1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
4  * was acquired by Western Digital in 2012.
5  *
6  * Copyright 2012 sTec, Inc.
7  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/sched.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/workqueue.h>
22 #include <linux/delay.h>
23 #include <linux/time.h>
24 #include <linux/hdreg.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/completion.h>
27 #include <linux/scatterlist.h>
28 #include <linux/err.h>
29 #include <linux/aer.h>
30 #include <linux/wait.h>
31 #include <linux/stringify.h>
32 #include <scsi/scsi.h>
33 #include <scsi/sg.h>
34 #include <linux/io.h>
35 #include <linux/uaccess.h>
36 #include <asm/unaligned.h>
37 
38 #include "skd_s1120.h"
39 
40 static int skd_dbg_level;
41 static int skd_isr_comp_limit = 4;
42 
43 #define SKD_ASSERT(expr) \
44 	do { \
45 		if (unlikely(!(expr))) { \
46 			pr_err("Assertion failed! %s,%s,%s,line=%d\n",	\
47 			       # expr, __FILE__, __func__, __LINE__); \
48 		} \
49 	} while (0)
50 
51 #define DRV_NAME "skd"
52 #define PFX DRV_NAME ": "
53 
54 MODULE_LICENSE("GPL");
55 
56 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
57 
58 #define PCI_VENDOR_ID_STEC      0x1B39
59 #define PCI_DEVICE_ID_S1120     0x0001
60 
61 #define SKD_FUA_NV		(1 << 1)
62 #define SKD_MINORS_PER_DEVICE   16
63 
64 #define SKD_MAX_QUEUE_DEPTH     200u
65 
66 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
67 
68 #define SKD_N_FITMSG_BYTES      (512u)
69 #define SKD_MAX_REQ_PER_MSG	14
70 
71 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
72 
73 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
74  * 128KB limit.  That allows 4096*4K = 16M xfer size
75  */
76 #define SKD_N_SG_PER_REQ_DEFAULT 256u
77 
78 #define SKD_N_COMPLETION_ENTRY  256u
79 #define SKD_N_READ_CAP_BYTES    (8u)
80 
81 #define SKD_N_INTERNAL_BYTES    (512u)
82 
83 #define SKD_SKCOMP_SIZE							\
84 	((sizeof(struct fit_completion_entry_v1) +			\
85 	  sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
86 
87 /* 5 bits of uniqifier, 0xF800 */
88 #define SKD_ID_TABLE_MASK       (3u << 8u)
89 #define  SKD_ID_RW_REQUEST      (0u << 8u)
90 #define  SKD_ID_INTERNAL        (1u << 8u)
91 #define  SKD_ID_FIT_MSG         (3u << 8u)
92 #define SKD_ID_SLOT_MASK        0x00FFu
93 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
94 
95 #define SKD_N_MAX_SECTORS 2048u
96 
97 #define SKD_MAX_RETRIES 2u
98 
99 #define SKD_TIMER_SECONDS(seconds) (seconds)
100 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
101 
102 #define INQ_STD_NBYTES 36
103 
104 enum skd_drvr_state {
105 	SKD_DRVR_STATE_LOAD,
106 	SKD_DRVR_STATE_IDLE,
107 	SKD_DRVR_STATE_BUSY,
108 	SKD_DRVR_STATE_STARTING,
109 	SKD_DRVR_STATE_ONLINE,
110 	SKD_DRVR_STATE_PAUSING,
111 	SKD_DRVR_STATE_PAUSED,
112 	SKD_DRVR_STATE_RESTARTING,
113 	SKD_DRVR_STATE_RESUMING,
114 	SKD_DRVR_STATE_STOPPING,
115 	SKD_DRVR_STATE_FAULT,
116 	SKD_DRVR_STATE_DISAPPEARED,
117 	SKD_DRVR_STATE_PROTOCOL_MISMATCH,
118 	SKD_DRVR_STATE_BUSY_ERASE,
119 	SKD_DRVR_STATE_BUSY_SANITIZE,
120 	SKD_DRVR_STATE_BUSY_IMMINENT,
121 	SKD_DRVR_STATE_WAIT_BOOT,
122 	SKD_DRVR_STATE_SYNCING,
123 };
124 
125 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
126 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
127 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
128 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
129 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
130 #define SKD_START_WAIT_SECONDS  90u
131 
132 enum skd_req_state {
133 	SKD_REQ_STATE_IDLE,
134 	SKD_REQ_STATE_SETUP,
135 	SKD_REQ_STATE_BUSY,
136 	SKD_REQ_STATE_COMPLETED,
137 	SKD_REQ_STATE_TIMEOUT,
138 };
139 
140 enum skd_check_status_action {
141 	SKD_CHECK_STATUS_REPORT_GOOD,
142 	SKD_CHECK_STATUS_REPORT_SMART_ALERT,
143 	SKD_CHECK_STATUS_REQUEUE_REQUEST,
144 	SKD_CHECK_STATUS_REPORT_ERROR,
145 	SKD_CHECK_STATUS_BUSY_IMMINENT,
146 };
147 
148 struct skd_msg_buf {
149 	struct fit_msg_hdr	fmh;
150 	struct skd_scsi_request	scsi[SKD_MAX_REQ_PER_MSG];
151 };
152 
153 struct skd_fitmsg_context {
154 	u32 id;
155 
156 	u32 length;
157 
158 	struct skd_msg_buf *msg_buf;
159 	dma_addr_t mb_dma_address;
160 };
161 
162 struct skd_request_context {
163 	enum skd_req_state state;
164 
165 	u16 id;
166 	u32 fitmsg_id;
167 
168 	u8 flush_cmd;
169 
170 	enum dma_data_direction data_dir;
171 	struct scatterlist *sg;
172 	u32 n_sg;
173 	u32 sg_byte_count;
174 
175 	struct fit_sg_descriptor *sksg_list;
176 	dma_addr_t sksg_dma_address;
177 
178 	struct fit_completion_entry_v1 completion;
179 
180 	struct fit_comp_error_info err_info;
181 	int retries;
182 
183 	blk_status_t status;
184 };
185 
186 struct skd_special_context {
187 	struct skd_request_context req;
188 
189 	void *data_buf;
190 	dma_addr_t db_dma_address;
191 
192 	struct skd_msg_buf *msg_buf;
193 	dma_addr_t mb_dma_address;
194 };
195 
196 typedef enum skd_irq_type {
197 	SKD_IRQ_LEGACY,
198 	SKD_IRQ_MSI,
199 	SKD_IRQ_MSIX
200 } skd_irq_type_t;
201 
202 #define SKD_MAX_BARS                    2
203 
204 struct skd_device {
205 	void __iomem *mem_map[SKD_MAX_BARS];
206 	resource_size_t mem_phys[SKD_MAX_BARS];
207 	u32 mem_size[SKD_MAX_BARS];
208 
209 	struct skd_msix_entry *msix_entries;
210 
211 	struct pci_dev *pdev;
212 	int pcie_error_reporting_is_enabled;
213 
214 	spinlock_t lock;
215 	struct gendisk *disk;
216 	struct blk_mq_tag_set tag_set;
217 	struct request_queue *queue;
218 	struct skd_fitmsg_context *skmsg;
219 	struct device *class_dev;
220 	int gendisk_on;
221 	int sync_done;
222 
223 	u32 devno;
224 	u32 major;
225 	char isr_name[30];
226 
227 	enum skd_drvr_state state;
228 	u32 drive_state;
229 
230 	u32 cur_max_queue_depth;
231 	u32 queue_low_water_mark;
232 	u32 dev_max_queue_depth;
233 
234 	u32 num_fitmsg_context;
235 	u32 num_req_context;
236 
237 	struct skd_fitmsg_context *skmsg_table;
238 
239 	struct skd_special_context internal_skspcl;
240 	u32 read_cap_blocksize;
241 	u32 read_cap_last_lba;
242 	int read_cap_is_valid;
243 	int inquiry_is_valid;
244 	u8 inq_serial_num[13];  /*12 chars plus null term */
245 
246 	u8 skcomp_cycle;
247 	u32 skcomp_ix;
248 	struct kmem_cache *msgbuf_cache;
249 	struct kmem_cache *sglist_cache;
250 	struct kmem_cache *databuf_cache;
251 	struct fit_completion_entry_v1 *skcomp_table;
252 	struct fit_comp_error_info *skerr_table;
253 	dma_addr_t cq_dma_address;
254 
255 	wait_queue_head_t waitq;
256 
257 	struct timer_list timer;
258 	u32 timer_countdown;
259 	u32 timer_substate;
260 
261 	int sgs_per_request;
262 	u32 last_mtd;
263 
264 	u32 proto_ver;
265 
266 	int dbg_level;
267 	u32 connect_time_stamp;
268 	int connect_retries;
269 #define SKD_MAX_CONNECT_RETRIES 16
270 	u32 drive_jiffies;
271 
272 	u32 timo_slot;
273 
274 	struct work_struct start_queue;
275 	struct work_struct completion_worker;
276 };
277 
278 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
279 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
280 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
281 
skd_reg_read32(struct skd_device * skdev,u32 offset)282 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
283 {
284 	u32 val = readl(skdev->mem_map[1] + offset);
285 
286 	if (unlikely(skdev->dbg_level >= 2))
287 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
288 	return val;
289 }
290 
skd_reg_write32(struct skd_device * skdev,u32 val,u32 offset)291 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
292 				   u32 offset)
293 {
294 	writel(val, skdev->mem_map[1] + offset);
295 	if (unlikely(skdev->dbg_level >= 2))
296 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
297 }
298 
skd_reg_write64(struct skd_device * skdev,u64 val,u32 offset)299 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
300 				   u32 offset)
301 {
302 	writeq(val, skdev->mem_map[1] + offset);
303 	if (unlikely(skdev->dbg_level >= 2))
304 		dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
305 			val);
306 }
307 
308 
309 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
310 static int skd_isr_type = SKD_IRQ_DEFAULT;
311 
312 module_param(skd_isr_type, int, 0444);
313 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
314 		 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
315 
316 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
317 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
318 
319 module_param(skd_max_req_per_msg, int, 0444);
320 MODULE_PARM_DESC(skd_max_req_per_msg,
321 		 "Maximum SCSI requests packed in a single message."
322 		 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
323 
324 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
325 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
326 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
327 
328 module_param(skd_max_queue_depth, int, 0444);
329 MODULE_PARM_DESC(skd_max_queue_depth,
330 		 "Maximum SCSI requests issued to s1120."
331 		 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
332 
333 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
334 module_param(skd_sgs_per_request, int, 0444);
335 MODULE_PARM_DESC(skd_sgs_per_request,
336 		 "Maximum SG elements per block request."
337 		 " (1-4096, default==256)");
338 
339 static int skd_max_pass_thru = 1;
340 module_param(skd_max_pass_thru, int, 0444);
341 MODULE_PARM_DESC(skd_max_pass_thru,
342 		 "Maximum SCSI pass-thru at a time. IGNORED");
343 
344 module_param(skd_dbg_level, int, 0444);
345 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
346 
347 module_param(skd_isr_comp_limit, int, 0444);
348 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
349 
350 /* Major device number dynamically assigned. */
351 static u32 skd_major;
352 
353 static void skd_destruct(struct skd_device *skdev);
354 static const struct block_device_operations skd_blockdev_ops;
355 static void skd_send_fitmsg(struct skd_device *skdev,
356 			    struct skd_fitmsg_context *skmsg);
357 static void skd_send_special_fitmsg(struct skd_device *skdev,
358 				    struct skd_special_context *skspcl);
359 static bool skd_preop_sg_list(struct skd_device *skdev,
360 			     struct skd_request_context *skreq);
361 static void skd_postop_sg_list(struct skd_device *skdev,
362 			       struct skd_request_context *skreq);
363 
364 static void skd_restart_device(struct skd_device *skdev);
365 static int skd_quiesce_dev(struct skd_device *skdev);
366 static int skd_unquiesce_dev(struct skd_device *skdev);
367 static void skd_disable_interrupts(struct skd_device *skdev);
368 static void skd_isr_fwstate(struct skd_device *skdev);
369 static void skd_recover_requests(struct skd_device *skdev);
370 static void skd_soft_reset(struct skd_device *skdev);
371 
372 const char *skd_drive_state_to_str(int state);
373 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
374 static void skd_log_skdev(struct skd_device *skdev, const char *event);
375 static void skd_log_skreq(struct skd_device *skdev,
376 			  struct skd_request_context *skreq, const char *event);
377 
378 /*
379  *****************************************************************************
380  * READ/WRITE REQUESTS
381  *****************************************************************************
382  */
skd_inc_in_flight(struct request * rq,void * data,bool reserved)383 static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
384 {
385 	int *count = data;
386 
387 	count++;
388 	return true;
389 }
390 
skd_in_flight(struct skd_device * skdev)391 static int skd_in_flight(struct skd_device *skdev)
392 {
393 	int count = 0;
394 
395 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
396 
397 	return count;
398 }
399 
400 static void
skd_prep_rw_cdb(struct skd_scsi_request * scsi_req,int data_dir,unsigned lba,unsigned count)401 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
402 		int data_dir, unsigned lba,
403 		unsigned count)
404 {
405 	if (data_dir == READ)
406 		scsi_req->cdb[0] = READ_10;
407 	else
408 		scsi_req->cdb[0] = WRITE_10;
409 
410 	scsi_req->cdb[1] = 0;
411 	scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
412 	scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
413 	scsi_req->cdb[4] = (lba & 0xff00) >> 8;
414 	scsi_req->cdb[5] = (lba & 0xff);
415 	scsi_req->cdb[6] = 0;
416 	scsi_req->cdb[7] = (count & 0xff00) >> 8;
417 	scsi_req->cdb[8] = count & 0xff;
418 	scsi_req->cdb[9] = 0;
419 }
420 
421 static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request * scsi_req,struct skd_request_context * skreq)422 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
423 			    struct skd_request_context *skreq)
424 {
425 	skreq->flush_cmd = 1;
426 
427 	scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
428 	scsi_req->cdb[1] = 0;
429 	scsi_req->cdb[2] = 0;
430 	scsi_req->cdb[3] = 0;
431 	scsi_req->cdb[4] = 0;
432 	scsi_req->cdb[5] = 0;
433 	scsi_req->cdb[6] = 0;
434 	scsi_req->cdb[7] = 0;
435 	scsi_req->cdb[8] = 0;
436 	scsi_req->cdb[9] = 0;
437 }
438 
439 /*
440  * Return true if and only if all pending requests should be failed.
441  */
skd_fail_all(struct request_queue * q)442 static bool skd_fail_all(struct request_queue *q)
443 {
444 	struct skd_device *skdev = q->queuedata;
445 
446 	SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
447 
448 	skd_log_skdev(skdev, "req_not_online");
449 	switch (skdev->state) {
450 	case SKD_DRVR_STATE_PAUSING:
451 	case SKD_DRVR_STATE_PAUSED:
452 	case SKD_DRVR_STATE_STARTING:
453 	case SKD_DRVR_STATE_RESTARTING:
454 	case SKD_DRVR_STATE_WAIT_BOOT:
455 	/* In case of starting, we haven't started the queue,
456 	 * so we can't get here... but requests are
457 	 * possibly hanging out waiting for us because we
458 	 * reported the dev/skd0 already.  They'll wait
459 	 * forever if connect doesn't complete.
460 	 * What to do??? delay dev/skd0 ??
461 	 */
462 	case SKD_DRVR_STATE_BUSY:
463 	case SKD_DRVR_STATE_BUSY_IMMINENT:
464 	case SKD_DRVR_STATE_BUSY_ERASE:
465 		return false;
466 
467 	case SKD_DRVR_STATE_BUSY_SANITIZE:
468 	case SKD_DRVR_STATE_STOPPING:
469 	case SKD_DRVR_STATE_SYNCING:
470 	case SKD_DRVR_STATE_FAULT:
471 	case SKD_DRVR_STATE_DISAPPEARED:
472 	default:
473 		return true;
474 	}
475 }
476 
skd_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * mqd)477 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
478 				    const struct blk_mq_queue_data *mqd)
479 {
480 	struct request *const req = mqd->rq;
481 	struct request_queue *const q = req->q;
482 	struct skd_device *skdev = q->queuedata;
483 	struct skd_fitmsg_context *skmsg;
484 	struct fit_msg_hdr *fmh;
485 	const u32 tag = blk_mq_unique_tag(req);
486 	struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
487 	struct skd_scsi_request *scsi_req;
488 	unsigned long flags = 0;
489 	const u32 lba = blk_rq_pos(req);
490 	const u32 count = blk_rq_sectors(req);
491 	const int data_dir = rq_data_dir(req);
492 
493 	if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
494 		return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
495 
496 	if (!(req->rq_flags & RQF_DONTPREP)) {
497 		skreq->retries = 0;
498 		req->rq_flags |= RQF_DONTPREP;
499 	}
500 
501 	blk_mq_start_request(req);
502 
503 	WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
504 		  tag, skd_max_queue_depth, q->nr_requests);
505 
506 	SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
507 
508 	dev_dbg(&skdev->pdev->dev,
509 		"new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
510 		lba, count, count, data_dir);
511 
512 	skreq->id = tag + SKD_ID_RW_REQUEST;
513 	skreq->flush_cmd = 0;
514 	skreq->n_sg = 0;
515 	skreq->sg_byte_count = 0;
516 
517 	skreq->fitmsg_id = 0;
518 
519 	skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
520 
521 	if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
522 		dev_dbg(&skdev->pdev->dev, "error Out\n");
523 		skreq->status = BLK_STS_RESOURCE;
524 		blk_mq_complete_request(req);
525 		return BLK_STS_OK;
526 	}
527 
528 	dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
529 				   skreq->n_sg *
530 				   sizeof(struct fit_sg_descriptor),
531 				   DMA_TO_DEVICE);
532 
533 	/* Either a FIT msg is in progress or we have to start one. */
534 	if (skd_max_req_per_msg == 1) {
535 		skmsg = NULL;
536 	} else {
537 		spin_lock_irqsave(&skdev->lock, flags);
538 		skmsg = skdev->skmsg;
539 	}
540 	if (!skmsg) {
541 		skmsg = &skdev->skmsg_table[tag];
542 		skdev->skmsg = skmsg;
543 
544 		/* Initialize the FIT msg header */
545 		fmh = &skmsg->msg_buf->fmh;
546 		memset(fmh, 0, sizeof(*fmh));
547 		fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
548 		skmsg->length = sizeof(*fmh);
549 	} else {
550 		fmh = &skmsg->msg_buf->fmh;
551 	}
552 
553 	skreq->fitmsg_id = skmsg->id;
554 
555 	scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
556 	memset(scsi_req, 0, sizeof(*scsi_req));
557 
558 	scsi_req->hdr.tag = skreq->id;
559 	scsi_req->hdr.sg_list_dma_address =
560 		cpu_to_be64(skreq->sksg_dma_address);
561 
562 	if (req_op(req) == REQ_OP_FLUSH) {
563 		skd_prep_zerosize_flush_cdb(scsi_req, skreq);
564 		SKD_ASSERT(skreq->flush_cmd == 1);
565 	} else {
566 		skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
567 	}
568 
569 	if (req->cmd_flags & REQ_FUA)
570 		scsi_req->cdb[1] |= SKD_FUA_NV;
571 
572 	scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
573 
574 	/* Complete resource allocations. */
575 	skreq->state = SKD_REQ_STATE_BUSY;
576 
577 	skmsg->length += sizeof(struct skd_scsi_request);
578 	fmh->num_protocol_cmds_coalesced++;
579 
580 	dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
581 		skd_in_flight(skdev));
582 
583 	/*
584 	 * If the FIT msg buffer is full send it.
585 	 */
586 	if (skd_max_req_per_msg == 1) {
587 		skd_send_fitmsg(skdev, skmsg);
588 	} else {
589 		if (mqd->last ||
590 		    fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
591 			skd_send_fitmsg(skdev, skmsg);
592 			skdev->skmsg = NULL;
593 		}
594 		spin_unlock_irqrestore(&skdev->lock, flags);
595 	}
596 
597 	return BLK_STS_OK;
598 }
599 
skd_timed_out(struct request * req,bool reserved)600 static enum blk_eh_timer_return skd_timed_out(struct request *req,
601 					      bool reserved)
602 {
603 	struct skd_device *skdev = req->q->queuedata;
604 
605 	dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
606 		blk_mq_unique_tag(req));
607 
608 	return BLK_EH_RESET_TIMER;
609 }
610 
skd_complete_rq(struct request * req)611 static void skd_complete_rq(struct request *req)
612 {
613 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
614 
615 	blk_mq_end_request(req, skreq->status);
616 }
617 
skd_preop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)618 static bool skd_preop_sg_list(struct skd_device *skdev,
619 			     struct skd_request_context *skreq)
620 {
621 	struct request *req = blk_mq_rq_from_pdu(skreq);
622 	struct scatterlist *sgl = &skreq->sg[0], *sg;
623 	int n_sg;
624 	int i;
625 
626 	skreq->sg_byte_count = 0;
627 
628 	WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
629 		     skreq->data_dir != DMA_FROM_DEVICE);
630 
631 	n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
632 	if (n_sg <= 0)
633 		return false;
634 
635 	/*
636 	 * Map scatterlist to PCI bus addresses.
637 	 * Note PCI might change the number of entries.
638 	 */
639 	n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
640 	if (n_sg <= 0)
641 		return false;
642 
643 	SKD_ASSERT(n_sg <= skdev->sgs_per_request);
644 
645 	skreq->n_sg = n_sg;
646 
647 	for_each_sg(sgl, sg, n_sg, i) {
648 		struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
649 		u32 cnt = sg_dma_len(sg);
650 		uint64_t dma_addr = sg_dma_address(sg);
651 
652 		sgd->control = FIT_SGD_CONTROL_NOT_LAST;
653 		sgd->byte_count = cnt;
654 		skreq->sg_byte_count += cnt;
655 		sgd->host_side_addr = dma_addr;
656 		sgd->dev_side_addr = 0;
657 	}
658 
659 	skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
660 	skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
661 
662 	if (unlikely(skdev->dbg_level > 1)) {
663 		dev_dbg(&skdev->pdev->dev,
664 			"skreq=%x sksg_list=%p sksg_dma=%pad\n",
665 			skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
666 		for (i = 0; i < n_sg; i++) {
667 			struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
668 
669 			dev_dbg(&skdev->pdev->dev,
670 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
671 				i, sgd->byte_count, sgd->control,
672 				sgd->host_side_addr, sgd->next_desc_ptr);
673 		}
674 	}
675 
676 	return true;
677 }
678 
skd_postop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)679 static void skd_postop_sg_list(struct skd_device *skdev,
680 			       struct skd_request_context *skreq)
681 {
682 	/*
683 	 * restore the next ptr for next IO request so we
684 	 * don't have to set it every time.
685 	 */
686 	skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
687 		skreq->sksg_dma_address +
688 		((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
689 	dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
690 		     skreq->data_dir);
691 }
692 
693 /*
694  *****************************************************************************
695  * TIMER
696  *****************************************************************************
697  */
698 
699 static void skd_timer_tick_not_online(struct skd_device *skdev);
700 
skd_start_queue(struct work_struct * work)701 static void skd_start_queue(struct work_struct *work)
702 {
703 	struct skd_device *skdev = container_of(work, typeof(*skdev),
704 						start_queue);
705 
706 	/*
707 	 * Although it is safe to call blk_start_queue() from interrupt
708 	 * context, blk_mq_start_hw_queues() must not be called from
709 	 * interrupt context.
710 	 */
711 	blk_mq_start_hw_queues(skdev->queue);
712 }
713 
skd_timer_tick(struct timer_list * t)714 static void skd_timer_tick(struct timer_list *t)
715 {
716 	struct skd_device *skdev = from_timer(skdev, t, timer);
717 	unsigned long reqflags;
718 	u32 state;
719 
720 	if (skdev->state == SKD_DRVR_STATE_FAULT)
721 		/* The driver has declared fault, and we want it to
722 		 * stay that way until driver is reloaded.
723 		 */
724 		return;
725 
726 	spin_lock_irqsave(&skdev->lock, reqflags);
727 
728 	state = SKD_READL(skdev, FIT_STATUS);
729 	state &= FIT_SR_DRIVE_STATE_MASK;
730 	if (state != skdev->drive_state)
731 		skd_isr_fwstate(skdev);
732 
733 	if (skdev->state != SKD_DRVR_STATE_ONLINE)
734 		skd_timer_tick_not_online(skdev);
735 
736 	mod_timer(&skdev->timer, (jiffies + HZ));
737 
738 	spin_unlock_irqrestore(&skdev->lock, reqflags);
739 }
740 
skd_timer_tick_not_online(struct skd_device * skdev)741 static void skd_timer_tick_not_online(struct skd_device *skdev)
742 {
743 	switch (skdev->state) {
744 	case SKD_DRVR_STATE_IDLE:
745 	case SKD_DRVR_STATE_LOAD:
746 		break;
747 	case SKD_DRVR_STATE_BUSY_SANITIZE:
748 		dev_dbg(&skdev->pdev->dev,
749 			"drive busy sanitize[%x], driver[%x]\n",
750 			skdev->drive_state, skdev->state);
751 		/* If we've been in sanitize for 3 seconds, we figure we're not
752 		 * going to get anymore completions, so recover requests now
753 		 */
754 		if (skdev->timer_countdown > 0) {
755 			skdev->timer_countdown--;
756 			return;
757 		}
758 		skd_recover_requests(skdev);
759 		break;
760 
761 	case SKD_DRVR_STATE_BUSY:
762 	case SKD_DRVR_STATE_BUSY_IMMINENT:
763 	case SKD_DRVR_STATE_BUSY_ERASE:
764 		dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
765 			skdev->state, skdev->timer_countdown);
766 		if (skdev->timer_countdown > 0) {
767 			skdev->timer_countdown--;
768 			return;
769 		}
770 		dev_dbg(&skdev->pdev->dev,
771 			"busy[%x], timedout=%d, restarting device.",
772 			skdev->state, skdev->timer_countdown);
773 		skd_restart_device(skdev);
774 		break;
775 
776 	case SKD_DRVR_STATE_WAIT_BOOT:
777 	case SKD_DRVR_STATE_STARTING:
778 		if (skdev->timer_countdown > 0) {
779 			skdev->timer_countdown--;
780 			return;
781 		}
782 		/* For now, we fault the drive.  Could attempt resets to
783 		 * revcover at some point. */
784 		skdev->state = SKD_DRVR_STATE_FAULT;
785 
786 		dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
787 			skdev->drive_state);
788 
789 		/*start the queue so we can respond with error to requests */
790 		/* wakeup anyone waiting for startup complete */
791 		schedule_work(&skdev->start_queue);
792 		skdev->gendisk_on = -1;
793 		wake_up_interruptible(&skdev->waitq);
794 		break;
795 
796 	case SKD_DRVR_STATE_ONLINE:
797 		/* shouldn't get here. */
798 		break;
799 
800 	case SKD_DRVR_STATE_PAUSING:
801 	case SKD_DRVR_STATE_PAUSED:
802 		break;
803 
804 	case SKD_DRVR_STATE_RESTARTING:
805 		if (skdev->timer_countdown > 0) {
806 			skdev->timer_countdown--;
807 			return;
808 		}
809 		/* For now, we fault the drive. Could attempt resets to
810 		 * revcover at some point. */
811 		skdev->state = SKD_DRVR_STATE_FAULT;
812 		dev_err(&skdev->pdev->dev,
813 			"DriveFault Reconnect Timeout (%x)\n",
814 			skdev->drive_state);
815 
816 		/*
817 		 * Recovering does two things:
818 		 * 1. completes IO with error
819 		 * 2. reclaims dma resources
820 		 * When is it safe to recover requests?
821 		 * - if the drive state is faulted
822 		 * - if the state is still soft reset after out timeout
823 		 * - if the drive registers are dead (state = FF)
824 		 * If it is "unsafe", we still need to recover, so we will
825 		 * disable pci bus mastering and disable our interrupts.
826 		 */
827 
828 		if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
829 		    (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
830 		    (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
831 			/* It never came out of soft reset. Try to
832 			 * recover the requests and then let them
833 			 * fail. This is to mitigate hung processes. */
834 			skd_recover_requests(skdev);
835 		else {
836 			dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
837 				skdev->drive_state);
838 			pci_disable_device(skdev->pdev);
839 			skd_disable_interrupts(skdev);
840 			skd_recover_requests(skdev);
841 		}
842 
843 		/*start the queue so we can respond with error to requests */
844 		/* wakeup anyone waiting for startup complete */
845 		schedule_work(&skdev->start_queue);
846 		skdev->gendisk_on = -1;
847 		wake_up_interruptible(&skdev->waitq);
848 		break;
849 
850 	case SKD_DRVR_STATE_RESUMING:
851 	case SKD_DRVR_STATE_STOPPING:
852 	case SKD_DRVR_STATE_SYNCING:
853 	case SKD_DRVR_STATE_FAULT:
854 	case SKD_DRVR_STATE_DISAPPEARED:
855 	default:
856 		break;
857 	}
858 }
859 
skd_start_timer(struct skd_device * skdev)860 static int skd_start_timer(struct skd_device *skdev)
861 {
862 	int rc;
863 
864 	timer_setup(&skdev->timer, skd_timer_tick, 0);
865 
866 	rc = mod_timer(&skdev->timer, (jiffies + HZ));
867 	if (rc)
868 		dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
869 	return rc;
870 }
871 
skd_kill_timer(struct skd_device * skdev)872 static void skd_kill_timer(struct skd_device *skdev)
873 {
874 	del_timer_sync(&skdev->timer);
875 }
876 
877 /*
878  *****************************************************************************
879  * INTERNAL REQUESTS -- generated by driver itself
880  *****************************************************************************
881  */
882 
skd_format_internal_skspcl(struct skd_device * skdev)883 static int skd_format_internal_skspcl(struct skd_device *skdev)
884 {
885 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
886 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
887 	struct fit_msg_hdr *fmh;
888 	uint64_t dma_address;
889 	struct skd_scsi_request *scsi;
890 
891 	fmh = &skspcl->msg_buf->fmh;
892 	fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
893 	fmh->num_protocol_cmds_coalesced = 1;
894 
895 	scsi = &skspcl->msg_buf->scsi[0];
896 	memset(scsi, 0, sizeof(*scsi));
897 	dma_address = skspcl->req.sksg_dma_address;
898 	scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
899 	skspcl->req.n_sg = 1;
900 	sgd->control = FIT_SGD_CONTROL_LAST;
901 	sgd->byte_count = 0;
902 	sgd->host_side_addr = skspcl->db_dma_address;
903 	sgd->dev_side_addr = 0;
904 	sgd->next_desc_ptr = 0LL;
905 
906 	return 1;
907 }
908 
909 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
910 
skd_send_internal_skspcl(struct skd_device * skdev,struct skd_special_context * skspcl,u8 opcode)911 static void skd_send_internal_skspcl(struct skd_device *skdev,
912 				     struct skd_special_context *skspcl,
913 				     u8 opcode)
914 {
915 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
916 	struct skd_scsi_request *scsi;
917 	unsigned char *buf = skspcl->data_buf;
918 	int i;
919 
920 	if (skspcl->req.state != SKD_REQ_STATE_IDLE)
921 		/*
922 		 * A refresh is already in progress.
923 		 * Just wait for it to finish.
924 		 */
925 		return;
926 
927 	skspcl->req.state = SKD_REQ_STATE_BUSY;
928 
929 	scsi = &skspcl->msg_buf->scsi[0];
930 	scsi->hdr.tag = skspcl->req.id;
931 
932 	memset(scsi->cdb, 0, sizeof(scsi->cdb));
933 
934 	switch (opcode) {
935 	case TEST_UNIT_READY:
936 		scsi->cdb[0] = TEST_UNIT_READY;
937 		sgd->byte_count = 0;
938 		scsi->hdr.sg_list_len_bytes = 0;
939 		break;
940 
941 	case READ_CAPACITY:
942 		scsi->cdb[0] = READ_CAPACITY;
943 		sgd->byte_count = SKD_N_READ_CAP_BYTES;
944 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
945 		break;
946 
947 	case INQUIRY:
948 		scsi->cdb[0] = INQUIRY;
949 		scsi->cdb[1] = 0x01;    /* evpd */
950 		scsi->cdb[2] = 0x80;    /* serial number page */
951 		scsi->cdb[4] = 0x10;
952 		sgd->byte_count = 16;
953 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
954 		break;
955 
956 	case SYNCHRONIZE_CACHE:
957 		scsi->cdb[0] = SYNCHRONIZE_CACHE;
958 		sgd->byte_count = 0;
959 		scsi->hdr.sg_list_len_bytes = 0;
960 		break;
961 
962 	case WRITE_BUFFER:
963 		scsi->cdb[0] = WRITE_BUFFER;
964 		scsi->cdb[1] = 0x02;
965 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
966 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
967 		sgd->byte_count = WR_BUF_SIZE;
968 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
969 		/* fill incrementing byte pattern */
970 		for (i = 0; i < sgd->byte_count; i++)
971 			buf[i] = i & 0xFF;
972 		break;
973 
974 	case READ_BUFFER:
975 		scsi->cdb[0] = READ_BUFFER;
976 		scsi->cdb[1] = 0x02;
977 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
978 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
979 		sgd->byte_count = WR_BUF_SIZE;
980 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
981 		memset(skspcl->data_buf, 0, sgd->byte_count);
982 		break;
983 
984 	default:
985 		SKD_ASSERT("Don't know what to send");
986 		return;
987 
988 	}
989 	skd_send_special_fitmsg(skdev, skspcl);
990 }
991 
skd_refresh_device_data(struct skd_device * skdev)992 static void skd_refresh_device_data(struct skd_device *skdev)
993 {
994 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
995 
996 	skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
997 }
998 
skd_chk_read_buf(struct skd_device * skdev,struct skd_special_context * skspcl)999 static int skd_chk_read_buf(struct skd_device *skdev,
1000 			    struct skd_special_context *skspcl)
1001 {
1002 	unsigned char *buf = skspcl->data_buf;
1003 	int i;
1004 
1005 	/* check for incrementing byte pattern */
1006 	for (i = 0; i < WR_BUF_SIZE; i++)
1007 		if (buf[i] != (i & 0xFF))
1008 			return 1;
1009 
1010 	return 0;
1011 }
1012 
skd_log_check_status(struct skd_device * skdev,u8 status,u8 key,u8 code,u8 qual,u8 fruc)1013 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1014 				 u8 code, u8 qual, u8 fruc)
1015 {
1016 	/* If the check condition is of special interest, log a message */
1017 	if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1018 	    && (code == 0x04) && (qual == 0x06)) {
1019 		dev_err(&skdev->pdev->dev,
1020 			"*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1021 			key, code, qual, fruc);
1022 	}
1023 }
1024 
skd_complete_internal(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr,struct skd_special_context * skspcl)1025 static void skd_complete_internal(struct skd_device *skdev,
1026 				  struct fit_completion_entry_v1 *skcomp,
1027 				  struct fit_comp_error_info *skerr,
1028 				  struct skd_special_context *skspcl)
1029 {
1030 	u8 *buf = skspcl->data_buf;
1031 	u8 status;
1032 	int i;
1033 	struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1034 
1035 	lockdep_assert_held(&skdev->lock);
1036 
1037 	SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1038 
1039 	dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1040 
1041 	dma_sync_single_for_cpu(&skdev->pdev->dev,
1042 				skspcl->db_dma_address,
1043 				skspcl->req.sksg_list[0].byte_count,
1044 				DMA_BIDIRECTIONAL);
1045 
1046 	skspcl->req.completion = *skcomp;
1047 	skspcl->req.state = SKD_REQ_STATE_IDLE;
1048 
1049 	status = skspcl->req.completion.status;
1050 
1051 	skd_log_check_status(skdev, status, skerr->key, skerr->code,
1052 			     skerr->qual, skerr->fruc);
1053 
1054 	switch (scsi->cdb[0]) {
1055 	case TEST_UNIT_READY:
1056 		if (status == SAM_STAT_GOOD)
1057 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1058 		else if ((status == SAM_STAT_CHECK_CONDITION) &&
1059 			 (skerr->key == MEDIUM_ERROR))
1060 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1061 		else {
1062 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1063 				dev_dbg(&skdev->pdev->dev,
1064 					"TUR failed, don't send anymore state 0x%x\n",
1065 					skdev->state);
1066 				return;
1067 			}
1068 			dev_dbg(&skdev->pdev->dev,
1069 				"**** TUR failed, retry skerr\n");
1070 			skd_send_internal_skspcl(skdev, skspcl,
1071 						 TEST_UNIT_READY);
1072 		}
1073 		break;
1074 
1075 	case WRITE_BUFFER:
1076 		if (status == SAM_STAT_GOOD)
1077 			skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1078 		else {
1079 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1080 				dev_dbg(&skdev->pdev->dev,
1081 					"write buffer failed, don't send anymore state 0x%x\n",
1082 					skdev->state);
1083 				return;
1084 			}
1085 			dev_dbg(&skdev->pdev->dev,
1086 				"**** write buffer failed, retry skerr\n");
1087 			skd_send_internal_skspcl(skdev, skspcl,
1088 						 TEST_UNIT_READY);
1089 		}
1090 		break;
1091 
1092 	case READ_BUFFER:
1093 		if (status == SAM_STAT_GOOD) {
1094 			if (skd_chk_read_buf(skdev, skspcl) == 0)
1095 				skd_send_internal_skspcl(skdev, skspcl,
1096 							 READ_CAPACITY);
1097 			else {
1098 				dev_err(&skdev->pdev->dev,
1099 					"*** W/R Buffer mismatch %d ***\n",
1100 					skdev->connect_retries);
1101 				if (skdev->connect_retries <
1102 				    SKD_MAX_CONNECT_RETRIES) {
1103 					skdev->connect_retries++;
1104 					skd_soft_reset(skdev);
1105 				} else {
1106 					dev_err(&skdev->pdev->dev,
1107 						"W/R Buffer Connect Error\n");
1108 					return;
1109 				}
1110 			}
1111 
1112 		} else {
1113 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1114 				dev_dbg(&skdev->pdev->dev,
1115 					"read buffer failed, don't send anymore state 0x%x\n",
1116 					skdev->state);
1117 				return;
1118 			}
1119 			dev_dbg(&skdev->pdev->dev,
1120 				"**** read buffer failed, retry skerr\n");
1121 			skd_send_internal_skspcl(skdev, skspcl,
1122 						 TEST_UNIT_READY);
1123 		}
1124 		break;
1125 
1126 	case READ_CAPACITY:
1127 		skdev->read_cap_is_valid = 0;
1128 		if (status == SAM_STAT_GOOD) {
1129 			skdev->read_cap_last_lba =
1130 				(buf[0] << 24) | (buf[1] << 16) |
1131 				(buf[2] << 8) | buf[3];
1132 			skdev->read_cap_blocksize =
1133 				(buf[4] << 24) | (buf[5] << 16) |
1134 				(buf[6] << 8) | buf[7];
1135 
1136 			dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1137 				skdev->read_cap_last_lba,
1138 				skdev->read_cap_blocksize);
1139 
1140 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1141 
1142 			skdev->read_cap_is_valid = 1;
1143 
1144 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1145 		} else if ((status == SAM_STAT_CHECK_CONDITION) &&
1146 			   (skerr->key == MEDIUM_ERROR)) {
1147 			skdev->read_cap_last_lba = ~0;
1148 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1149 			dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1150 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1151 		} else {
1152 			dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1153 			skd_send_internal_skspcl(skdev, skspcl,
1154 						 TEST_UNIT_READY);
1155 		}
1156 		break;
1157 
1158 	case INQUIRY:
1159 		skdev->inquiry_is_valid = 0;
1160 		if (status == SAM_STAT_GOOD) {
1161 			skdev->inquiry_is_valid = 1;
1162 
1163 			for (i = 0; i < 12; i++)
1164 				skdev->inq_serial_num[i] = buf[i + 4];
1165 			skdev->inq_serial_num[12] = 0;
1166 		}
1167 
1168 		if (skd_unquiesce_dev(skdev) < 0)
1169 			dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1170 		 /* connection is complete */
1171 		skdev->connect_retries = 0;
1172 		break;
1173 
1174 	case SYNCHRONIZE_CACHE:
1175 		if (status == SAM_STAT_GOOD)
1176 			skdev->sync_done = 1;
1177 		else
1178 			skdev->sync_done = -1;
1179 		wake_up_interruptible(&skdev->waitq);
1180 		break;
1181 
1182 	default:
1183 		SKD_ASSERT("we didn't send this");
1184 	}
1185 }
1186 
1187 /*
1188  *****************************************************************************
1189  * FIT MESSAGES
1190  *****************************************************************************
1191  */
1192 
skd_send_fitmsg(struct skd_device * skdev,struct skd_fitmsg_context * skmsg)1193 static void skd_send_fitmsg(struct skd_device *skdev,
1194 			    struct skd_fitmsg_context *skmsg)
1195 {
1196 	u64 qcmd;
1197 
1198 	dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1199 		&skmsg->mb_dma_address, skd_in_flight(skdev));
1200 	dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1201 
1202 	qcmd = skmsg->mb_dma_address;
1203 	qcmd |= FIT_QCMD_QID_NORMAL;
1204 
1205 	if (unlikely(skdev->dbg_level > 1)) {
1206 		u8 *bp = (u8 *)skmsg->msg_buf;
1207 		int i;
1208 		for (i = 0; i < skmsg->length; i += 8) {
1209 			dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1210 				&bp[i]);
1211 			if (i == 0)
1212 				i = 64 - 8;
1213 		}
1214 	}
1215 
1216 	if (skmsg->length > 256)
1217 		qcmd |= FIT_QCMD_MSGSIZE_512;
1218 	else if (skmsg->length > 128)
1219 		qcmd |= FIT_QCMD_MSGSIZE_256;
1220 	else if (skmsg->length > 64)
1221 		qcmd |= FIT_QCMD_MSGSIZE_128;
1222 	else
1223 		/*
1224 		 * This makes no sense because the FIT msg header is
1225 		 * 64 bytes. If the msg is only 64 bytes long it has
1226 		 * no payload.
1227 		 */
1228 		qcmd |= FIT_QCMD_MSGSIZE_64;
1229 
1230 	dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1231 				   skmsg->length, DMA_TO_DEVICE);
1232 
1233 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1234 	smp_wmb();
1235 
1236 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1237 }
1238 
skd_send_special_fitmsg(struct skd_device * skdev,struct skd_special_context * skspcl)1239 static void skd_send_special_fitmsg(struct skd_device *skdev,
1240 				    struct skd_special_context *skspcl)
1241 {
1242 	u64 qcmd;
1243 
1244 	WARN_ON_ONCE(skspcl->req.n_sg != 1);
1245 
1246 	if (unlikely(skdev->dbg_level > 1)) {
1247 		u8 *bp = (u8 *)skspcl->msg_buf;
1248 		int i;
1249 
1250 		for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1251 			dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1252 				&bp[i]);
1253 			if (i == 0)
1254 				i = 64 - 8;
1255 		}
1256 
1257 		dev_dbg(&skdev->pdev->dev,
1258 			"skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1259 			skspcl, skspcl->req.id, skspcl->req.sksg_list,
1260 			&skspcl->req.sksg_dma_address);
1261 		for (i = 0; i < skspcl->req.n_sg; i++) {
1262 			struct fit_sg_descriptor *sgd =
1263 				&skspcl->req.sksg_list[i];
1264 
1265 			dev_dbg(&skdev->pdev->dev,
1266 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1267 				i, sgd->byte_count, sgd->control,
1268 				sgd->host_side_addr, sgd->next_desc_ptr);
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1274 	 * and one 64-byte SSDI command.
1275 	 */
1276 	qcmd = skspcl->mb_dma_address;
1277 	qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1278 
1279 	dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1280 				   SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1281 	dma_sync_single_for_device(&skdev->pdev->dev,
1282 				   skspcl->req.sksg_dma_address,
1283 				   1 * sizeof(struct fit_sg_descriptor),
1284 				   DMA_TO_DEVICE);
1285 	dma_sync_single_for_device(&skdev->pdev->dev,
1286 				   skspcl->db_dma_address,
1287 				   skspcl->req.sksg_list[0].byte_count,
1288 				   DMA_BIDIRECTIONAL);
1289 
1290 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1291 	smp_wmb();
1292 
1293 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1294 }
1295 
1296 /*
1297  *****************************************************************************
1298  * COMPLETION QUEUE
1299  *****************************************************************************
1300  */
1301 
1302 static void skd_complete_other(struct skd_device *skdev,
1303 			       struct fit_completion_entry_v1 *skcomp,
1304 			       struct fit_comp_error_info *skerr);
1305 
1306 struct sns_info {
1307 	u8 type;
1308 	u8 stat;
1309 	u8 key;
1310 	u8 asc;
1311 	u8 ascq;
1312 	u8 mask;
1313 	enum skd_check_status_action action;
1314 };
1315 
1316 static struct sns_info skd_chkstat_table[] = {
1317 	/* Good */
1318 	{ 0x70, 0x02, RECOVERED_ERROR, 0,    0,	   0x1c,
1319 	  SKD_CHECK_STATUS_REPORT_GOOD },
1320 
1321 	/* Smart alerts */
1322 	{ 0x70, 0x02, NO_SENSE,	       0x0B, 0x00, 0x1E,	/* warnings */
1323 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324 	{ 0x70, 0x02, NO_SENSE,	       0x5D, 0x00, 0x1E,	/* thresholds */
1325 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1326 	{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1327 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1328 
1329 	/* Retry (with limits) */
1330 	{ 0x70, 0x02, 0x0B,	       0,    0,	   0x1C,        /* This one is for DMA ERROR */
1331 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332 	{ 0x70, 0x02, 0x06,	       0x0B, 0x00, 0x1E,        /* warnings */
1333 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334 	{ 0x70, 0x02, 0x06,	       0x5D, 0x00, 0x1E,        /* thresholds */
1335 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1336 	{ 0x70, 0x02, 0x06,	       0x80, 0x30, 0x1F,        /* backup power */
1337 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1338 
1339 	/* Busy (or about to be) */
1340 	{ 0x70, 0x02, 0x06,	       0x3f, 0x01, 0x1F, /* fw changed */
1341 	  SKD_CHECK_STATUS_BUSY_IMMINENT },
1342 };
1343 
1344 /*
1345  * Look up status and sense data to decide how to handle the error
1346  * from the device.
1347  * mask says which fields must match e.g., mask=0x18 means check
1348  * type and stat, ignore key, asc, ascq.
1349  */
1350 
1351 static enum skd_check_status_action
skd_check_status(struct skd_device * skdev,u8 cmp_status,struct fit_comp_error_info * skerr)1352 skd_check_status(struct skd_device *skdev,
1353 		 u8 cmp_status, struct fit_comp_error_info *skerr)
1354 {
1355 	int i;
1356 
1357 	dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1358 		skerr->key, skerr->code, skerr->qual, skerr->fruc);
1359 
1360 	dev_dbg(&skdev->pdev->dev,
1361 		"stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1362 		skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1363 		skerr->fruc);
1364 
1365 	/* Does the info match an entry in the good category? */
1366 	for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1367 		struct sns_info *sns = &skd_chkstat_table[i];
1368 
1369 		if (sns->mask & 0x10)
1370 			if (skerr->type != sns->type)
1371 				continue;
1372 
1373 		if (sns->mask & 0x08)
1374 			if (cmp_status != sns->stat)
1375 				continue;
1376 
1377 		if (sns->mask & 0x04)
1378 			if (skerr->key != sns->key)
1379 				continue;
1380 
1381 		if (sns->mask & 0x02)
1382 			if (skerr->code != sns->asc)
1383 				continue;
1384 
1385 		if (sns->mask & 0x01)
1386 			if (skerr->qual != sns->ascq)
1387 				continue;
1388 
1389 		if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1390 			dev_err(&skdev->pdev->dev,
1391 				"SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1392 				skerr->key, skerr->code, skerr->qual);
1393 		}
1394 		return sns->action;
1395 	}
1396 
1397 	/* No other match, so nonzero status means error,
1398 	 * zero status means good
1399 	 */
1400 	if (cmp_status) {
1401 		dev_dbg(&skdev->pdev->dev, "status check: error\n");
1402 		return SKD_CHECK_STATUS_REPORT_ERROR;
1403 	}
1404 
1405 	dev_dbg(&skdev->pdev->dev, "status check good default\n");
1406 	return SKD_CHECK_STATUS_REPORT_GOOD;
1407 }
1408 
skd_resolve_req_exception(struct skd_device * skdev,struct skd_request_context * skreq,struct request * req)1409 static void skd_resolve_req_exception(struct skd_device *skdev,
1410 				      struct skd_request_context *skreq,
1411 				      struct request *req)
1412 {
1413 	u8 cmp_status = skreq->completion.status;
1414 
1415 	switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1416 	case SKD_CHECK_STATUS_REPORT_GOOD:
1417 	case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1418 		skreq->status = BLK_STS_OK;
1419 		if (likely(!blk_should_fake_timeout(req->q)))
1420 			blk_mq_complete_request(req);
1421 		break;
1422 
1423 	case SKD_CHECK_STATUS_BUSY_IMMINENT:
1424 		skd_log_skreq(skdev, skreq, "retry(busy)");
1425 		blk_mq_requeue_request(req, true);
1426 		dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1427 		skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1428 		skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1429 		skd_quiesce_dev(skdev);
1430 		break;
1431 
1432 	case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1433 		if (++skreq->retries < SKD_MAX_RETRIES) {
1434 			skd_log_skreq(skdev, skreq, "retry");
1435 			blk_mq_requeue_request(req, true);
1436 			break;
1437 		}
1438 		fallthrough;
1439 
1440 	case SKD_CHECK_STATUS_REPORT_ERROR:
1441 	default:
1442 		skreq->status = BLK_STS_IOERR;
1443 		if (likely(!blk_should_fake_timeout(req->q)))
1444 			blk_mq_complete_request(req);
1445 		break;
1446 	}
1447 }
1448 
skd_release_skreq(struct skd_device * skdev,struct skd_request_context * skreq)1449 static void skd_release_skreq(struct skd_device *skdev,
1450 			      struct skd_request_context *skreq)
1451 {
1452 	/*
1453 	 * Reclaim the skd_request_context
1454 	 */
1455 	skreq->state = SKD_REQ_STATE_IDLE;
1456 }
1457 
skd_isr_completion_posted(struct skd_device * skdev,int limit,int * enqueued)1458 static int skd_isr_completion_posted(struct skd_device *skdev,
1459 					int limit, int *enqueued)
1460 {
1461 	struct fit_completion_entry_v1 *skcmp;
1462 	struct fit_comp_error_info *skerr;
1463 	u16 req_id;
1464 	u32 tag;
1465 	u16 hwq = 0;
1466 	struct request *rq;
1467 	struct skd_request_context *skreq;
1468 	u16 cmp_cntxt;
1469 	u8 cmp_status;
1470 	u8 cmp_cycle;
1471 	u32 cmp_bytes;
1472 	int rc = 0;
1473 	int processed = 0;
1474 
1475 	lockdep_assert_held(&skdev->lock);
1476 
1477 	for (;; ) {
1478 		SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1479 
1480 		skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1481 		cmp_cycle = skcmp->cycle;
1482 		cmp_cntxt = skcmp->tag;
1483 		cmp_status = skcmp->status;
1484 		cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1485 
1486 		skerr = &skdev->skerr_table[skdev->skcomp_ix];
1487 
1488 		dev_dbg(&skdev->pdev->dev,
1489 			"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1490 			skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1491 			cmp_cntxt, cmp_status, skd_in_flight(skdev),
1492 			cmp_bytes, skdev->proto_ver);
1493 
1494 		if (cmp_cycle != skdev->skcomp_cycle) {
1495 			dev_dbg(&skdev->pdev->dev, "end of completions\n");
1496 			break;
1497 		}
1498 		/*
1499 		 * Update the completion queue head index and possibly
1500 		 * the completion cycle count. 8-bit wrap-around.
1501 		 */
1502 		skdev->skcomp_ix++;
1503 		if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1504 			skdev->skcomp_ix = 0;
1505 			skdev->skcomp_cycle++;
1506 		}
1507 
1508 		/*
1509 		 * The command context is a unique 32-bit ID. The low order
1510 		 * bits help locate the request. The request is usually a
1511 		 * r/w request (see skd_start() above) or a special request.
1512 		 */
1513 		req_id = cmp_cntxt;
1514 		tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1515 
1516 		/* Is this other than a r/w request? */
1517 		if (tag >= skdev->num_req_context) {
1518 			/*
1519 			 * This is not a completion for a r/w request.
1520 			 */
1521 			WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1522 						      tag));
1523 			skd_complete_other(skdev, skcmp, skerr);
1524 			continue;
1525 		}
1526 
1527 		rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1528 		if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1529 			 tag))
1530 			continue;
1531 		skreq = blk_mq_rq_to_pdu(rq);
1532 
1533 		/*
1534 		 * Make sure the request ID for the slot matches.
1535 		 */
1536 		if (skreq->id != req_id) {
1537 			dev_err(&skdev->pdev->dev,
1538 				"Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1539 				req_id, skreq->id, cmp_cntxt);
1540 
1541 			continue;
1542 		}
1543 
1544 		SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1545 
1546 		skreq->completion = *skcmp;
1547 		if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1548 			skreq->err_info = *skerr;
1549 			skd_log_check_status(skdev, cmp_status, skerr->key,
1550 					     skerr->code, skerr->qual,
1551 					     skerr->fruc);
1552 		}
1553 		/* Release DMA resources for the request. */
1554 		if (skreq->n_sg > 0)
1555 			skd_postop_sg_list(skdev, skreq);
1556 
1557 		skd_release_skreq(skdev, skreq);
1558 
1559 		/*
1560 		 * Capture the outcome and post it back to the native request.
1561 		 */
1562 		if (likely(cmp_status == SAM_STAT_GOOD)) {
1563 			skreq->status = BLK_STS_OK;
1564 			if (likely(!blk_should_fake_timeout(rq->q)))
1565 				blk_mq_complete_request(rq);
1566 		} else {
1567 			skd_resolve_req_exception(skdev, skreq, rq);
1568 		}
1569 
1570 		/* skd_isr_comp_limit equal zero means no limit */
1571 		if (limit) {
1572 			if (++processed >= limit) {
1573 				rc = 1;
1574 				break;
1575 			}
1576 		}
1577 	}
1578 
1579 	if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1580 	    skd_in_flight(skdev) == 0) {
1581 		skdev->state = SKD_DRVR_STATE_PAUSED;
1582 		wake_up_interruptible(&skdev->waitq);
1583 	}
1584 
1585 	return rc;
1586 }
1587 
skd_complete_other(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr)1588 static void skd_complete_other(struct skd_device *skdev,
1589 			       struct fit_completion_entry_v1 *skcomp,
1590 			       struct fit_comp_error_info *skerr)
1591 {
1592 	u32 req_id = 0;
1593 	u32 req_table;
1594 	u32 req_slot;
1595 	struct skd_special_context *skspcl;
1596 
1597 	lockdep_assert_held(&skdev->lock);
1598 
1599 	req_id = skcomp->tag;
1600 	req_table = req_id & SKD_ID_TABLE_MASK;
1601 	req_slot = req_id & SKD_ID_SLOT_MASK;
1602 
1603 	dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1604 		req_id, req_slot);
1605 
1606 	/*
1607 	 * Based on the request id, determine how to dispatch this completion.
1608 	 * This swich/case is finding the good cases and forwarding the
1609 	 * completion entry. Errors are reported below the switch.
1610 	 */
1611 	switch (req_table) {
1612 	case SKD_ID_RW_REQUEST:
1613 		/*
1614 		 * The caller, skd_isr_completion_posted() above,
1615 		 * handles r/w requests. The only way we get here
1616 		 * is if the req_slot is out of bounds.
1617 		 */
1618 		break;
1619 
1620 	case SKD_ID_INTERNAL:
1621 		if (req_slot == 0) {
1622 			skspcl = &skdev->internal_skspcl;
1623 			if (skspcl->req.id == req_id &&
1624 			    skspcl->req.state == SKD_REQ_STATE_BUSY) {
1625 				skd_complete_internal(skdev,
1626 						      skcomp, skerr, skspcl);
1627 				return;
1628 			}
1629 		}
1630 		break;
1631 
1632 	case SKD_ID_FIT_MSG:
1633 		/*
1634 		 * These id's should never appear in a completion record.
1635 		 */
1636 		break;
1637 
1638 	default:
1639 		/*
1640 		 * These id's should never appear anywhere;
1641 		 */
1642 		break;
1643 	}
1644 
1645 	/*
1646 	 * If we get here it is a bad or stale id.
1647 	 */
1648 }
1649 
skd_reset_skcomp(struct skd_device * skdev)1650 static void skd_reset_skcomp(struct skd_device *skdev)
1651 {
1652 	memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1653 
1654 	skdev->skcomp_ix = 0;
1655 	skdev->skcomp_cycle = 1;
1656 }
1657 
1658 /*
1659  *****************************************************************************
1660  * INTERRUPTS
1661  *****************************************************************************
1662  */
skd_completion_worker(struct work_struct * work)1663 static void skd_completion_worker(struct work_struct *work)
1664 {
1665 	struct skd_device *skdev =
1666 		container_of(work, struct skd_device, completion_worker);
1667 	unsigned long flags;
1668 	int flush_enqueued = 0;
1669 
1670 	spin_lock_irqsave(&skdev->lock, flags);
1671 
1672 	/*
1673 	 * pass in limit=0, which means no limit..
1674 	 * process everything in compq
1675 	 */
1676 	skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1677 	schedule_work(&skdev->start_queue);
1678 
1679 	spin_unlock_irqrestore(&skdev->lock, flags);
1680 }
1681 
1682 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1683 
1684 static irqreturn_t
skd_isr(int irq,void * ptr)1685 skd_isr(int irq, void *ptr)
1686 {
1687 	struct skd_device *skdev = ptr;
1688 	u32 intstat;
1689 	u32 ack;
1690 	int rc = 0;
1691 	int deferred = 0;
1692 	int flush_enqueued = 0;
1693 
1694 	spin_lock(&skdev->lock);
1695 
1696 	for (;; ) {
1697 		intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1698 
1699 		ack = FIT_INT_DEF_MASK;
1700 		ack &= intstat;
1701 
1702 		dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1703 			ack);
1704 
1705 		/* As long as there is an int pending on device, keep
1706 		 * running loop.  When none, get out, but if we've never
1707 		 * done any processing, call completion handler?
1708 		 */
1709 		if (ack == 0) {
1710 			/* No interrupts on device, but run the completion
1711 			 * processor anyway?
1712 			 */
1713 			if (rc == 0)
1714 				if (likely (skdev->state
1715 					== SKD_DRVR_STATE_ONLINE))
1716 					deferred = 1;
1717 			break;
1718 		}
1719 
1720 		rc = IRQ_HANDLED;
1721 
1722 		SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1723 
1724 		if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1725 			   (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1726 			if (intstat & FIT_ISH_COMPLETION_POSTED) {
1727 				/*
1728 				 * If we have already deferred completion
1729 				 * processing, don't bother running it again
1730 				 */
1731 				if (deferred == 0)
1732 					deferred =
1733 						skd_isr_completion_posted(skdev,
1734 						skd_isr_comp_limit, &flush_enqueued);
1735 			}
1736 
1737 			if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1738 				skd_isr_fwstate(skdev);
1739 				if (skdev->state == SKD_DRVR_STATE_FAULT ||
1740 				    skdev->state ==
1741 				    SKD_DRVR_STATE_DISAPPEARED) {
1742 					spin_unlock(&skdev->lock);
1743 					return rc;
1744 				}
1745 			}
1746 
1747 			if (intstat & FIT_ISH_MSG_FROM_DEV)
1748 				skd_isr_msg_from_dev(skdev);
1749 		}
1750 	}
1751 
1752 	if (unlikely(flush_enqueued))
1753 		schedule_work(&skdev->start_queue);
1754 
1755 	if (deferred)
1756 		schedule_work(&skdev->completion_worker);
1757 	else if (!flush_enqueued)
1758 		schedule_work(&skdev->start_queue);
1759 
1760 	spin_unlock(&skdev->lock);
1761 
1762 	return rc;
1763 }
1764 
skd_drive_fault(struct skd_device * skdev)1765 static void skd_drive_fault(struct skd_device *skdev)
1766 {
1767 	skdev->state = SKD_DRVR_STATE_FAULT;
1768 	dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1769 }
1770 
skd_drive_disappeared(struct skd_device * skdev)1771 static void skd_drive_disappeared(struct skd_device *skdev)
1772 {
1773 	skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1774 	dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1775 }
1776 
skd_isr_fwstate(struct skd_device * skdev)1777 static void skd_isr_fwstate(struct skd_device *skdev)
1778 {
1779 	u32 sense;
1780 	u32 state;
1781 	u32 mtd;
1782 	int prev_driver_state = skdev->state;
1783 
1784 	sense = SKD_READL(skdev, FIT_STATUS);
1785 	state = sense & FIT_SR_DRIVE_STATE_MASK;
1786 
1787 	dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1788 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1789 		skd_drive_state_to_str(state), state);
1790 
1791 	skdev->drive_state = state;
1792 
1793 	switch (skdev->drive_state) {
1794 	case FIT_SR_DRIVE_INIT:
1795 		if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1796 			skd_disable_interrupts(skdev);
1797 			break;
1798 		}
1799 		if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1800 			skd_recover_requests(skdev);
1801 		if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1802 			skdev->timer_countdown = SKD_STARTING_TIMO;
1803 			skdev->state = SKD_DRVR_STATE_STARTING;
1804 			skd_soft_reset(skdev);
1805 			break;
1806 		}
1807 		mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1808 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1809 		skdev->last_mtd = mtd;
1810 		break;
1811 
1812 	case FIT_SR_DRIVE_ONLINE:
1813 		skdev->cur_max_queue_depth = skd_max_queue_depth;
1814 		if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1815 			skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1816 
1817 		skdev->queue_low_water_mark =
1818 			skdev->cur_max_queue_depth * 2 / 3 + 1;
1819 		if (skdev->queue_low_water_mark < 1)
1820 			skdev->queue_low_water_mark = 1;
1821 		dev_info(&skdev->pdev->dev,
1822 			 "Queue depth limit=%d dev=%d lowat=%d\n",
1823 			 skdev->cur_max_queue_depth,
1824 			 skdev->dev_max_queue_depth,
1825 			 skdev->queue_low_water_mark);
1826 
1827 		skd_refresh_device_data(skdev);
1828 		break;
1829 
1830 	case FIT_SR_DRIVE_BUSY:
1831 		skdev->state = SKD_DRVR_STATE_BUSY;
1832 		skdev->timer_countdown = SKD_BUSY_TIMO;
1833 		skd_quiesce_dev(skdev);
1834 		break;
1835 	case FIT_SR_DRIVE_BUSY_SANITIZE:
1836 		/* set timer for 3 seconds, we'll abort any unfinished
1837 		 * commands after that expires
1838 		 */
1839 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1840 		skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1841 		schedule_work(&skdev->start_queue);
1842 		break;
1843 	case FIT_SR_DRIVE_BUSY_ERASE:
1844 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1845 		skdev->timer_countdown = SKD_BUSY_TIMO;
1846 		break;
1847 	case FIT_SR_DRIVE_OFFLINE:
1848 		skdev->state = SKD_DRVR_STATE_IDLE;
1849 		break;
1850 	case FIT_SR_DRIVE_SOFT_RESET:
1851 		switch (skdev->state) {
1852 		case SKD_DRVR_STATE_STARTING:
1853 		case SKD_DRVR_STATE_RESTARTING:
1854 			/* Expected by a caller of skd_soft_reset() */
1855 			break;
1856 		default:
1857 			skdev->state = SKD_DRVR_STATE_RESTARTING;
1858 			break;
1859 		}
1860 		break;
1861 	case FIT_SR_DRIVE_FW_BOOTING:
1862 		dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1863 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1864 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1865 		break;
1866 
1867 	case FIT_SR_DRIVE_DEGRADED:
1868 	case FIT_SR_PCIE_LINK_DOWN:
1869 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1870 		break;
1871 
1872 	case FIT_SR_DRIVE_FAULT:
1873 		skd_drive_fault(skdev);
1874 		skd_recover_requests(skdev);
1875 		schedule_work(&skdev->start_queue);
1876 		break;
1877 
1878 	/* PCIe bus returned all Fs? */
1879 	case 0xFF:
1880 		dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1881 			 sense);
1882 		skd_drive_disappeared(skdev);
1883 		skd_recover_requests(skdev);
1884 		schedule_work(&skdev->start_queue);
1885 		break;
1886 	default:
1887 		/*
1888 		 * Uknown FW State. Wait for a state we recognize.
1889 		 */
1890 		break;
1891 	}
1892 	dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1893 		skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1894 		skd_skdev_state_to_str(skdev->state), skdev->state);
1895 }
1896 
skd_recover_request(struct request * req,void * data,bool reserved)1897 static bool skd_recover_request(struct request *req, void *data, bool reserved)
1898 {
1899 	struct skd_device *const skdev = data;
1900 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1901 
1902 	if (skreq->state != SKD_REQ_STATE_BUSY)
1903 		return true;
1904 
1905 	skd_log_skreq(skdev, skreq, "recover");
1906 
1907 	/* Release DMA resources for the request. */
1908 	if (skreq->n_sg > 0)
1909 		skd_postop_sg_list(skdev, skreq);
1910 
1911 	skreq->state = SKD_REQ_STATE_IDLE;
1912 	skreq->status = BLK_STS_IOERR;
1913 	blk_mq_complete_request(req);
1914 	return true;
1915 }
1916 
skd_recover_requests(struct skd_device * skdev)1917 static void skd_recover_requests(struct skd_device *skdev)
1918 {
1919 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1920 }
1921 
skd_isr_msg_from_dev(struct skd_device * skdev)1922 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1923 {
1924 	u32 mfd;
1925 	u32 mtd;
1926 	u32 data;
1927 
1928 	mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1929 
1930 	dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1931 		skdev->last_mtd);
1932 
1933 	/* ignore any mtd that is an ack for something we didn't send */
1934 	if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1935 		return;
1936 
1937 	switch (FIT_MXD_TYPE(mfd)) {
1938 	case FIT_MTD_FITFW_INIT:
1939 		skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1940 
1941 		if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1942 			dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1943 			dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1944 				skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1945 			dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1946 			skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1947 			skd_soft_reset(skdev);
1948 			break;
1949 		}
1950 		mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1951 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952 		skdev->last_mtd = mtd;
1953 		break;
1954 
1955 	case FIT_MTD_GET_CMDQ_DEPTH:
1956 		skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1957 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1958 				   SKD_N_COMPLETION_ENTRY);
1959 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1960 		skdev->last_mtd = mtd;
1961 		break;
1962 
1963 	case FIT_MTD_SET_COMPQ_DEPTH:
1964 		SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1965 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1966 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1967 		skdev->last_mtd = mtd;
1968 		break;
1969 
1970 	case FIT_MTD_SET_COMPQ_ADDR:
1971 		skd_reset_skcomp(skdev);
1972 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1973 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974 		skdev->last_mtd = mtd;
1975 		break;
1976 
1977 	case FIT_MTD_CMD_LOG_HOST_ID:
1978 		/* hardware interface overflows in y2106 */
1979 		skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1980 		data = skdev->connect_time_stamp & 0xFFFF;
1981 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1982 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1983 		skdev->last_mtd = mtd;
1984 		break;
1985 
1986 	case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1987 		skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1988 		data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1989 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1990 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1991 		skdev->last_mtd = mtd;
1992 		break;
1993 
1994 	case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1995 		skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1996 		mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1997 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1998 		skdev->last_mtd = mtd;
1999 
2000 		dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
2001 			skdev->connect_time_stamp, skdev->drive_jiffies);
2002 		break;
2003 
2004 	case FIT_MTD_ARM_QUEUE:
2005 		skdev->last_mtd = 0;
2006 		/*
2007 		 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2008 		 */
2009 		break;
2010 
2011 	default:
2012 		break;
2013 	}
2014 }
2015 
skd_disable_interrupts(struct skd_device * skdev)2016 static void skd_disable_interrupts(struct skd_device *skdev)
2017 {
2018 	u32 sense;
2019 
2020 	sense = SKD_READL(skdev, FIT_CONTROL);
2021 	sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2022 	SKD_WRITEL(skdev, sense, FIT_CONTROL);
2023 	dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2024 
2025 	/* Note that the 1s is written. A 1-bit means
2026 	 * disable, a 0 means enable.
2027 	 */
2028 	SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2029 }
2030 
skd_enable_interrupts(struct skd_device * skdev)2031 static void skd_enable_interrupts(struct skd_device *skdev)
2032 {
2033 	u32 val;
2034 
2035 	/* unmask interrupts first */
2036 	val = FIT_ISH_FW_STATE_CHANGE +
2037 	      FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2038 
2039 	/* Note that the compliment of mask is written. A 1-bit means
2040 	 * disable, a 0 means enable. */
2041 	SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2042 	dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2043 
2044 	val = SKD_READL(skdev, FIT_CONTROL);
2045 	val |= FIT_CR_ENABLE_INTERRUPTS;
2046 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2047 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2048 }
2049 
2050 /*
2051  *****************************************************************************
2052  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2053  *****************************************************************************
2054  */
2055 
skd_soft_reset(struct skd_device * skdev)2056 static void skd_soft_reset(struct skd_device *skdev)
2057 {
2058 	u32 val;
2059 
2060 	val = SKD_READL(skdev, FIT_CONTROL);
2061 	val |= (FIT_CR_SOFT_RESET);
2062 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2063 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2064 }
2065 
skd_start_device(struct skd_device * skdev)2066 static void skd_start_device(struct skd_device *skdev)
2067 {
2068 	unsigned long flags;
2069 	u32 sense;
2070 	u32 state;
2071 
2072 	spin_lock_irqsave(&skdev->lock, flags);
2073 
2074 	/* ack all ghost interrupts */
2075 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2076 
2077 	sense = SKD_READL(skdev, FIT_STATUS);
2078 
2079 	dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2080 
2081 	state = sense & FIT_SR_DRIVE_STATE_MASK;
2082 	skdev->drive_state = state;
2083 	skdev->last_mtd = 0;
2084 
2085 	skdev->state = SKD_DRVR_STATE_STARTING;
2086 	skdev->timer_countdown = SKD_STARTING_TIMO;
2087 
2088 	skd_enable_interrupts(skdev);
2089 
2090 	switch (skdev->drive_state) {
2091 	case FIT_SR_DRIVE_OFFLINE:
2092 		dev_err(&skdev->pdev->dev, "Drive offline...\n");
2093 		break;
2094 
2095 	case FIT_SR_DRIVE_FW_BOOTING:
2096 		dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2097 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2098 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2099 		break;
2100 
2101 	case FIT_SR_DRIVE_BUSY_SANITIZE:
2102 		dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2103 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2104 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2105 		break;
2106 
2107 	case FIT_SR_DRIVE_BUSY_ERASE:
2108 		dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2109 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2110 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2111 		break;
2112 
2113 	case FIT_SR_DRIVE_INIT:
2114 	case FIT_SR_DRIVE_ONLINE:
2115 		skd_soft_reset(skdev);
2116 		break;
2117 
2118 	case FIT_SR_DRIVE_BUSY:
2119 		dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2120 		skdev->state = SKD_DRVR_STATE_BUSY;
2121 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2122 		break;
2123 
2124 	case FIT_SR_DRIVE_SOFT_RESET:
2125 		dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2126 		break;
2127 
2128 	case FIT_SR_DRIVE_FAULT:
2129 		/* Fault state is bad...soft reset won't do it...
2130 		 * Hard reset, maybe, but does it work on device?
2131 		 * For now, just fault so the system doesn't hang.
2132 		 */
2133 		skd_drive_fault(skdev);
2134 		/*start the queue so we can respond with error to requests */
2135 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2136 		schedule_work(&skdev->start_queue);
2137 		skdev->gendisk_on = -1;
2138 		wake_up_interruptible(&skdev->waitq);
2139 		break;
2140 
2141 	case 0xFF:
2142 		/* Most likely the device isn't there or isn't responding
2143 		 * to the BAR1 addresses. */
2144 		skd_drive_disappeared(skdev);
2145 		/*start the queue so we can respond with error to requests */
2146 		dev_dbg(&skdev->pdev->dev,
2147 			"starting queue to error-out reqs\n");
2148 		schedule_work(&skdev->start_queue);
2149 		skdev->gendisk_on = -1;
2150 		wake_up_interruptible(&skdev->waitq);
2151 		break;
2152 
2153 	default:
2154 		dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2155 			skdev->drive_state);
2156 		break;
2157 	}
2158 
2159 	state = SKD_READL(skdev, FIT_CONTROL);
2160 	dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2161 
2162 	state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2163 	dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2164 
2165 	state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2166 	dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2167 
2168 	state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2169 	dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2170 
2171 	state = SKD_READL(skdev, FIT_HW_VERSION);
2172 	dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2173 
2174 	spin_unlock_irqrestore(&skdev->lock, flags);
2175 }
2176 
skd_stop_device(struct skd_device * skdev)2177 static void skd_stop_device(struct skd_device *skdev)
2178 {
2179 	unsigned long flags;
2180 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
2181 	u32 dev_state;
2182 	int i;
2183 
2184 	spin_lock_irqsave(&skdev->lock, flags);
2185 
2186 	if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2187 		dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2188 		goto stop_out;
2189 	}
2190 
2191 	if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2192 		dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2193 		goto stop_out;
2194 	}
2195 
2196 	skdev->state = SKD_DRVR_STATE_SYNCING;
2197 	skdev->sync_done = 0;
2198 
2199 	skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2200 
2201 	spin_unlock_irqrestore(&skdev->lock, flags);
2202 
2203 	wait_event_interruptible_timeout(skdev->waitq,
2204 					 (skdev->sync_done), (10 * HZ));
2205 
2206 	spin_lock_irqsave(&skdev->lock, flags);
2207 
2208 	switch (skdev->sync_done) {
2209 	case 0:
2210 		dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2211 		break;
2212 	case 1:
2213 		dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2214 		break;
2215 	default:
2216 		dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2217 	}
2218 
2219 stop_out:
2220 	skdev->state = SKD_DRVR_STATE_STOPPING;
2221 	spin_unlock_irqrestore(&skdev->lock, flags);
2222 
2223 	skd_kill_timer(skdev);
2224 
2225 	spin_lock_irqsave(&skdev->lock, flags);
2226 	skd_disable_interrupts(skdev);
2227 
2228 	/* ensure all ints on device are cleared */
2229 	/* soft reset the device to unload with a clean slate */
2230 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2231 	SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2232 
2233 	spin_unlock_irqrestore(&skdev->lock, flags);
2234 
2235 	/* poll every 100ms, 1 second timeout */
2236 	for (i = 0; i < 10; i++) {
2237 		dev_state =
2238 			SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2239 		if (dev_state == FIT_SR_DRIVE_INIT)
2240 			break;
2241 		set_current_state(TASK_INTERRUPTIBLE);
2242 		schedule_timeout(msecs_to_jiffies(100));
2243 	}
2244 
2245 	if (dev_state != FIT_SR_DRIVE_INIT)
2246 		dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2247 			dev_state);
2248 }
2249 
2250 /* assume spinlock is held */
skd_restart_device(struct skd_device * skdev)2251 static void skd_restart_device(struct skd_device *skdev)
2252 {
2253 	u32 state;
2254 
2255 	/* ack all ghost interrupts */
2256 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2257 
2258 	state = SKD_READL(skdev, FIT_STATUS);
2259 
2260 	dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2261 
2262 	state &= FIT_SR_DRIVE_STATE_MASK;
2263 	skdev->drive_state = state;
2264 	skdev->last_mtd = 0;
2265 
2266 	skdev->state = SKD_DRVR_STATE_RESTARTING;
2267 	skdev->timer_countdown = SKD_RESTARTING_TIMO;
2268 
2269 	skd_soft_reset(skdev);
2270 }
2271 
2272 /* assume spinlock is held */
skd_quiesce_dev(struct skd_device * skdev)2273 static int skd_quiesce_dev(struct skd_device *skdev)
2274 {
2275 	int rc = 0;
2276 
2277 	switch (skdev->state) {
2278 	case SKD_DRVR_STATE_BUSY:
2279 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2280 		dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2281 		blk_mq_stop_hw_queues(skdev->queue);
2282 		break;
2283 	case SKD_DRVR_STATE_ONLINE:
2284 	case SKD_DRVR_STATE_STOPPING:
2285 	case SKD_DRVR_STATE_SYNCING:
2286 	case SKD_DRVR_STATE_PAUSING:
2287 	case SKD_DRVR_STATE_PAUSED:
2288 	case SKD_DRVR_STATE_STARTING:
2289 	case SKD_DRVR_STATE_RESTARTING:
2290 	case SKD_DRVR_STATE_RESUMING:
2291 	default:
2292 		rc = -EINVAL;
2293 		dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2294 			skdev->state);
2295 	}
2296 	return rc;
2297 }
2298 
2299 /* assume spinlock is held */
skd_unquiesce_dev(struct skd_device * skdev)2300 static int skd_unquiesce_dev(struct skd_device *skdev)
2301 {
2302 	int prev_driver_state = skdev->state;
2303 
2304 	skd_log_skdev(skdev, "unquiesce");
2305 	if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2306 		dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2307 		return 0;
2308 	}
2309 	if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2310 		/*
2311 		 * If there has been an state change to other than
2312 		 * ONLINE, we will rely on controller state change
2313 		 * to come back online and restart the queue.
2314 		 * The BUSY state means that driver is ready to
2315 		 * continue normal processing but waiting for controller
2316 		 * to become available.
2317 		 */
2318 		skdev->state = SKD_DRVR_STATE_BUSY;
2319 		dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2320 		return 0;
2321 	}
2322 
2323 	/*
2324 	 * Drive has just come online, driver is either in startup,
2325 	 * paused performing a task, or bust waiting for hardware.
2326 	 */
2327 	switch (skdev->state) {
2328 	case SKD_DRVR_STATE_PAUSED:
2329 	case SKD_DRVR_STATE_BUSY:
2330 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2331 	case SKD_DRVR_STATE_BUSY_ERASE:
2332 	case SKD_DRVR_STATE_STARTING:
2333 	case SKD_DRVR_STATE_RESTARTING:
2334 	case SKD_DRVR_STATE_FAULT:
2335 	case SKD_DRVR_STATE_IDLE:
2336 	case SKD_DRVR_STATE_LOAD:
2337 		skdev->state = SKD_DRVR_STATE_ONLINE;
2338 		dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2339 			skd_skdev_state_to_str(prev_driver_state),
2340 			prev_driver_state, skd_skdev_state_to_str(skdev->state),
2341 			skdev->state);
2342 		dev_dbg(&skdev->pdev->dev,
2343 			"**** device ONLINE...starting block queue\n");
2344 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2345 		dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2346 		schedule_work(&skdev->start_queue);
2347 		skdev->gendisk_on = 1;
2348 		wake_up_interruptible(&skdev->waitq);
2349 		break;
2350 
2351 	case SKD_DRVR_STATE_DISAPPEARED:
2352 	default:
2353 		dev_dbg(&skdev->pdev->dev,
2354 			"**** driver state %d, not implemented\n",
2355 			skdev->state);
2356 		return -EBUSY;
2357 	}
2358 	return 0;
2359 }
2360 
2361 /*
2362  *****************************************************************************
2363  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2364  *****************************************************************************
2365  */
2366 
skd_reserved_isr(int irq,void * skd_host_data)2367 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2368 {
2369 	struct skd_device *skdev = skd_host_data;
2370 	unsigned long flags;
2371 
2372 	spin_lock_irqsave(&skdev->lock, flags);
2373 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2374 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2375 	dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2376 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2377 	SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2378 	spin_unlock_irqrestore(&skdev->lock, flags);
2379 	return IRQ_HANDLED;
2380 }
2381 
skd_statec_isr(int irq,void * skd_host_data)2382 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2383 {
2384 	struct skd_device *skdev = skd_host_data;
2385 	unsigned long flags;
2386 
2387 	spin_lock_irqsave(&skdev->lock, flags);
2388 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2389 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2390 	SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2391 	skd_isr_fwstate(skdev);
2392 	spin_unlock_irqrestore(&skdev->lock, flags);
2393 	return IRQ_HANDLED;
2394 }
2395 
skd_comp_q(int irq,void * skd_host_data)2396 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2397 {
2398 	struct skd_device *skdev = skd_host_data;
2399 	unsigned long flags;
2400 	int flush_enqueued = 0;
2401 	int deferred;
2402 
2403 	spin_lock_irqsave(&skdev->lock, flags);
2404 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2405 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2406 	SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2407 	deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2408 						&flush_enqueued);
2409 	if (flush_enqueued)
2410 		schedule_work(&skdev->start_queue);
2411 
2412 	if (deferred)
2413 		schedule_work(&skdev->completion_worker);
2414 	else if (!flush_enqueued)
2415 		schedule_work(&skdev->start_queue);
2416 
2417 	spin_unlock_irqrestore(&skdev->lock, flags);
2418 
2419 	return IRQ_HANDLED;
2420 }
2421 
skd_msg_isr(int irq,void * skd_host_data)2422 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2423 {
2424 	struct skd_device *skdev = skd_host_data;
2425 	unsigned long flags;
2426 
2427 	spin_lock_irqsave(&skdev->lock, flags);
2428 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2429 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2430 	SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2431 	skd_isr_msg_from_dev(skdev);
2432 	spin_unlock_irqrestore(&skdev->lock, flags);
2433 	return IRQ_HANDLED;
2434 }
2435 
skd_qfull_isr(int irq,void * skd_host_data)2436 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2437 {
2438 	struct skd_device *skdev = skd_host_data;
2439 	unsigned long flags;
2440 
2441 	spin_lock_irqsave(&skdev->lock, flags);
2442 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2443 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2444 	SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2445 	spin_unlock_irqrestore(&skdev->lock, flags);
2446 	return IRQ_HANDLED;
2447 }
2448 
2449 /*
2450  *****************************************************************************
2451  * PCIe MSI/MSI-X SETUP
2452  *****************************************************************************
2453  */
2454 
2455 struct skd_msix_entry {
2456 	char isr_name[30];
2457 };
2458 
2459 struct skd_init_msix_entry {
2460 	const char *name;
2461 	irq_handler_t handler;
2462 };
2463 
2464 #define SKD_MAX_MSIX_COUNT              13
2465 #define SKD_MIN_MSIX_COUNT              7
2466 #define SKD_BASE_MSIX_IRQ               4
2467 
2468 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2469 	{ "(DMA 0)",	    skd_reserved_isr },
2470 	{ "(DMA 1)",	    skd_reserved_isr },
2471 	{ "(DMA 2)",	    skd_reserved_isr },
2472 	{ "(DMA 3)",	    skd_reserved_isr },
2473 	{ "(State Change)", skd_statec_isr   },
2474 	{ "(COMPL_Q)",	    skd_comp_q	     },
2475 	{ "(MSG)",	    skd_msg_isr	     },
2476 	{ "(Reserved)",	    skd_reserved_isr },
2477 	{ "(Reserved)",	    skd_reserved_isr },
2478 	{ "(Queue Full 0)", skd_qfull_isr    },
2479 	{ "(Queue Full 1)", skd_qfull_isr    },
2480 	{ "(Queue Full 2)", skd_qfull_isr    },
2481 	{ "(Queue Full 3)", skd_qfull_isr    },
2482 };
2483 
skd_acquire_msix(struct skd_device * skdev)2484 static int skd_acquire_msix(struct skd_device *skdev)
2485 {
2486 	int i, rc;
2487 	struct pci_dev *pdev = skdev->pdev;
2488 
2489 	rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2490 			PCI_IRQ_MSIX);
2491 	if (rc < 0) {
2492 		dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2493 		goto out;
2494 	}
2495 
2496 	skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2497 			sizeof(struct skd_msix_entry), GFP_KERNEL);
2498 	if (!skdev->msix_entries) {
2499 		rc = -ENOMEM;
2500 		dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2501 		goto out;
2502 	}
2503 
2504 	/* Enable MSI-X vectors for the base queue */
2505 	for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2506 		struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2507 
2508 		snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2509 			 "%s%d-msix %s", DRV_NAME, skdev->devno,
2510 			 msix_entries[i].name);
2511 
2512 		rc = devm_request_irq(&skdev->pdev->dev,
2513 				pci_irq_vector(skdev->pdev, i),
2514 				msix_entries[i].handler, 0,
2515 				qentry->isr_name, skdev);
2516 		if (rc) {
2517 			dev_err(&skdev->pdev->dev,
2518 				"Unable to register(%d) MSI-X handler %d: %s\n",
2519 				rc, i, qentry->isr_name);
2520 			goto msix_out;
2521 		}
2522 	}
2523 
2524 	dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2525 		SKD_MAX_MSIX_COUNT);
2526 	return 0;
2527 
2528 msix_out:
2529 	while (--i >= 0)
2530 		devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2531 out:
2532 	kfree(skdev->msix_entries);
2533 	skdev->msix_entries = NULL;
2534 	return rc;
2535 }
2536 
skd_acquire_irq(struct skd_device * skdev)2537 static int skd_acquire_irq(struct skd_device *skdev)
2538 {
2539 	struct pci_dev *pdev = skdev->pdev;
2540 	unsigned int irq_flag = PCI_IRQ_LEGACY;
2541 	int rc;
2542 
2543 	if (skd_isr_type == SKD_IRQ_MSIX) {
2544 		rc = skd_acquire_msix(skdev);
2545 		if (!rc)
2546 			return 0;
2547 
2548 		dev_err(&skdev->pdev->dev,
2549 			"failed to enable MSI-X, re-trying with MSI %d\n", rc);
2550 	}
2551 
2552 	snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2553 			skdev->devno);
2554 
2555 	if (skd_isr_type != SKD_IRQ_LEGACY)
2556 		irq_flag |= PCI_IRQ_MSI;
2557 	rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2558 	if (rc < 0) {
2559 		dev_err(&skdev->pdev->dev,
2560 			"failed to allocate the MSI interrupt %d\n", rc);
2561 		return rc;
2562 	}
2563 
2564 	rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2565 			pdev->msi_enabled ? 0 : IRQF_SHARED,
2566 			skdev->isr_name, skdev);
2567 	if (rc) {
2568 		pci_free_irq_vectors(pdev);
2569 		dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2570 			rc);
2571 		return rc;
2572 	}
2573 
2574 	return 0;
2575 }
2576 
skd_release_irq(struct skd_device * skdev)2577 static void skd_release_irq(struct skd_device *skdev)
2578 {
2579 	struct pci_dev *pdev = skdev->pdev;
2580 
2581 	if (skdev->msix_entries) {
2582 		int i;
2583 
2584 		for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2585 			devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2586 					skdev);
2587 		}
2588 
2589 		kfree(skdev->msix_entries);
2590 		skdev->msix_entries = NULL;
2591 	} else {
2592 		devm_free_irq(&pdev->dev, pdev->irq, skdev);
2593 	}
2594 
2595 	pci_free_irq_vectors(pdev);
2596 }
2597 
2598 /*
2599  *****************************************************************************
2600  * CONSTRUCT
2601  *****************************************************************************
2602  */
2603 
skd_alloc_dma(struct skd_device * skdev,struct kmem_cache * s,dma_addr_t * dma_handle,gfp_t gfp,enum dma_data_direction dir)2604 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2605 			   dma_addr_t *dma_handle, gfp_t gfp,
2606 			   enum dma_data_direction dir)
2607 {
2608 	struct device *dev = &skdev->pdev->dev;
2609 	void *buf;
2610 
2611 	buf = kmem_cache_alloc(s, gfp);
2612 	if (!buf)
2613 		return NULL;
2614 	*dma_handle = dma_map_single(dev, buf,
2615 				     kmem_cache_size(s), dir);
2616 	if (dma_mapping_error(dev, *dma_handle)) {
2617 		kmem_cache_free(s, buf);
2618 		buf = NULL;
2619 	}
2620 	return buf;
2621 }
2622 
skd_free_dma(struct skd_device * skdev,struct kmem_cache * s,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)2623 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2624 			 void *vaddr, dma_addr_t dma_handle,
2625 			 enum dma_data_direction dir)
2626 {
2627 	if (!vaddr)
2628 		return;
2629 
2630 	dma_unmap_single(&skdev->pdev->dev, dma_handle,
2631 			 kmem_cache_size(s), dir);
2632 	kmem_cache_free(s, vaddr);
2633 }
2634 
skd_cons_skcomp(struct skd_device * skdev)2635 static int skd_cons_skcomp(struct skd_device *skdev)
2636 {
2637 	int rc = 0;
2638 	struct fit_completion_entry_v1 *skcomp;
2639 
2640 	dev_dbg(&skdev->pdev->dev,
2641 		"comp pci_alloc, total bytes %zd entries %d\n",
2642 		SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2643 
2644 	skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2645 				    &skdev->cq_dma_address, GFP_KERNEL);
2646 
2647 	if (skcomp == NULL) {
2648 		rc = -ENOMEM;
2649 		goto err_out;
2650 	}
2651 
2652 	skdev->skcomp_table = skcomp;
2653 	skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2654 							   sizeof(*skcomp) *
2655 							   SKD_N_COMPLETION_ENTRY);
2656 
2657 err_out:
2658 	return rc;
2659 }
2660 
skd_cons_skmsg(struct skd_device * skdev)2661 static int skd_cons_skmsg(struct skd_device *skdev)
2662 {
2663 	int rc = 0;
2664 	u32 i;
2665 
2666 	dev_dbg(&skdev->pdev->dev,
2667 		"skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2668 		sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2669 		sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2670 
2671 	skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2672 				     sizeof(struct skd_fitmsg_context),
2673 				     GFP_KERNEL);
2674 	if (skdev->skmsg_table == NULL) {
2675 		rc = -ENOMEM;
2676 		goto err_out;
2677 	}
2678 
2679 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2680 		struct skd_fitmsg_context *skmsg;
2681 
2682 		skmsg = &skdev->skmsg_table[i];
2683 
2684 		skmsg->id = i + SKD_ID_FIT_MSG;
2685 
2686 		skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2687 						    SKD_N_FITMSG_BYTES,
2688 						    &skmsg->mb_dma_address,
2689 						    GFP_KERNEL);
2690 		if (skmsg->msg_buf == NULL) {
2691 			rc = -ENOMEM;
2692 			goto err_out;
2693 		}
2694 
2695 		WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2696 		     (FIT_QCMD_ALIGN - 1),
2697 		     "not aligned: msg_buf %p mb_dma_address %pad\n",
2698 		     skmsg->msg_buf, &skmsg->mb_dma_address);
2699 	}
2700 
2701 err_out:
2702 	return rc;
2703 }
2704 
skd_cons_sg_list(struct skd_device * skdev,u32 n_sg,dma_addr_t * ret_dma_addr)2705 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2706 						  u32 n_sg,
2707 						  dma_addr_t *ret_dma_addr)
2708 {
2709 	struct fit_sg_descriptor *sg_list;
2710 
2711 	sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2712 				GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2713 
2714 	if (sg_list != NULL) {
2715 		uint64_t dma_address = *ret_dma_addr;
2716 		u32 i;
2717 
2718 		for (i = 0; i < n_sg - 1; i++) {
2719 			uint64_t ndp_off;
2720 			ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2721 
2722 			sg_list[i].next_desc_ptr = dma_address + ndp_off;
2723 		}
2724 		sg_list[i].next_desc_ptr = 0LL;
2725 	}
2726 
2727 	return sg_list;
2728 }
2729 
skd_free_sg_list(struct skd_device * skdev,struct fit_sg_descriptor * sg_list,dma_addr_t dma_addr)2730 static void skd_free_sg_list(struct skd_device *skdev,
2731 			     struct fit_sg_descriptor *sg_list,
2732 			     dma_addr_t dma_addr)
2733 {
2734 	if (WARN_ON_ONCE(!sg_list))
2735 		return;
2736 
2737 	skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2738 		     DMA_TO_DEVICE);
2739 }
2740 
skd_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2741 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2742 			    unsigned int hctx_idx, unsigned int numa_node)
2743 {
2744 	struct skd_device *skdev = set->driver_data;
2745 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2746 
2747 	skreq->state = SKD_REQ_STATE_IDLE;
2748 	skreq->sg = (void *)(skreq + 1);
2749 	sg_init_table(skreq->sg, skd_sgs_per_request);
2750 	skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2751 					    &skreq->sksg_dma_address);
2752 
2753 	return skreq->sksg_list ? 0 : -ENOMEM;
2754 }
2755 
skd_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)2756 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2757 			     unsigned int hctx_idx)
2758 {
2759 	struct skd_device *skdev = set->driver_data;
2760 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2761 
2762 	skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2763 }
2764 
skd_cons_sksb(struct skd_device * skdev)2765 static int skd_cons_sksb(struct skd_device *skdev)
2766 {
2767 	int rc = 0;
2768 	struct skd_special_context *skspcl;
2769 
2770 	skspcl = &skdev->internal_skspcl;
2771 
2772 	skspcl->req.id = 0 + SKD_ID_INTERNAL;
2773 	skspcl->req.state = SKD_REQ_STATE_IDLE;
2774 
2775 	skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2776 					 &skspcl->db_dma_address,
2777 					 GFP_DMA | __GFP_ZERO,
2778 					 DMA_BIDIRECTIONAL);
2779 	if (skspcl->data_buf == NULL) {
2780 		rc = -ENOMEM;
2781 		goto err_out;
2782 	}
2783 
2784 	skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2785 					&skspcl->mb_dma_address,
2786 					GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2787 	if (skspcl->msg_buf == NULL) {
2788 		rc = -ENOMEM;
2789 		goto err_out;
2790 	}
2791 
2792 	skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2793 						 &skspcl->req.sksg_dma_address);
2794 	if (skspcl->req.sksg_list == NULL) {
2795 		rc = -ENOMEM;
2796 		goto err_out;
2797 	}
2798 
2799 	if (!skd_format_internal_skspcl(skdev)) {
2800 		rc = -EINVAL;
2801 		goto err_out;
2802 	}
2803 
2804 err_out:
2805 	return rc;
2806 }
2807 
2808 static const struct blk_mq_ops skd_mq_ops = {
2809 	.queue_rq	= skd_mq_queue_rq,
2810 	.complete	= skd_complete_rq,
2811 	.timeout	= skd_timed_out,
2812 	.init_request	= skd_init_request,
2813 	.exit_request	= skd_exit_request,
2814 };
2815 
skd_cons_disk(struct skd_device * skdev)2816 static int skd_cons_disk(struct skd_device *skdev)
2817 {
2818 	int rc = 0;
2819 	struct gendisk *disk;
2820 	struct request_queue *q;
2821 	unsigned long flags;
2822 
2823 	disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2824 	if (!disk) {
2825 		rc = -ENOMEM;
2826 		goto err_out;
2827 	}
2828 
2829 	skdev->disk = disk;
2830 	sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2831 
2832 	disk->major = skdev->major;
2833 	disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2834 	disk->fops = &skd_blockdev_ops;
2835 	disk->private_data = skdev;
2836 
2837 	memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2838 	skdev->tag_set.ops = &skd_mq_ops;
2839 	skdev->tag_set.nr_hw_queues = 1;
2840 	skdev->tag_set.queue_depth = skd_max_queue_depth;
2841 	skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2842 		skdev->sgs_per_request * sizeof(struct scatterlist);
2843 	skdev->tag_set.numa_node = NUMA_NO_NODE;
2844 	skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2845 		BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2846 	skdev->tag_set.driver_data = skdev;
2847 	rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2848 	if (rc)
2849 		goto err_out;
2850 	q = blk_mq_init_queue(&skdev->tag_set);
2851 	if (IS_ERR(q)) {
2852 		blk_mq_free_tag_set(&skdev->tag_set);
2853 		rc = PTR_ERR(q);
2854 		goto err_out;
2855 	}
2856 	q->queuedata = skdev;
2857 
2858 	skdev->queue = q;
2859 	disk->queue = q;
2860 
2861 	blk_queue_write_cache(q, true, true);
2862 	blk_queue_max_segments(q, skdev->sgs_per_request);
2863 	blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2864 
2865 	/* set optimal I/O size to 8KB */
2866 	blk_queue_io_opt(q, 8192);
2867 
2868 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2869 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2870 
2871 	blk_queue_rq_timeout(q, 8 * HZ);
2872 
2873 	spin_lock_irqsave(&skdev->lock, flags);
2874 	dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2875 	blk_mq_stop_hw_queues(skdev->queue);
2876 	spin_unlock_irqrestore(&skdev->lock, flags);
2877 
2878 err_out:
2879 	return rc;
2880 }
2881 
2882 #define SKD_N_DEV_TABLE         16u
2883 static u32 skd_next_devno;
2884 
skd_construct(struct pci_dev * pdev)2885 static struct skd_device *skd_construct(struct pci_dev *pdev)
2886 {
2887 	struct skd_device *skdev;
2888 	int blk_major = skd_major;
2889 	size_t size;
2890 	int rc;
2891 
2892 	skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2893 
2894 	if (!skdev) {
2895 		dev_err(&pdev->dev, "memory alloc failure\n");
2896 		return NULL;
2897 	}
2898 
2899 	skdev->state = SKD_DRVR_STATE_LOAD;
2900 	skdev->pdev = pdev;
2901 	skdev->devno = skd_next_devno++;
2902 	skdev->major = blk_major;
2903 	skdev->dev_max_queue_depth = 0;
2904 
2905 	skdev->num_req_context = skd_max_queue_depth;
2906 	skdev->num_fitmsg_context = skd_max_queue_depth;
2907 	skdev->cur_max_queue_depth = 1;
2908 	skdev->queue_low_water_mark = 1;
2909 	skdev->proto_ver = 99;
2910 	skdev->sgs_per_request = skd_sgs_per_request;
2911 	skdev->dbg_level = skd_dbg_level;
2912 
2913 	spin_lock_init(&skdev->lock);
2914 
2915 	INIT_WORK(&skdev->start_queue, skd_start_queue);
2916 	INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2917 
2918 	size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2919 	skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2920 						SLAB_HWCACHE_ALIGN, NULL);
2921 	if (!skdev->msgbuf_cache)
2922 		goto err_out;
2923 	WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2924 		  "skd-msgbuf: %d < %zd\n",
2925 		  kmem_cache_size(skdev->msgbuf_cache), size);
2926 	size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2927 	skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2928 						SLAB_HWCACHE_ALIGN, NULL);
2929 	if (!skdev->sglist_cache)
2930 		goto err_out;
2931 	WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2932 		  "skd-sglist: %d < %zd\n",
2933 		  kmem_cache_size(skdev->sglist_cache), size);
2934 	size = SKD_N_INTERNAL_BYTES;
2935 	skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2936 						 SLAB_HWCACHE_ALIGN, NULL);
2937 	if (!skdev->databuf_cache)
2938 		goto err_out;
2939 	WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2940 		  "skd-databuf: %d < %zd\n",
2941 		  kmem_cache_size(skdev->databuf_cache), size);
2942 
2943 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
2944 	rc = skd_cons_skcomp(skdev);
2945 	if (rc < 0)
2946 		goto err_out;
2947 
2948 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
2949 	rc = skd_cons_skmsg(skdev);
2950 	if (rc < 0)
2951 		goto err_out;
2952 
2953 	dev_dbg(&skdev->pdev->dev, "sksb\n");
2954 	rc = skd_cons_sksb(skdev);
2955 	if (rc < 0)
2956 		goto err_out;
2957 
2958 	dev_dbg(&skdev->pdev->dev, "disk\n");
2959 	rc = skd_cons_disk(skdev);
2960 	if (rc < 0)
2961 		goto err_out;
2962 
2963 	dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2964 	return skdev;
2965 
2966 err_out:
2967 	dev_dbg(&skdev->pdev->dev, "construct failed\n");
2968 	skd_destruct(skdev);
2969 	return NULL;
2970 }
2971 
2972 /*
2973  *****************************************************************************
2974  * DESTRUCT (FREE)
2975  *****************************************************************************
2976  */
2977 
skd_free_skcomp(struct skd_device * skdev)2978 static void skd_free_skcomp(struct skd_device *skdev)
2979 {
2980 	if (skdev->skcomp_table)
2981 		dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2982 				  skdev->skcomp_table, skdev->cq_dma_address);
2983 
2984 	skdev->skcomp_table = NULL;
2985 	skdev->cq_dma_address = 0;
2986 }
2987 
skd_free_skmsg(struct skd_device * skdev)2988 static void skd_free_skmsg(struct skd_device *skdev)
2989 {
2990 	u32 i;
2991 
2992 	if (skdev->skmsg_table == NULL)
2993 		return;
2994 
2995 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2996 		struct skd_fitmsg_context *skmsg;
2997 
2998 		skmsg = &skdev->skmsg_table[i];
2999 
3000 		if (skmsg->msg_buf != NULL) {
3001 			dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
3002 					  skmsg->msg_buf,
3003 					    skmsg->mb_dma_address);
3004 		}
3005 		skmsg->msg_buf = NULL;
3006 		skmsg->mb_dma_address = 0;
3007 	}
3008 
3009 	kfree(skdev->skmsg_table);
3010 	skdev->skmsg_table = NULL;
3011 }
3012 
skd_free_sksb(struct skd_device * skdev)3013 static void skd_free_sksb(struct skd_device *skdev)
3014 {
3015 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
3016 
3017 	skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3018 		     skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3019 
3020 	skspcl->data_buf = NULL;
3021 	skspcl->db_dma_address = 0;
3022 
3023 	skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3024 		     skspcl->mb_dma_address, DMA_TO_DEVICE);
3025 
3026 	skspcl->msg_buf = NULL;
3027 	skspcl->mb_dma_address = 0;
3028 
3029 	skd_free_sg_list(skdev, skspcl->req.sksg_list,
3030 			 skspcl->req.sksg_dma_address);
3031 
3032 	skspcl->req.sksg_list = NULL;
3033 	skspcl->req.sksg_dma_address = 0;
3034 }
3035 
skd_free_disk(struct skd_device * skdev)3036 static void skd_free_disk(struct skd_device *skdev)
3037 {
3038 	struct gendisk *disk = skdev->disk;
3039 
3040 	if (disk && (disk->flags & GENHD_FL_UP))
3041 		del_gendisk(disk);
3042 
3043 	if (skdev->queue) {
3044 		blk_cleanup_queue(skdev->queue);
3045 		skdev->queue = NULL;
3046 		if (disk)
3047 			disk->queue = NULL;
3048 	}
3049 
3050 	if (skdev->tag_set.tags)
3051 		blk_mq_free_tag_set(&skdev->tag_set);
3052 
3053 	put_disk(disk);
3054 	skdev->disk = NULL;
3055 }
3056 
skd_destruct(struct skd_device * skdev)3057 static void skd_destruct(struct skd_device *skdev)
3058 {
3059 	if (skdev == NULL)
3060 		return;
3061 
3062 	cancel_work_sync(&skdev->start_queue);
3063 
3064 	dev_dbg(&skdev->pdev->dev, "disk\n");
3065 	skd_free_disk(skdev);
3066 
3067 	dev_dbg(&skdev->pdev->dev, "sksb\n");
3068 	skd_free_sksb(skdev);
3069 
3070 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
3071 	skd_free_skmsg(skdev);
3072 
3073 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
3074 	skd_free_skcomp(skdev);
3075 
3076 	kmem_cache_destroy(skdev->databuf_cache);
3077 	kmem_cache_destroy(skdev->sglist_cache);
3078 	kmem_cache_destroy(skdev->msgbuf_cache);
3079 
3080 	dev_dbg(&skdev->pdev->dev, "skdev\n");
3081 	kfree(skdev);
3082 }
3083 
3084 /*
3085  *****************************************************************************
3086  * BLOCK DEVICE (BDEV) GLUE
3087  *****************************************************************************
3088  */
3089 
skd_bdev_getgeo(struct block_device * bdev,struct hd_geometry * geo)3090 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3091 {
3092 	struct skd_device *skdev;
3093 	u64 capacity;
3094 
3095 	skdev = bdev->bd_disk->private_data;
3096 
3097 	dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3098 		bdev->bd_disk->disk_name, current->comm);
3099 
3100 	if (skdev->read_cap_is_valid) {
3101 		capacity = get_capacity(skdev->disk);
3102 		geo->heads = 64;
3103 		geo->sectors = 255;
3104 		geo->cylinders = (capacity) / (255 * 64);
3105 
3106 		return 0;
3107 	}
3108 	return -EIO;
3109 }
3110 
skd_bdev_attach(struct device * parent,struct skd_device * skdev)3111 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3112 {
3113 	dev_dbg(&skdev->pdev->dev, "add_disk\n");
3114 	device_add_disk(parent, skdev->disk, NULL);
3115 	return 0;
3116 }
3117 
3118 static const struct block_device_operations skd_blockdev_ops = {
3119 	.owner		= THIS_MODULE,
3120 	.getgeo		= skd_bdev_getgeo,
3121 };
3122 
3123 /*
3124  *****************************************************************************
3125  * PCIe DRIVER GLUE
3126  *****************************************************************************
3127  */
3128 
3129 static const struct pci_device_id skd_pci_tbl[] = {
3130 	{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3131 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3132 	{ 0 }                     /* terminate list */
3133 };
3134 
3135 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3136 
skd_pci_info(struct skd_device * skdev,char * str)3137 static char *skd_pci_info(struct skd_device *skdev, char *str)
3138 {
3139 	int pcie_reg;
3140 
3141 	strcpy(str, "PCIe (");
3142 	pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3143 
3144 	if (pcie_reg) {
3145 
3146 		char lwstr[6];
3147 		uint16_t pcie_lstat, lspeed, lwidth;
3148 
3149 		pcie_reg += 0x12;
3150 		pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3151 		lspeed = pcie_lstat & (0xF);
3152 		lwidth = (pcie_lstat & 0x3F0) >> 4;
3153 
3154 		if (lspeed == 1)
3155 			strcat(str, "2.5GT/s ");
3156 		else if (lspeed == 2)
3157 			strcat(str, "5.0GT/s ");
3158 		else
3159 			strcat(str, "<unknown> ");
3160 		snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3161 		strcat(str, lwstr);
3162 	}
3163 	return str;
3164 }
3165 
skd_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3166 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3167 {
3168 	int i;
3169 	int rc = 0;
3170 	char pci_str[32];
3171 	struct skd_device *skdev;
3172 
3173 	dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3174 		pdev->device);
3175 
3176 	rc = pci_enable_device(pdev);
3177 	if (rc)
3178 		return rc;
3179 	rc = pci_request_regions(pdev, DRV_NAME);
3180 	if (rc)
3181 		goto err_out;
3182 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3183 	if (rc)
3184 		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3185 	if (rc) {
3186 		dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3187 		goto err_out_regions;
3188 	}
3189 
3190 	if (!skd_major) {
3191 		rc = register_blkdev(0, DRV_NAME);
3192 		if (rc < 0)
3193 			goto err_out_regions;
3194 		BUG_ON(!rc);
3195 		skd_major = rc;
3196 	}
3197 
3198 	skdev = skd_construct(pdev);
3199 	if (skdev == NULL) {
3200 		rc = -ENOMEM;
3201 		goto err_out_regions;
3202 	}
3203 
3204 	skd_pci_info(skdev, pci_str);
3205 	dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3206 
3207 	pci_set_master(pdev);
3208 	rc = pci_enable_pcie_error_reporting(pdev);
3209 	if (rc) {
3210 		dev_err(&pdev->dev,
3211 			"bad enable of PCIe error reporting rc=%d\n", rc);
3212 		skdev->pcie_error_reporting_is_enabled = 0;
3213 	} else
3214 		skdev->pcie_error_reporting_is_enabled = 1;
3215 
3216 	pci_set_drvdata(pdev, skdev);
3217 
3218 	for (i = 0; i < SKD_MAX_BARS; i++) {
3219 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3220 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3221 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3222 					    skdev->mem_size[i]);
3223 		if (!skdev->mem_map[i]) {
3224 			dev_err(&pdev->dev,
3225 				"Unable to map adapter memory!\n");
3226 			rc = -ENODEV;
3227 			goto err_out_iounmap;
3228 		}
3229 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3230 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3231 			skdev->mem_size[i]);
3232 	}
3233 
3234 	rc = skd_acquire_irq(skdev);
3235 	if (rc) {
3236 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3237 		goto err_out_iounmap;
3238 	}
3239 
3240 	rc = skd_start_timer(skdev);
3241 	if (rc)
3242 		goto err_out_timer;
3243 
3244 	init_waitqueue_head(&skdev->waitq);
3245 
3246 	skd_start_device(skdev);
3247 
3248 	rc = wait_event_interruptible_timeout(skdev->waitq,
3249 					      (skdev->gendisk_on),
3250 					      (SKD_START_WAIT_SECONDS * HZ));
3251 	if (skdev->gendisk_on > 0) {
3252 		/* device came on-line after reset */
3253 		skd_bdev_attach(&pdev->dev, skdev);
3254 		rc = 0;
3255 	} else {
3256 		/* we timed out, something is wrong with the device,
3257 		   don't add the disk structure */
3258 		dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3259 			rc);
3260 		/* in case of no error; we timeout with ENXIO */
3261 		if (!rc)
3262 			rc = -ENXIO;
3263 		goto err_out_timer;
3264 	}
3265 
3266 	return rc;
3267 
3268 err_out_timer:
3269 	skd_stop_device(skdev);
3270 	skd_release_irq(skdev);
3271 
3272 err_out_iounmap:
3273 	for (i = 0; i < SKD_MAX_BARS; i++)
3274 		if (skdev->mem_map[i])
3275 			iounmap(skdev->mem_map[i]);
3276 
3277 	if (skdev->pcie_error_reporting_is_enabled)
3278 		pci_disable_pcie_error_reporting(pdev);
3279 
3280 	skd_destruct(skdev);
3281 
3282 err_out_regions:
3283 	pci_release_regions(pdev);
3284 
3285 err_out:
3286 	pci_disable_device(pdev);
3287 	pci_set_drvdata(pdev, NULL);
3288 	return rc;
3289 }
3290 
skd_pci_remove(struct pci_dev * pdev)3291 static void skd_pci_remove(struct pci_dev *pdev)
3292 {
3293 	int i;
3294 	struct skd_device *skdev;
3295 
3296 	skdev = pci_get_drvdata(pdev);
3297 	if (!skdev) {
3298 		dev_err(&pdev->dev, "no device data for PCI\n");
3299 		return;
3300 	}
3301 	skd_stop_device(skdev);
3302 	skd_release_irq(skdev);
3303 
3304 	for (i = 0; i < SKD_MAX_BARS; i++)
3305 		if (skdev->mem_map[i])
3306 			iounmap(skdev->mem_map[i]);
3307 
3308 	if (skdev->pcie_error_reporting_is_enabled)
3309 		pci_disable_pcie_error_reporting(pdev);
3310 
3311 	skd_destruct(skdev);
3312 
3313 	pci_release_regions(pdev);
3314 	pci_disable_device(pdev);
3315 	pci_set_drvdata(pdev, NULL);
3316 
3317 	return;
3318 }
3319 
skd_pci_suspend(struct pci_dev * pdev,pm_message_t state)3320 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3321 {
3322 	int i;
3323 	struct skd_device *skdev;
3324 
3325 	skdev = pci_get_drvdata(pdev);
3326 	if (!skdev) {
3327 		dev_err(&pdev->dev, "no device data for PCI\n");
3328 		return -EIO;
3329 	}
3330 
3331 	skd_stop_device(skdev);
3332 
3333 	skd_release_irq(skdev);
3334 
3335 	for (i = 0; i < SKD_MAX_BARS; i++)
3336 		if (skdev->mem_map[i])
3337 			iounmap(skdev->mem_map[i]);
3338 
3339 	if (skdev->pcie_error_reporting_is_enabled)
3340 		pci_disable_pcie_error_reporting(pdev);
3341 
3342 	pci_release_regions(pdev);
3343 	pci_save_state(pdev);
3344 	pci_disable_device(pdev);
3345 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
3346 	return 0;
3347 }
3348 
skd_pci_resume(struct pci_dev * pdev)3349 static int skd_pci_resume(struct pci_dev *pdev)
3350 {
3351 	int i;
3352 	int rc = 0;
3353 	struct skd_device *skdev;
3354 
3355 	skdev = pci_get_drvdata(pdev);
3356 	if (!skdev) {
3357 		dev_err(&pdev->dev, "no device data for PCI\n");
3358 		return -1;
3359 	}
3360 
3361 	pci_set_power_state(pdev, PCI_D0);
3362 	pci_enable_wake(pdev, PCI_D0, 0);
3363 	pci_restore_state(pdev);
3364 
3365 	rc = pci_enable_device(pdev);
3366 	if (rc)
3367 		return rc;
3368 	rc = pci_request_regions(pdev, DRV_NAME);
3369 	if (rc)
3370 		goto err_out;
3371 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3372 	if (rc)
3373 		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3374 	if (rc) {
3375 		dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3376 		goto err_out_regions;
3377 	}
3378 
3379 	pci_set_master(pdev);
3380 	rc = pci_enable_pcie_error_reporting(pdev);
3381 	if (rc) {
3382 		dev_err(&pdev->dev,
3383 			"bad enable of PCIe error reporting rc=%d\n", rc);
3384 		skdev->pcie_error_reporting_is_enabled = 0;
3385 	} else
3386 		skdev->pcie_error_reporting_is_enabled = 1;
3387 
3388 	for (i = 0; i < SKD_MAX_BARS; i++) {
3389 
3390 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3391 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3392 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3393 					    skdev->mem_size[i]);
3394 		if (!skdev->mem_map[i]) {
3395 			dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3396 			rc = -ENODEV;
3397 			goto err_out_iounmap;
3398 		}
3399 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3400 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3401 			skdev->mem_size[i]);
3402 	}
3403 	rc = skd_acquire_irq(skdev);
3404 	if (rc) {
3405 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3406 		goto err_out_iounmap;
3407 	}
3408 
3409 	rc = skd_start_timer(skdev);
3410 	if (rc)
3411 		goto err_out_timer;
3412 
3413 	init_waitqueue_head(&skdev->waitq);
3414 
3415 	skd_start_device(skdev);
3416 
3417 	return rc;
3418 
3419 err_out_timer:
3420 	skd_stop_device(skdev);
3421 	skd_release_irq(skdev);
3422 
3423 err_out_iounmap:
3424 	for (i = 0; i < SKD_MAX_BARS; i++)
3425 		if (skdev->mem_map[i])
3426 			iounmap(skdev->mem_map[i]);
3427 
3428 	if (skdev->pcie_error_reporting_is_enabled)
3429 		pci_disable_pcie_error_reporting(pdev);
3430 
3431 err_out_regions:
3432 	pci_release_regions(pdev);
3433 
3434 err_out:
3435 	pci_disable_device(pdev);
3436 	return rc;
3437 }
3438 
skd_pci_shutdown(struct pci_dev * pdev)3439 static void skd_pci_shutdown(struct pci_dev *pdev)
3440 {
3441 	struct skd_device *skdev;
3442 
3443 	dev_err(&pdev->dev, "%s called\n", __func__);
3444 
3445 	skdev = pci_get_drvdata(pdev);
3446 	if (!skdev) {
3447 		dev_err(&pdev->dev, "no device data for PCI\n");
3448 		return;
3449 	}
3450 
3451 	dev_err(&pdev->dev, "calling stop\n");
3452 	skd_stop_device(skdev);
3453 }
3454 
3455 static struct pci_driver skd_driver = {
3456 	.name		= DRV_NAME,
3457 	.id_table	= skd_pci_tbl,
3458 	.probe		= skd_pci_probe,
3459 	.remove		= skd_pci_remove,
3460 	.suspend	= skd_pci_suspend,
3461 	.resume		= skd_pci_resume,
3462 	.shutdown	= skd_pci_shutdown,
3463 };
3464 
3465 /*
3466  *****************************************************************************
3467  * LOGGING SUPPORT
3468  *****************************************************************************
3469  */
3470 
skd_drive_state_to_str(int state)3471 const char *skd_drive_state_to_str(int state)
3472 {
3473 	switch (state) {
3474 	case FIT_SR_DRIVE_OFFLINE:
3475 		return "OFFLINE";
3476 	case FIT_SR_DRIVE_INIT:
3477 		return "INIT";
3478 	case FIT_SR_DRIVE_ONLINE:
3479 		return "ONLINE";
3480 	case FIT_SR_DRIVE_BUSY:
3481 		return "BUSY";
3482 	case FIT_SR_DRIVE_FAULT:
3483 		return "FAULT";
3484 	case FIT_SR_DRIVE_DEGRADED:
3485 		return "DEGRADED";
3486 	case FIT_SR_PCIE_LINK_DOWN:
3487 		return "INK_DOWN";
3488 	case FIT_SR_DRIVE_SOFT_RESET:
3489 		return "SOFT_RESET";
3490 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3491 		return "NEED_FW";
3492 	case FIT_SR_DRIVE_INIT_FAULT:
3493 		return "INIT_FAULT";
3494 	case FIT_SR_DRIVE_BUSY_SANITIZE:
3495 		return "BUSY_SANITIZE";
3496 	case FIT_SR_DRIVE_BUSY_ERASE:
3497 		return "BUSY_ERASE";
3498 	case FIT_SR_DRIVE_FW_BOOTING:
3499 		return "FW_BOOTING";
3500 	default:
3501 		return "???";
3502 	}
3503 }
3504 
skd_skdev_state_to_str(enum skd_drvr_state state)3505 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3506 {
3507 	switch (state) {
3508 	case SKD_DRVR_STATE_LOAD:
3509 		return "LOAD";
3510 	case SKD_DRVR_STATE_IDLE:
3511 		return "IDLE";
3512 	case SKD_DRVR_STATE_BUSY:
3513 		return "BUSY";
3514 	case SKD_DRVR_STATE_STARTING:
3515 		return "STARTING";
3516 	case SKD_DRVR_STATE_ONLINE:
3517 		return "ONLINE";
3518 	case SKD_DRVR_STATE_PAUSING:
3519 		return "PAUSING";
3520 	case SKD_DRVR_STATE_PAUSED:
3521 		return "PAUSED";
3522 	case SKD_DRVR_STATE_RESTARTING:
3523 		return "RESTARTING";
3524 	case SKD_DRVR_STATE_RESUMING:
3525 		return "RESUMING";
3526 	case SKD_DRVR_STATE_STOPPING:
3527 		return "STOPPING";
3528 	case SKD_DRVR_STATE_SYNCING:
3529 		return "SYNCING";
3530 	case SKD_DRVR_STATE_FAULT:
3531 		return "FAULT";
3532 	case SKD_DRVR_STATE_DISAPPEARED:
3533 		return "DISAPPEARED";
3534 	case SKD_DRVR_STATE_BUSY_ERASE:
3535 		return "BUSY_ERASE";
3536 	case SKD_DRVR_STATE_BUSY_SANITIZE:
3537 		return "BUSY_SANITIZE";
3538 	case SKD_DRVR_STATE_BUSY_IMMINENT:
3539 		return "BUSY_IMMINENT";
3540 	case SKD_DRVR_STATE_WAIT_BOOT:
3541 		return "WAIT_BOOT";
3542 
3543 	default:
3544 		return "???";
3545 	}
3546 }
3547 
skd_skreq_state_to_str(enum skd_req_state state)3548 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3549 {
3550 	switch (state) {
3551 	case SKD_REQ_STATE_IDLE:
3552 		return "IDLE";
3553 	case SKD_REQ_STATE_SETUP:
3554 		return "SETUP";
3555 	case SKD_REQ_STATE_BUSY:
3556 		return "BUSY";
3557 	case SKD_REQ_STATE_COMPLETED:
3558 		return "COMPLETED";
3559 	case SKD_REQ_STATE_TIMEOUT:
3560 		return "TIMEOUT";
3561 	default:
3562 		return "???";
3563 	}
3564 }
3565 
skd_log_skdev(struct skd_device * skdev,const char * event)3566 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3567 {
3568 	dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3569 	dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3570 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3571 		skd_skdev_state_to_str(skdev->state), skdev->state);
3572 	dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3573 		skd_in_flight(skdev), skdev->cur_max_queue_depth,
3574 		skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3575 	dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3576 		skdev->skcomp_cycle, skdev->skcomp_ix);
3577 }
3578 
skd_log_skreq(struct skd_device * skdev,struct skd_request_context * skreq,const char * event)3579 static void skd_log_skreq(struct skd_device *skdev,
3580 			  struct skd_request_context *skreq, const char *event)
3581 {
3582 	struct request *req = blk_mq_rq_from_pdu(skreq);
3583 	u32 lba = blk_rq_pos(req);
3584 	u32 count = blk_rq_sectors(req);
3585 
3586 	dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3587 	dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3588 		skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3589 		skreq->fitmsg_id);
3590 	dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3591 		skreq->data_dir, skreq->n_sg);
3592 
3593 	dev_dbg(&skdev->pdev->dev,
3594 		"req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3595 		count, count, (int)rq_data_dir(req));
3596 }
3597 
3598 /*
3599  *****************************************************************************
3600  * MODULE GLUE
3601  *****************************************************************************
3602  */
3603 
skd_init(void)3604 static int __init skd_init(void)
3605 {
3606 	BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3607 	BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3608 	BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3609 	BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3610 	BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3611 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3612 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3613 	BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3614 
3615 	switch (skd_isr_type) {
3616 	case SKD_IRQ_LEGACY:
3617 	case SKD_IRQ_MSI:
3618 	case SKD_IRQ_MSIX:
3619 		break;
3620 	default:
3621 		pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3622 		       skd_isr_type, SKD_IRQ_DEFAULT);
3623 		skd_isr_type = SKD_IRQ_DEFAULT;
3624 	}
3625 
3626 	if (skd_max_queue_depth < 1 ||
3627 	    skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3628 		pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3629 		       skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3630 		skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3631 	}
3632 
3633 	if (skd_max_req_per_msg < 1 ||
3634 	    skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3635 		pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3636 		       skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3637 		skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3638 	}
3639 
3640 	if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3641 		pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3642 		       skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3643 		skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3644 	}
3645 
3646 	if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3647 		pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3648 		       skd_dbg_level, 0);
3649 		skd_dbg_level = 0;
3650 	}
3651 
3652 	if (skd_isr_comp_limit < 0) {
3653 		pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3654 		       skd_isr_comp_limit, 0);
3655 		skd_isr_comp_limit = 0;
3656 	}
3657 
3658 	return pci_register_driver(&skd_driver);
3659 }
3660 
skd_exit(void)3661 static void __exit skd_exit(void)
3662 {
3663 	pci_unregister_driver(&skd_driver);
3664 
3665 	if (skd_major)
3666 		unregister_blkdev(skd_major, DRV_NAME);
3667 }
3668 
3669 module_init(skd_init);
3670 module_exit(skd_exit);
3671