1 /*
2 * blkfront.c
3 *
4 * XenLinux virtual block device driver.
5 *
6 * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7 * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8 * Copyright (c) 2004, Christian Limpach
9 * Copyright (c) 2004, Andrew Warfield
10 * Copyright (c) 2005, Christopher Clark
11 * Copyright (c) 2005, XenSource Ltd
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License version 2
15 * as published by the Free Software Foundation; or, when distributed
16 * separately from the Linux kernel or incorporated into other
17 * software packages, subject to the following license:
18 *
19 * Permission is hereby granted, free of charge, to any person obtaining a copy
20 * of this source file (the "Software"), to deal in the Software without
21 * restriction, including without limitation the rights to use, copy, modify,
22 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23 * and to permit persons to whom the Software is furnished to do so, subject to
24 * the following conditions:
25 *
26 * The above copyright notice and this permission notice shall be included in
27 * all copies or substantial portions of the Software.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35 * IN THE SOFTWARE.
36 */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/blk-mq.h>
41 #include <linux/hdreg.h>
42 #include <linux/cdrom.h>
43 #include <linux/module.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/scatterlist.h>
47 #include <linux/bitmap.h>
48 #include <linux/list.h>
49 #include <linux/workqueue.h>
50 #include <linux/sched/mm.h>
51
52 #include <xen/xen.h>
53 #include <xen/xenbus.h>
54 #include <xen/grant_table.h>
55 #include <xen/events.h>
56 #include <xen/page.h>
57 #include <xen/platform_pci.h>
58
59 #include <xen/interface/grant_table.h>
60 #include <xen/interface/io/blkif.h>
61 #include <xen/interface/io/protocols.h>
62
63 #include <asm/xen/hypervisor.h>
64
65 /*
66 * The minimal size of segment supported by the block framework is PAGE_SIZE.
67 * When Linux is using a different page size than Xen, it may not be possible
68 * to put all the data in a single segment.
69 * This can happen when the backend doesn't support indirect descriptor and
70 * therefore the maximum amount of data that a request can carry is
71 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE = 44KB
72 *
73 * Note that we only support one extra request. So the Linux page size
74 * should be <= ( 2 * BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) =
75 * 88KB.
76 */
77 #define HAS_EXTRA_REQ (BLKIF_MAX_SEGMENTS_PER_REQUEST < XEN_PFN_PER_PAGE)
78
79 enum blkif_state {
80 BLKIF_STATE_DISCONNECTED,
81 BLKIF_STATE_CONNECTED,
82 BLKIF_STATE_SUSPENDED,
83 };
84
85 struct grant {
86 grant_ref_t gref;
87 struct page *page;
88 struct list_head node;
89 };
90
91 enum blk_req_status {
92 REQ_WAITING,
93 REQ_DONE,
94 REQ_ERROR,
95 REQ_EOPNOTSUPP,
96 };
97
98 struct blk_shadow {
99 struct blkif_request req;
100 struct request *request;
101 struct grant **grants_used;
102 struct grant **indirect_grants;
103 struct scatterlist *sg;
104 unsigned int num_sg;
105 enum blk_req_status status;
106
107 #define NO_ASSOCIATED_ID ~0UL
108 /*
109 * Id of the sibling if we ever need 2 requests when handling a
110 * block I/O request
111 */
112 unsigned long associated_id;
113 };
114
115 struct blkif_req {
116 blk_status_t error;
117 };
118
blkif_req(struct request * rq)119 static inline struct blkif_req *blkif_req(struct request *rq)
120 {
121 return blk_mq_rq_to_pdu(rq);
122 }
123
124 static DEFINE_MUTEX(blkfront_mutex);
125 static const struct block_device_operations xlvbd_block_fops;
126 static struct delayed_work blkfront_work;
127 static LIST_HEAD(info_list);
128
129 /*
130 * Maximum number of segments in indirect requests, the actual value used by
131 * the frontend driver is the minimum of this value and the value provided
132 * by the backend driver.
133 */
134
135 static unsigned int xen_blkif_max_segments = 32;
136 module_param_named(max_indirect_segments, xen_blkif_max_segments, uint, 0444);
137 MODULE_PARM_DESC(max_indirect_segments,
138 "Maximum amount of segments in indirect requests (default is 32)");
139
140 static unsigned int xen_blkif_max_queues = 4;
141 module_param_named(max_queues, xen_blkif_max_queues, uint, 0444);
142 MODULE_PARM_DESC(max_queues, "Maximum number of hardware queues/rings used per virtual disk");
143
144 /*
145 * Maximum order of pages to be used for the shared ring between front and
146 * backend, 4KB page granularity is used.
147 */
148 static unsigned int xen_blkif_max_ring_order;
149 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, 0444);
150 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
151
152 #define BLK_RING_SIZE(info) \
153 __CONST_RING_SIZE(blkif, XEN_PAGE_SIZE * (info)->nr_ring_pages)
154
155 /*
156 * ring-ref%u i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
157 * characters are enough. Define to 20 to keep consistent with backend.
158 */
159 #define RINGREF_NAME_LEN (20)
160 /*
161 * queue-%u would take 7 + 10(UINT_MAX) = 17 characters.
162 */
163 #define QUEUE_NAME_LEN (17)
164
165 /*
166 * Per-ring info.
167 * Every blkfront device can associate with one or more blkfront_ring_info,
168 * depending on how many hardware queues/rings to be used.
169 */
170 struct blkfront_ring_info {
171 /* Lock to protect data in every ring buffer. */
172 spinlock_t ring_lock;
173 struct blkif_front_ring ring;
174 unsigned int ring_ref[XENBUS_MAX_RING_GRANTS];
175 unsigned int evtchn, irq;
176 struct work_struct work;
177 struct gnttab_free_callback callback;
178 struct list_head indirect_pages;
179 struct list_head grants;
180 unsigned int persistent_gnts_c;
181 unsigned long shadow_free;
182 struct blkfront_info *dev_info;
183 struct blk_shadow shadow[];
184 };
185
186 /*
187 * We have one of these per vbd, whether ide, scsi or 'other'. They
188 * hang in private_data off the gendisk structure. We may end up
189 * putting all kinds of interesting stuff here :-)
190 */
191 struct blkfront_info
192 {
193 struct mutex mutex;
194 struct xenbus_device *xbdev;
195 struct gendisk *gd;
196 u16 sector_size;
197 unsigned int physical_sector_size;
198 int vdevice;
199 blkif_vdev_t handle;
200 enum blkif_state connected;
201 /* Number of pages per ring buffer. */
202 unsigned int nr_ring_pages;
203 struct request_queue *rq;
204 unsigned int feature_flush:1;
205 unsigned int feature_fua:1;
206 unsigned int feature_discard:1;
207 unsigned int feature_secdiscard:1;
208 unsigned int feature_persistent:1;
209 unsigned int discard_granularity;
210 unsigned int discard_alignment;
211 /* Number of 4KB segments handled */
212 unsigned int max_indirect_segments;
213 int is_ready;
214 struct blk_mq_tag_set tag_set;
215 struct blkfront_ring_info *rinfo;
216 unsigned int nr_rings;
217 unsigned int rinfo_size;
218 /* Save uncomplete reqs and bios for migration. */
219 struct list_head requests;
220 struct bio_list bio_list;
221 struct list_head info_list;
222 };
223
224 static unsigned int nr_minors;
225 static unsigned long *minors;
226 static DEFINE_SPINLOCK(minor_lock);
227
228 #define GRANT_INVALID_REF 0
229
230 #define PARTS_PER_DISK 16
231 #define PARTS_PER_EXT_DISK 256
232
233 #define BLKIF_MAJOR(dev) ((dev)>>8)
234 #define BLKIF_MINOR(dev) ((dev) & 0xff)
235
236 #define EXT_SHIFT 28
237 #define EXTENDED (1<<EXT_SHIFT)
238 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
239 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
240 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
241 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
242 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
243 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
244
245 #define DEV_NAME "xvd" /* name in /dev */
246
247 /*
248 * Grants are always the same size as a Xen page (i.e 4KB).
249 * A physical segment is always the same size as a Linux page.
250 * Number of grants per physical segment
251 */
252 #define GRANTS_PER_PSEG (PAGE_SIZE / XEN_PAGE_SIZE)
253
254 #define GRANTS_PER_INDIRECT_FRAME \
255 (XEN_PAGE_SIZE / sizeof(struct blkif_request_segment))
256
257 #define INDIRECT_GREFS(_grants) \
258 DIV_ROUND_UP(_grants, GRANTS_PER_INDIRECT_FRAME)
259
260 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo);
261 static void blkfront_gather_backend_features(struct blkfront_info *info);
262 static int negotiate_mq(struct blkfront_info *info);
263
264 #define for_each_rinfo(info, ptr, idx) \
265 for ((ptr) = (info)->rinfo, (idx) = 0; \
266 (idx) < (info)->nr_rings; \
267 (idx)++, (ptr) = (void *)(ptr) + (info)->rinfo_size)
268
269 static inline struct blkfront_ring_info *
get_rinfo(const struct blkfront_info * info,unsigned int i)270 get_rinfo(const struct blkfront_info *info, unsigned int i)
271 {
272 BUG_ON(i >= info->nr_rings);
273 return (void *)info->rinfo + i * info->rinfo_size;
274 }
275
get_id_from_freelist(struct blkfront_ring_info * rinfo)276 static int get_id_from_freelist(struct blkfront_ring_info *rinfo)
277 {
278 unsigned long free = rinfo->shadow_free;
279
280 BUG_ON(free >= BLK_RING_SIZE(rinfo->dev_info));
281 rinfo->shadow_free = rinfo->shadow[free].req.u.rw.id;
282 rinfo->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
283 return free;
284 }
285
add_id_to_freelist(struct blkfront_ring_info * rinfo,unsigned long id)286 static int add_id_to_freelist(struct blkfront_ring_info *rinfo,
287 unsigned long id)
288 {
289 if (rinfo->shadow[id].req.u.rw.id != id)
290 return -EINVAL;
291 if (rinfo->shadow[id].request == NULL)
292 return -EINVAL;
293 rinfo->shadow[id].req.u.rw.id = rinfo->shadow_free;
294 rinfo->shadow[id].request = NULL;
295 rinfo->shadow_free = id;
296 return 0;
297 }
298
fill_grant_buffer(struct blkfront_ring_info * rinfo,int num)299 static int fill_grant_buffer(struct blkfront_ring_info *rinfo, int num)
300 {
301 struct blkfront_info *info = rinfo->dev_info;
302 struct page *granted_page;
303 struct grant *gnt_list_entry, *n;
304 int i = 0;
305
306 while (i < num) {
307 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
308 if (!gnt_list_entry)
309 goto out_of_memory;
310
311 if (info->feature_persistent) {
312 granted_page = alloc_page(GFP_NOIO);
313 if (!granted_page) {
314 kfree(gnt_list_entry);
315 goto out_of_memory;
316 }
317 gnt_list_entry->page = granted_page;
318 }
319
320 gnt_list_entry->gref = GRANT_INVALID_REF;
321 list_add(&gnt_list_entry->node, &rinfo->grants);
322 i++;
323 }
324
325 return 0;
326
327 out_of_memory:
328 list_for_each_entry_safe(gnt_list_entry, n,
329 &rinfo->grants, node) {
330 list_del(&gnt_list_entry->node);
331 if (info->feature_persistent)
332 __free_page(gnt_list_entry->page);
333 kfree(gnt_list_entry);
334 i--;
335 }
336 BUG_ON(i != 0);
337 return -ENOMEM;
338 }
339
get_free_grant(struct blkfront_ring_info * rinfo)340 static struct grant *get_free_grant(struct blkfront_ring_info *rinfo)
341 {
342 struct grant *gnt_list_entry;
343
344 BUG_ON(list_empty(&rinfo->grants));
345 gnt_list_entry = list_first_entry(&rinfo->grants, struct grant,
346 node);
347 list_del(&gnt_list_entry->node);
348
349 if (gnt_list_entry->gref != GRANT_INVALID_REF)
350 rinfo->persistent_gnts_c--;
351
352 return gnt_list_entry;
353 }
354
grant_foreign_access(const struct grant * gnt_list_entry,const struct blkfront_info * info)355 static inline void grant_foreign_access(const struct grant *gnt_list_entry,
356 const struct blkfront_info *info)
357 {
358 gnttab_page_grant_foreign_access_ref_one(gnt_list_entry->gref,
359 info->xbdev->otherend_id,
360 gnt_list_entry->page,
361 0);
362 }
363
get_grant(grant_ref_t * gref_head,unsigned long gfn,struct blkfront_ring_info * rinfo)364 static struct grant *get_grant(grant_ref_t *gref_head,
365 unsigned long gfn,
366 struct blkfront_ring_info *rinfo)
367 {
368 struct grant *gnt_list_entry = get_free_grant(rinfo);
369 struct blkfront_info *info = rinfo->dev_info;
370
371 if (gnt_list_entry->gref != GRANT_INVALID_REF)
372 return gnt_list_entry;
373
374 /* Assign a gref to this page */
375 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
376 BUG_ON(gnt_list_entry->gref == -ENOSPC);
377 if (info->feature_persistent)
378 grant_foreign_access(gnt_list_entry, info);
379 else {
380 /* Grant access to the GFN passed by the caller */
381 gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
382 info->xbdev->otherend_id,
383 gfn, 0);
384 }
385
386 return gnt_list_entry;
387 }
388
get_indirect_grant(grant_ref_t * gref_head,struct blkfront_ring_info * rinfo)389 static struct grant *get_indirect_grant(grant_ref_t *gref_head,
390 struct blkfront_ring_info *rinfo)
391 {
392 struct grant *gnt_list_entry = get_free_grant(rinfo);
393 struct blkfront_info *info = rinfo->dev_info;
394
395 if (gnt_list_entry->gref != GRANT_INVALID_REF)
396 return gnt_list_entry;
397
398 /* Assign a gref to this page */
399 gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
400 BUG_ON(gnt_list_entry->gref == -ENOSPC);
401 if (!info->feature_persistent) {
402 struct page *indirect_page;
403
404 /* Fetch a pre-allocated page to use for indirect grefs */
405 BUG_ON(list_empty(&rinfo->indirect_pages));
406 indirect_page = list_first_entry(&rinfo->indirect_pages,
407 struct page, lru);
408 list_del(&indirect_page->lru);
409 gnt_list_entry->page = indirect_page;
410 }
411 grant_foreign_access(gnt_list_entry, info);
412
413 return gnt_list_entry;
414 }
415
op_name(int op)416 static const char *op_name(int op)
417 {
418 static const char *const names[] = {
419 [BLKIF_OP_READ] = "read",
420 [BLKIF_OP_WRITE] = "write",
421 [BLKIF_OP_WRITE_BARRIER] = "barrier",
422 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
423 [BLKIF_OP_DISCARD] = "discard" };
424
425 if (op < 0 || op >= ARRAY_SIZE(names))
426 return "unknown";
427
428 if (!names[op])
429 return "reserved";
430
431 return names[op];
432 }
xlbd_reserve_minors(unsigned int minor,unsigned int nr)433 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
434 {
435 unsigned int end = minor + nr;
436 int rc;
437
438 if (end > nr_minors) {
439 unsigned long *bitmap, *old;
440
441 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
442 GFP_KERNEL);
443 if (bitmap == NULL)
444 return -ENOMEM;
445
446 spin_lock(&minor_lock);
447 if (end > nr_minors) {
448 old = minors;
449 memcpy(bitmap, minors,
450 BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
451 minors = bitmap;
452 nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
453 } else
454 old = bitmap;
455 spin_unlock(&minor_lock);
456 kfree(old);
457 }
458
459 spin_lock(&minor_lock);
460 if (find_next_bit(minors, end, minor) >= end) {
461 bitmap_set(minors, minor, nr);
462 rc = 0;
463 } else
464 rc = -EBUSY;
465 spin_unlock(&minor_lock);
466
467 return rc;
468 }
469
xlbd_release_minors(unsigned int minor,unsigned int nr)470 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
471 {
472 unsigned int end = minor + nr;
473
474 BUG_ON(end > nr_minors);
475 spin_lock(&minor_lock);
476 bitmap_clear(minors, minor, nr);
477 spin_unlock(&minor_lock);
478 }
479
blkif_restart_queue_callback(void * arg)480 static void blkif_restart_queue_callback(void *arg)
481 {
482 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)arg;
483 schedule_work(&rinfo->work);
484 }
485
blkif_getgeo(struct block_device * bd,struct hd_geometry * hg)486 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
487 {
488 /* We don't have real geometry info, but let's at least return
489 values consistent with the size of the device */
490 sector_t nsect = get_capacity(bd->bd_disk);
491 sector_t cylinders = nsect;
492
493 hg->heads = 0xff;
494 hg->sectors = 0x3f;
495 sector_div(cylinders, hg->heads * hg->sectors);
496 hg->cylinders = cylinders;
497 if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
498 hg->cylinders = 0xffff;
499 return 0;
500 }
501
blkif_ioctl(struct block_device * bdev,fmode_t mode,unsigned command,unsigned long argument)502 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned command, unsigned long argument)
504 {
505 struct blkfront_info *info = bdev->bd_disk->private_data;
506 int i;
507
508 dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
509 command, (long)argument);
510
511 switch (command) {
512 case CDROMMULTISESSION:
513 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
514 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
515 if (put_user(0, (char __user *)(argument + i)))
516 return -EFAULT;
517 return 0;
518
519 case CDROM_GET_CAPABILITY: {
520 struct gendisk *gd = info->gd;
521 if (gd->flags & GENHD_FL_CD)
522 return 0;
523 return -EINVAL;
524 }
525
526 default:
527 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
528 command);*/
529 return -EINVAL; /* same return as native Linux */
530 }
531
532 return 0;
533 }
534
blkif_ring_get_request(struct blkfront_ring_info * rinfo,struct request * req,struct blkif_request ** ring_req)535 static unsigned long blkif_ring_get_request(struct blkfront_ring_info *rinfo,
536 struct request *req,
537 struct blkif_request **ring_req)
538 {
539 unsigned long id;
540
541 *ring_req = RING_GET_REQUEST(&rinfo->ring, rinfo->ring.req_prod_pvt);
542 rinfo->ring.req_prod_pvt++;
543
544 id = get_id_from_freelist(rinfo);
545 rinfo->shadow[id].request = req;
546 rinfo->shadow[id].status = REQ_WAITING;
547 rinfo->shadow[id].associated_id = NO_ASSOCIATED_ID;
548
549 (*ring_req)->u.rw.id = id;
550
551 return id;
552 }
553
blkif_queue_discard_req(struct request * req,struct blkfront_ring_info * rinfo)554 static int blkif_queue_discard_req(struct request *req, struct blkfront_ring_info *rinfo)
555 {
556 struct blkfront_info *info = rinfo->dev_info;
557 struct blkif_request *ring_req;
558 unsigned long id;
559
560 /* Fill out a communications ring structure. */
561 id = blkif_ring_get_request(rinfo, req, &ring_req);
562
563 ring_req->operation = BLKIF_OP_DISCARD;
564 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
565 ring_req->u.discard.id = id;
566 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
567 if (req_op(req) == REQ_OP_SECURE_ERASE && info->feature_secdiscard)
568 ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
569 else
570 ring_req->u.discard.flag = 0;
571
572 /* Keep a private copy so we can reissue requests when recovering. */
573 rinfo->shadow[id].req = *ring_req;
574
575 return 0;
576 }
577
578 struct setup_rw_req {
579 unsigned int grant_idx;
580 struct blkif_request_segment *segments;
581 struct blkfront_ring_info *rinfo;
582 struct blkif_request *ring_req;
583 grant_ref_t gref_head;
584 unsigned int id;
585 /* Only used when persistent grant is used and it's a read request */
586 bool need_copy;
587 unsigned int bvec_off;
588 char *bvec_data;
589
590 bool require_extra_req;
591 struct blkif_request *extra_ring_req;
592 };
593
blkif_setup_rw_req_grant(unsigned long gfn,unsigned int offset,unsigned int len,void * data)594 static void blkif_setup_rw_req_grant(unsigned long gfn, unsigned int offset,
595 unsigned int len, void *data)
596 {
597 struct setup_rw_req *setup = data;
598 int n, ref;
599 struct grant *gnt_list_entry;
600 unsigned int fsect, lsect;
601 /* Convenient aliases */
602 unsigned int grant_idx = setup->grant_idx;
603 struct blkif_request *ring_req = setup->ring_req;
604 struct blkfront_ring_info *rinfo = setup->rinfo;
605 /*
606 * We always use the shadow of the first request to store the list
607 * of grant associated to the block I/O request. This made the
608 * completion more easy to handle even if the block I/O request is
609 * split.
610 */
611 struct blk_shadow *shadow = &rinfo->shadow[setup->id];
612
613 if (unlikely(setup->require_extra_req &&
614 grant_idx >= BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
615 /*
616 * We are using the second request, setup grant_idx
617 * to be the index of the segment array.
618 */
619 grant_idx -= BLKIF_MAX_SEGMENTS_PER_REQUEST;
620 ring_req = setup->extra_ring_req;
621 }
622
623 if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
624 (grant_idx % GRANTS_PER_INDIRECT_FRAME == 0)) {
625 if (setup->segments)
626 kunmap_atomic(setup->segments);
627
628 n = grant_idx / GRANTS_PER_INDIRECT_FRAME;
629 gnt_list_entry = get_indirect_grant(&setup->gref_head, rinfo);
630 shadow->indirect_grants[n] = gnt_list_entry;
631 setup->segments = kmap_atomic(gnt_list_entry->page);
632 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
633 }
634
635 gnt_list_entry = get_grant(&setup->gref_head, gfn, rinfo);
636 ref = gnt_list_entry->gref;
637 /*
638 * All the grants are stored in the shadow of the first
639 * request. Therefore we have to use the global index.
640 */
641 shadow->grants_used[setup->grant_idx] = gnt_list_entry;
642
643 if (setup->need_copy) {
644 void *shared_data;
645
646 shared_data = kmap_atomic(gnt_list_entry->page);
647 /*
648 * this does not wipe data stored outside the
649 * range sg->offset..sg->offset+sg->length.
650 * Therefore, blkback *could* see data from
651 * previous requests. This is OK as long as
652 * persistent grants are shared with just one
653 * domain. It may need refactoring if this
654 * changes
655 */
656 memcpy(shared_data + offset,
657 setup->bvec_data + setup->bvec_off,
658 len);
659
660 kunmap_atomic(shared_data);
661 setup->bvec_off += len;
662 }
663
664 fsect = offset >> 9;
665 lsect = fsect + (len >> 9) - 1;
666 if (ring_req->operation != BLKIF_OP_INDIRECT) {
667 ring_req->u.rw.seg[grant_idx] =
668 (struct blkif_request_segment) {
669 .gref = ref,
670 .first_sect = fsect,
671 .last_sect = lsect };
672 } else {
673 setup->segments[grant_idx % GRANTS_PER_INDIRECT_FRAME] =
674 (struct blkif_request_segment) {
675 .gref = ref,
676 .first_sect = fsect,
677 .last_sect = lsect };
678 }
679
680 (setup->grant_idx)++;
681 }
682
blkif_setup_extra_req(struct blkif_request * first,struct blkif_request * second)683 static void blkif_setup_extra_req(struct blkif_request *first,
684 struct blkif_request *second)
685 {
686 uint16_t nr_segments = first->u.rw.nr_segments;
687
688 /*
689 * The second request is only present when the first request uses
690 * all its segments. It's always the continuity of the first one.
691 */
692 first->u.rw.nr_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
693
694 second->u.rw.nr_segments = nr_segments - BLKIF_MAX_SEGMENTS_PER_REQUEST;
695 second->u.rw.sector_number = first->u.rw.sector_number +
696 (BLKIF_MAX_SEGMENTS_PER_REQUEST * XEN_PAGE_SIZE) / 512;
697
698 second->u.rw.handle = first->u.rw.handle;
699 second->operation = first->operation;
700 }
701
blkif_queue_rw_req(struct request * req,struct blkfront_ring_info * rinfo)702 static int blkif_queue_rw_req(struct request *req, struct blkfront_ring_info *rinfo)
703 {
704 struct blkfront_info *info = rinfo->dev_info;
705 struct blkif_request *ring_req, *extra_ring_req = NULL;
706 unsigned long id, extra_id = NO_ASSOCIATED_ID;
707 bool require_extra_req = false;
708 int i;
709 struct setup_rw_req setup = {
710 .grant_idx = 0,
711 .segments = NULL,
712 .rinfo = rinfo,
713 .need_copy = rq_data_dir(req) && info->feature_persistent,
714 };
715
716 /*
717 * Used to store if we are able to queue the request by just using
718 * existing persistent grants, or if we have to get new grants,
719 * as there are not sufficiently many free.
720 */
721 bool new_persistent_gnts = false;
722 struct scatterlist *sg;
723 int num_sg, max_grefs, num_grant;
724
725 max_grefs = req->nr_phys_segments * GRANTS_PER_PSEG;
726 if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
727 /*
728 * If we are using indirect segments we need to account
729 * for the indirect grefs used in the request.
730 */
731 max_grefs += INDIRECT_GREFS(max_grefs);
732
733 /* Check if we have enough persistent grants to allocate a requests */
734 if (rinfo->persistent_gnts_c < max_grefs) {
735 new_persistent_gnts = true;
736
737 if (gnttab_alloc_grant_references(
738 max_grefs - rinfo->persistent_gnts_c,
739 &setup.gref_head) < 0) {
740 gnttab_request_free_callback(
741 &rinfo->callback,
742 blkif_restart_queue_callback,
743 rinfo,
744 max_grefs - rinfo->persistent_gnts_c);
745 return 1;
746 }
747 }
748
749 /* Fill out a communications ring structure. */
750 id = blkif_ring_get_request(rinfo, req, &ring_req);
751
752 num_sg = blk_rq_map_sg(req->q, req, rinfo->shadow[id].sg);
753 num_grant = 0;
754 /* Calculate the number of grant used */
755 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i)
756 num_grant += gnttab_count_grant(sg->offset, sg->length);
757
758 require_extra_req = info->max_indirect_segments == 0 &&
759 num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST;
760 BUG_ON(!HAS_EXTRA_REQ && require_extra_req);
761
762 rinfo->shadow[id].num_sg = num_sg;
763 if (num_grant > BLKIF_MAX_SEGMENTS_PER_REQUEST &&
764 likely(!require_extra_req)) {
765 /*
766 * The indirect operation can only be a BLKIF_OP_READ or
767 * BLKIF_OP_WRITE
768 */
769 BUG_ON(req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA);
770 ring_req->operation = BLKIF_OP_INDIRECT;
771 ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
772 BLKIF_OP_WRITE : BLKIF_OP_READ;
773 ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
774 ring_req->u.indirect.handle = info->handle;
775 ring_req->u.indirect.nr_segments = num_grant;
776 } else {
777 ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
778 ring_req->u.rw.handle = info->handle;
779 ring_req->operation = rq_data_dir(req) ?
780 BLKIF_OP_WRITE : BLKIF_OP_READ;
781 if (req_op(req) == REQ_OP_FLUSH || req->cmd_flags & REQ_FUA) {
782 /*
783 * Ideally we can do an unordered flush-to-disk.
784 * In case the backend onlysupports barriers, use that.
785 * A barrier request a superset of FUA, so we can
786 * implement it the same way. (It's also a FLUSH+FUA,
787 * since it is guaranteed ordered WRT previous writes.)
788 */
789 if (info->feature_flush && info->feature_fua)
790 ring_req->operation =
791 BLKIF_OP_WRITE_BARRIER;
792 else if (info->feature_flush)
793 ring_req->operation =
794 BLKIF_OP_FLUSH_DISKCACHE;
795 else
796 ring_req->operation = 0;
797 }
798 ring_req->u.rw.nr_segments = num_grant;
799 if (unlikely(require_extra_req)) {
800 extra_id = blkif_ring_get_request(rinfo, req,
801 &extra_ring_req);
802 /*
803 * Only the first request contains the scatter-gather
804 * list.
805 */
806 rinfo->shadow[extra_id].num_sg = 0;
807
808 blkif_setup_extra_req(ring_req, extra_ring_req);
809
810 /* Link the 2 requests together */
811 rinfo->shadow[extra_id].associated_id = id;
812 rinfo->shadow[id].associated_id = extra_id;
813 }
814 }
815
816 setup.ring_req = ring_req;
817 setup.id = id;
818
819 setup.require_extra_req = require_extra_req;
820 if (unlikely(require_extra_req))
821 setup.extra_ring_req = extra_ring_req;
822
823 for_each_sg(rinfo->shadow[id].sg, sg, num_sg, i) {
824 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
825
826 if (setup.need_copy) {
827 setup.bvec_off = sg->offset;
828 setup.bvec_data = kmap_atomic(sg_page(sg));
829 }
830
831 gnttab_foreach_grant_in_range(sg_page(sg),
832 sg->offset,
833 sg->length,
834 blkif_setup_rw_req_grant,
835 &setup);
836
837 if (setup.need_copy)
838 kunmap_atomic(setup.bvec_data);
839 }
840 if (setup.segments)
841 kunmap_atomic(setup.segments);
842
843 /* Keep a private copy so we can reissue requests when recovering. */
844 rinfo->shadow[id].req = *ring_req;
845 if (unlikely(require_extra_req))
846 rinfo->shadow[extra_id].req = *extra_ring_req;
847
848 if (new_persistent_gnts)
849 gnttab_free_grant_references(setup.gref_head);
850
851 return 0;
852 }
853
854 /*
855 * Generate a Xen blkfront IO request from a blk layer request. Reads
856 * and writes are handled as expected.
857 *
858 * @req: a request struct
859 */
blkif_queue_request(struct request * req,struct blkfront_ring_info * rinfo)860 static int blkif_queue_request(struct request *req, struct blkfront_ring_info *rinfo)
861 {
862 if (unlikely(rinfo->dev_info->connected != BLKIF_STATE_CONNECTED))
863 return 1;
864
865 if (unlikely(req_op(req) == REQ_OP_DISCARD ||
866 req_op(req) == REQ_OP_SECURE_ERASE))
867 return blkif_queue_discard_req(req, rinfo);
868 else
869 return blkif_queue_rw_req(req, rinfo);
870 }
871
flush_requests(struct blkfront_ring_info * rinfo)872 static inline void flush_requests(struct blkfront_ring_info *rinfo)
873 {
874 int notify;
875
876 RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&rinfo->ring, notify);
877
878 if (notify)
879 notify_remote_via_irq(rinfo->irq);
880 }
881
blkif_request_flush_invalid(struct request * req,struct blkfront_info * info)882 static inline bool blkif_request_flush_invalid(struct request *req,
883 struct blkfront_info *info)
884 {
885 return (blk_rq_is_passthrough(req) ||
886 ((req_op(req) == REQ_OP_FLUSH) &&
887 !info->feature_flush) ||
888 ((req->cmd_flags & REQ_FUA) &&
889 !info->feature_fua));
890 }
891
blkif_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)892 static blk_status_t blkif_queue_rq(struct blk_mq_hw_ctx *hctx,
893 const struct blk_mq_queue_data *qd)
894 {
895 unsigned long flags;
896 int qid = hctx->queue_num;
897 struct blkfront_info *info = hctx->queue->queuedata;
898 struct blkfront_ring_info *rinfo = NULL;
899
900 rinfo = get_rinfo(info, qid);
901 blk_mq_start_request(qd->rq);
902 spin_lock_irqsave(&rinfo->ring_lock, flags);
903 if (RING_FULL(&rinfo->ring))
904 goto out_busy;
905
906 if (blkif_request_flush_invalid(qd->rq, rinfo->dev_info))
907 goto out_err;
908
909 if (blkif_queue_request(qd->rq, rinfo))
910 goto out_busy;
911
912 flush_requests(rinfo);
913 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
914 return BLK_STS_OK;
915
916 out_err:
917 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
918 return BLK_STS_IOERR;
919
920 out_busy:
921 blk_mq_stop_hw_queue(hctx);
922 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
923 return BLK_STS_DEV_RESOURCE;
924 }
925
blkif_complete_rq(struct request * rq)926 static void blkif_complete_rq(struct request *rq)
927 {
928 blk_mq_end_request(rq, blkif_req(rq)->error);
929 }
930
931 static const struct blk_mq_ops blkfront_mq_ops = {
932 .queue_rq = blkif_queue_rq,
933 .complete = blkif_complete_rq,
934 };
935
blkif_set_queue_limits(struct blkfront_info * info)936 static void blkif_set_queue_limits(struct blkfront_info *info)
937 {
938 struct request_queue *rq = info->rq;
939 struct gendisk *gd = info->gd;
940 unsigned int segments = info->max_indirect_segments ? :
941 BLKIF_MAX_SEGMENTS_PER_REQUEST;
942
943 blk_queue_flag_set(QUEUE_FLAG_VIRT, rq);
944
945 if (info->feature_discard) {
946 blk_queue_flag_set(QUEUE_FLAG_DISCARD, rq);
947 blk_queue_max_discard_sectors(rq, get_capacity(gd));
948 rq->limits.discard_granularity = info->discard_granularity;
949 rq->limits.discard_alignment = info->discard_alignment;
950 if (info->feature_secdiscard)
951 blk_queue_flag_set(QUEUE_FLAG_SECERASE, rq);
952 }
953
954 /* Hard sector size and max sectors impersonate the equiv. hardware. */
955 blk_queue_logical_block_size(rq, info->sector_size);
956 blk_queue_physical_block_size(rq, info->physical_sector_size);
957 blk_queue_max_hw_sectors(rq, (segments * XEN_PAGE_SIZE) / 512);
958
959 /* Each segment in a request is up to an aligned page in size. */
960 blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
961 blk_queue_max_segment_size(rq, PAGE_SIZE);
962
963 /* Ensure a merged request will fit in a single I/O ring slot. */
964 blk_queue_max_segments(rq, segments / GRANTS_PER_PSEG);
965
966 /* Make sure buffer addresses are sector-aligned. */
967 blk_queue_dma_alignment(rq, 511);
968 }
969
xlvbd_init_blk_queue(struct gendisk * gd,u16 sector_size,unsigned int physical_sector_size)970 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
971 unsigned int physical_sector_size)
972 {
973 struct request_queue *rq;
974 struct blkfront_info *info = gd->private_data;
975
976 memset(&info->tag_set, 0, sizeof(info->tag_set));
977 info->tag_set.ops = &blkfront_mq_ops;
978 info->tag_set.nr_hw_queues = info->nr_rings;
979 if (HAS_EXTRA_REQ && info->max_indirect_segments == 0) {
980 /*
981 * When indirect descriptior is not supported, the I/O request
982 * will be split between multiple request in the ring.
983 * To avoid problems when sending the request, divide by
984 * 2 the depth of the queue.
985 */
986 info->tag_set.queue_depth = BLK_RING_SIZE(info) / 2;
987 } else
988 info->tag_set.queue_depth = BLK_RING_SIZE(info);
989 info->tag_set.numa_node = NUMA_NO_NODE;
990 info->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
991 info->tag_set.cmd_size = sizeof(struct blkif_req);
992 info->tag_set.driver_data = info;
993
994 if (blk_mq_alloc_tag_set(&info->tag_set))
995 return -EINVAL;
996 rq = blk_mq_init_queue(&info->tag_set);
997 if (IS_ERR(rq)) {
998 blk_mq_free_tag_set(&info->tag_set);
999 return PTR_ERR(rq);
1000 }
1001
1002 rq->queuedata = info;
1003 info->rq = gd->queue = rq;
1004 info->gd = gd;
1005 info->sector_size = sector_size;
1006 info->physical_sector_size = physical_sector_size;
1007 blkif_set_queue_limits(info);
1008
1009 return 0;
1010 }
1011
flush_info(struct blkfront_info * info)1012 static const char *flush_info(struct blkfront_info *info)
1013 {
1014 if (info->feature_flush && info->feature_fua)
1015 return "barrier: enabled;";
1016 else if (info->feature_flush)
1017 return "flush diskcache: enabled;";
1018 else
1019 return "barrier or flush: disabled;";
1020 }
1021
xlvbd_flush(struct blkfront_info * info)1022 static void xlvbd_flush(struct blkfront_info *info)
1023 {
1024 blk_queue_write_cache(info->rq, info->feature_flush ? true : false,
1025 info->feature_fua ? true : false);
1026 pr_info("blkfront: %s: %s %s %s %s %s\n",
1027 info->gd->disk_name, flush_info(info),
1028 "persistent grants:", info->feature_persistent ?
1029 "enabled;" : "disabled;", "indirect descriptors:",
1030 info->max_indirect_segments ? "enabled;" : "disabled;");
1031 }
1032
xen_translate_vdev(int vdevice,int * minor,unsigned int * offset)1033 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
1034 {
1035 int major;
1036 major = BLKIF_MAJOR(vdevice);
1037 *minor = BLKIF_MINOR(vdevice);
1038 switch (major) {
1039 case XEN_IDE0_MAJOR:
1040 *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
1041 *minor = ((*minor / 64) * PARTS_PER_DISK) +
1042 EMULATED_HD_DISK_MINOR_OFFSET;
1043 break;
1044 case XEN_IDE1_MAJOR:
1045 *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
1046 *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
1047 EMULATED_HD_DISK_MINOR_OFFSET;
1048 break;
1049 case XEN_SCSI_DISK0_MAJOR:
1050 *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
1051 *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
1052 break;
1053 case XEN_SCSI_DISK1_MAJOR:
1054 case XEN_SCSI_DISK2_MAJOR:
1055 case XEN_SCSI_DISK3_MAJOR:
1056 case XEN_SCSI_DISK4_MAJOR:
1057 case XEN_SCSI_DISK5_MAJOR:
1058 case XEN_SCSI_DISK6_MAJOR:
1059 case XEN_SCSI_DISK7_MAJOR:
1060 *offset = (*minor / PARTS_PER_DISK) +
1061 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
1062 EMULATED_SD_DISK_NAME_OFFSET;
1063 *minor = *minor +
1064 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
1065 EMULATED_SD_DISK_MINOR_OFFSET;
1066 break;
1067 case XEN_SCSI_DISK8_MAJOR:
1068 case XEN_SCSI_DISK9_MAJOR:
1069 case XEN_SCSI_DISK10_MAJOR:
1070 case XEN_SCSI_DISK11_MAJOR:
1071 case XEN_SCSI_DISK12_MAJOR:
1072 case XEN_SCSI_DISK13_MAJOR:
1073 case XEN_SCSI_DISK14_MAJOR:
1074 case XEN_SCSI_DISK15_MAJOR:
1075 *offset = (*minor / PARTS_PER_DISK) +
1076 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
1077 EMULATED_SD_DISK_NAME_OFFSET;
1078 *minor = *minor +
1079 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
1080 EMULATED_SD_DISK_MINOR_OFFSET;
1081 break;
1082 case XENVBD_MAJOR:
1083 *offset = *minor / PARTS_PER_DISK;
1084 break;
1085 default:
1086 printk(KERN_WARNING "blkfront: your disk configuration is "
1087 "incorrect, please use an xvd device instead\n");
1088 return -ENODEV;
1089 }
1090 return 0;
1091 }
1092
encode_disk_name(char * ptr,unsigned int n)1093 static char *encode_disk_name(char *ptr, unsigned int n)
1094 {
1095 if (n >= 26)
1096 ptr = encode_disk_name(ptr, n / 26 - 1);
1097 *ptr = 'a' + n % 26;
1098 return ptr + 1;
1099 }
1100
xlvbd_alloc_gendisk(blkif_sector_t capacity,struct blkfront_info * info,u16 vdisk_info,u16 sector_size,unsigned int physical_sector_size)1101 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
1102 struct blkfront_info *info,
1103 u16 vdisk_info, u16 sector_size,
1104 unsigned int physical_sector_size)
1105 {
1106 struct gendisk *gd;
1107 int nr_minors = 1;
1108 int err;
1109 unsigned int offset;
1110 int minor;
1111 int nr_parts;
1112 char *ptr;
1113
1114 BUG_ON(info->gd != NULL);
1115 BUG_ON(info->rq != NULL);
1116
1117 if ((info->vdevice>>EXT_SHIFT) > 1) {
1118 /* this is above the extended range; something is wrong */
1119 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
1120 return -ENODEV;
1121 }
1122
1123 if (!VDEV_IS_EXTENDED(info->vdevice)) {
1124 err = xen_translate_vdev(info->vdevice, &minor, &offset);
1125 if (err)
1126 return err;
1127 nr_parts = PARTS_PER_DISK;
1128 } else {
1129 minor = BLKIF_MINOR_EXT(info->vdevice);
1130 nr_parts = PARTS_PER_EXT_DISK;
1131 offset = minor / nr_parts;
1132 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
1133 printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
1134 "emulated IDE disks,\n\t choose an xvd device name"
1135 "from xvde on\n", info->vdevice);
1136 }
1137 if (minor >> MINORBITS) {
1138 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
1139 info->vdevice, minor);
1140 return -ENODEV;
1141 }
1142
1143 if ((minor % nr_parts) == 0)
1144 nr_minors = nr_parts;
1145
1146 err = xlbd_reserve_minors(minor, nr_minors);
1147 if (err)
1148 goto out;
1149 err = -ENODEV;
1150
1151 gd = alloc_disk(nr_minors);
1152 if (gd == NULL)
1153 goto release;
1154
1155 strcpy(gd->disk_name, DEV_NAME);
1156 ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
1157 BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
1158 if (nr_minors > 1)
1159 *ptr = 0;
1160 else
1161 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
1162 "%d", minor & (nr_parts - 1));
1163
1164 gd->major = XENVBD_MAJOR;
1165 gd->first_minor = minor;
1166 gd->fops = &xlvbd_block_fops;
1167 gd->private_data = info;
1168 set_capacity(gd, capacity);
1169
1170 if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size)) {
1171 del_gendisk(gd);
1172 goto release;
1173 }
1174
1175 xlvbd_flush(info);
1176
1177 if (vdisk_info & VDISK_READONLY)
1178 set_disk_ro(gd, 1);
1179
1180 if (vdisk_info & VDISK_REMOVABLE)
1181 gd->flags |= GENHD_FL_REMOVABLE;
1182
1183 if (vdisk_info & VDISK_CDROM)
1184 gd->flags |= GENHD_FL_CD;
1185
1186 return 0;
1187
1188 release:
1189 xlbd_release_minors(minor, nr_minors);
1190 out:
1191 return err;
1192 }
1193
xlvbd_release_gendisk(struct blkfront_info * info)1194 static void xlvbd_release_gendisk(struct blkfront_info *info)
1195 {
1196 unsigned int minor, nr_minors, i;
1197 struct blkfront_ring_info *rinfo;
1198
1199 if (info->rq == NULL)
1200 return;
1201
1202 /* No more blkif_request(). */
1203 blk_mq_stop_hw_queues(info->rq);
1204
1205 for_each_rinfo(info, rinfo, i) {
1206 /* No more gnttab callback work. */
1207 gnttab_cancel_free_callback(&rinfo->callback);
1208
1209 /* Flush gnttab callback work. Must be done with no locks held. */
1210 flush_work(&rinfo->work);
1211 }
1212
1213 del_gendisk(info->gd);
1214
1215 minor = info->gd->first_minor;
1216 nr_minors = info->gd->minors;
1217 xlbd_release_minors(minor, nr_minors);
1218
1219 blk_cleanup_queue(info->rq);
1220 blk_mq_free_tag_set(&info->tag_set);
1221 info->rq = NULL;
1222
1223 put_disk(info->gd);
1224 info->gd = NULL;
1225 }
1226
1227 /* Already hold rinfo->ring_lock. */
kick_pending_request_queues_locked(struct blkfront_ring_info * rinfo)1228 static inline void kick_pending_request_queues_locked(struct blkfront_ring_info *rinfo)
1229 {
1230 if (!RING_FULL(&rinfo->ring))
1231 blk_mq_start_stopped_hw_queues(rinfo->dev_info->rq, true);
1232 }
1233
kick_pending_request_queues(struct blkfront_ring_info * rinfo)1234 static void kick_pending_request_queues(struct blkfront_ring_info *rinfo)
1235 {
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&rinfo->ring_lock, flags);
1239 kick_pending_request_queues_locked(rinfo);
1240 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1241 }
1242
blkif_restart_queue(struct work_struct * work)1243 static void blkif_restart_queue(struct work_struct *work)
1244 {
1245 struct blkfront_ring_info *rinfo = container_of(work, struct blkfront_ring_info, work);
1246
1247 if (rinfo->dev_info->connected == BLKIF_STATE_CONNECTED)
1248 kick_pending_request_queues(rinfo);
1249 }
1250
blkif_free_ring(struct blkfront_ring_info * rinfo)1251 static void blkif_free_ring(struct blkfront_ring_info *rinfo)
1252 {
1253 struct grant *persistent_gnt, *n;
1254 struct blkfront_info *info = rinfo->dev_info;
1255 int i, j, segs;
1256
1257 /*
1258 * Remove indirect pages, this only happens when using indirect
1259 * descriptors but not persistent grants
1260 */
1261 if (!list_empty(&rinfo->indirect_pages)) {
1262 struct page *indirect_page, *n;
1263
1264 BUG_ON(info->feature_persistent);
1265 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
1266 list_del(&indirect_page->lru);
1267 __free_page(indirect_page);
1268 }
1269 }
1270
1271 /* Remove all persistent grants. */
1272 if (!list_empty(&rinfo->grants)) {
1273 list_for_each_entry_safe(persistent_gnt, n,
1274 &rinfo->grants, node) {
1275 list_del(&persistent_gnt->node);
1276 if (persistent_gnt->gref != GRANT_INVALID_REF) {
1277 gnttab_end_foreign_access(persistent_gnt->gref,
1278 0, 0UL);
1279 rinfo->persistent_gnts_c--;
1280 }
1281 if (info->feature_persistent)
1282 __free_page(persistent_gnt->page);
1283 kfree(persistent_gnt);
1284 }
1285 }
1286 BUG_ON(rinfo->persistent_gnts_c != 0);
1287
1288 for (i = 0; i < BLK_RING_SIZE(info); i++) {
1289 /*
1290 * Clear persistent grants present in requests already
1291 * on the shared ring
1292 */
1293 if (!rinfo->shadow[i].request)
1294 goto free_shadow;
1295
1296 segs = rinfo->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1297 rinfo->shadow[i].req.u.indirect.nr_segments :
1298 rinfo->shadow[i].req.u.rw.nr_segments;
1299 for (j = 0; j < segs; j++) {
1300 persistent_gnt = rinfo->shadow[i].grants_used[j];
1301 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1302 if (info->feature_persistent)
1303 __free_page(persistent_gnt->page);
1304 kfree(persistent_gnt);
1305 }
1306
1307 if (rinfo->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1308 /*
1309 * If this is not an indirect operation don't try to
1310 * free indirect segments
1311 */
1312 goto free_shadow;
1313
1314 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1315 persistent_gnt = rinfo->shadow[i].indirect_grants[j];
1316 gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1317 __free_page(persistent_gnt->page);
1318 kfree(persistent_gnt);
1319 }
1320
1321 free_shadow:
1322 kvfree(rinfo->shadow[i].grants_used);
1323 rinfo->shadow[i].grants_used = NULL;
1324 kvfree(rinfo->shadow[i].indirect_grants);
1325 rinfo->shadow[i].indirect_grants = NULL;
1326 kvfree(rinfo->shadow[i].sg);
1327 rinfo->shadow[i].sg = NULL;
1328 }
1329
1330 /* No more gnttab callback work. */
1331 gnttab_cancel_free_callback(&rinfo->callback);
1332
1333 /* Flush gnttab callback work. Must be done with no locks held. */
1334 flush_work(&rinfo->work);
1335
1336 /* Free resources associated with old device channel. */
1337 for (i = 0; i < info->nr_ring_pages; i++) {
1338 if (rinfo->ring_ref[i] != GRANT_INVALID_REF) {
1339 gnttab_end_foreign_access(rinfo->ring_ref[i], 0, 0);
1340 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1341 }
1342 }
1343 free_pages((unsigned long)rinfo->ring.sring, get_order(info->nr_ring_pages * XEN_PAGE_SIZE));
1344 rinfo->ring.sring = NULL;
1345
1346 if (rinfo->irq)
1347 unbind_from_irqhandler(rinfo->irq, rinfo);
1348 rinfo->evtchn = rinfo->irq = 0;
1349 }
1350
blkif_free(struct blkfront_info * info,int suspend)1351 static void blkif_free(struct blkfront_info *info, int suspend)
1352 {
1353 unsigned int i;
1354 struct blkfront_ring_info *rinfo;
1355
1356 /* Prevent new requests being issued until we fix things up. */
1357 info->connected = suspend ?
1358 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
1359 /* No more blkif_request(). */
1360 if (info->rq)
1361 blk_mq_stop_hw_queues(info->rq);
1362
1363 for_each_rinfo(info, rinfo, i)
1364 blkif_free_ring(rinfo);
1365
1366 kvfree(info->rinfo);
1367 info->rinfo = NULL;
1368 info->nr_rings = 0;
1369 }
1370
1371 struct copy_from_grant {
1372 const struct blk_shadow *s;
1373 unsigned int grant_idx;
1374 unsigned int bvec_offset;
1375 char *bvec_data;
1376 };
1377
blkif_copy_from_grant(unsigned long gfn,unsigned int offset,unsigned int len,void * data)1378 static void blkif_copy_from_grant(unsigned long gfn, unsigned int offset,
1379 unsigned int len, void *data)
1380 {
1381 struct copy_from_grant *info = data;
1382 char *shared_data;
1383 /* Convenient aliases */
1384 const struct blk_shadow *s = info->s;
1385
1386 shared_data = kmap_atomic(s->grants_used[info->grant_idx]->page);
1387
1388 memcpy(info->bvec_data + info->bvec_offset,
1389 shared_data + offset, len);
1390
1391 info->bvec_offset += len;
1392 info->grant_idx++;
1393
1394 kunmap_atomic(shared_data);
1395 }
1396
blkif_rsp_to_req_status(int rsp)1397 static enum blk_req_status blkif_rsp_to_req_status(int rsp)
1398 {
1399 switch (rsp)
1400 {
1401 case BLKIF_RSP_OKAY:
1402 return REQ_DONE;
1403 case BLKIF_RSP_EOPNOTSUPP:
1404 return REQ_EOPNOTSUPP;
1405 case BLKIF_RSP_ERROR:
1406 default:
1407 return REQ_ERROR;
1408 }
1409 }
1410
1411 /*
1412 * Get the final status of the block request based on two ring response
1413 */
blkif_get_final_status(enum blk_req_status s1,enum blk_req_status s2)1414 static int blkif_get_final_status(enum blk_req_status s1,
1415 enum blk_req_status s2)
1416 {
1417 BUG_ON(s1 == REQ_WAITING);
1418 BUG_ON(s2 == REQ_WAITING);
1419
1420 if (s1 == REQ_ERROR || s2 == REQ_ERROR)
1421 return BLKIF_RSP_ERROR;
1422 else if (s1 == REQ_EOPNOTSUPP || s2 == REQ_EOPNOTSUPP)
1423 return BLKIF_RSP_EOPNOTSUPP;
1424 return BLKIF_RSP_OKAY;
1425 }
1426
blkif_completion(unsigned long * id,struct blkfront_ring_info * rinfo,struct blkif_response * bret)1427 static bool blkif_completion(unsigned long *id,
1428 struct blkfront_ring_info *rinfo,
1429 struct blkif_response *bret)
1430 {
1431 int i = 0;
1432 struct scatterlist *sg;
1433 int num_sg, num_grant;
1434 struct blkfront_info *info = rinfo->dev_info;
1435 struct blk_shadow *s = &rinfo->shadow[*id];
1436 struct copy_from_grant data = {
1437 .grant_idx = 0,
1438 };
1439
1440 num_grant = s->req.operation == BLKIF_OP_INDIRECT ?
1441 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1442
1443 /* The I/O request may be split in two. */
1444 if (unlikely(s->associated_id != NO_ASSOCIATED_ID)) {
1445 struct blk_shadow *s2 = &rinfo->shadow[s->associated_id];
1446
1447 /* Keep the status of the current response in shadow. */
1448 s->status = blkif_rsp_to_req_status(bret->status);
1449
1450 /* Wait the second response if not yet here. */
1451 if (s2->status == REQ_WAITING)
1452 return false;
1453
1454 bret->status = blkif_get_final_status(s->status,
1455 s2->status);
1456
1457 /*
1458 * All the grants is stored in the first shadow in order
1459 * to make the completion code simpler.
1460 */
1461 num_grant += s2->req.u.rw.nr_segments;
1462
1463 /*
1464 * The two responses may not come in order. Only the
1465 * first request will store the scatter-gather list.
1466 */
1467 if (s2->num_sg != 0) {
1468 /* Update "id" with the ID of the first response. */
1469 *id = s->associated_id;
1470 s = s2;
1471 }
1472
1473 /*
1474 * We don't need anymore the second request, so recycling
1475 * it now.
1476 */
1477 if (add_id_to_freelist(rinfo, s->associated_id))
1478 WARN(1, "%s: can't recycle the second part (id = %ld) of the request\n",
1479 info->gd->disk_name, s->associated_id);
1480 }
1481
1482 data.s = s;
1483 num_sg = s->num_sg;
1484
1485 if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1486 for_each_sg(s->sg, sg, num_sg, i) {
1487 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1488
1489 data.bvec_offset = sg->offset;
1490 data.bvec_data = kmap_atomic(sg_page(sg));
1491
1492 gnttab_foreach_grant_in_range(sg_page(sg),
1493 sg->offset,
1494 sg->length,
1495 blkif_copy_from_grant,
1496 &data);
1497
1498 kunmap_atomic(data.bvec_data);
1499 }
1500 }
1501 /* Add the persistent grant into the list of free grants */
1502 for (i = 0; i < num_grant; i++) {
1503 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1504 /*
1505 * If the grant is still mapped by the backend (the
1506 * backend has chosen to make this grant persistent)
1507 * we add it at the head of the list, so it will be
1508 * reused first.
1509 */
1510 if (!info->feature_persistent)
1511 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1512 s->grants_used[i]->gref);
1513 list_add(&s->grants_used[i]->node, &rinfo->grants);
1514 rinfo->persistent_gnts_c++;
1515 } else {
1516 /*
1517 * If the grant is not mapped by the backend we end the
1518 * foreign access and add it to the tail of the list,
1519 * so it will not be picked again unless we run out of
1520 * persistent grants.
1521 */
1522 gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1523 s->grants_used[i]->gref = GRANT_INVALID_REF;
1524 list_add_tail(&s->grants_used[i]->node, &rinfo->grants);
1525 }
1526 }
1527 if (s->req.operation == BLKIF_OP_INDIRECT) {
1528 for (i = 0; i < INDIRECT_GREFS(num_grant); i++) {
1529 if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1530 if (!info->feature_persistent)
1531 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1532 s->indirect_grants[i]->gref);
1533 list_add(&s->indirect_grants[i]->node, &rinfo->grants);
1534 rinfo->persistent_gnts_c++;
1535 } else {
1536 struct page *indirect_page;
1537
1538 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1539 /*
1540 * Add the used indirect page back to the list of
1541 * available pages for indirect grefs.
1542 */
1543 if (!info->feature_persistent) {
1544 indirect_page = s->indirect_grants[i]->page;
1545 list_add(&indirect_page->lru, &rinfo->indirect_pages);
1546 }
1547 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1548 list_add_tail(&s->indirect_grants[i]->node, &rinfo->grants);
1549 }
1550 }
1551 }
1552
1553 return true;
1554 }
1555
blkif_interrupt(int irq,void * dev_id)1556 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1557 {
1558 struct request *req;
1559 struct blkif_response *bret;
1560 RING_IDX i, rp;
1561 unsigned long flags;
1562 struct blkfront_ring_info *rinfo = (struct blkfront_ring_info *)dev_id;
1563 struct blkfront_info *info = rinfo->dev_info;
1564
1565 if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
1566 return IRQ_HANDLED;
1567
1568 spin_lock_irqsave(&rinfo->ring_lock, flags);
1569 again:
1570 rp = rinfo->ring.sring->rsp_prod;
1571 rmb(); /* Ensure we see queued responses up to 'rp'. */
1572
1573 for (i = rinfo->ring.rsp_cons; i != rp; i++) {
1574 unsigned long id;
1575
1576 bret = RING_GET_RESPONSE(&rinfo->ring, i);
1577 id = bret->id;
1578 /*
1579 * The backend has messed up and given us an id that we would
1580 * never have given to it (we stamp it up to BLK_RING_SIZE -
1581 * look in get_id_from_freelist.
1582 */
1583 if (id >= BLK_RING_SIZE(info)) {
1584 WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1585 info->gd->disk_name, op_name(bret->operation), id);
1586 /* We can't safely get the 'struct request' as
1587 * the id is busted. */
1588 continue;
1589 }
1590 req = rinfo->shadow[id].request;
1591
1592 if (bret->operation != BLKIF_OP_DISCARD) {
1593 /*
1594 * We may need to wait for an extra response if the
1595 * I/O request is split in 2
1596 */
1597 if (!blkif_completion(&id, rinfo, bret))
1598 continue;
1599 }
1600
1601 if (add_id_to_freelist(rinfo, id)) {
1602 WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1603 info->gd->disk_name, op_name(bret->operation), id);
1604 continue;
1605 }
1606
1607 if (bret->status == BLKIF_RSP_OKAY)
1608 blkif_req(req)->error = BLK_STS_OK;
1609 else
1610 blkif_req(req)->error = BLK_STS_IOERR;
1611
1612 switch (bret->operation) {
1613 case BLKIF_OP_DISCARD:
1614 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1615 struct request_queue *rq = info->rq;
1616 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1617 info->gd->disk_name, op_name(bret->operation));
1618 blkif_req(req)->error = BLK_STS_NOTSUPP;
1619 info->feature_discard = 0;
1620 info->feature_secdiscard = 0;
1621 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1622 blk_queue_flag_clear(QUEUE_FLAG_SECERASE, rq);
1623 }
1624 break;
1625 case BLKIF_OP_FLUSH_DISKCACHE:
1626 case BLKIF_OP_WRITE_BARRIER:
1627 if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1628 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1629 info->gd->disk_name, op_name(bret->operation));
1630 blkif_req(req)->error = BLK_STS_NOTSUPP;
1631 }
1632 if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1633 rinfo->shadow[id].req.u.rw.nr_segments == 0)) {
1634 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1635 info->gd->disk_name, op_name(bret->operation));
1636 blkif_req(req)->error = BLK_STS_NOTSUPP;
1637 }
1638 if (unlikely(blkif_req(req)->error)) {
1639 if (blkif_req(req)->error == BLK_STS_NOTSUPP)
1640 blkif_req(req)->error = BLK_STS_OK;
1641 info->feature_fua = 0;
1642 info->feature_flush = 0;
1643 xlvbd_flush(info);
1644 }
1645 fallthrough;
1646 case BLKIF_OP_READ:
1647 case BLKIF_OP_WRITE:
1648 if (unlikely(bret->status != BLKIF_RSP_OKAY))
1649 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1650 "request: %x\n", bret->status);
1651
1652 break;
1653 default:
1654 BUG();
1655 }
1656
1657 if (likely(!blk_should_fake_timeout(req->q)))
1658 blk_mq_complete_request(req);
1659 }
1660
1661 rinfo->ring.rsp_cons = i;
1662
1663 if (i != rinfo->ring.req_prod_pvt) {
1664 int more_to_do;
1665 RING_FINAL_CHECK_FOR_RESPONSES(&rinfo->ring, more_to_do);
1666 if (more_to_do)
1667 goto again;
1668 } else
1669 rinfo->ring.sring->rsp_event = i + 1;
1670
1671 kick_pending_request_queues_locked(rinfo);
1672
1673 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
1674
1675 return IRQ_HANDLED;
1676 }
1677
1678
setup_blkring(struct xenbus_device * dev,struct blkfront_ring_info * rinfo)1679 static int setup_blkring(struct xenbus_device *dev,
1680 struct blkfront_ring_info *rinfo)
1681 {
1682 struct blkif_sring *sring;
1683 int err, i;
1684 struct blkfront_info *info = rinfo->dev_info;
1685 unsigned long ring_size = info->nr_ring_pages * XEN_PAGE_SIZE;
1686 grant_ref_t gref[XENBUS_MAX_RING_GRANTS];
1687
1688 for (i = 0; i < info->nr_ring_pages; i++)
1689 rinfo->ring_ref[i] = GRANT_INVALID_REF;
1690
1691 sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1692 get_order(ring_size));
1693 if (!sring) {
1694 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1695 return -ENOMEM;
1696 }
1697 SHARED_RING_INIT(sring);
1698 FRONT_RING_INIT(&rinfo->ring, sring, ring_size);
1699
1700 err = xenbus_grant_ring(dev, rinfo->ring.sring, info->nr_ring_pages, gref);
1701 if (err < 0) {
1702 free_pages((unsigned long)sring, get_order(ring_size));
1703 rinfo->ring.sring = NULL;
1704 goto fail;
1705 }
1706 for (i = 0; i < info->nr_ring_pages; i++)
1707 rinfo->ring_ref[i] = gref[i];
1708
1709 err = xenbus_alloc_evtchn(dev, &rinfo->evtchn);
1710 if (err)
1711 goto fail;
1712
1713 err = bind_evtchn_to_irqhandler(rinfo->evtchn, blkif_interrupt, 0,
1714 "blkif", rinfo);
1715 if (err <= 0) {
1716 xenbus_dev_fatal(dev, err,
1717 "bind_evtchn_to_irqhandler failed");
1718 goto fail;
1719 }
1720 rinfo->irq = err;
1721
1722 return 0;
1723 fail:
1724 blkif_free(info, 0);
1725 return err;
1726 }
1727
1728 /*
1729 * Write out per-ring/queue nodes including ring-ref and event-channel, and each
1730 * ring buffer may have multi pages depending on ->nr_ring_pages.
1731 */
write_per_ring_nodes(struct xenbus_transaction xbt,struct blkfront_ring_info * rinfo,const char * dir)1732 static int write_per_ring_nodes(struct xenbus_transaction xbt,
1733 struct blkfront_ring_info *rinfo, const char *dir)
1734 {
1735 int err;
1736 unsigned int i;
1737 const char *message = NULL;
1738 struct blkfront_info *info = rinfo->dev_info;
1739
1740 if (info->nr_ring_pages == 1) {
1741 err = xenbus_printf(xbt, dir, "ring-ref", "%u", rinfo->ring_ref[0]);
1742 if (err) {
1743 message = "writing ring-ref";
1744 goto abort_transaction;
1745 }
1746 } else {
1747 for (i = 0; i < info->nr_ring_pages; i++) {
1748 char ring_ref_name[RINGREF_NAME_LEN];
1749
1750 snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1751 err = xenbus_printf(xbt, dir, ring_ref_name,
1752 "%u", rinfo->ring_ref[i]);
1753 if (err) {
1754 message = "writing ring-ref";
1755 goto abort_transaction;
1756 }
1757 }
1758 }
1759
1760 err = xenbus_printf(xbt, dir, "event-channel", "%u", rinfo->evtchn);
1761 if (err) {
1762 message = "writing event-channel";
1763 goto abort_transaction;
1764 }
1765
1766 return 0;
1767
1768 abort_transaction:
1769 xenbus_transaction_end(xbt, 1);
1770 if (message)
1771 xenbus_dev_fatal(info->xbdev, err, "%s", message);
1772
1773 return err;
1774 }
1775
free_info(struct blkfront_info * info)1776 static void free_info(struct blkfront_info *info)
1777 {
1778 list_del(&info->info_list);
1779 kfree(info);
1780 }
1781
1782 /* Common code used when first setting up, and when resuming. */
talk_to_blkback(struct xenbus_device * dev,struct blkfront_info * info)1783 static int talk_to_blkback(struct xenbus_device *dev,
1784 struct blkfront_info *info)
1785 {
1786 const char *message = NULL;
1787 struct xenbus_transaction xbt;
1788 int err;
1789 unsigned int i, max_page_order;
1790 unsigned int ring_page_order;
1791 struct blkfront_ring_info *rinfo;
1792
1793 if (!info)
1794 return -ENODEV;
1795
1796 max_page_order = xenbus_read_unsigned(info->xbdev->otherend,
1797 "max-ring-page-order", 0);
1798 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1799 info->nr_ring_pages = 1 << ring_page_order;
1800
1801 err = negotiate_mq(info);
1802 if (err)
1803 goto destroy_blkring;
1804
1805 for_each_rinfo(info, rinfo, i) {
1806 /* Create shared ring, alloc event channel. */
1807 err = setup_blkring(dev, rinfo);
1808 if (err)
1809 goto destroy_blkring;
1810 }
1811
1812 again:
1813 err = xenbus_transaction_start(&xbt);
1814 if (err) {
1815 xenbus_dev_fatal(dev, err, "starting transaction");
1816 goto destroy_blkring;
1817 }
1818
1819 if (info->nr_ring_pages > 1) {
1820 err = xenbus_printf(xbt, dev->nodename, "ring-page-order", "%u",
1821 ring_page_order);
1822 if (err) {
1823 message = "writing ring-page-order";
1824 goto abort_transaction;
1825 }
1826 }
1827
1828 /* We already got the number of queues/rings in _probe */
1829 if (info->nr_rings == 1) {
1830 err = write_per_ring_nodes(xbt, info->rinfo, dev->nodename);
1831 if (err)
1832 goto destroy_blkring;
1833 } else {
1834 char *path;
1835 size_t pathsize;
1836
1837 err = xenbus_printf(xbt, dev->nodename, "multi-queue-num-queues", "%u",
1838 info->nr_rings);
1839 if (err) {
1840 message = "writing multi-queue-num-queues";
1841 goto abort_transaction;
1842 }
1843
1844 pathsize = strlen(dev->nodename) + QUEUE_NAME_LEN;
1845 path = kmalloc(pathsize, GFP_KERNEL);
1846 if (!path) {
1847 err = -ENOMEM;
1848 message = "ENOMEM while writing ring references";
1849 goto abort_transaction;
1850 }
1851
1852 for_each_rinfo(info, rinfo, i) {
1853 memset(path, 0, pathsize);
1854 snprintf(path, pathsize, "%s/queue-%u", dev->nodename, i);
1855 err = write_per_ring_nodes(xbt, rinfo, path);
1856 if (err) {
1857 kfree(path);
1858 goto destroy_blkring;
1859 }
1860 }
1861 kfree(path);
1862 }
1863 err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1864 XEN_IO_PROTO_ABI_NATIVE);
1865 if (err) {
1866 message = "writing protocol";
1867 goto abort_transaction;
1868 }
1869 err = xenbus_printf(xbt, dev->nodename, "feature-persistent", "%u",
1870 info->feature_persistent);
1871 if (err)
1872 dev_warn(&dev->dev,
1873 "writing persistent grants feature to xenbus");
1874
1875 err = xenbus_transaction_end(xbt, 0);
1876 if (err) {
1877 if (err == -EAGAIN)
1878 goto again;
1879 xenbus_dev_fatal(dev, err, "completing transaction");
1880 goto destroy_blkring;
1881 }
1882
1883 for_each_rinfo(info, rinfo, i) {
1884 unsigned int j;
1885
1886 for (j = 0; j < BLK_RING_SIZE(info); j++)
1887 rinfo->shadow[j].req.u.rw.id = j + 1;
1888 rinfo->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1889 }
1890 xenbus_switch_state(dev, XenbusStateInitialised);
1891
1892 return 0;
1893
1894 abort_transaction:
1895 xenbus_transaction_end(xbt, 1);
1896 if (message)
1897 xenbus_dev_fatal(dev, err, "%s", message);
1898 destroy_blkring:
1899 blkif_free(info, 0);
1900
1901 mutex_lock(&blkfront_mutex);
1902 free_info(info);
1903 mutex_unlock(&blkfront_mutex);
1904
1905 dev_set_drvdata(&dev->dev, NULL);
1906
1907 return err;
1908 }
1909
negotiate_mq(struct blkfront_info * info)1910 static int negotiate_mq(struct blkfront_info *info)
1911 {
1912 unsigned int backend_max_queues;
1913 unsigned int i;
1914 struct blkfront_ring_info *rinfo;
1915
1916 BUG_ON(info->nr_rings);
1917
1918 /* Check if backend supports multiple queues. */
1919 backend_max_queues = xenbus_read_unsigned(info->xbdev->otherend,
1920 "multi-queue-max-queues", 1);
1921 info->nr_rings = min(backend_max_queues, xen_blkif_max_queues);
1922 /* We need at least one ring. */
1923 if (!info->nr_rings)
1924 info->nr_rings = 1;
1925
1926 info->rinfo_size = struct_size(info->rinfo, shadow,
1927 BLK_RING_SIZE(info));
1928 info->rinfo = kvcalloc(info->nr_rings, info->rinfo_size, GFP_KERNEL);
1929 if (!info->rinfo) {
1930 xenbus_dev_fatal(info->xbdev, -ENOMEM, "allocating ring_info structure");
1931 info->nr_rings = 0;
1932 return -ENOMEM;
1933 }
1934
1935 for_each_rinfo(info, rinfo, i) {
1936 INIT_LIST_HEAD(&rinfo->indirect_pages);
1937 INIT_LIST_HEAD(&rinfo->grants);
1938 rinfo->dev_info = info;
1939 INIT_WORK(&rinfo->work, blkif_restart_queue);
1940 spin_lock_init(&rinfo->ring_lock);
1941 }
1942 return 0;
1943 }
1944
1945 /* Enable the persistent grants feature. */
1946 static bool feature_persistent = true;
1947 module_param(feature_persistent, bool, 0644);
1948 MODULE_PARM_DESC(feature_persistent,
1949 "Enables the persistent grants feature");
1950
1951 /**
1952 * Entry point to this code when a new device is created. Allocate the basic
1953 * structures and the ring buffer for communication with the backend, and
1954 * inform the backend of the appropriate details for those. Switch to
1955 * Initialised state.
1956 */
blkfront_probe(struct xenbus_device * dev,const struct xenbus_device_id * id)1957 static int blkfront_probe(struct xenbus_device *dev,
1958 const struct xenbus_device_id *id)
1959 {
1960 int err, vdevice;
1961 struct blkfront_info *info;
1962
1963 /* FIXME: Use dynamic device id if this is not set. */
1964 err = xenbus_scanf(XBT_NIL, dev->nodename,
1965 "virtual-device", "%i", &vdevice);
1966 if (err != 1) {
1967 /* go looking in the extended area instead */
1968 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1969 "%i", &vdevice);
1970 if (err != 1) {
1971 xenbus_dev_fatal(dev, err, "reading virtual-device");
1972 return err;
1973 }
1974 }
1975
1976 if (xen_hvm_domain()) {
1977 char *type;
1978 int len;
1979 /* no unplug has been done: do not hook devices != xen vbds */
1980 if (xen_has_pv_and_legacy_disk_devices()) {
1981 int major;
1982
1983 if (!VDEV_IS_EXTENDED(vdevice))
1984 major = BLKIF_MAJOR(vdevice);
1985 else
1986 major = XENVBD_MAJOR;
1987
1988 if (major != XENVBD_MAJOR) {
1989 printk(KERN_INFO
1990 "%s: HVM does not support vbd %d as xen block device\n",
1991 __func__, vdevice);
1992 return -ENODEV;
1993 }
1994 }
1995 /* do not create a PV cdrom device if we are an HVM guest */
1996 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1997 if (IS_ERR(type))
1998 return -ENODEV;
1999 if (strncmp(type, "cdrom", 5) == 0) {
2000 kfree(type);
2001 return -ENODEV;
2002 }
2003 kfree(type);
2004 }
2005 info = kzalloc(sizeof(*info), GFP_KERNEL);
2006 if (!info) {
2007 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
2008 return -ENOMEM;
2009 }
2010
2011 info->xbdev = dev;
2012
2013 mutex_init(&info->mutex);
2014 info->vdevice = vdevice;
2015 info->connected = BLKIF_STATE_DISCONNECTED;
2016
2017 info->feature_persistent = feature_persistent;
2018
2019 /* Front end dir is a number, which is used as the id. */
2020 info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
2021 dev_set_drvdata(&dev->dev, info);
2022
2023 mutex_lock(&blkfront_mutex);
2024 list_add(&info->info_list, &info_list);
2025 mutex_unlock(&blkfront_mutex);
2026
2027 return 0;
2028 }
2029
blkif_recover(struct blkfront_info * info)2030 static int blkif_recover(struct blkfront_info *info)
2031 {
2032 unsigned int r_index;
2033 struct request *req, *n;
2034 int rc;
2035 struct bio *bio;
2036 unsigned int segs;
2037 struct blkfront_ring_info *rinfo;
2038
2039 blkfront_gather_backend_features(info);
2040 /* Reset limits changed by blk_mq_update_nr_hw_queues(). */
2041 blkif_set_queue_limits(info);
2042 segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
2043 blk_queue_max_segments(info->rq, segs / GRANTS_PER_PSEG);
2044
2045 for_each_rinfo(info, rinfo, r_index) {
2046 rc = blkfront_setup_indirect(rinfo);
2047 if (rc)
2048 return rc;
2049 }
2050 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2051
2052 /* Now safe for us to use the shared ring */
2053 info->connected = BLKIF_STATE_CONNECTED;
2054
2055 for_each_rinfo(info, rinfo, r_index) {
2056 /* Kick any other new requests queued since we resumed */
2057 kick_pending_request_queues(rinfo);
2058 }
2059
2060 list_for_each_entry_safe(req, n, &info->requests, queuelist) {
2061 /* Requeue pending requests (flush or discard) */
2062 list_del_init(&req->queuelist);
2063 BUG_ON(req->nr_phys_segments > segs);
2064 blk_mq_requeue_request(req, false);
2065 }
2066 blk_mq_start_stopped_hw_queues(info->rq, true);
2067 blk_mq_kick_requeue_list(info->rq);
2068
2069 while ((bio = bio_list_pop(&info->bio_list)) != NULL) {
2070 /* Traverse the list of pending bios and re-queue them */
2071 submit_bio(bio);
2072 }
2073
2074 return 0;
2075 }
2076
2077 /**
2078 * We are reconnecting to the backend, due to a suspend/resume, or a backend
2079 * driver restart. We tear down our blkif structure and recreate it, but
2080 * leave the device-layer structures intact so that this is transparent to the
2081 * rest of the kernel.
2082 */
blkfront_resume(struct xenbus_device * dev)2083 static int blkfront_resume(struct xenbus_device *dev)
2084 {
2085 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2086 int err = 0;
2087 unsigned int i, j;
2088 struct blkfront_ring_info *rinfo;
2089
2090 dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
2091
2092 bio_list_init(&info->bio_list);
2093 INIT_LIST_HEAD(&info->requests);
2094 for_each_rinfo(info, rinfo, i) {
2095 struct bio_list merge_bio;
2096 struct blk_shadow *shadow = rinfo->shadow;
2097
2098 for (j = 0; j < BLK_RING_SIZE(info); j++) {
2099 /* Not in use? */
2100 if (!shadow[j].request)
2101 continue;
2102
2103 /*
2104 * Get the bios in the request so we can re-queue them.
2105 */
2106 if (req_op(shadow[j].request) == REQ_OP_FLUSH ||
2107 req_op(shadow[j].request) == REQ_OP_DISCARD ||
2108 req_op(shadow[j].request) == REQ_OP_SECURE_ERASE ||
2109 shadow[j].request->cmd_flags & REQ_FUA) {
2110 /*
2111 * Flush operations don't contain bios, so
2112 * we need to requeue the whole request
2113 *
2114 * XXX: but this doesn't make any sense for a
2115 * write with the FUA flag set..
2116 */
2117 list_add(&shadow[j].request->queuelist, &info->requests);
2118 continue;
2119 }
2120 merge_bio.head = shadow[j].request->bio;
2121 merge_bio.tail = shadow[j].request->biotail;
2122 bio_list_merge(&info->bio_list, &merge_bio);
2123 shadow[j].request->bio = NULL;
2124 blk_mq_end_request(shadow[j].request, BLK_STS_OK);
2125 }
2126 }
2127
2128 blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
2129
2130 err = talk_to_blkback(dev, info);
2131 if (!err)
2132 blk_mq_update_nr_hw_queues(&info->tag_set, info->nr_rings);
2133
2134 /*
2135 * We have to wait for the backend to switch to
2136 * connected state, since we want to read which
2137 * features it supports.
2138 */
2139
2140 return err;
2141 }
2142
blkfront_closing(struct blkfront_info * info)2143 static void blkfront_closing(struct blkfront_info *info)
2144 {
2145 struct xenbus_device *xbdev = info->xbdev;
2146 struct block_device *bdev = NULL;
2147
2148 mutex_lock(&info->mutex);
2149
2150 if (xbdev->state == XenbusStateClosing) {
2151 mutex_unlock(&info->mutex);
2152 return;
2153 }
2154
2155 if (info->gd)
2156 bdev = bdget_disk(info->gd, 0);
2157
2158 mutex_unlock(&info->mutex);
2159
2160 if (!bdev) {
2161 xenbus_frontend_closed(xbdev);
2162 return;
2163 }
2164
2165 mutex_lock(&bdev->bd_mutex);
2166
2167 if (bdev->bd_openers) {
2168 xenbus_dev_error(xbdev, -EBUSY,
2169 "Device in use; refusing to close");
2170 xenbus_switch_state(xbdev, XenbusStateClosing);
2171 } else {
2172 xlvbd_release_gendisk(info);
2173 xenbus_frontend_closed(xbdev);
2174 }
2175
2176 mutex_unlock(&bdev->bd_mutex);
2177 bdput(bdev);
2178 }
2179
blkfront_setup_discard(struct blkfront_info * info)2180 static void blkfront_setup_discard(struct blkfront_info *info)
2181 {
2182 int err;
2183 unsigned int discard_granularity;
2184 unsigned int discard_alignment;
2185
2186 info->feature_discard = 1;
2187 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2188 "discard-granularity", "%u", &discard_granularity,
2189 "discard-alignment", "%u", &discard_alignment,
2190 NULL);
2191 if (!err) {
2192 info->discard_granularity = discard_granularity;
2193 info->discard_alignment = discard_alignment;
2194 }
2195 info->feature_secdiscard =
2196 !!xenbus_read_unsigned(info->xbdev->otherend, "discard-secure",
2197 0);
2198 }
2199
blkfront_setup_indirect(struct blkfront_ring_info * rinfo)2200 static int blkfront_setup_indirect(struct blkfront_ring_info *rinfo)
2201 {
2202 unsigned int psegs, grants, memflags;
2203 int err, i;
2204 struct blkfront_info *info = rinfo->dev_info;
2205
2206 memflags = memalloc_noio_save();
2207
2208 if (info->max_indirect_segments == 0) {
2209 if (!HAS_EXTRA_REQ)
2210 grants = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2211 else {
2212 /*
2213 * When an extra req is required, the maximum
2214 * grants supported is related to the size of the
2215 * Linux block segment.
2216 */
2217 grants = GRANTS_PER_PSEG;
2218 }
2219 }
2220 else
2221 grants = info->max_indirect_segments;
2222 psegs = DIV_ROUND_UP(grants, GRANTS_PER_PSEG);
2223
2224 err = fill_grant_buffer(rinfo,
2225 (grants + INDIRECT_GREFS(grants)) * BLK_RING_SIZE(info));
2226 if (err)
2227 goto out_of_memory;
2228
2229 if (!info->feature_persistent && info->max_indirect_segments) {
2230 /*
2231 * We are using indirect descriptors but not persistent
2232 * grants, we need to allocate a set of pages that can be
2233 * used for mapping indirect grefs
2234 */
2235 int num = INDIRECT_GREFS(grants) * BLK_RING_SIZE(info);
2236
2237 BUG_ON(!list_empty(&rinfo->indirect_pages));
2238 for (i = 0; i < num; i++) {
2239 struct page *indirect_page = alloc_page(GFP_KERNEL);
2240 if (!indirect_page)
2241 goto out_of_memory;
2242 list_add(&indirect_page->lru, &rinfo->indirect_pages);
2243 }
2244 }
2245
2246 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2247 rinfo->shadow[i].grants_used =
2248 kvcalloc(grants,
2249 sizeof(rinfo->shadow[i].grants_used[0]),
2250 GFP_KERNEL);
2251 rinfo->shadow[i].sg = kvcalloc(psegs,
2252 sizeof(rinfo->shadow[i].sg[0]),
2253 GFP_KERNEL);
2254 if (info->max_indirect_segments)
2255 rinfo->shadow[i].indirect_grants =
2256 kvcalloc(INDIRECT_GREFS(grants),
2257 sizeof(rinfo->shadow[i].indirect_grants[0]),
2258 GFP_KERNEL);
2259 if ((rinfo->shadow[i].grants_used == NULL) ||
2260 (rinfo->shadow[i].sg == NULL) ||
2261 (info->max_indirect_segments &&
2262 (rinfo->shadow[i].indirect_grants == NULL)))
2263 goto out_of_memory;
2264 sg_init_table(rinfo->shadow[i].sg, psegs);
2265 }
2266
2267 memalloc_noio_restore(memflags);
2268
2269 return 0;
2270
2271 out_of_memory:
2272 for (i = 0; i < BLK_RING_SIZE(info); i++) {
2273 kvfree(rinfo->shadow[i].grants_used);
2274 rinfo->shadow[i].grants_used = NULL;
2275 kvfree(rinfo->shadow[i].sg);
2276 rinfo->shadow[i].sg = NULL;
2277 kvfree(rinfo->shadow[i].indirect_grants);
2278 rinfo->shadow[i].indirect_grants = NULL;
2279 }
2280 if (!list_empty(&rinfo->indirect_pages)) {
2281 struct page *indirect_page, *n;
2282 list_for_each_entry_safe(indirect_page, n, &rinfo->indirect_pages, lru) {
2283 list_del(&indirect_page->lru);
2284 __free_page(indirect_page);
2285 }
2286 }
2287
2288 memalloc_noio_restore(memflags);
2289
2290 return -ENOMEM;
2291 }
2292
2293 /*
2294 * Gather all backend feature-*
2295 */
blkfront_gather_backend_features(struct blkfront_info * info)2296 static void blkfront_gather_backend_features(struct blkfront_info *info)
2297 {
2298 unsigned int indirect_segments;
2299
2300 info->feature_flush = 0;
2301 info->feature_fua = 0;
2302
2303 /*
2304 * If there's no "feature-barrier" defined, then it means
2305 * we're dealing with a very old backend which writes
2306 * synchronously; nothing to do.
2307 *
2308 * If there are barriers, then we use flush.
2309 */
2310 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-barrier", 0)) {
2311 info->feature_flush = 1;
2312 info->feature_fua = 1;
2313 }
2314
2315 /*
2316 * And if there is "feature-flush-cache" use that above
2317 * barriers.
2318 */
2319 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-flush-cache",
2320 0)) {
2321 info->feature_flush = 1;
2322 info->feature_fua = 0;
2323 }
2324
2325 if (xenbus_read_unsigned(info->xbdev->otherend, "feature-discard", 0))
2326 blkfront_setup_discard(info);
2327
2328 if (info->feature_persistent)
2329 info->feature_persistent =
2330 !!xenbus_read_unsigned(info->xbdev->otherend,
2331 "feature-persistent", 0);
2332
2333 indirect_segments = xenbus_read_unsigned(info->xbdev->otherend,
2334 "feature-max-indirect-segments", 0);
2335 if (indirect_segments > xen_blkif_max_segments)
2336 indirect_segments = xen_blkif_max_segments;
2337 if (indirect_segments <= BLKIF_MAX_SEGMENTS_PER_REQUEST)
2338 indirect_segments = 0;
2339 info->max_indirect_segments = indirect_segments;
2340
2341 if (info->feature_persistent) {
2342 mutex_lock(&blkfront_mutex);
2343 schedule_delayed_work(&blkfront_work, HZ * 10);
2344 mutex_unlock(&blkfront_mutex);
2345 }
2346 }
2347
2348 /*
2349 * Invoked when the backend is finally 'ready' (and has told produced
2350 * the details about the physical device - #sectors, size, etc).
2351 */
blkfront_connect(struct blkfront_info * info)2352 static void blkfront_connect(struct blkfront_info *info)
2353 {
2354 unsigned long long sectors;
2355 unsigned long sector_size;
2356 unsigned int physical_sector_size;
2357 unsigned int binfo;
2358 int err, i;
2359 struct blkfront_ring_info *rinfo;
2360
2361 switch (info->connected) {
2362 case BLKIF_STATE_CONNECTED:
2363 /*
2364 * Potentially, the back-end may be signalling
2365 * a capacity change; update the capacity.
2366 */
2367 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
2368 "sectors", "%Lu", §ors);
2369 if (XENBUS_EXIST_ERR(err))
2370 return;
2371 printk(KERN_INFO "Setting capacity to %Lu\n",
2372 sectors);
2373 set_capacity_revalidate_and_notify(info->gd, sectors, true);
2374
2375 return;
2376 case BLKIF_STATE_SUSPENDED:
2377 /*
2378 * If we are recovering from suspension, we need to wait
2379 * for the backend to announce it's features before
2380 * reconnecting, at least we need to know if the backend
2381 * supports indirect descriptors, and how many.
2382 */
2383 blkif_recover(info);
2384 return;
2385
2386 default:
2387 break;
2388 }
2389
2390 dev_dbg(&info->xbdev->dev, "%s:%s.\n",
2391 __func__, info->xbdev->otherend);
2392
2393 err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
2394 "sectors", "%llu", §ors,
2395 "info", "%u", &binfo,
2396 "sector-size", "%lu", §or_size,
2397 NULL);
2398 if (err) {
2399 xenbus_dev_fatal(info->xbdev, err,
2400 "reading backend fields at %s",
2401 info->xbdev->otherend);
2402 return;
2403 }
2404
2405 /*
2406 * physcial-sector-size is a newer field, so old backends may not
2407 * provide this. Assume physical sector size to be the same as
2408 * sector_size in that case.
2409 */
2410 physical_sector_size = xenbus_read_unsigned(info->xbdev->otherend,
2411 "physical-sector-size",
2412 sector_size);
2413 blkfront_gather_backend_features(info);
2414 for_each_rinfo(info, rinfo, i) {
2415 err = blkfront_setup_indirect(rinfo);
2416 if (err) {
2417 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
2418 info->xbdev->otherend);
2419 blkif_free(info, 0);
2420 break;
2421 }
2422 }
2423
2424 err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
2425 physical_sector_size);
2426 if (err) {
2427 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
2428 info->xbdev->otherend);
2429 goto fail;
2430 }
2431
2432 xenbus_switch_state(info->xbdev, XenbusStateConnected);
2433
2434 /* Kick pending requests. */
2435 info->connected = BLKIF_STATE_CONNECTED;
2436 for_each_rinfo(info, rinfo, i)
2437 kick_pending_request_queues(rinfo);
2438
2439 device_add_disk(&info->xbdev->dev, info->gd, NULL);
2440
2441 info->is_ready = 1;
2442 return;
2443
2444 fail:
2445 blkif_free(info, 0);
2446 return;
2447 }
2448
2449 /**
2450 * Callback received when the backend's state changes.
2451 */
blkback_changed(struct xenbus_device * dev,enum xenbus_state backend_state)2452 static void blkback_changed(struct xenbus_device *dev,
2453 enum xenbus_state backend_state)
2454 {
2455 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2456
2457 dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
2458
2459 switch (backend_state) {
2460 case XenbusStateInitWait:
2461 if (dev->state != XenbusStateInitialising)
2462 break;
2463 if (talk_to_blkback(dev, info))
2464 break;
2465 case XenbusStateInitialising:
2466 case XenbusStateInitialised:
2467 case XenbusStateReconfiguring:
2468 case XenbusStateReconfigured:
2469 case XenbusStateUnknown:
2470 break;
2471
2472 case XenbusStateConnected:
2473 /*
2474 * talk_to_blkback sets state to XenbusStateInitialised
2475 * and blkfront_connect sets it to XenbusStateConnected
2476 * (if connection went OK).
2477 *
2478 * If the backend (or toolstack) decides to poke at backend
2479 * state (and re-trigger the watch by setting the state repeatedly
2480 * to XenbusStateConnected (4)) we need to deal with this.
2481 * This is allowed as this is used to communicate to the guest
2482 * that the size of disk has changed!
2483 */
2484 if ((dev->state != XenbusStateInitialised) &&
2485 (dev->state != XenbusStateConnected)) {
2486 if (talk_to_blkback(dev, info))
2487 break;
2488 }
2489
2490 blkfront_connect(info);
2491 break;
2492
2493 case XenbusStateClosed:
2494 if (dev->state == XenbusStateClosed)
2495 break;
2496 fallthrough;
2497 case XenbusStateClosing:
2498 if (info)
2499 blkfront_closing(info);
2500 break;
2501 }
2502 }
2503
blkfront_remove(struct xenbus_device * xbdev)2504 static int blkfront_remove(struct xenbus_device *xbdev)
2505 {
2506 struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
2507 struct block_device *bdev = NULL;
2508 struct gendisk *disk;
2509
2510 dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
2511
2512 if (!info)
2513 return 0;
2514
2515 blkif_free(info, 0);
2516
2517 mutex_lock(&info->mutex);
2518
2519 disk = info->gd;
2520 if (disk)
2521 bdev = bdget_disk(disk, 0);
2522
2523 info->xbdev = NULL;
2524 mutex_unlock(&info->mutex);
2525
2526 if (!bdev) {
2527 mutex_lock(&blkfront_mutex);
2528 free_info(info);
2529 mutex_unlock(&blkfront_mutex);
2530 return 0;
2531 }
2532
2533 /*
2534 * The xbdev was removed before we reached the Closed
2535 * state. See if it's safe to remove the disk. If the bdev
2536 * isn't closed yet, we let release take care of it.
2537 */
2538
2539 mutex_lock(&bdev->bd_mutex);
2540 info = disk->private_data;
2541
2542 dev_warn(disk_to_dev(disk),
2543 "%s was hot-unplugged, %d stale handles\n",
2544 xbdev->nodename, bdev->bd_openers);
2545
2546 if (info && !bdev->bd_openers) {
2547 xlvbd_release_gendisk(info);
2548 disk->private_data = NULL;
2549 mutex_lock(&blkfront_mutex);
2550 free_info(info);
2551 mutex_unlock(&blkfront_mutex);
2552 }
2553
2554 mutex_unlock(&bdev->bd_mutex);
2555 bdput(bdev);
2556
2557 return 0;
2558 }
2559
blkfront_is_ready(struct xenbus_device * dev)2560 static int blkfront_is_ready(struct xenbus_device *dev)
2561 {
2562 struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2563
2564 return info->is_ready && info->xbdev;
2565 }
2566
blkif_open(struct block_device * bdev,fmode_t mode)2567 static int blkif_open(struct block_device *bdev, fmode_t mode)
2568 {
2569 struct gendisk *disk = bdev->bd_disk;
2570 struct blkfront_info *info;
2571 int err = 0;
2572
2573 mutex_lock(&blkfront_mutex);
2574
2575 info = disk->private_data;
2576 if (!info) {
2577 /* xbdev gone */
2578 err = -ERESTARTSYS;
2579 goto out;
2580 }
2581
2582 mutex_lock(&info->mutex);
2583
2584 if (!info->gd)
2585 /* xbdev is closed */
2586 err = -ERESTARTSYS;
2587
2588 mutex_unlock(&info->mutex);
2589
2590 out:
2591 mutex_unlock(&blkfront_mutex);
2592 return err;
2593 }
2594
blkif_release(struct gendisk * disk,fmode_t mode)2595 static void blkif_release(struct gendisk *disk, fmode_t mode)
2596 {
2597 struct blkfront_info *info = disk->private_data;
2598 struct block_device *bdev;
2599 struct xenbus_device *xbdev;
2600
2601 mutex_lock(&blkfront_mutex);
2602
2603 bdev = bdget_disk(disk, 0);
2604
2605 if (!bdev) {
2606 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2607 goto out_mutex;
2608 }
2609 if (bdev->bd_openers)
2610 goto out;
2611
2612 /*
2613 * Check if we have been instructed to close. We will have
2614 * deferred this request, because the bdev was still open.
2615 */
2616
2617 mutex_lock(&info->mutex);
2618 xbdev = info->xbdev;
2619
2620 if (xbdev && xbdev->state == XenbusStateClosing) {
2621 /* pending switch to state closed */
2622 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2623 xlvbd_release_gendisk(info);
2624 xenbus_frontend_closed(info->xbdev);
2625 }
2626
2627 mutex_unlock(&info->mutex);
2628
2629 if (!xbdev) {
2630 /* sudden device removal */
2631 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2632 xlvbd_release_gendisk(info);
2633 disk->private_data = NULL;
2634 free_info(info);
2635 }
2636
2637 out:
2638 bdput(bdev);
2639 out_mutex:
2640 mutex_unlock(&blkfront_mutex);
2641 }
2642
2643 static const struct block_device_operations xlvbd_block_fops =
2644 {
2645 .owner = THIS_MODULE,
2646 .open = blkif_open,
2647 .release = blkif_release,
2648 .getgeo = blkif_getgeo,
2649 .ioctl = blkif_ioctl,
2650 .compat_ioctl = blkdev_compat_ptr_ioctl,
2651 };
2652
2653
2654 static const struct xenbus_device_id blkfront_ids[] = {
2655 { "vbd" },
2656 { "" }
2657 };
2658
2659 static struct xenbus_driver blkfront_driver = {
2660 .ids = blkfront_ids,
2661 .probe = blkfront_probe,
2662 .remove = blkfront_remove,
2663 .resume = blkfront_resume,
2664 .otherend_changed = blkback_changed,
2665 .is_ready = blkfront_is_ready,
2666 };
2667
purge_persistent_grants(struct blkfront_info * info)2668 static void purge_persistent_grants(struct blkfront_info *info)
2669 {
2670 unsigned int i;
2671 unsigned long flags;
2672 struct blkfront_ring_info *rinfo;
2673
2674 for_each_rinfo(info, rinfo, i) {
2675 struct grant *gnt_list_entry, *tmp;
2676
2677 spin_lock_irqsave(&rinfo->ring_lock, flags);
2678
2679 if (rinfo->persistent_gnts_c == 0) {
2680 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2681 continue;
2682 }
2683
2684 list_for_each_entry_safe(gnt_list_entry, tmp, &rinfo->grants,
2685 node) {
2686 if (gnt_list_entry->gref == GRANT_INVALID_REF ||
2687 gnttab_query_foreign_access(gnt_list_entry->gref))
2688 continue;
2689
2690 list_del(&gnt_list_entry->node);
2691 gnttab_end_foreign_access(gnt_list_entry->gref, 0, 0UL);
2692 rinfo->persistent_gnts_c--;
2693 gnt_list_entry->gref = GRANT_INVALID_REF;
2694 list_add_tail(&gnt_list_entry->node, &rinfo->grants);
2695 }
2696
2697 spin_unlock_irqrestore(&rinfo->ring_lock, flags);
2698 }
2699 }
2700
blkfront_delay_work(struct work_struct * work)2701 static void blkfront_delay_work(struct work_struct *work)
2702 {
2703 struct blkfront_info *info;
2704 bool need_schedule_work = false;
2705
2706 mutex_lock(&blkfront_mutex);
2707
2708 list_for_each_entry(info, &info_list, info_list) {
2709 if (info->feature_persistent) {
2710 need_schedule_work = true;
2711 mutex_lock(&info->mutex);
2712 purge_persistent_grants(info);
2713 mutex_unlock(&info->mutex);
2714 }
2715 }
2716
2717 if (need_schedule_work)
2718 schedule_delayed_work(&blkfront_work, HZ * 10);
2719
2720 mutex_unlock(&blkfront_mutex);
2721 }
2722
xlblk_init(void)2723 static int __init xlblk_init(void)
2724 {
2725 int ret;
2726 int nr_cpus = num_online_cpus();
2727
2728 if (!xen_domain())
2729 return -ENODEV;
2730
2731 if (!xen_has_pv_disk_devices())
2732 return -ENODEV;
2733
2734 if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2735 pr_warn("xen_blk: can't get major %d with name %s\n",
2736 XENVBD_MAJOR, DEV_NAME);
2737 return -ENODEV;
2738 }
2739
2740 if (xen_blkif_max_segments < BLKIF_MAX_SEGMENTS_PER_REQUEST)
2741 xen_blkif_max_segments = BLKIF_MAX_SEGMENTS_PER_REQUEST;
2742
2743 if (xen_blkif_max_ring_order > XENBUS_MAX_RING_GRANT_ORDER) {
2744 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2745 xen_blkif_max_ring_order, XENBUS_MAX_RING_GRANT_ORDER);
2746 xen_blkif_max_ring_order = XENBUS_MAX_RING_GRANT_ORDER;
2747 }
2748
2749 if (xen_blkif_max_queues > nr_cpus) {
2750 pr_info("Invalid max_queues (%d), will use default max: %d.\n",
2751 xen_blkif_max_queues, nr_cpus);
2752 xen_blkif_max_queues = nr_cpus;
2753 }
2754
2755 INIT_DELAYED_WORK(&blkfront_work, blkfront_delay_work);
2756
2757 ret = xenbus_register_frontend(&blkfront_driver);
2758 if (ret) {
2759 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2760 return ret;
2761 }
2762
2763 return 0;
2764 }
2765 module_init(xlblk_init);
2766
2767
xlblk_exit(void)2768 static void __exit xlblk_exit(void)
2769 {
2770 cancel_delayed_work_sync(&blkfront_work);
2771
2772 xenbus_unregister_driver(&blkfront_driver);
2773 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2774 kfree(minors);
2775 }
2776 module_exit(xlblk_exit);
2777
2778 MODULE_DESCRIPTION("Xen virtual block device frontend");
2779 MODULE_LICENSE("GPL");
2780 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2781 MODULE_ALIAS("xen:vbd");
2782 MODULE_ALIAS("xenblk");
2783