1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx SystemACE device driver
4  *
5  * Copyright 2007 Secret Lab Technologies Ltd.
6  */
7 
8 /*
9  * The SystemACE chip is designed to configure FPGAs by loading an FPGA
10  * bitstream from a file on a CF card and squirting it into FPGAs connected
11  * to the SystemACE JTAG chain.  It also has the advantage of providing an
12  * MPU interface which can be used to control the FPGA configuration process
13  * and to use the attached CF card for general purpose storage.
14  *
15  * This driver is a block device driver for the SystemACE.
16  *
17  * Initialization:
18  *    The driver registers itself as a platform_device driver at module
19  *    load time.  The platform bus will take care of calling the
20  *    ace_probe() method for all SystemACE instances in the system.  Any
21  *    number of SystemACE instances are supported.  ace_probe() calls
22  *    ace_setup() which initialized all data structures, reads the CF
23  *    id structure and registers the device.
24  *
25  * Processing:
26  *    Just about all of the heavy lifting in this driver is performed by
27  *    a Finite State Machine (FSM).  The driver needs to wait on a number
28  *    of events; some raised by interrupts, some which need to be polled
29  *    for.  Describing all of the behaviour in a FSM seems to be the
30  *    easiest way to keep the complexity low and make it easy to
31  *    understand what the driver is doing.  If the block ops or the
32  *    request function need to interact with the hardware, then they
33  *    simply need to flag the request and kick of FSM processing.
34  *
35  *    The FSM itself is atomic-safe code which can be run from any
36  *    context.  The general process flow is:
37  *    1. obtain the ace->lock spinlock.
38  *    2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
39  *       cleared.
40  *    3. release the lock.
41  *
42  *    Individual states do not sleep in any way.  If a condition needs to
43  *    be waited for then the state much clear the fsm_continue flag and
44  *    either schedule the FSM to be run again at a later time, or expect
45  *    an interrupt to call the FSM when the desired condition is met.
46  *
47  *    In normal operation, the FSM is processed at interrupt context
48  *    either when the driver's tasklet is scheduled, or when an irq is
49  *    raised by the hardware.  The tasklet can be scheduled at any time.
50  *    The request method in particular schedules the tasklet when a new
51  *    request has been indicated by the block layer.  Once started, the
52  *    FSM proceeds as far as it can processing the request until it
53  *    needs on a hardware event.  At this point, it must yield execution.
54  *
55  *    A state has two options when yielding execution:
56  *    1. ace_fsm_yield()
57  *       - Call if need to poll for event.
58  *       - clears the fsm_continue flag to exit the processing loop
59  *       - reschedules the tasklet to run again as soon as possible
60  *    2. ace_fsm_yieldirq()
61  *       - Call if an irq is expected from the HW
62  *       - clears the fsm_continue flag to exit the processing loop
63  *       - does not reschedule the tasklet so the FSM will not be processed
64  *         again until an irq is received.
65  *    After calling a yield function, the state must return control back
66  *    to the FSM main loop.
67  *
68  *    Additionally, the driver maintains a kernel timer which can process
69  *    the FSM.  If the FSM gets stalled, typically due to a missed
70  *    interrupt, then the kernel timer will expire and the driver can
71  *    continue where it left off.
72  *
73  * To Do:
74  *    - Add FPGA configuration control interface.
75  *    - Request major number from lanana
76  */
77 
78 #undef DEBUG
79 
80 #include <linux/module.h>
81 #include <linux/ctype.h>
82 #include <linux/init.h>
83 #include <linux/interrupt.h>
84 #include <linux/errno.h>
85 #include <linux/kernel.h>
86 #include <linux/delay.h>
87 #include <linux/slab.h>
88 #include <linux/blk-mq.h>
89 #include <linux/mutex.h>
90 #include <linux/ata.h>
91 #include <linux/hdreg.h>
92 #include <linux/platform_device.h>
93 #if defined(CONFIG_OF)
94 #include <linux/of_address.h>
95 #include <linux/of_device.h>
96 #include <linux/of_platform.h>
97 #endif
98 
99 MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
100 MODULE_DESCRIPTION("Xilinx SystemACE device driver");
101 MODULE_LICENSE("GPL");
102 
103 /* SystemACE register definitions */
104 #define ACE_BUSMODE (0x00)
105 
106 #define ACE_STATUS (0x04)
107 #define ACE_STATUS_CFGLOCK      (0x00000001)
108 #define ACE_STATUS_MPULOCK      (0x00000002)
109 #define ACE_STATUS_CFGERROR     (0x00000004)	/* config controller error */
110 #define ACE_STATUS_CFCERROR     (0x00000008)	/* CF controller error */
111 #define ACE_STATUS_CFDETECT     (0x00000010)
112 #define ACE_STATUS_DATABUFRDY   (0x00000020)
113 #define ACE_STATUS_DATABUFMODE  (0x00000040)
114 #define ACE_STATUS_CFGDONE      (0x00000080)
115 #define ACE_STATUS_RDYFORCFCMD  (0x00000100)
116 #define ACE_STATUS_CFGMODEPIN   (0x00000200)
117 #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
118 #define ACE_STATUS_CFBSY        (0x00020000)
119 #define ACE_STATUS_CFRDY        (0x00040000)
120 #define ACE_STATUS_CFDWF        (0x00080000)
121 #define ACE_STATUS_CFDSC        (0x00100000)
122 #define ACE_STATUS_CFDRQ        (0x00200000)
123 #define ACE_STATUS_CFCORR       (0x00400000)
124 #define ACE_STATUS_CFERR        (0x00800000)
125 
126 #define ACE_ERROR (0x08)
127 #define ACE_CFGLBA (0x0c)
128 #define ACE_MPULBA (0x10)
129 
130 #define ACE_SECCNTCMD (0x14)
131 #define ACE_SECCNTCMD_RESET      (0x0100)
132 #define ACE_SECCNTCMD_IDENTIFY   (0x0200)
133 #define ACE_SECCNTCMD_READ_DATA  (0x0300)
134 #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
135 #define ACE_SECCNTCMD_ABORT      (0x0600)
136 
137 #define ACE_VERSION (0x16)
138 #define ACE_VERSION_REVISION_MASK (0x00FF)
139 #define ACE_VERSION_MINOR_MASK    (0x0F00)
140 #define ACE_VERSION_MAJOR_MASK    (0xF000)
141 
142 #define ACE_CTRL (0x18)
143 #define ACE_CTRL_FORCELOCKREQ   (0x0001)
144 #define ACE_CTRL_LOCKREQ        (0x0002)
145 #define ACE_CTRL_FORCECFGADDR   (0x0004)
146 #define ACE_CTRL_FORCECFGMODE   (0x0008)
147 #define ACE_CTRL_CFGMODE        (0x0010)
148 #define ACE_CTRL_CFGSTART       (0x0020)
149 #define ACE_CTRL_CFGSEL         (0x0040)
150 #define ACE_CTRL_CFGRESET       (0x0080)
151 #define ACE_CTRL_DATABUFRDYIRQ  (0x0100)
152 #define ACE_CTRL_ERRORIRQ       (0x0200)
153 #define ACE_CTRL_CFGDONEIRQ     (0x0400)
154 #define ACE_CTRL_RESETIRQ       (0x0800)
155 #define ACE_CTRL_CFGPROG        (0x1000)
156 #define ACE_CTRL_CFGADDR_MASK   (0xe000)
157 
158 #define ACE_FATSTAT (0x1c)
159 
160 #define ACE_NUM_MINORS 16
161 #define ACE_SECTOR_SIZE (512)
162 #define ACE_FIFO_SIZE (32)
163 #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
164 
165 #define ACE_BUS_WIDTH_8  0
166 #define ACE_BUS_WIDTH_16 1
167 
168 struct ace_reg_ops;
169 
170 struct ace_device {
171 	/* driver state data */
172 	int id;
173 	int media_change;
174 	int users;
175 	struct list_head list;
176 
177 	/* finite state machine data */
178 	struct tasklet_struct fsm_tasklet;
179 	uint fsm_task;		/* Current activity (ACE_TASK_*) */
180 	uint fsm_state;		/* Current state (ACE_FSM_STATE_*) */
181 	uint fsm_continue_flag;	/* cleared to exit FSM mainloop */
182 	uint fsm_iter_num;
183 	struct timer_list stall_timer;
184 
185 	/* Transfer state/result, use for both id and block request */
186 	struct request *req;	/* request being processed */
187 	void *data_ptr;		/* pointer to I/O buffer */
188 	int data_count;		/* number of buffers remaining */
189 	int data_result;	/* Result of transfer; 0 := success */
190 
191 	int id_req_count;	/* count of id requests */
192 	int id_result;
193 	struct completion id_completion;	/* used when id req finishes */
194 	int in_irq;
195 
196 	/* Details of hardware device */
197 	resource_size_t physaddr;
198 	void __iomem *baseaddr;
199 	int irq;
200 	int bus_width;		/* 0 := 8 bit; 1 := 16 bit */
201 	struct ace_reg_ops *reg_ops;
202 	int lock_count;
203 
204 	/* Block device data structures */
205 	spinlock_t lock;
206 	struct device *dev;
207 	struct request_queue *queue;
208 	struct gendisk *gd;
209 	struct blk_mq_tag_set tag_set;
210 	struct list_head rq_list;
211 
212 	/* Inserted CF card parameters */
213 	u16 cf_id[ATA_ID_WORDS];
214 };
215 
216 static DEFINE_MUTEX(xsysace_mutex);
217 static int ace_major;
218 
219 /* ---------------------------------------------------------------------
220  * Low level register access
221  */
222 
223 struct ace_reg_ops {
224 	u16(*in) (struct ace_device * ace, int reg);
225 	void (*out) (struct ace_device * ace, int reg, u16 val);
226 	void (*datain) (struct ace_device * ace);
227 	void (*dataout) (struct ace_device * ace);
228 };
229 
230 /* 8 Bit bus width */
ace_in_8(struct ace_device * ace,int reg)231 static u16 ace_in_8(struct ace_device *ace, int reg)
232 {
233 	void __iomem *r = ace->baseaddr + reg;
234 	return in_8(r) | (in_8(r + 1) << 8);
235 }
236 
ace_out_8(struct ace_device * ace,int reg,u16 val)237 static void ace_out_8(struct ace_device *ace, int reg, u16 val)
238 {
239 	void __iomem *r = ace->baseaddr + reg;
240 	out_8(r, val);
241 	out_8(r + 1, val >> 8);
242 }
243 
ace_datain_8(struct ace_device * ace)244 static void ace_datain_8(struct ace_device *ace)
245 {
246 	void __iomem *r = ace->baseaddr + 0x40;
247 	u8 *dst = ace->data_ptr;
248 	int i = ACE_FIFO_SIZE;
249 	while (i--)
250 		*dst++ = in_8(r++);
251 	ace->data_ptr = dst;
252 }
253 
ace_dataout_8(struct ace_device * ace)254 static void ace_dataout_8(struct ace_device *ace)
255 {
256 	void __iomem *r = ace->baseaddr + 0x40;
257 	u8 *src = ace->data_ptr;
258 	int i = ACE_FIFO_SIZE;
259 	while (i--)
260 		out_8(r++, *src++);
261 	ace->data_ptr = src;
262 }
263 
264 static struct ace_reg_ops ace_reg_8_ops = {
265 	.in = ace_in_8,
266 	.out = ace_out_8,
267 	.datain = ace_datain_8,
268 	.dataout = ace_dataout_8,
269 };
270 
271 /* 16 bit big endian bus attachment */
ace_in_be16(struct ace_device * ace,int reg)272 static u16 ace_in_be16(struct ace_device *ace, int reg)
273 {
274 	return in_be16(ace->baseaddr + reg);
275 }
276 
ace_out_be16(struct ace_device * ace,int reg,u16 val)277 static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
278 {
279 	out_be16(ace->baseaddr + reg, val);
280 }
281 
ace_datain_be16(struct ace_device * ace)282 static void ace_datain_be16(struct ace_device *ace)
283 {
284 	int i = ACE_FIFO_SIZE / 2;
285 	u16 *dst = ace->data_ptr;
286 	while (i--)
287 		*dst++ = in_le16(ace->baseaddr + 0x40);
288 	ace->data_ptr = dst;
289 }
290 
ace_dataout_be16(struct ace_device * ace)291 static void ace_dataout_be16(struct ace_device *ace)
292 {
293 	int i = ACE_FIFO_SIZE / 2;
294 	u16 *src = ace->data_ptr;
295 	while (i--)
296 		out_le16(ace->baseaddr + 0x40, *src++);
297 	ace->data_ptr = src;
298 }
299 
300 /* 16 bit little endian bus attachment */
ace_in_le16(struct ace_device * ace,int reg)301 static u16 ace_in_le16(struct ace_device *ace, int reg)
302 {
303 	return in_le16(ace->baseaddr + reg);
304 }
305 
ace_out_le16(struct ace_device * ace,int reg,u16 val)306 static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
307 {
308 	out_le16(ace->baseaddr + reg, val);
309 }
310 
ace_datain_le16(struct ace_device * ace)311 static void ace_datain_le16(struct ace_device *ace)
312 {
313 	int i = ACE_FIFO_SIZE / 2;
314 	u16 *dst = ace->data_ptr;
315 	while (i--)
316 		*dst++ = in_be16(ace->baseaddr + 0x40);
317 	ace->data_ptr = dst;
318 }
319 
ace_dataout_le16(struct ace_device * ace)320 static void ace_dataout_le16(struct ace_device *ace)
321 {
322 	int i = ACE_FIFO_SIZE / 2;
323 	u16 *src = ace->data_ptr;
324 	while (i--)
325 		out_be16(ace->baseaddr + 0x40, *src++);
326 	ace->data_ptr = src;
327 }
328 
329 static struct ace_reg_ops ace_reg_be16_ops = {
330 	.in = ace_in_be16,
331 	.out = ace_out_be16,
332 	.datain = ace_datain_be16,
333 	.dataout = ace_dataout_be16,
334 };
335 
336 static struct ace_reg_ops ace_reg_le16_ops = {
337 	.in = ace_in_le16,
338 	.out = ace_out_le16,
339 	.datain = ace_datain_le16,
340 	.dataout = ace_dataout_le16,
341 };
342 
ace_in(struct ace_device * ace,int reg)343 static inline u16 ace_in(struct ace_device *ace, int reg)
344 {
345 	return ace->reg_ops->in(ace, reg);
346 }
347 
ace_in32(struct ace_device * ace,int reg)348 static inline u32 ace_in32(struct ace_device *ace, int reg)
349 {
350 	return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
351 }
352 
ace_out(struct ace_device * ace,int reg,u16 val)353 static inline void ace_out(struct ace_device *ace, int reg, u16 val)
354 {
355 	ace->reg_ops->out(ace, reg, val);
356 }
357 
ace_out32(struct ace_device * ace,int reg,u32 val)358 static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
359 {
360 	ace_out(ace, reg, val);
361 	ace_out(ace, reg + 2, val >> 16);
362 }
363 
364 /* ---------------------------------------------------------------------
365  * Debug support functions
366  */
367 
368 #if defined(DEBUG)
ace_dump_mem(void * base,int len)369 static void ace_dump_mem(void *base, int len)
370 {
371 	const char *ptr = base;
372 	int i, j;
373 
374 	for (i = 0; i < len; i += 16) {
375 		printk(KERN_INFO "%.8x:", i);
376 		for (j = 0; j < 16; j++) {
377 			if (!(j % 4))
378 				printk(" ");
379 			printk("%.2x", ptr[i + j]);
380 		}
381 		printk(" ");
382 		for (j = 0; j < 16; j++)
383 			printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
384 		printk("\n");
385 	}
386 }
387 #else
ace_dump_mem(void * base,int len)388 static inline void ace_dump_mem(void *base, int len)
389 {
390 }
391 #endif
392 
ace_dump_regs(struct ace_device * ace)393 static void ace_dump_regs(struct ace_device *ace)
394 {
395 	dev_info(ace->dev,
396 		 "    ctrl:  %.8x  seccnt/cmd: %.4x      ver:%.4x\n"
397 		 "    status:%.8x  mpu_lba:%.8x  busmode:%4x\n"
398 		 "    error: %.8x  cfg_lba:%.8x  fatstat:%.4x\n",
399 		 ace_in32(ace, ACE_CTRL),
400 		 ace_in(ace, ACE_SECCNTCMD),
401 		 ace_in(ace, ACE_VERSION),
402 		 ace_in32(ace, ACE_STATUS),
403 		 ace_in32(ace, ACE_MPULBA),
404 		 ace_in(ace, ACE_BUSMODE),
405 		 ace_in32(ace, ACE_ERROR),
406 		 ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
407 }
408 
ace_fix_driveid(u16 * id)409 static void ace_fix_driveid(u16 *id)
410 {
411 #if defined(__BIG_ENDIAN)
412 	int i;
413 
414 	/* All half words have wrong byte order; swap the bytes */
415 	for (i = 0; i < ATA_ID_WORDS; i++, id++)
416 		*id = le16_to_cpu(*id);
417 #endif
418 }
419 
420 /* ---------------------------------------------------------------------
421  * Finite State Machine (FSM) implementation
422  */
423 
424 /* FSM tasks; used to direct state transitions */
425 #define ACE_TASK_IDLE      0
426 #define ACE_TASK_IDENTIFY  1
427 #define ACE_TASK_READ      2
428 #define ACE_TASK_WRITE     3
429 #define ACE_FSM_NUM_TASKS  4
430 
431 /* FSM state definitions */
432 #define ACE_FSM_STATE_IDLE               0
433 #define ACE_FSM_STATE_REQ_LOCK           1
434 #define ACE_FSM_STATE_WAIT_LOCK          2
435 #define ACE_FSM_STATE_WAIT_CFREADY       3
436 #define ACE_FSM_STATE_IDENTIFY_PREPARE   4
437 #define ACE_FSM_STATE_IDENTIFY_TRANSFER  5
438 #define ACE_FSM_STATE_IDENTIFY_COMPLETE  6
439 #define ACE_FSM_STATE_REQ_PREPARE        7
440 #define ACE_FSM_STATE_REQ_TRANSFER       8
441 #define ACE_FSM_STATE_REQ_COMPLETE       9
442 #define ACE_FSM_STATE_ERROR             10
443 #define ACE_FSM_NUM_STATES              11
444 
445 /* Set flag to exit FSM loop and reschedule tasklet */
ace_fsm_yieldpoll(struct ace_device * ace)446 static inline void ace_fsm_yieldpoll(struct ace_device *ace)
447 {
448 	tasklet_schedule(&ace->fsm_tasklet);
449 	ace->fsm_continue_flag = 0;
450 }
451 
ace_fsm_yield(struct ace_device * ace)452 static inline void ace_fsm_yield(struct ace_device *ace)
453 {
454 	dev_dbg(ace->dev, "%s()\n", __func__);
455 	ace_fsm_yieldpoll(ace);
456 }
457 
458 /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
ace_fsm_yieldirq(struct ace_device * ace)459 static inline void ace_fsm_yieldirq(struct ace_device *ace)
460 {
461 	dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
462 
463 	if (ace->irq > 0)
464 		ace->fsm_continue_flag = 0;
465 	else
466 		ace_fsm_yieldpoll(ace);
467 }
468 
ace_has_next_request(struct request_queue * q)469 static bool ace_has_next_request(struct request_queue *q)
470 {
471 	struct ace_device *ace = q->queuedata;
472 
473 	return !list_empty(&ace->rq_list);
474 }
475 
476 /* Get the next read/write request; ending requests that we don't handle */
ace_get_next_request(struct request_queue * q)477 static struct request *ace_get_next_request(struct request_queue *q)
478 {
479 	struct ace_device *ace = q->queuedata;
480 	struct request *rq;
481 
482 	rq = list_first_entry_or_null(&ace->rq_list, struct request, queuelist);
483 	if (rq) {
484 		list_del_init(&rq->queuelist);
485 		blk_mq_start_request(rq);
486 	}
487 
488 	return NULL;
489 }
490 
ace_fsm_dostate(struct ace_device * ace)491 static void ace_fsm_dostate(struct ace_device *ace)
492 {
493 	struct request *req;
494 	u32 status;
495 	u16 val;
496 	int count;
497 
498 #if defined(DEBUG)
499 	dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
500 		ace->fsm_state, ace->id_req_count);
501 #endif
502 
503 	/* Verify that there is actually a CF in the slot. If not, then
504 	 * bail out back to the idle state and wake up all the waiters */
505 	status = ace_in32(ace, ACE_STATUS);
506 	if ((status & ACE_STATUS_CFDETECT) == 0) {
507 		ace->fsm_state = ACE_FSM_STATE_IDLE;
508 		ace->media_change = 1;
509 		set_capacity(ace->gd, 0);
510 		dev_info(ace->dev, "No CF in slot\n");
511 
512 		/* Drop all in-flight and pending requests */
513 		if (ace->req) {
514 			blk_mq_end_request(ace->req, BLK_STS_IOERR);
515 			ace->req = NULL;
516 		}
517 		while ((req = ace_get_next_request(ace->queue)) != NULL)
518 			blk_mq_end_request(req, BLK_STS_IOERR);
519 
520 		/* Drop back to IDLE state and notify waiters */
521 		ace->fsm_state = ACE_FSM_STATE_IDLE;
522 		ace->id_result = -EIO;
523 		while (ace->id_req_count) {
524 			complete(&ace->id_completion);
525 			ace->id_req_count--;
526 		}
527 	}
528 
529 	switch (ace->fsm_state) {
530 	case ACE_FSM_STATE_IDLE:
531 		/* See if there is anything to do */
532 		if (ace->id_req_count || ace_has_next_request(ace->queue)) {
533 			ace->fsm_iter_num++;
534 			ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
535 			mod_timer(&ace->stall_timer, jiffies + HZ);
536 			if (!timer_pending(&ace->stall_timer))
537 				add_timer(&ace->stall_timer);
538 			break;
539 		}
540 		del_timer(&ace->stall_timer);
541 		ace->fsm_continue_flag = 0;
542 		break;
543 
544 	case ACE_FSM_STATE_REQ_LOCK:
545 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
546 			/* Already have the lock, jump to next state */
547 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
548 			break;
549 		}
550 
551 		/* Request the lock */
552 		val = ace_in(ace, ACE_CTRL);
553 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
554 		ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
555 		break;
556 
557 	case ACE_FSM_STATE_WAIT_LOCK:
558 		if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
559 			/* got the lock; move to next state */
560 			ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
561 			break;
562 		}
563 
564 		/* wait a bit for the lock */
565 		ace_fsm_yield(ace);
566 		break;
567 
568 	case ACE_FSM_STATE_WAIT_CFREADY:
569 		status = ace_in32(ace, ACE_STATUS);
570 		if (!(status & ACE_STATUS_RDYFORCFCMD) ||
571 		    (status & ACE_STATUS_CFBSY)) {
572 			/* CF card isn't ready; it needs to be polled */
573 			ace_fsm_yield(ace);
574 			break;
575 		}
576 
577 		/* Device is ready for command; determine what to do next */
578 		if (ace->id_req_count)
579 			ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
580 		else
581 			ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
582 		break;
583 
584 	case ACE_FSM_STATE_IDENTIFY_PREPARE:
585 		/* Send identify command */
586 		ace->fsm_task = ACE_TASK_IDENTIFY;
587 		ace->data_ptr = ace->cf_id;
588 		ace->data_count = ACE_BUF_PER_SECTOR;
589 		ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
590 
591 		/* As per datasheet, put config controller in reset */
592 		val = ace_in(ace, ACE_CTRL);
593 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
594 
595 		/* irq handler takes over from this point; wait for the
596 		 * transfer to complete */
597 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
598 		ace_fsm_yieldirq(ace);
599 		break;
600 
601 	case ACE_FSM_STATE_IDENTIFY_TRANSFER:
602 		/* Check that the sysace is ready to receive data */
603 		status = ace_in32(ace, ACE_STATUS);
604 		if (status & ACE_STATUS_CFBSY) {
605 			dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
606 				ace->fsm_task, ace->fsm_iter_num,
607 				ace->data_count);
608 			ace_fsm_yield(ace);
609 			break;
610 		}
611 		if (!(status & ACE_STATUS_DATABUFRDY)) {
612 			ace_fsm_yield(ace);
613 			break;
614 		}
615 
616 		/* Transfer the next buffer */
617 		ace->reg_ops->datain(ace);
618 		ace->data_count--;
619 
620 		/* If there are still buffers to be transfers; jump out here */
621 		if (ace->data_count != 0) {
622 			ace_fsm_yieldirq(ace);
623 			break;
624 		}
625 
626 		/* transfer finished; kick state machine */
627 		dev_dbg(ace->dev, "identify finished\n");
628 		ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
629 		break;
630 
631 	case ACE_FSM_STATE_IDENTIFY_COMPLETE:
632 		ace_fix_driveid(ace->cf_id);
633 		ace_dump_mem(ace->cf_id, 512);	/* Debug: Dump out disk ID */
634 
635 		if (ace->data_result) {
636 			/* Error occurred, disable the disk */
637 			ace->media_change = 1;
638 			set_capacity(ace->gd, 0);
639 			dev_err(ace->dev, "error fetching CF id (%i)\n",
640 				ace->data_result);
641 		} else {
642 			ace->media_change = 0;
643 
644 			/* Record disk parameters */
645 			set_capacity(ace->gd,
646 				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
647 			dev_info(ace->dev, "capacity: %i sectors\n",
648 				ata_id_u32(ace->cf_id, ATA_ID_LBA_CAPACITY));
649 		}
650 
651 		/* We're done, drop to IDLE state and notify waiters */
652 		ace->fsm_state = ACE_FSM_STATE_IDLE;
653 		ace->id_result = ace->data_result;
654 		while (ace->id_req_count) {
655 			complete(&ace->id_completion);
656 			ace->id_req_count--;
657 		}
658 		break;
659 
660 	case ACE_FSM_STATE_REQ_PREPARE:
661 		req = ace_get_next_request(ace->queue);
662 		if (!req) {
663 			ace->fsm_state = ACE_FSM_STATE_IDLE;
664 			break;
665 		}
666 
667 		/* Okay, it's a data request, set it up for transfer */
668 		dev_dbg(ace->dev,
669 			"request: sec=%llx hcnt=%x, ccnt=%x, dir=%i\n",
670 			(unsigned long long)blk_rq_pos(req),
671 			blk_rq_sectors(req), blk_rq_cur_sectors(req),
672 			rq_data_dir(req));
673 
674 		ace->req = req;
675 		ace->data_ptr = bio_data(req->bio);
676 		ace->data_count = blk_rq_cur_sectors(req) * ACE_BUF_PER_SECTOR;
677 		ace_out32(ace, ACE_MPULBA, blk_rq_pos(req) & 0x0FFFFFFF);
678 
679 		count = blk_rq_sectors(req);
680 		if (rq_data_dir(req)) {
681 			/* Kick off write request */
682 			dev_dbg(ace->dev, "write data\n");
683 			ace->fsm_task = ACE_TASK_WRITE;
684 			ace_out(ace, ACE_SECCNTCMD,
685 				count | ACE_SECCNTCMD_WRITE_DATA);
686 		} else {
687 			/* Kick off read request */
688 			dev_dbg(ace->dev, "read data\n");
689 			ace->fsm_task = ACE_TASK_READ;
690 			ace_out(ace, ACE_SECCNTCMD,
691 				count | ACE_SECCNTCMD_READ_DATA);
692 		}
693 
694 		/* As per datasheet, put config controller in reset */
695 		val = ace_in(ace, ACE_CTRL);
696 		ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
697 
698 		/* Move to the transfer state.  The systemace will raise
699 		 * an interrupt once there is something to do
700 		 */
701 		ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
702 		if (ace->fsm_task == ACE_TASK_READ)
703 			ace_fsm_yieldirq(ace);	/* wait for data ready */
704 		break;
705 
706 	case ACE_FSM_STATE_REQ_TRANSFER:
707 		/* Check that the sysace is ready to receive data */
708 		status = ace_in32(ace, ACE_STATUS);
709 		if (status & ACE_STATUS_CFBSY) {
710 			dev_dbg(ace->dev,
711 				"CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
712 				ace->fsm_task, ace->fsm_iter_num,
713 				blk_rq_cur_sectors(ace->req) * 16,
714 				ace->data_count, ace->in_irq);
715 			ace_fsm_yield(ace);	/* need to poll CFBSY bit */
716 			break;
717 		}
718 		if (!(status & ACE_STATUS_DATABUFRDY)) {
719 			dev_dbg(ace->dev,
720 				"DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
721 				ace->fsm_task, ace->fsm_iter_num,
722 				blk_rq_cur_sectors(ace->req) * 16,
723 				ace->data_count, ace->in_irq);
724 			ace_fsm_yieldirq(ace);
725 			break;
726 		}
727 
728 		/* Transfer the next buffer */
729 		if (ace->fsm_task == ACE_TASK_WRITE)
730 			ace->reg_ops->dataout(ace);
731 		else
732 			ace->reg_ops->datain(ace);
733 		ace->data_count--;
734 
735 		/* If there are still buffers to be transfers; jump out here */
736 		if (ace->data_count != 0) {
737 			ace_fsm_yieldirq(ace);
738 			break;
739 		}
740 
741 		/* bio finished; is there another one? */
742 		if (blk_update_request(ace->req, BLK_STS_OK,
743 		    blk_rq_cur_bytes(ace->req))) {
744 			/* dev_dbg(ace->dev, "next block; h=%u c=%u\n",
745 			 *      blk_rq_sectors(ace->req),
746 			 *      blk_rq_cur_sectors(ace->req));
747 			 */
748 			ace->data_ptr = bio_data(ace->req->bio);
749 			ace->data_count = blk_rq_cur_sectors(ace->req) * 16;
750 			ace_fsm_yieldirq(ace);
751 			break;
752 		}
753 
754 		ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
755 		break;
756 
757 	case ACE_FSM_STATE_REQ_COMPLETE:
758 		ace->req = NULL;
759 
760 		/* Finished request; go to idle state */
761 		ace->fsm_state = ACE_FSM_STATE_IDLE;
762 		break;
763 
764 	default:
765 		ace->fsm_state = ACE_FSM_STATE_IDLE;
766 		break;
767 	}
768 }
769 
ace_fsm_tasklet(unsigned long data)770 static void ace_fsm_tasklet(unsigned long data)
771 {
772 	struct ace_device *ace = (void *)data;
773 	unsigned long flags;
774 
775 	spin_lock_irqsave(&ace->lock, flags);
776 
777 	/* Loop over state machine until told to stop */
778 	ace->fsm_continue_flag = 1;
779 	while (ace->fsm_continue_flag)
780 		ace_fsm_dostate(ace);
781 
782 	spin_unlock_irqrestore(&ace->lock, flags);
783 }
784 
ace_stall_timer(struct timer_list * t)785 static void ace_stall_timer(struct timer_list *t)
786 {
787 	struct ace_device *ace = from_timer(ace, t, stall_timer);
788 	unsigned long flags;
789 
790 	dev_warn(ace->dev,
791 		 "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
792 		 ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
793 		 ace->data_count);
794 	spin_lock_irqsave(&ace->lock, flags);
795 
796 	/* Rearm the stall timer *before* entering FSM (which may then
797 	 * delete the timer) */
798 	mod_timer(&ace->stall_timer, jiffies + HZ);
799 
800 	/* Loop over state machine until told to stop */
801 	ace->fsm_continue_flag = 1;
802 	while (ace->fsm_continue_flag)
803 		ace_fsm_dostate(ace);
804 
805 	spin_unlock_irqrestore(&ace->lock, flags);
806 }
807 
808 /* ---------------------------------------------------------------------
809  * Interrupt handling routines
810  */
ace_interrupt_checkstate(struct ace_device * ace)811 static int ace_interrupt_checkstate(struct ace_device *ace)
812 {
813 	u32 sreg = ace_in32(ace, ACE_STATUS);
814 	u16 creg = ace_in(ace, ACE_CTRL);
815 
816 	/* Check for error occurrence */
817 	if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
818 	    (creg & ACE_CTRL_ERRORIRQ)) {
819 		dev_err(ace->dev, "transfer failure\n");
820 		ace_dump_regs(ace);
821 		return -EIO;
822 	}
823 
824 	return 0;
825 }
826 
ace_interrupt(int irq,void * dev_id)827 static irqreturn_t ace_interrupt(int irq, void *dev_id)
828 {
829 	u16 creg;
830 	struct ace_device *ace = dev_id;
831 
832 	/* be safe and get the lock */
833 	spin_lock(&ace->lock);
834 	ace->in_irq = 1;
835 
836 	/* clear the interrupt */
837 	creg = ace_in(ace, ACE_CTRL);
838 	ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
839 	ace_out(ace, ACE_CTRL, creg);
840 
841 	/* check for IO failures */
842 	if (ace_interrupt_checkstate(ace))
843 		ace->data_result = -EIO;
844 
845 	if (ace->fsm_task == 0) {
846 		dev_err(ace->dev,
847 			"spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
848 			ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
849 			ace_in(ace, ACE_SECCNTCMD));
850 		dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
851 			ace->fsm_task, ace->fsm_state, ace->data_count);
852 	}
853 
854 	/* Loop over state machine until told to stop */
855 	ace->fsm_continue_flag = 1;
856 	while (ace->fsm_continue_flag)
857 		ace_fsm_dostate(ace);
858 
859 	/* done with interrupt; drop the lock */
860 	ace->in_irq = 0;
861 	spin_unlock(&ace->lock);
862 
863 	return IRQ_HANDLED;
864 }
865 
866 /* ---------------------------------------------------------------------
867  * Block ops
868  */
ace_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)869 static blk_status_t ace_queue_rq(struct blk_mq_hw_ctx *hctx,
870 				 const struct blk_mq_queue_data *bd)
871 {
872 	struct ace_device *ace = hctx->queue->queuedata;
873 	struct request *req = bd->rq;
874 
875 	if (blk_rq_is_passthrough(req)) {
876 		blk_mq_start_request(req);
877 		return BLK_STS_IOERR;
878 	}
879 
880 	spin_lock_irq(&ace->lock);
881 	list_add_tail(&req->queuelist, &ace->rq_list);
882 	spin_unlock_irq(&ace->lock);
883 
884 	tasklet_schedule(&ace->fsm_tasklet);
885 	return BLK_STS_OK;
886 }
887 
ace_check_events(struct gendisk * gd,unsigned int clearing)888 static unsigned int ace_check_events(struct gendisk *gd, unsigned int clearing)
889 {
890 	struct ace_device *ace = gd->private_data;
891 	dev_dbg(ace->dev, "ace_check_events(): %i\n", ace->media_change);
892 
893 	return ace->media_change ? DISK_EVENT_MEDIA_CHANGE : 0;
894 }
895 
ace_media_changed(struct ace_device * ace)896 static void ace_media_changed(struct ace_device *ace)
897 {
898 	unsigned long flags;
899 
900 	dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
901 
902 	spin_lock_irqsave(&ace->lock, flags);
903 	ace->id_req_count++;
904 	spin_unlock_irqrestore(&ace->lock, flags);
905 
906 	tasklet_schedule(&ace->fsm_tasklet);
907 	wait_for_completion(&ace->id_completion);
908 
909 	dev_dbg(ace->dev, "revalidate complete\n");
910 }
911 
ace_open(struct block_device * bdev,fmode_t mode)912 static int ace_open(struct block_device *bdev, fmode_t mode)
913 {
914 	struct ace_device *ace = bdev->bd_disk->private_data;
915 	unsigned long flags;
916 
917 	dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
918 
919 	mutex_lock(&xsysace_mutex);
920 	spin_lock_irqsave(&ace->lock, flags);
921 	ace->users++;
922 	spin_unlock_irqrestore(&ace->lock, flags);
923 
924 	if (bdev_check_media_change(bdev) && ace->media_change)
925 		ace_media_changed(ace);
926 	mutex_unlock(&xsysace_mutex);
927 
928 	return 0;
929 }
930 
ace_release(struct gendisk * disk,fmode_t mode)931 static void ace_release(struct gendisk *disk, fmode_t mode)
932 {
933 	struct ace_device *ace = disk->private_data;
934 	unsigned long flags;
935 	u16 val;
936 
937 	dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
938 
939 	mutex_lock(&xsysace_mutex);
940 	spin_lock_irqsave(&ace->lock, flags);
941 	ace->users--;
942 	if (ace->users == 0) {
943 		val = ace_in(ace, ACE_CTRL);
944 		ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
945 	}
946 	spin_unlock_irqrestore(&ace->lock, flags);
947 	mutex_unlock(&xsysace_mutex);
948 }
949 
ace_getgeo(struct block_device * bdev,struct hd_geometry * geo)950 static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
951 {
952 	struct ace_device *ace = bdev->bd_disk->private_data;
953 	u16 *cf_id = ace->cf_id;
954 
955 	dev_dbg(ace->dev, "ace_getgeo()\n");
956 
957 	geo->heads	= cf_id[ATA_ID_HEADS];
958 	geo->sectors	= cf_id[ATA_ID_SECTORS];
959 	geo->cylinders	= cf_id[ATA_ID_CYLS];
960 
961 	return 0;
962 }
963 
964 static const struct block_device_operations ace_fops = {
965 	.owner = THIS_MODULE,
966 	.open = ace_open,
967 	.release = ace_release,
968 	.check_events = ace_check_events,
969 	.getgeo = ace_getgeo,
970 };
971 
972 static const struct blk_mq_ops ace_mq_ops = {
973 	.queue_rq	= ace_queue_rq,
974 };
975 
976 /* --------------------------------------------------------------------
977  * SystemACE device setup/teardown code
978  */
ace_setup(struct ace_device * ace)979 static int ace_setup(struct ace_device *ace)
980 {
981 	u16 version;
982 	u16 val;
983 	int rc;
984 
985 	dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
986 	dev_dbg(ace->dev, "physaddr=0x%llx irq=%i\n",
987 		(unsigned long long)ace->physaddr, ace->irq);
988 
989 	spin_lock_init(&ace->lock);
990 	init_completion(&ace->id_completion);
991 	INIT_LIST_HEAD(&ace->rq_list);
992 
993 	/*
994 	 * Map the device
995 	 */
996 	ace->baseaddr = ioremap(ace->physaddr, 0x80);
997 	if (!ace->baseaddr)
998 		goto err_ioremap;
999 
1000 	/*
1001 	 * Initialize the state machine tasklet and stall timer
1002 	 */
1003 	tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
1004 	timer_setup(&ace->stall_timer, ace_stall_timer, 0);
1005 
1006 	/*
1007 	 * Initialize the request queue
1008 	 */
1009 	ace->queue = blk_mq_init_sq_queue(&ace->tag_set, &ace_mq_ops, 2,
1010 						BLK_MQ_F_SHOULD_MERGE);
1011 	if (IS_ERR(ace->queue)) {
1012 		rc = PTR_ERR(ace->queue);
1013 		ace->queue = NULL;
1014 		goto err_blk_initq;
1015 	}
1016 	ace->queue->queuedata = ace;
1017 
1018 	blk_queue_logical_block_size(ace->queue, 512);
1019 	blk_queue_bounce_limit(ace->queue, BLK_BOUNCE_HIGH);
1020 
1021 	/*
1022 	 * Allocate and initialize GD structure
1023 	 */
1024 	ace->gd = alloc_disk(ACE_NUM_MINORS);
1025 	if (!ace->gd)
1026 		goto err_alloc_disk;
1027 
1028 	ace->gd->major = ace_major;
1029 	ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
1030 	ace->gd->fops = &ace_fops;
1031 	ace->gd->events = DISK_EVENT_MEDIA_CHANGE;
1032 	ace->gd->queue = ace->queue;
1033 	ace->gd->private_data = ace;
1034 	snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
1035 
1036 	/* set bus width */
1037 	if (ace->bus_width == ACE_BUS_WIDTH_16) {
1038 		/* 0x0101 should work regardless of endianess */
1039 		ace_out_le16(ace, ACE_BUSMODE, 0x0101);
1040 
1041 		/* read it back to determine endianess */
1042 		if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
1043 			ace->reg_ops = &ace_reg_le16_ops;
1044 		else
1045 			ace->reg_ops = &ace_reg_be16_ops;
1046 	} else {
1047 		ace_out_8(ace, ACE_BUSMODE, 0x00);
1048 		ace->reg_ops = &ace_reg_8_ops;
1049 	}
1050 
1051 	/* Make sure version register is sane */
1052 	version = ace_in(ace, ACE_VERSION);
1053 	if ((version == 0) || (version == 0xFFFF))
1054 		goto err_read;
1055 
1056 	/* Put sysace in a sane state by clearing most control reg bits */
1057 	ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
1058 		ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
1059 
1060 	/* Now we can hook up the irq handler */
1061 	if (ace->irq > 0) {
1062 		rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
1063 		if (rc) {
1064 			/* Failure - fall back to polled mode */
1065 			dev_err(ace->dev, "request_irq failed\n");
1066 			ace->irq = rc;
1067 		}
1068 	}
1069 
1070 	/* Enable interrupts */
1071 	val = ace_in(ace, ACE_CTRL);
1072 	val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
1073 	ace_out(ace, ACE_CTRL, val);
1074 
1075 	/* Print the identification */
1076 	dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
1077 		 (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
1078 	dev_dbg(ace->dev, "physaddr 0x%llx, mapped to 0x%p, irq=%i\n",
1079 		(unsigned long long) ace->physaddr, ace->baseaddr, ace->irq);
1080 
1081 	ace->media_change = 1;
1082 	ace_media_changed(ace);
1083 
1084 	/* Make the sysace device 'live' */
1085 	add_disk(ace->gd);
1086 
1087 	return 0;
1088 
1089 err_read:
1090 	/* prevent double queue cleanup */
1091 	ace->gd->queue = NULL;
1092 	put_disk(ace->gd);
1093 err_alloc_disk:
1094 	blk_cleanup_queue(ace->queue);
1095 	blk_mq_free_tag_set(&ace->tag_set);
1096 err_blk_initq:
1097 	iounmap(ace->baseaddr);
1098 err_ioremap:
1099 	dev_info(ace->dev, "xsysace: error initializing device at 0x%llx\n",
1100 		 (unsigned long long) ace->physaddr);
1101 	return -ENOMEM;
1102 }
1103 
ace_teardown(struct ace_device * ace)1104 static void ace_teardown(struct ace_device *ace)
1105 {
1106 	if (ace->gd) {
1107 		del_gendisk(ace->gd);
1108 		put_disk(ace->gd);
1109 	}
1110 
1111 	if (ace->queue) {
1112 		blk_cleanup_queue(ace->queue);
1113 		blk_mq_free_tag_set(&ace->tag_set);
1114 	}
1115 
1116 	tasklet_kill(&ace->fsm_tasklet);
1117 
1118 	if (ace->irq > 0)
1119 		free_irq(ace->irq, ace);
1120 
1121 	iounmap(ace->baseaddr);
1122 }
1123 
ace_alloc(struct device * dev,int id,resource_size_t physaddr,int irq,int bus_width)1124 static int ace_alloc(struct device *dev, int id, resource_size_t physaddr,
1125 		     int irq, int bus_width)
1126 {
1127 	struct ace_device *ace;
1128 	int rc;
1129 	dev_dbg(dev, "ace_alloc(%p)\n", dev);
1130 
1131 	/* Allocate and initialize the ace device structure */
1132 	ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
1133 	if (!ace) {
1134 		rc = -ENOMEM;
1135 		goto err_alloc;
1136 	}
1137 
1138 	ace->dev = dev;
1139 	ace->id = id;
1140 	ace->physaddr = physaddr;
1141 	ace->irq = irq;
1142 	ace->bus_width = bus_width;
1143 
1144 	/* Call the setup code */
1145 	rc = ace_setup(ace);
1146 	if (rc)
1147 		goto err_setup;
1148 
1149 	dev_set_drvdata(dev, ace);
1150 	return 0;
1151 
1152 err_setup:
1153 	dev_set_drvdata(dev, NULL);
1154 	kfree(ace);
1155 err_alloc:
1156 	dev_err(dev, "could not initialize device, err=%i\n", rc);
1157 	return rc;
1158 }
1159 
ace_free(struct device * dev)1160 static void ace_free(struct device *dev)
1161 {
1162 	struct ace_device *ace = dev_get_drvdata(dev);
1163 	dev_dbg(dev, "ace_free(%p)\n", dev);
1164 
1165 	if (ace) {
1166 		ace_teardown(ace);
1167 		dev_set_drvdata(dev, NULL);
1168 		kfree(ace);
1169 	}
1170 }
1171 
1172 /* ---------------------------------------------------------------------
1173  * Platform Bus Support
1174  */
1175 
ace_probe(struct platform_device * dev)1176 static int ace_probe(struct platform_device *dev)
1177 {
1178 	int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
1179 	resource_size_t physaddr;
1180 	struct resource *res;
1181 	u32 id = dev->id;
1182 	int irq;
1183 	int i;
1184 
1185 	dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
1186 
1187 	/* device id and bus width */
1188 	if (of_property_read_u32(dev->dev.of_node, "port-number", &id))
1189 		id = 0;
1190 	if (of_find_property(dev->dev.of_node, "8-bit", NULL))
1191 		bus_width = ACE_BUS_WIDTH_8;
1192 
1193 	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
1194 	if (!res)
1195 		return -EINVAL;
1196 
1197 	physaddr = res->start;
1198 	if (!physaddr)
1199 		return -ENODEV;
1200 
1201 	irq = platform_get_irq_optional(dev, 0);
1202 
1203 	/* Call the bus-independent setup code */
1204 	return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
1205 }
1206 
1207 /*
1208  * Platform bus remove() method
1209  */
ace_remove(struct platform_device * dev)1210 static int ace_remove(struct platform_device *dev)
1211 {
1212 	ace_free(&dev->dev);
1213 	return 0;
1214 }
1215 
1216 #if defined(CONFIG_OF)
1217 /* Match table for of_platform binding */
1218 static const struct of_device_id ace_of_match[] = {
1219 	{ .compatible = "xlnx,opb-sysace-1.00.b", },
1220 	{ .compatible = "xlnx,opb-sysace-1.00.c", },
1221 	{ .compatible = "xlnx,xps-sysace-1.00.a", },
1222 	{ .compatible = "xlnx,sysace", },
1223 	{},
1224 };
1225 MODULE_DEVICE_TABLE(of, ace_of_match);
1226 #else /* CONFIG_OF */
1227 #define ace_of_match NULL
1228 #endif /* CONFIG_OF */
1229 
1230 static struct platform_driver ace_platform_driver = {
1231 	.probe = ace_probe,
1232 	.remove = ace_remove,
1233 	.driver = {
1234 		.name = "xsysace",
1235 		.of_match_table = ace_of_match,
1236 	},
1237 };
1238 
1239 /* ---------------------------------------------------------------------
1240  * Module init/exit routines
1241  */
ace_init(void)1242 static int __init ace_init(void)
1243 {
1244 	int rc;
1245 
1246 	ace_major = register_blkdev(ace_major, "xsysace");
1247 	if (ace_major <= 0) {
1248 		rc = -ENOMEM;
1249 		goto err_blk;
1250 	}
1251 
1252 	rc = platform_driver_register(&ace_platform_driver);
1253 	if (rc)
1254 		goto err_plat;
1255 
1256 	pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
1257 	return 0;
1258 
1259 err_plat:
1260 	unregister_blkdev(ace_major, "xsysace");
1261 err_blk:
1262 	printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
1263 	return rc;
1264 }
1265 module_init(ace_init);
1266 
ace_exit(void)1267 static void __exit ace_exit(void)
1268 {
1269 	pr_debug("Unregistering Xilinx SystemACE driver\n");
1270 	platform_driver_unregister(&ace_platform_driver);
1271 	unregister_blkdev(ace_major, "xsysace");
1272 }
1273 module_exit(ace_exit);
1274