hci_uart *hu = hci_get_drvdata(hdev);
1271 struct qca_data *qca = hu->priv;
1272 struct sk_buff *skb;
1273 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1274
1275 if (baudrate > QCA_BAUDRATE_3200000)
1276 return -EINVAL;
1277
1278 cmd[4] = baudrate;
1279
1280 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1281 if (!skb) {
1282 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1283 return -ENOMEM;
1284 }
1285
1286 /* Assign commands to change baudrate and packet type. */
1287 skb_put_data(skb, cmd, sizeof(cmd));
1288 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1289
1290 skb_queue_tail(&qca->txq, skb);
1291 hci_uart_tx_wakeup(hu);
1292
1293 /* Wait for the baudrate change request to be sent */
1294
1295 while (!skb_queue_empty(&qca->txq))
1296 usleep_range(100, 200);
1297
1298 if (hu->serdev)
1299 serdev_device_wait_until_sent(hu->serdev,
1300 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1301
1302 /* Give the controller time to process the request */
1303 if (qca_is_wcn399x(qca_soc_type(hu)))
1304 msleep(10);
1305 else
1306 msleep(300);
1307
1308 return 0;
1309 }
1310
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1311 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1312 {
1313 if (hu->serdev)
1314 serdev_device_set_baudrate(hu->serdev, speed);
1315 else
1316 hci_uart_set_baudrate(hu, speed);
1317 }
1318
qca_send_power_pulse(struct hci_uart * hu,bool on)1319 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1320 {
1321 int ret;
1322 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1323 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1324
1325 /* These power pulses are single byte command which are sent
1326 * at required baudrate to wcn3990. On wcn3990, we have an external
1327 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1328 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1329 * and also we use the same power inputs to turn on and off for
1330 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1331 * we send a power on pulse at 115200 bps. This algorithm will help to
1332 * save power. Disabling hardware flow control is mandatory while
1333 * sending power pulses to SoC.
1334 */
1335 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1336
1337 serdev_device_write_flush(hu->serdev);
1338 hci_uart_set_flow_control(hu, true);
1339 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1340 if (ret < 0) {
1341 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1342 return ret;
1343 }
1344
1345 serdev_device_wait_until_sent(hu->serdev, timeout);
1346 hci_uart_set_flow_control(hu, false);
1347
1348 /* Give to controller time to boot/shutdown */
1349 if (on)
1350 msleep(100);
1351 else
1352 msleep(10);
1353
1354 return 0;
1355 }
1356
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1357 static unsigned int qca_get_speed(struct hci_uart *hu,
1358 enum qca_speed_type speed_type)
1359 {
1360 unsigned int speed = 0;
1361
1362 if (speed_type == QCA_INIT_SPEED) {
1363 if (hu->init_speed)
1364 speed = hu->init_speed;
1365 else if (hu->proto->init_speed)
1366 speed = hu->proto->init_speed;
1367 } else {
1368 if (hu->oper_speed)
1369 speed = hu->oper_speed;
1370 else if (hu->proto->oper_speed)
1371 speed = hu->proto->oper_speed;
1372 }
1373
1374 return speed;
1375 }
1376
qca_check_speeds(struct hci_uart * hu)1377 static int qca_check_speeds(struct hci_uart *hu)
1378 {
1379 if (qca_is_wcn399x(qca_soc_type(hu))) {
1380 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1381 !qca_get_speed(hu, QCA_OPER_SPEED))
1382 return -EINVAL;
1383 } else {
1384 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1385 !qca_get_speed(hu, QCA_OPER_SPEED))
1386 return -EINVAL;
1387 }
1388
1389 return 0;
1390 }
1391
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1392 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1393 {
1394 unsigned int speed, qca_baudrate;
1395 struct qca_data *qca = hu->priv;
1396 int ret = 0;
1397
1398 if (speed_type == QCA_INIT_SPEED) {
1399 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1400 if (speed)
1401 host_set_baudrate(hu, speed);
1402 } else {
1403 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1404
1405 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1406 if (!speed)
1407 return 0;
1408
1409 /* Disable flow control for wcn3990 to deassert RTS while
1410 * changing the baudrate of chip and host.
1411 */
1412 if (qca_is_wcn399x(soc_type))
1413 hci_uart_set_flow_control(hu, true);
1414
1415 if (soc_type == QCA_WCN3990) {
1416 reinit_completion(&qca->drop_ev_comp);
1417 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1418 }
1419
1420 qca_baudrate = qca_get_baudrate_value(speed);
1421 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1422 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1423 if (ret)
1424 goto error;
1425
1426 host_set_baudrate(hu, speed);
1427
1428 error:
1429 if (qca_is_wcn399x(soc_type))
1430 hci_uart_set_flow_control(hu, false);
1431
1432 if (soc_type == QCA_WCN3990) {
1433 /* Wait for the controller to send the vendor event
1434 * for the baudrate change command.
1435 */
1436 if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1437 msecs_to_jiffies(100))) {
1438 bt_dev_err(hu->hdev,
1439 "Failed to change controller baudrate\n");
1440 ret = -ETIMEDOUT;
1441 }
1442
1443 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1444 }
1445 }
1446
1447 return ret;
1448 }
1449
qca_send_crashbuffer(struct hci_uart * hu)1450 static int qca_send_crashbuffer(struct hci_uart *hu)
1451 {
1452 struct qca_data *qca = hu->priv;
1453 struct sk_buff *skb;
1454
1455 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1456 if (!skb) {
1457 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1458 return -ENOMEM;
1459 }
1460
1461 /* We forcefully crash the controller, by sending 0xfb byte for
1462 * 1024 times. We also might have chance of losing data, To be
1463 * on safer side we send 1096 bytes to the SoC.
1464 */
1465 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1466 QCA_CRASHBYTE_PACKET_LEN);
1467 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1468 bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1469 skb_queue_tail(&qca->txq, skb);
1470 hci_uart_tx_wakeup(hu);
1471
1472 return 0;
1473 }
1474
qca_wait_for_dump_collection(struct hci_dev * hdev)1475 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1476 {
1477 struct hci_uart *hu = hci_get_drvdata(hdev);
1478 struct qca_data *qca = hu->priv;
1479
1480 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1481 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1482
1483 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1484 }
1485
qca_hw_error(struct hci_dev * hdev,u8 code)1486 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1487 {
1488 struct hci_uart *hu = hci_get_drvdata(hdev);
1489 struct qca_data *qca = hu->priv;
1490
1491 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1492 set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1493 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1494
1495 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1496 /* If hardware error event received for other than QCA
1497 * soc memory dump event, then we need to crash the SOC
1498 * and wait here for 8 seconds to get the dump packets.
1499 * This will block main thread to be on hold until we
1500 * collect dump.
1501 */
1502 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1503 qca_send_crashbuffer(hu);
1504 qca_wait_for_dump_collection(hdev);
1505 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1506 /* Let us wait here until memory dump collected or
1507 * memory dump timer expired.
1508 */
1509 bt_dev_info(hdev, "waiting for dump to complete");
1510 qca_wait_for_dump_collection(hdev);
1511 }
1512
1513 mutex_lock(&qca->hci_memdump_lock);
1514 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1515 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1516 if (qca->qca_memdump) {
1517 vfree(qca->qca_memdump->memdump_buf_head);
1518 kfree(qca->qca_memdump);
1519 qca->qca_memdump = NULL;
1520 }
1521 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1522 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1523 }
1524 mutex_unlock(&qca->hci_memdump_lock);
1525
1526 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1527 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1528 cancel_work_sync(&qca->ctrl_memdump_evt);
1529 skb_queue_purge(&qca->rx_memdump_q);
1530 }
1531
1532 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1533 }
1534
qca_cmd_timeout(struct hci_dev * hdev)1535 static void qca_cmd_timeout(struct hci_dev *hdev)
1536 {
1537 struct hci_uart *hu = hci_get_drvdata(hdev);
1538 struct qca_data *qca = hu->priv;
1539
1540 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1541 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1542 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1543 qca_send_crashbuffer(hu);
1544 qca_wait_for_dump_collection(hdev);
1545 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1546 /* Let us wait here until memory dump collected or
1547 * memory dump timer expired.
1548 */
1549 bt_dev_info(hdev, "waiting for dump to complete");
1550 qca_wait_for_dump_collection(hdev);
1551 }
1552
1553 mutex_lock(&qca->hci_memdump_lock);
1554 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1555 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1556 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1557 /* Inject hw error event to reset the device
1558 * and driver.
1559 */
1560 hci_reset_dev(hu->hdev);
1561 }
1562 }
1563 mutex_unlock(&qca->hci_memdump_lock);
1564 }
1565
qca_wcn3990_init(struct hci_uart * hu)1566 static int qca_wcn3990_init(struct hci_uart *hu)
1567 {
1568 struct qca_serdev *qcadev;
1569 int ret;
1570
1571 /* Check for vregs status, may be hci down has turned
1572 * off the voltage regulator.
1573 */
1574 qcadev = serdev_device_get_drvdata(hu->serdev);
1575 if (!qcadev->bt_power->vregs_on) {
1576 serdev_device_close(hu->serdev);
1577 ret = qca_regulator_enable(qcadev);
1578 if (ret)
1579 return ret;
1580
1581 ret = serdev_device_open(hu->serdev);
1582 if (ret) {
1583 bt_dev_err(hu->hdev, "failed to open port");
1584 return ret;
1585 }
1586 }
1587
1588 /* Forcefully enable wcn3990 to enter in to boot mode. */
1589 host_set_baudrate(hu, 2400);
1590 ret = qca_send_power_pulse(hu, false);
1591 if (ret)
1592 return ret;
1593
1594 qca_set_speed(hu, QCA_INIT_SPEED);
1595 ret = qca_send_power_pulse(hu, true);
1596 if (ret)
1597 return ret;
1598
1599 /* Now the device is in ready state to communicate with host.
1600 * To sync host with device we need to reopen port.
1601 * Without this, we will have RTS and CTS synchronization
1602 * issues.
1603 */
1604 serdev_device_close(hu->serdev);
1605 ret = serdev_device_open(hu->serdev);
1606 if (ret) {
1607 bt_dev_err(hu->hdev, "failed to open port");
1608 return ret;
1609 }
1610
1611 hci_uart_set_flow_control(hu, false);
1612
1613 return 0;
1614 }
1615
qca_power_on(struct hci_dev * hdev)1616 static int qca_power_on(struct hci_dev *hdev)
1617 {
1618 struct hci_uart *hu = hci_get_drvdata(hdev);
1619 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1620 struct qca_serdev *qcadev;
1621 int ret = 0;
1622
1623 /* Non-serdev device usually is powered by external power
1624 * and don't need additional action in driver for power on
1625 */
1626 if (!hu->serdev)
1627 return 0;
1628
1629 if (qca_is_wcn399x(soc_type)) {
1630 ret = qca_wcn3990_init(hu);
1631 } else {
1632 qcadev = serdev_device_get_drvdata(hu->serdev);
1633 if (qcadev->bt_en) {
1634 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1635 /* Controller needs time to bootup. */
1636 msleep(150);
1637 }
1638 }
1639
1640 return ret;
1641 }
1642
qca_setup(struct hci_uart * hu)1643 static int qca_setup(struct hci_uart *hu)
1644 {
1645 struct hci_dev *hdev = hu->hdev;
1646 struct qca_data *qca = hu->priv;
1647 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1648 unsigned int retries = 0;
1649 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1650 const char *firmware_name = qca_get_firmware_name(hu);
1651 int ret;
1652 int soc_ver = 0;
1653
1654 ret = qca_check_speeds(hu);
1655 if (ret)
1656 return ret;
1657
1658 /* Patch downloading has to be done without IBS mode */
1659 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1660
1661 /* Enable controller to do both LE scan and BR/EDR inquiry
1662 * simultaneously.
1663 */
1664 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1665
1666 bt_dev_info(hdev, "setting up %s",
1667 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1668
1669 qca->memdump_state = QCA_MEMDUMP_IDLE;
1670
1671 retry:
1672 ret = qca_power_on(hdev);
1673 if (ret)
1674 return ret;
1675
1676 clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1677
1678 if (qca_is_wcn399x(soc_type)) {
1679 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1680
1681 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1682 if (ret)
1683 return ret;
1684 } else {
1685 qca_set_speed(hu, QCA_INIT_SPEED);
1686 }
1687
1688 /* Setup user speed if needed */
1689 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1690 if (speed) {
1691 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1692 if (ret)
1693 return ret;
1694
1695 qca_baudrate = qca_get_baudrate_value(speed);
1696 }
1697
1698 if (!qca_is_wcn399x(soc_type)) {
1699 /* Get QCA version information */
1700 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1701 if (ret)
1702 return ret;
1703 }
1704
1705 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1706 /* Setup patch / NVM configurations */
1707 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1708 firmware_name);
1709 if (!ret) {
1710 set_bit(QCA_IBS_ENABLED, &qca->flags);
1711 qca_debugfs_init(hdev);
1712 hu->hdev->hw_error = qca_hw_error;
1713 hu->hdev->cmd_timeout = qca_cmd_timeout;
1714 } else if (ret == -ENOENT) {
1715 /* No patch/nvm-config found, run with original fw/config */
1716 ret = 0;
1717 } else if (ret == -EAGAIN) {
1718 /*
1719 * Userspace firmware loader will return -EAGAIN in case no
1720 * patch/nvm-config is found, so run with original fw/config.
1721 */
1722 ret = 0;
1723 } else {
1724 if (retries < MAX_INIT_RETRIES) {
1725 qca_power_shutdown(hu);
1726 if (hu->serdev) {
1727 serdev_device_close(hu->serdev);
1728 ret = serdev_device_open(hu->serdev);
1729 if (ret) {
1730 bt_dev_err(hdev, "failed to open port");
1731 return ret;
1732 }
1733 }
1734 retries++;
1735 goto retry;
1736 }
1737 }
1738
1739 /* Setup bdaddr */
1740 if (soc_type == QCA_ROME)
1741 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1742 else
1743 hu->hdev->set_bdaddr = qca_set_bdaddr;
1744
1745 return ret;
1746 }
1747
1748 static const struct hci_uart_proto qca_proto = {
1749 .id = HCI_UART_QCA,
1750 .name = "QCA",
1751 .manufacturer = 29,
1752 .init_speed = 115200,
1753 .oper_speed = 3000000,
1754 .open = qca_open,
1755 .close = qca_close,
1756 .flush = qca_flush,
1757 .setup = qca_setup,
1758 .recv = qca_recv,
1759 .enqueue = qca_enqueue,
1760 .dequeue = qca_dequeue,
1761 };
1762
1763 static const struct qca_device_data qca_soc_data_wcn3990 = {
1764 .soc_type = QCA_WCN3990,
1765 .vregs = (struct qca_vreg []) {
1766 { "vddio", 15000 },
1767 { "vddxo", 80000 },
1768 { "vddrf", 300000 },
1769 { "vddch0", 450000 },
1770 },
1771 .num_vregs = 4,
1772 };
1773
1774 static const struct qca_device_data qca_soc_data_wcn3991 = {
1775 .soc_type = QCA_WCN3991,
1776 .vregs = (struct qca_vreg []) {
1777 { "vddio", 15000 },
1778 { "vddxo", 80000 },
1779 { "vddrf", 300000 },
1780 { "vddch0", 450000 },
1781 },
1782 .num_vregs = 4,
1783 .capabilities = QCA_CAP_WIDEBAND_SPEECH,
1784 };
1785
1786 static const struct qca_device_data qca_soc_data_wcn3998 = {
1787 .soc_type = QCA_WCN3998,
1788 .vregs = (struct qca_vreg []) {
1789 { "vddio", 10000 },
1790 { "vddxo", 80000 },
1791 { "vddrf", 300000 },
1792 { "vddch0", 450000 },
1793 },
1794 .num_vregs = 4,
1795 };
1796
1797 static const struct qca_device_data qca_soc_data_qca6390 = {
1798 .soc_type = QCA_QCA6390,
1799 .num_vregs = 0,
1800 };
1801
qca_power_shutdown(struct hci_uart * hu)1802 static void qca_power_shutdown(struct hci_uart *hu)
1803 {
1804 struct qca_serdev *qcadev;
1805 struct qca_data *qca = hu->priv;
1806 unsigned long flags;
1807 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1808
1809 qcadev = serdev_device_get_drvdata(hu->serdev);
1810
1811 /* From this point we go into power off state. But serial port is
1812 * still open, stop queueing the IBS data and flush all the buffered
1813 * data in skb's.
1814 */
1815 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1816 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1817 qca_flush(hu);
1818 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1819
1820 /* Non-serdev device usually is powered by external power
1821 * and don't need additional action in driver for power down
1822 */
1823 if (!hu->serdev)
1824 return;
1825
1826 if (qca_is_wcn399x(soc_type)) {
1827 host_set_baudrate(hu, 2400);
1828 qca_send_power_pulse(hu, false);
1829 qca_regulator_disable(qcadev);
1830 } else if (qcadev->bt_en) {
1831 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1832 }
1833 }
1834
qca_power_off(struct hci_dev * hdev)1835 static int qca_power_off(struct hci_dev *hdev)
1836 {
1837 struct hci_uart *hu = hci_get_drvdata(hdev);
1838 struct qca_data *qca = hu->priv;
1839 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1840
1841 hu->hdev->hw_error = NULL;
1842 hu->hdev->cmd_timeout = NULL;
1843
1844 /* Stop sending shutdown command if soc crashes. */
1845 if (soc_type != QCA_ROME
1846 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1847 qca_send_pre_shutdown_cmd(hdev);
1848 usleep_range(8000, 10000);
1849 }
1850
1851 qca_power_shutdown(hu);
1852 return 0;
1853 }
1854
qca_regulator_enable(struct qca_serdev * qcadev)1855 static int qca_regulator_enable(struct qca_serdev *qcadev)
1856 {
1857 struct qca_power *power = qcadev->bt_power;
1858 int ret;
1859
1860 /* Already enabled */
1861 if (power->vregs_on)
1862 return 0;
1863
1864 BT_DBG("enabling %d regulators)", power->num_vregs);
1865
1866 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1867 if (ret)
1868 return ret;
1869
1870 power->vregs_on = true;
1871
1872 ret = clk_prepare_enable(qcadev->susclk);
1873 if (ret)
1874 qca_regulator_disable(qcadev);
1875
1876 return ret;
1877 }
1878
qca_regulator_disable(struct qca_serdev * qcadev)1879 static void qca_regulator_disable(struct qca_serdev *qcadev)
1880 {
1881 struct qca_power *power;
1882
1883 if (!qcadev)
1884 return;
1885
1886 power = qcadev->bt_power;
1887
1888 /* Already disabled? */
1889 if (!power->vregs_on)
1890 return;
1891
1892 regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1893 power->vregs_on = false;
1894
1895 clk_disable_unprepare(qcadev->susclk);
1896 }
1897
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1898 static int qca_init_regulators(struct qca_power *qca,
1899 const struct qca_vreg *vregs, size_t num_vregs)
1900 {
1901 struct regulator_bulk_data *bulk;
1902 int ret;
1903 int i;
1904
1905 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1906 if (!bulk)
1907 return -ENOMEM;
1908
1909 for (i = 0; i < num_vregs; i++)
1910 bulk[i].supply = vregs[i].name;
1911
1912 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1913 if (ret < 0)
1914 return ret;
1915
1916 for (i = 0; i < num_vregs; i++) {
1917 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1918 if (ret)
1919 return ret;
1920 }
1921
1922 qca->vreg_bulk = bulk;
1923 qca->num_vregs = num_vregs;
1924
1925 return 0;
1926 }
1927
qca_serdev_probe(struct serdev_device * serdev)1928 static int qca_serdev_probe(struct serdev_device *serdev)
1929 {
1930 struct qca_serdev *qcadev;
1931 struct hci_dev *hdev;
1932 const struct qca_device_data *data;
1933 int err;
1934 bool power_ctrl_enabled = true;
1935
1936 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1937 if (!qcadev)
1938 return -ENOMEM;
1939
1940 qcadev->serdev_hu.serdev = serdev;
1941 data = device_get_match_data(&serdev->dev);
1942 serdev_device_set_drvdata(serdev, qcadev);
1943 device_property_read_string(&serdev->dev, "firmware-name",
1944 &qcadev->firmware_name);
1945 device_property_read_u32(&serdev->dev, "max-speed",
1946 &qcadev->oper_speed);
1947 if (!qcadev->oper_speed)
1948 BT_DBG("UART will pick default operating speed");
1949
1950 if (data && qca_is_wcn399x(data->soc_type)) {
1951 qcadev->btsoc_type = data->soc_type;
1952 qcadev->bt_power = devm_kzalloc(&serdev->dev,
1953 sizeof(struct qca_power),
1954 GFP_KERNEL);
1955 if (!qcadev->bt_power)
1956 return -ENOMEM;
1957
1958 qcadev->bt_power->dev = &serdev->dev;
1959 err = qca_init_regulators(qcadev->bt_power, data->vregs,
1960 data->num_vregs);
1961 if (err) {
1962 BT_ERR("Failed to init regulators:%d", err);
1963 return err;
1964 }
1965
1966 qcadev->bt_power->vregs_on = false;
1967
1968 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1969 if (IS_ERR(qcadev->susclk)) {
1970 dev_err(&serdev->dev, "failed to acquire clk\n");
1971 return PTR_ERR(qcadev->susclk);
1972 }
1973
1974 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1975 if (err) {
1976 BT_ERR("wcn3990 serdev registration failed");
1977 return err;
1978 }
1979 } else {
1980 if (data)
1981 qcadev->btsoc_type = data->soc_type;
1982 else
1983 qcadev->btsoc_type = QCA_ROME;
1984
1985 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1986 GPIOD_OUT_LOW);
1987 if (!qcadev->bt_en) {
1988 dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1989 power_ctrl_enabled = false;
1990 }
1991
1992 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1993 if (IS_ERR(qcadev->susclk)) {
1994 dev_warn(&serdev->dev, "failed to acquire clk\n");
1995 return PTR_ERR(qcadev->susclk);
1996 }
1997 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
1998 if (err)
1999 return err;
2000
2001 err = clk_prepare_enable(qcadev->susclk);
2002 if (err)
2003 return err;
2004
2005 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2006 if (err) {
2007 BT_ERR("Rome serdev registration failed");
2008 clk_disable_unprepare(qcadev->susclk);
2009 return err;
2010 }
2011 }
2012
2013 hdev = qcadev->serdev_hu.hdev;
2014
2015 if (power_ctrl_enabled) {
2016 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2017 hdev->shutdown = qca_power_off;
2018 }
2019
2020 /* Wideband speech support must be set per driver since it can't be
2021 * queried via hci.
2022 */
2023 if (data && (data->capabilities & QCA_CAP_WIDEBAND_SPEECH))
2024 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2025
2026 return 0;
2027 }
2028
qca_serdev_remove(struct serdev_device * serdev)2029 static void qca_serdev_remove(struct serdev_device *serdev)
2030 {
2031 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2032 struct qca_power *power = qcadev->bt_power;
2033
2034 if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2035 qca_power_shutdown(&qcadev->serdev_hu);
2036 else if (qcadev->susclk)
2037 clk_disable_unprepare(qcadev->susclk);
2038
2039 hci_uart_unregister_device(&qcadev->serdev_hu);
2040 }
2041
qca_serdev_shutdown(struct device * dev)2042 static void qca_serdev_shutdown(struct device *dev)
2043 {
2044 int ret;
2045 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2046 struct serdev_device *serdev = to_serdev_device(dev);
2047 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2048 const u8 ibs_wake_cmd[] = { 0xFD };
2049 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2050
2051 if (qcadev->btsoc_type == QCA_QCA6390) {
2052 serdev_device_write_flush(serdev);
2053 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2054 sizeof(ibs_wake_cmd));
2055 if (ret < 0) {
2056 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2057 return;
2058 }
2059 serdev_device_wait_until_sent(serdev, timeout);
2060 usleep_range(8000, 10000);
2061
2062 serdev_device_write_flush(serdev);
2063 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2064 sizeof(edl_reset_soc_cmd));
2065 if (ret < 0) {
2066 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2067 return;
2068 }
2069 serdev_device_wait_until_sent(serdev, timeout);
2070 usleep_range(8000, 10000);
2071 }
2072 }
2073
qca_suspend(struct device * dev)2074 static int __maybe_unused qca_suspend(struct device *dev)
2075 {
2076 struct serdev_device *serdev = to_serdev_device(dev);
2077 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2078 struct hci_uart *hu = &qcadev->serdev_hu;
2079 struct qca_data *qca = hu->priv;
2080 unsigned long flags;
2081 bool tx_pending = false;
2082 int ret = 0;
2083 u8 cmd;
2084
2085 set_bit(QCA_SUSPENDING, &qca->flags);
2086
2087 /* Device is downloading patch or doesn't support in-band sleep. */
2088 if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2089 return 0;
2090
2091 cancel_work_sync(&qca->ws_awake_device);
2092 cancel_work_sync(&qca->ws_awake_rx);
2093
2094 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2095 flags, SINGLE_DEPTH_NESTING);
2096
2097 switch (qca->tx_ibs_state) {
2098 case HCI_IBS_TX_WAKING:
2099 del_timer(&qca->wake_retrans_timer);
2100 fallthrough;
2101 case HCI_IBS_TX_AWAKE:
2102 del_timer(&qca->tx_idle_timer);
2103
2104 serdev_device_write_flush(hu->serdev);
2105 cmd = HCI_IBS_SLEEP_IND;
2106 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2107
2108 if (ret < 0) {
2109 BT_ERR("Failed to send SLEEP to device");
2110 break;
2111 }
2112
2113 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2114 qca->ibs_sent_slps++;
2115 tx_pending = true;
2116 break;
2117
2118 case HCI_IBS_TX_ASLEEP:
2119 break;
2120
2121 default:
2122 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2123 ret = -EINVAL;
2124 break;
2125 }
2126
2127 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2128
2129 if (ret < 0)
2130 goto error;
2131
2132 if (tx_pending) {
2133 serdev_device_wait_until_sent(hu->serdev,
2134 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2135 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2136 }
2137
2138 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2139 * to sleep, so that the packet does not wake the system later.
2140 */
2141 ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2142 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2143 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2144 if (ret == 0) {
2145 ret = -ETIMEDOUT;
2146 goto error;
2147 }
2148
2149 return 0;
2150
2151 error:
2152 clear_bit(QCA_SUSPENDING, &qca->flags);
2153
2154 return ret;
2155 }
2156
qca_resume(struct device * dev)2157 static int __maybe_unused qca_resume(struct device *dev)
2158 {
2159 struct serdev_device *serdev = to_serdev_device(dev);
2160 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2161 struct hci_uart *hu = &qcadev->serdev_hu;
2162 struct qca_data *qca = hu->priv;
2163
2164 clear_bit(QCA_SUSPENDING, &qca->flags);
2165
2166 return 0;
2167 }
2168
2169 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2170
2171 #ifdef CONFIG_OF
2172 static const struct of_device_id qca_bluetooth_of_match[] = {
2173 { .compatible = "qcom,qca6174-bt" },
2174 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2175 { .compatible = "qcom,qca9377-bt" },
2176 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2177 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2178 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2179 { /* sentinel */ }
2180 };
2181 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2182 #endif
2183
2184 #ifdef CONFIG_ACPI
2185 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2186 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2187 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2188 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2189 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2190 { },
2191 };
2192 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2193 #endif
2194
2195
2196 static struct serdev_device_driver qca_serdev_driver = {
2197 .probe = qca_serdev_probe,
2198 .remove = qca_serdev_remove,
2199 .driver = {
2200 .name = "hci_uart_qca",
2201 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2202 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2203 .shutdown = qca_serdev_shutdown,
2204 .pm = &qca_pm_ops,
2205 },
2206 };
2207
qca_init(void)2208 int __init qca_init(void)
2209 {
2210 serdev_device_driver_register(&qca_serdev_driver);
2211
2212 return hci_uart_register_proto(&qca_proto);
2213 }
2214
qca_deinit(void)2215 int __exit qca_deinit(void)
2216 {
2217 serdev_device_driver_unregister(&qca_serdev_driver);
2218
2219 return hci_uart_unregister_proto(&qca_proto);
2220 }
2221